初中数学函数思维导图(合集)
2.2 常见函数(附思维导图)
2.2常见函数一、一次函数和常函数:思维导图:(一) 、一次函数 (二)、常函数 定义域:(- ∞,+ ∞) 定义域: (- ∞,+ ∞) 值 域:(- ∞,+ ∞) 正 k=0 反 值 域:{ b }解析式:y = kx + b ( k ≠ 0 ) 解析式:y = b ( b 为常数)图 像:一条与x 轴、y 轴相交的直线 图 像:一条与x 轴平行或重合的直线b>0 b=0 b<0 K > 0 k < 0单调性: k > 0 ,在(- ∞,+ ∞)↑ 单调性:在(- ∞,+ ∞)上不单调 k < 0 ,在(- ∞,+ ∞)↓奇偶性:奇函数⇔=0b 奇偶性: 偶函数 非奇非偶⇔≠0b周期性: 非周期函数 周期性:周期函数,周期为任意非零实数 反函数:在(- ∞,+ ∞)上有反函数 反函数:在(- ∞,+ ∞)上没有反函数 反函数仍是一次函数例题:二、二次函数1、定义域:(- ∞,+ ∞)2、值 域: ),44[,02+∞-∈>ab ac y a]44,(,02ab ac y a --∞∈<3、解析式:)0(2≠++=a c bx ax y4、图 像:一条开口向上或向下的抛物线开口向下,开口向上;正负:增大,开口缩小绝对值:随着,00<>a a a a正半轴相交与负半轴相交与y c y c c,0,0><对称轴:ab x 2-=对称轴: ;)44,2(2ab ac ab --顶点: 轴交点个数图像与x ac b →-=∆42:与x 轴交点的个数。
两个交点,0>∆一个交点,0=∆无交点,0<∆5、单调性:↑+∞-↓--∞>),2[]2,(,0ab ab a↓+∞-↑--∞<),2[]2,(,0ab ab a6、奇偶性:偶函数⇔=0b7、周期性:非周期函数8、反函数:在(- ∞,+ ∞)上无反函数,上及其子集上有反函数或在),2[]2,(+∞---∞ab ab例题:三、反比例函数和重要的分式函数(一)、反比例函数 (二)、分式函数bax dcx y ++= 定义域:(- ∞,0)∪(0,+ ∞) 定义域:),(),(+∞---∞aba b Y 值 域:(- ∞,0)∪(0,+ ∞) 值 域: ),(),(+∞-∞a c a c Y解析式:)0()(≠=k xk x f 解析式:)(a bx b ax d cx y -≠++=图 像:以x 轴、y 轴为渐进线的双曲线 图 像:以a b x -=和acy =为渐近线的双曲线y y0 x 0 xk > 0 k < 0单调性: k>0,(- ∞,0)↓,(0,+ ∞)↓ 单调性:在),(a b --∞和),(+∞-ab上 k<0,(- ∞,0)↑,(0,+ ∞)↑ 单调性相同 奇偶性:奇函数 奇偶性:非奇非偶 对称性:关于原点对称 对称性:关于点),(aca b -成中心对称 周期性:非周期函数 周期性:非周期函数反函数:在定义域上有反函数, 反函数:在定义域有反函数, 反函数是其本身。
初中数学各章节知识图解思维导图(共9张PPT)
y轴的对称点
表
示
轴
对
解决几何中的
称
极值问题
基本图形
一条直线
翻折后与 两部分重 合
对称轴 定义
轴对称图形 静
基本图形 方向 距离
前.后图形全等
要素 特征
平移
静
轴对称
轴对称变换
要
动
素
旋转中心
旋转方向 旋转角 对应点到旋转中心的距离相等
图形的旋转
旋转前.后的图形全等
特
对应点与旋转中心所连线段的夹角=
征
旋转角
图形的 全等变 换
旋转角=1800
中心对称图 形
旋转
意义
单项式
字母指数和
次数
系数
数字因 数
不改变 分式的值
公因式
通分化成同分 母
分母不变 分子相 加减
通分
子积为子母积为母
注:分子、 分母为多 项式时先 分解因式
化除法为乘法
基本性质
分式
运算 分式方程
乘除 乘方
a
n
b
an bn
n为整数
an
1 an
n为整数
解法
应用
二次根式
运算
加减
代
数
性质
乘除
定义
式 (1) aa0双非负
k<0
到三边的距离相等在三角形内
点到两点 的距离相等k>0
k<0
二次函数与 两图形相似
一元二次方程
对应图顶象点的连线交于一点对应关边系平行
x1= x2 =
K同号时, 有两交点。 K异号时, 有两个、一个 或无交点
图象 性质
分母不变 分子相加减 实际问题,图象在第一象性限质
初中数学各章节知识图解思维导图(共9张PPT)
应用
特例
定理
勾股定理
证明 内容
文字.符号图形
互逆命题
内容
文字.符号图形
直角三角形
逆定理
全等
证明
应用
知三边定形状
锐角三角函数
有关线段
定义
三角 形
解直角三角形
锐角三角函数
定义
计算
三边关系锐角关 系边角关系
应用
坡度 仰.俯角 方位角
正弦
余弦
符号.几何意义. 特殊角的值
特殊值的运算
正切
作对称轴 作一点到两点距离相等 离相等(外心)
作等腰三角形 作一点到三点距
翻折后与 另一图形重 合
到两点距离相等的 点
点到两点 的距离 相等
性质
判定
应用
垂直平分线
定义
对称点
关于轴对称
基本 图形
对称 轴
特征
要素
利用轴对称制作图案
用
坐
作:关于x轴、
标
y轴的对称点
表
示
轴
对
解决几何中的
称
极值问题
基本图形
一条直线
翻折后与 两部分 重合
对称轴 定义
轴对称图形 静
与y轴交点位置 c>0.
对应角相等, 尺规作角 对应边成比例,
二次函数与 一元二次方程
对称轴垂直平分对称点的连线
作对直称线公轴理
直线
作等腰三角形
磁道问题
利润问题 拱桥问题
在表示原与点画法 c<0.
到寻三找射边线方的法 距离相射等线 在三角形内直线.射线.线段
一次函数与反比例函数
表示与画法
线段
计算与比较
初中数学七年级上册思维导图
初中数学七年级上册思维导图一、数与代数1. 实数有理数整数正整数、负整数、0分数正分数、负分数无理数不能表示为两个整数比的数无理数的近似值2. 代数式代数式的概念代数式的化简代数式的求值3. 方程与不等式一元一次方程方程的解法方程的应用一元一次不等式不等式的解法不等式的应用二、几何1. 平面几何点、线、面角锐角、直角、钝角角的度量多边形三角形等腰三角形、等边三角形、直角三角形四边形矩形、正方形、平行四边形、梯形圆圆的性质圆的周长、面积2. 空间几何立体图形长方体、正方体、圆柱、圆锥、球立体图形的表面积、体积三、统计与概率1. 统计数据的收集与整理数据的表示表格、条形图、折线图、扇形图数据的分析平均数、中位数、众数2. 概率概率的概念概率的计算概率的应用四、数学思维方法1. 分类讨论法2. 类比法3. 归纳法4. 反证法五、数学应用与建模1. 数学在实际生活中的应用金融领域利息计算、复利计算工程领域测量、绘图、计算科学研究数据分析、实验设计2. 数学建模建模的基本步骤提出问题、建立模型、求解模型、验证模型常见的数学模型线性模型、非线性模型、概率模型六、数学思维导图的制作与应用1. 思维导图的制作方法确定中心主题画出分支填充内容修饰美化2. 思维导图的应用场景学习规划项目管理决策分析七、数学与科技的发展1. 数学在科技领域的重要性计算机科学算法设计、数据结构机器学习、深度学习物理学量子力学、相对论2. 数学与其他学科的交叉融合数学与生物学遗传算法、神经网络数学与经济学博弈论、优化理论八、数学教育的创新与改革1. 数学教育的现状与问题教学方法单一学生兴趣不高创新能力培养不足2. 数学教育的创新策略案例教学法项目式学习翻转课堂在线教育3. 数学教育的改革方向注重学生个性化发展培养学生的数学思维提高学生的数学应用能力初中数学七年级上册思维导图一、数的认识1. 整数自然数:0, 1, 2, 3,正整数:1, 2, 3,负整数:1, 2, 3,整数:自然数和负整数的统称2. 分数真分数:分子小于分母的分数假分数:分子大于或等于分母的分数分数的基本性质:分子分母同时乘以或除以同一个非零整数,分数的值不变3. 小数小数的表示方法:整数部分和小数部分小数的性质:小数点向右移动一位,相当于乘以10;小数点向左移动一位,相当于除以10二、数的运算1. 整数的运算加法:将两个整数相加减法:将一个整数从另一个整数中减去乘法:将两个整数相乘除法:将一个整数除以另一个非零整数2. 分数的运算加法:将两个分数的分子相加,分母保持不变减法:将一个分数的分子从另一个分数的分子中减去,分母保持不变乘法:将两个分数的分子相乘,分母相乘除法:将一个分数的分子乘以另一个分数的分母,分母乘以另一个分数的分子3. 小数的运算加法:将两个小数的小数部分相加,整数部分相加减法:将一个小数的小数部分从另一个小数的小数部分中减去,整数部分相减乘法:将两个小数相乘除法:将一个小数除以另一个非零小数三、方程与不等式1. 方程一元一次方程:ax + b = 0(a, b为常数,x为未知数)方程的解:使方程成立的未知数的值2. 不等式一元一次不等式:ax + b > 0 或 ax + b < 0(a, b为常数,x 为未知数)不等式的解集:满足不等式的未知数的值的集合四、函数与图形1. 函数定义:函数是一种特殊的关系,每个输入值对应唯一的输出值表示方法:函数关系可以用函数表达式、函数图像、函数表格等方式表示2. 图形直线:一次函数的图像抛物线:二次函数的图像双曲线:反比例函数的图像五、统计与概率1. 统计数据的收集与整理:收集数据、整理数据、制作统计图表数据的分析与解释:分析数据、得出结论、解释结论2. 概率概率的定义:某个事件发生的可能性概率的计算:根据事件发生的次数和总次数计算概率初中数学七年级上册思维导图六、几何图形的认识1. 点、线、面点:没有长度、宽度和高度的几何元素线:只有长度没有宽度和高度的几何元素面:具有长度和宽度的几何元素2. 平面图形三角形:由三条线段组成的闭合图形四边形:由四条线段组成的闭合图形圆:由一个点到平面上所有点的距离相等的点的集合3. 空间图形立方体:由六个正方形面组成的立体图形圆柱:由两个平行圆面和一个侧面组成的立体图形圆锥:由一个圆面和一个侧面组成的立体图形七、几何图形的性质1. 三角形的性质内角和定理:三角形的内角和等于180度等腰三角形的性质:底角相等,底边上的高、中线、角平分线互相重合直角三角形的性质:直角边上的高、中线、角平分线互相重合2. 四边形的性质平行四边形的性质:对边平行且相等,对角相等,对角线互相平分矩形的性质:四个角都是直角,对边平行且相等,对角线互相平分且相等菱形的性质:四个角都是直角,对边平行且相等,对角线互相垂直平分3. 圆的性质圆的周长公式:C = 2πr(r为圆的半径)圆的面积公式:A = πr²圆的性质:圆心到圆上任意一点的距离都相等八、几何图形的计算1. 三角形的计算三角形的周长:三条边的长度之和三角形的面积:底乘以高除以22. 四边形的计算四边形的周长:四条边的长度之和四边形的面积:根据不同类型的四边形使用相应的公式计算3. 圆的计算圆的周长:2πr圆的面积:πr²九、综合应用1. 实际问题运用所学的数学知识解决实际问题,如计算面积、周长、体积等培养学生的应用意识和解决问题的能力2. 数学建模将实际问题抽象成数学模型,运用数学知识解决问题培养学生的建模能力和创新能力3. 数学探究通过探究活动,让学生发现数学规律,提高学生的探究能力和思维能力初中数学七年级上册思维导图十、数学思维与方法1. 逻辑推理通过观察、分析、归纳等方法,培养学生的逻辑思维能力帮助学生理解数学概念、性质、定理之间的关系2. 数学建模将实际问题抽象成数学模型,运用数学知识解决问题培养学生的建模能力和创新能力3. 数学探究通过探究活动,让学生发现数学规律,提高学生的探究能力和思维能力十一、数学素养与能力1. 数感培养学生对数的敏感性,能够快速、准确地理解和处理数学信息2. 空间观念培养学生对几何图形的认识和空间想象能力,提高学生的空间思维能力3. 解决问题的能力培养学生运用数学知识解决实际问题的能力,提高学生的应用意识和实践能力4. 创新能力培养学生的创新思维,鼓励学生尝试不同的解题方法和思路5. 合作与交流能力培养学生与他人合作交流的能力,提高学生的团队协作能力和沟通能力初中数学七年级上册思维导图一、数与代数1. 实数有理数整数正整数、负整数、0分数正分数、负分数无理数不能表示为两个整数比的数无理数的近似值2. 代数式代数式的概念代数式的化简代数式的求值3. 方程与不等式一元一次方程方程的解法方程的应用一元一次不等式不等式的解法不等式的应用二、几何1. 平面几何点、线、面角锐角、直角、钝角角的度量多边形三角形等腰三角形、等边三角形、直角三角形四边形矩形、正方形、平行四边形、梯形多边形的内角和定理2. 空间几何立体图形正方体、长方体、圆柱、圆锥、球立体图形的表面积与体积三、统计与概率1. 数据的收集与整理数据的收集方法数据的整理方法2. 数据的描述平均数、中位数、众数极差、方差、标准差3. 概率概率的基本概念概率的计算方法概率的应用四、数学思维方法1. 归纳法从具体到一般从特殊到一般2. 类比法通过相似性进行推理3. 反证法假设结论不成立,推出矛盾,从而证明结论成立4. 构造法通过构造实例来解决问题五、数学建模1. 建模的基本步骤确定问题建立模型求解模型验证模型2. 常见的数学模型线性模型二次模型指数模型3. 数学建模的应用在实际生活中的应用在科学研究中的应用初中数学七年级上册思维导图六、数学实验与探究1. 实验的设计与实施确定实验目的设计实验方案实施实验并记录数据分析实验结果2. 探究的方法与技巧观察法实验法归纳法类比法3. 数学实验与探究的应用解决实际问题深化数学理解培养创新思维七、数学文化1. 数学发展史古代数学近现代数学2. 数学家的故事中国数学家外国数学家3. 数学与生活的关系数学在科技发展中的作用数学在日常生活中的应用八、数学学习方法1. 课堂学习专心听讲积极思考勇于提问2. 自主学习制定学习计划完成课后作业复习巩固3. 合作学习与同学交流讨论分享学习资源相互帮助、共同进步九、数学素养的培养1. 数学思维逻辑思维抽象思维空间思维2. 数学能力计算能力推理能力解决问题的能力3. 数学品质耐心细心持之以恒初中数学七年级上册思维导图十、数学竞赛与拓展1. 数学竞赛简介数学竞赛的类型数学竞赛的级别数学竞赛的报名时间及方式2. 数学竞赛的备考策略基础知识的巩固解题技巧的提升模拟试题的训练3. 数学竞赛的意义激发学习兴趣培养竞争意识提高数学能力十一、数学与科技1. 数学在科技领域的作用计算机科学数据分析2. 数学在工程技术中的应用建筑设计机械制造通信技术3. 数学在生活中的创新数学与艺术数学与体育数学与游戏十二、数学教育改革与发展1. 新课程标准的实施课程目标的调整教学内容的更新教学方法的改革2. 数学教育技术的发展信息技术与数学教育的融合在线教育平台的建设虚拟现实技术在数学教学中的应用3. 数学教育的国际交流与合作国际数学竞赛的参与数学教育研究的合作数学教师培训的国际交流初中数学七年级上册思维导图一、数与代数1. 整数加减法加法:将两个数合并成一个数的运算。
初中数学函数思维导图(合集)(11页)
初中数学函数思维导图(合集)(11页)页码:1/11封面初中数学函数思维导图合集副思维导图助力数学学习,掌握函数知识作者:[你的名字]日期:[填写日期]页码:2/11目录1. 引言2. 函数概念3. 函数类型3.1 线性函数3.2 二次函数3.3 反比例函数3.4 幂函数3.5 指数函数3.6 对数函数4. 函数性质4.1 单调性4.2 奇偶性4.3 周期性4.4 极值5. 函数图像6. 函数应用7. 函数解题技巧8. 常见函数问题页码:3/11引言数学函数是初中数学中的重要内容,它不仅是高中数学的基础,也是解决实际问题的重要工具。
掌握函数知识,对于提高数学成绩和解决实际问题具有重要意义。
本思维导图合集旨在帮助初中生系统地学习和掌握函数知识,提高数学思维能力和解题技巧。
页码:4/11函数概念线性函数:一次函数,形式为y=ax+b,其中a和b是常数。
二次函数:二次函数,形式为y=ax^2+bx+c,其中a、b和c是常数。
反比例函数:形式为y=k/x,其中k是常数。
幂函数:形式为y=ax^n,其中a和n是常数。
指数函数:形式为y=a^x,其中a是常数。
对数函数:形式为y=logax,其中a是常数。
页码:5/11函数类型线性函数:一次函数,形式为y=ax+b,其中a和b是常数。
它是一条直线,斜率为a,截距为b。
二次函数:二次函数,形式为y=ax^2+bx+c,其中a、b和c是常数。
它的图像是一个抛物线,开口向上或向下,取决于a的正负。
反比例函数:形式为y=k/x,其中k是常数。
它的图像是一个双曲线,随着x的增大,y的值逐渐减小。
幂函数:形式为y=ax^n,其中a和n是常数。
它的图像可以是直线、抛物线、双曲线等,取决于n的值。
指数函数:形式为y=a^x,其中a是常数。
它的图像是一个递增或递减的曲线,取决于a的正负。
对数函数:形式为y=logax,其中a是常数。
它的图像是一个递增或递减的曲线,取决于a的正负。
七年级数学下册思维导图(超全)
七年级数学下册思维导图(超全)第一章:实数1. 实数的概念2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数3. 实数的运算加法减法乘法除法乘方开方第二章:代数式1. 代数式的概念2. 代数式的分类单项式多项式3. 代数式的运算减法乘法除法乘方第三章:方程与不等式1. 方程的概念2. 一元一次方程求解方法3. 不等式的概念4. 一元一次不等式求解方法第四章:函数1. 函数的概念2. 函数的表示方法解析式法图象法3. 一次函数定义图象性质4. 二次函数定义图象第五章:几何图形1. 点、线、面2. 线段3. 角锐角、直角、钝角、平角、周角4. 三角形定义分类性质5. 四边形定义分类性质6. 圆定义性质第六章:概率与统计1. 概率的概念2. 概率的计算方法3. 统计的概念4. 数据的收集与整理5. 数据的表示方法表格法6. 数据的分析方法七年级数学下册思维导图(超全)第一章:实数1. 实数的概念实数是包括有理数和无理数在内的所有数的集合。
2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数不能表示为两个整数比例的数,如根号2、π等。
3. 实数的运算加法将两个实数相加得到一个新的实数。
减法将一个实数减去另一个实数得到一个新的实数。
乘法将两个实数相乘得到一个新的实数。
除法将一个实数除以另一个非零实数得到一个新的实数。
乘方将一个实数乘以自身多次得到一个新的实数。
开方求一个实数的平方根或立方根等。
第二章:代数式1. 代数式的概念代数式是由数、字母和运算符号组成的表达式。
2. 代数式的分类单项式只有一个项的代数式。
多项式由多个项组成的代数式。
3. 代数式的运算加法将两个代数式相加得到一个新的代数式。
减法将一个代数式减去另一个代数式得到一个新的代数式。
乘法将两个代数式相乘得到一个新的代数式。
除法将一个代数式除以另一个非零代数式得到一个新的代数式。
乘方将一个代数式乘以自身多次得到一个新的代数式。
思维导图数学篇
知识点思维导图
知识点思维导图
知识点思维导图
知识点思维导图
课堂练习
做出函数单调性的知识点思维导图
习题课
案例:
ห้องสมุดไป่ตู้
以下两个函数中:
(1)
f
(x)
1 1
x x
2 2
;
(2) f (x) (1 x) 1 x . 1 x
非奇非偶的函数是______________.
解题思维导图
四 开发右脑
思维导图极大地激发我们的右脑。因为我们在创 作导图的时候还使用颜色、形状和想象力。根据科 学研究发现人的大脑是由两部分组成的。左大脑负 责逻辑、词汇、数字,而右大脑负责抽象思维、直 觉、创造力和想象力。巴赞说:“传统的记笔记方 法是使用了大脑的一小部分,因为它主要使用的是 逻辑和直线型的模式。”所以,图像的使用加深了 我们的记忆,因为使用者可以把关键字和颜色、图 案联系起来,这样就使用了我们的视觉感官。
三 同化记忆
思维导图具有极大的可伸缩性,它顺应了我们大脑 的自然思维模式。从而,可以使我们的主观意图自 然地在图上表达出来。它能够将新旧知识结合起来。 学习的过程是一个由浅入深的过程,在这个过程中, 将新旧知识结合起来是一件很重要的事情,因为人 总是在已有知识的基础上学习新的知识,在学习新 知识时,要把新知识与原有认知结构相结合,改变 原有认知结构,把新知识同化到自己的知识结构中, 能否具有建立新旧知识之间的联系是学习的关键。
二、思维导图在复习中的应用
课后复习是巩固知识、提高运用知识解决问题的能力的重要环节。学生对运用思维导图这 种方式进行复习总结都表现出一定的兴趣。在复习中,首先,学生独立对整章知识进行总 结,根据自己的理解,理清数学概念、规律及其区别、联系,区分重点难点,画出思维导 图。其次,教师批阅学生交上来的作品,把握学生对整个章节知识的掌握情况,同时对其 在思维导图中体现的思维错误进行一定程度的修改。第三,在复习课堂上抽取部分典型的 作品,先由大家讨论该思维导图的优劣,进行补充与深化,最后教师进行总结与提升,由 于初中生的思维水平有限,教师的提高主要是将本章知识与已有知识进行联系,将新知识 融入已有的知识体系中,形成知识网络,便于提取。各章、各单元间不是孤立的,而是互 相联系的,让学生自己找出联系,把所有的思维导图编织成自己的知识网,整个过程也是 其乐无穷的。图2为学生学完直角三角形全等后,将直角三角形的知识与已有的三角形全 等的知识相结合绘制的思维导图,加强了对课程内容的整体认识,形成了一个清晰的知识 框架。 除了按章节复习之外,还可以按照知识分类复习,如函数知识,分一次函数、反比例 函数、二次函数三个主要分支,每个主要分支再细分为函数概念、函数图像、函数性质及 应用等,这样当思维导图完成时,学生也有了一个十分清晰的函数知识框架。
常见函数(附思维导图)
2.2常见函数一、一次函数和常函数:思维导图:(一) 、一次函数 〔二〕、常函数 定义域:〔- ∞,+ ∞〕 定义域: 〔- ∞,+ ∞〕 值 域:〔- ∞,+ ∞〕 正 k=0 反 值 域:{ b }解析式:y = kx + b ( k ≠ 0 ) 解析式:y = b ( b 为常数)图 像:一条与x 轴、y 轴相交的直线 图 像:一条与x 轴平行或重合的直线b>0 b=0 b<0 K > 0 k < 0单调性: k > 0 ,在〔- ∞,+ ∞〕↑ 单调性:在〔- ∞,+ ∞〕上不单调 k < 0 ,在〔- ∞,+ ∞〕↓奇偶性:奇函数⇔=0b 奇偶性: 偶函数 非奇非偶⇔≠0b周期性: 非周期函数 周期性:周期函数,周期为任意非零实数 反函数:在〔- ∞,+ ∞〕上有反函数 反函数:在〔- ∞,+ ∞〕上没有反函数 反函数仍是一次函数例题:二、二次函数1、定义域:〔- ∞,+ ∞〕2、值 域: ),44[,02+∞-∈>ab ac y a]44,(,02ab ac y a --∞∈<3、解析式:)0(2≠++=a c bx ax y4、图 像:一条开口向上或向下的抛物线 开口向下,开口向上;正负:增大,开口缩小绝对值:随着,00<>a a a a正半轴相交与负半轴相交与y c y c c,0,0><对称轴:ab x 2-=对称轴: ;)44,2(2ab ac ab --顶点: 轴交点个数图像与x ac b →-=∆42:与x 轴交点的个数。
两个交点,0>∆一个交点,0=∆无交点,0<∆5、单调性:↑+∞-↓--∞>),2[]2,(,0ab ab a↓+∞-↑--∞<),2[]2,(,0ab ab a6、奇偶性:偶函数⇔=0b7、周期性:非周期函数8、反函数:在〔- ∞,+ ∞〕上无反函数,上及其子集上有反函数或在),2[]2,(+∞---∞ab ab例题:三、反比例函数和重要的分式函数〔一〕、反比例函数 〔二〕、分式函数bax dcx y ++= 定义域:〔- ∞,0〕∪〔0,+ ∞〕 定义域:),(),(+∞---∞aba b 值 域:〔- ∞,0〕∪〔0,+ ∞〕 值 域: ),(),(+∞-∞a c a c解析式:)0()(≠=k xk x f 解析式:)(a bx b ax d cx y -≠++=图 像:以x 轴、y 轴为渐进线的双曲线 图 像:以abx -=和a c y =为渐近线的双曲线y y0 x 0 xk > 0 k < 0单调性: k>0,〔- ∞,0〕↓,〔0,+ ∞〕↓ 单调性:在),(a b --∞和),(+∞-ab上 k<0,〔- ∞,0〕↑,〔0,+ ∞〕↑ 单调性相同 奇偶性:奇函数 奇偶性:非奇非偶 对称性:关于原点对称 对称性:关于点),(aca b -成中心对称 周期性:非周期函数 周期性:非周期函数反函数:在定义域上有反函数, 反函数:在定义域有反函数, 反函数是其本身。
初一数学章节思维导图(全)
沪科版初中数学-全章思维导图
5
沪科版初中数学-全章思维导图
• 第 7 章 一元一次不等式与不等式组 • 第 8 章 整式乘法与因式分解
6
• 第 9 章 分式
沪科版初中数学-全章思维导图
• 第 10 章 相交线、平行线和平移
7
初一上·第一学期 • 第 1 章 有理数
沪科版初中数学-全章思维导图
1
沪科版初中数学-全章思维导图
• 第 2 章 整式加减
沪科版初中数学-全章思维导图
• 第 3 章 一次方程与方程组
3
沪科版初中数学-全章思维导图
• 第 4 章 直线与角
• 第 5 章 数据的收集与整理
4
七年级下-第二学期 • 第 6 章 实数
初中数学九年级上册思维导图
初中数学九年级上册思维导图一、数与代数1. 实数有理数整数正整数、负整数、0分数正分数、负分数无理数无理数的定义无理数的分类2. 代数式代数式的定义代数式的分类单项式正单项式、负单项式多项式二项式、三项式等代数式的运算加法减法乘法除法3. 方程一元一次方程一元二次方程多元一次方程方程的解法4. 不等式一元一次不等式一元二次不等式不等式的解法二、几何1. 基本几何概念点、线、面线段、射线、直线角、直角、锐角、钝角三角形2. 几何图形四边形矩形、正方形、菱形、梯形多边形五边形、六边形等圆3. 几何证明证明方法综合法、分析法、反证法证明步骤4. 几何计算面积计算体积计算三、统计与概率1. 数据收集与整理数据收集方法数据整理方法2. 数据分析平均数、中位数、众数方差、标准差3. 概率概率的定义概率的计算方法四、数学应用1. 实际问题生活问题科学问题2. 数学建模建模方法建模步骤3. 数学软件数学软件的使用数学软件的应用初中数学九年级上册思维导图五、数学思想与方法1. 数形结合数形结合的定义数形结合的应用2. 分类讨论分类讨论的原则分类讨论的步骤3. 归纳与演绎归纳法的定义与应用演绎法的定义与应用4. 数学建模建模的必要性建模的过程5. 数学探究探究的意义探究的方法六、数学文化1. 数学史古代数学近代数学现代数学2. 数学家故事国内数学家国际数学家3. 数学趣闻数学趣题数学游戏4. 数学与生活数学在科技中的应用数学在生活中的应用七、数学学习策略1. 学习方法预习、听课、复习作业、练习、考试2. 时间管理合理安排学习时间高效利用学习时间3. 学习资源教师辅导、同学互助、家长支持4. 学习评价自我评价同伴评价教师评价八、数学素养1. 数学思维逻辑思维抽象思维创新思维2. 数学语言符号语言图形语言文字语言3. 数学审美数学的美数学的美学价值4. 数学情感对数学的兴趣对数学的热爱初中数学九年级上册思维导图九、数学竞赛与拓展1. 数学竞赛数学竞赛的种类数学竞赛的技巧数学竞赛的准备2. 数学拓展数学课外活动数学研究性学习数学建模竞赛十、数学实验1. 实验目的培养学生的动手能力增强学生的数学兴趣2. 实验内容几何实验统计实验数学软件实验3. 实验方法观察法实验法探究法十一、数学教育1. 教育理念以学生为本注重过程强调应用2. 教学方法启发式教学合作学习情境教学3. 教育评价多元评价过程评价终结评价十二、数学与社会1. 数学在科技中的应用计算机科学工程技术经济管理2. 数学在生活中的应用购物做饭出行3. 数学与艺术音乐绘画建筑。
沪教版(上海市) 初中数学思维导图 八年级数学全册章节思维导图集
-3Math 实验室
你现在的努力要对得起别人对你的好!
第二十章 一次函数的章节知识点结构思维导图
第二十一章 代数方程的章节知识点结构思维导图
-4Math 实验室
你现在的努力要对得起别人对你的好!
第二十二章 四边形的章节知识点结构思维导图
第二十三章 概率初步的章节知识点结构思维导图
你现在的努力要对得起别人对你的好!
上海市(沪教版)八年级数学全册章节思维导图 共八个章节
第十六章 二次根式的章节知识点结构思维导图
-1Math 实验室
பைடு நூலகம்
你现在的努力要对得起别人对你的好!
第十七章 一元二次方程的章节知识点结构思维导图
-2Math 实验室
你现在的努力要对得起别人对你的好!
第十八章 正比例函数和反比例函数的章节知识点结构思维导图
-5Math 实验室