高中数学人教版必修平面向量基本定理教案(系列五)
平面向量基本定理(教案)
平面向量基本定理(教案)教案章节一:向量的概念回顾1.1 向量的定义向量是有大小和方向的量,通常用箭头表示。
向量可以用坐标形式表示,例如在二维空间中,向量可以表示为(a, b)。
1.2 向量的加法向量的加法是指在同一平面内,将两个向量首尾相接,形成的第三个向量。
向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
教案章节二:平面向量的基本定理2.1 定理的定义平面向量的基本定理是指在平面内,任何两个不共线的向量可以作为平面的基底。
基底是线性无关的向量组,可以通过线性组合表示平面内的任意向量。
2.2 基底的性质基底是线性无关的,即不存在非零的线性组合使得向量组的和为零。
基底可以任意选择,但选择不同的基底会导致向量的坐标不同。
教案章节三:向量的线性组合3.1 线性组合的定义向量的线性组合是指将向量与实数相乘后相加的结果。
例如,a u + b v 表示将向量u 乘以实数a,向量v 乘以实数b,将两个结果相加。
3.2 线性组合的性质线性组合满足分配律,即(a u + b v) + c w = a (u + c w) + b v。
线性组合的系数可以是任意实数,包括正数、负数和零。
教案章节四:向量的坐标表示4.1 坐标系的建立坐标系是由两个或多个轴组成的,用于表示向量的位置和方向。
在二维空间中,通常使用x 轴和y 轴作为坐标轴。
4.2 向量的坐标表示向量可以用坐标形式表示,即(x, y),其中x 表示向量在x 轴上的投影,y 表示向量在y 轴上的投影。
向量的长度可以用勾股定理计算,即|u| = √(x^2 + y^2)。
教案章节五:向量的线性相关性5.1 线性相关的定义向量组线性相关是指存在一组不全为零的实数,使得向量组的和为零。
例如,向量组(u, v, w) 线性相关,当存在不全为零的实数a, b, c,使得a u +b v +c w = 0。
5.2 线性相关性的性质如果向量组线性相关,其中任意一个向量都可以表示为其他向量的线性组合。
2020-2021高中数学人教版第二册学案:6.3.1平面向量基本定理含解析
新教材2020-2021学年高中数学人教A版必修第二册学案:6.3.1平面向量基本定理含解析6.3平面向量基本定理及坐标表示6.3.1平面向量基本定理[目标]1.了解平面向量基本定理产生的过程和基底的含义,理解平面向量基本定理;2.掌握平面向量基本定理并能熟练应用.[重点] 平面向量基本定理.[难点] 平面向量基本定理的应用.要点整合夯基础知识点平面向量基本定理[填一填](1)定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)若e1,e2不共线,我们把{e1,e2}叫做表示这一平面内所有向量的一个基底.[答一答]1.基底有什么特点?平面内基底唯一吗?提示:基底中的两向量e1,e2不共线,这是基底的最大特点.平面内的基底并不是唯一的,任意不共线的两个向量都可以作为基底.2.如图,设OA、OB、OC为三条共端点的射线,P为OC上一点,能否在OA 、OB 上分别找一点M 、N ,使OP →=错误!+错误!?提示:能。
过点P 作OA 、OB 的平行线,分别与OB 、OA 相交,交点即为N 、M .3.若向量a ,b 不共线,且c =2a -b ,d =3a -2b ,试判断c ,d 能否作为基底.提示:设存在实数λ使得c =λd ,则2a -b =λ(3a -2b ),即(2-3λ)a +(2λ-1)b =0.由于a ,b 不共线,从而2-3λ=2λ-1=0,这样的λ是不存在的,从而c ,d 不共线,故c ,d 能作为基底。
典例讲练破题型类型一 基底的概念[例1] 下面说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面内所有向量的基底;②一个平面内有无数多对不共线向量可作为表示该平面内所有向量的基底;③零向量不可作为基底中的向量;④对于平面内的任一向量a 和一组基底e 1,e 2,使a =λe 1+μe 2成立的实数对一定是唯一的.A .②④B .②③④C .①③D .①③④[解析] 因为不共线的任意两个向量均可作为平面的一组基底,故②③正确,①不正确;由平面向量基本定理知④正确.综上可得②③④正确.[答案]B根据平面向量基底的定义知,判断能否作为基底问题可转化为判断两个向量是否共线的问题,若不共线,则它们可以作为一组基底;若共线,则它们不能作为一组基底。
高中数学人教A版(2019)必修第二册 6.3.1平面向量基本定理说课稿
高中数学人教A版(2019)必修第二册6.3.1平面向量基本定理说课稿一、教材分析本节课选自普通高中课程标准实验教科书人教版必修2第六章《平面向量及其应用》第三节《平面向量基本定理及其坐标表示》第一课时。
本节首先由向量的概念和运算得出平面向量基本定理.平面向量基本定理是平面向量中的重要内容.此定理表明平面内的任一向量可以由同一平面内的两个取定的不共线向量表示,而且表示式是唯一的.因而向量的运算可以归结为两个取定的不共线向量的运算,这为利用向量运算解决问题带来了方便.由此定理还可引出向量的坐标的概念,进而引出向量运算的坐标表示。
1.平面向量基本定理平面向量基本定理告诉我们,同一平面内任一向量都可表示为两个取定的不共线向量的线性组合,这样,如果将平面内向量的起点放在一起,那么由平面向量基本定理可知,平面内的任意一个点都可以通过取定的两个不共线的向量得到表示。
也就是说,平面内的任意一个点可以由平面内的一个点及两个取定的不共线的向量来表示.这是引进平面向量基本定理的一个原因,下面对其中的思想作一概述.用向量表示几何元素是容易的,并且很直接.选一个定点,那么,任何一个点都可以用一个向量来表示.对于一条直线l,如果我们的兴趣只在于它的方向,那么用一个与l平行的非零向量图片就行了;如果想确定这条直线的位置,则还要在l上任选一点。
这样,一个点A,一个向量图片就在原则上确定了直线l,这是对直线的一种定性刻画。
如果想具体地表示l上的每一个点,我们需要实数k和向量图片的乘法图片.这时,l上的任意一点X都可以通过点A和某个图片来表示(图6-17).希望在“实际”上控制直线l,可以看作是引入图片的一个原因.再来看平面.两条相交直线确定一个平面 a.一个定点,两个不共线的向量便“原则”上确定了平面α,这是对平面的一种定性刻画.但在讨论几何问题时,常常涉及平面α上的某一点X,为了具体地表示它,我们需要引进向量的加法.这时,平面α上的点X就可以表示为(相对于定点A),这样点X 就成为可操作的对象了(图6-18).在解决几何问题时,这种表示能发挥很重要的作用.虽然向量的加法、数乘运算有非常坚实的物理背景,但当我们舍弃了这种背景而只从纯粹数学的角度来看问题的话,上述考虑可使我们看到引进相应的向量运算的理由,这可以使我们更容易接受并喜爱向量运算。
平面向量基本定理教案(精选10篇)
平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。
平面向量教案
A.a sin A=b sin B B.a cos A=b cos B C.a sin B=b sin A D.a cos B=b cos A2.△ABC中,sin2A=sin2B+sin2C,则△ABC为()A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形3.在△ABC中,较短的两边为,且A=45°,则角C的大小是()A.15°B.75C.120°D.60°4.在△ABC中,已知,则·等于()A.-2B.2C.±2D.±45.设A是△ABC中的最小角,且,则实数a的取值范围是()A.a≥3B.a>-1C.-1<a≤3D.a>06.在△ABC中,三边长AB=7,BC=5,AC=6,则·等于()A.19B.-14C.-18D.-197.在△ABC中,A>B是sin A>sin B成立的什么条件( )A.充分不必要B.必要不充分C.充要D.既不充分也不必要8.若△ABC的3条边的长分别为3,4,6,则它的较大的锐角的平分线分三角形所成的两个三角形的面积比是( )A.1∶1B.1∶2C.1∶4D.3∶49.已知向量,,若与垂直,则实数=()A.1B.-1C.0D.210.已知向量a=,向量b=,则|2a-b|的最大值是()A.4B.-4C.2D.-211.已知a、b是非零向量,则|a|=|b|是(a+b)与(a-b)垂直的()A.充分但不必要条件 B.必要但不充分条件C.充要条件D.既不充分也不必要条件12.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长()A.1公里B.sin10°公里C.cos10°公里D.cos20°公里第Ⅱ卷(非选择题,共90分)二、填空题13.在△ABC中,BC=3,AB=2,且,A=.14.在△ABC中,已知AB=l,∠C=50°,当∠B=时,BC的长取得最大值.15.向量a、b满足(a-b)·(2a+b)=-4,且|a|=2,|b|=4,则a与b夹角的余弦值等于。
新人教版数学必修4同步课件:平面向量基本定理
(方法 2)因为������������ = ������������ + ������������,
而������������
=
1 2
������������
=
1 2
(������������
−
������������ ),
所以������������
=
������������
+
1 2
(������������
分析根据平面向量基本定理,结合向量的线性运算进行求解.
解(1)(方法 1)如图,因为������������ = ������������ + ������������, ������������ = ������������ + ������������, 所以 2������������ = ������������ + ������������ + ������������ + ������������.
的其他向量的基底的是( )
A.①②
B.①③
C.①④ D.③④
解析∵������������ 与������������ 不共线,������������ 与������������ 不共线,∴①③可以作为基底,
其他两组分别共线,故不可以,选 B.
答案B
课堂篇 探究学习
探究一
探究二
探究三
思维辨析
平面向量基本定理的应用
2.3.1 平面向量基本定理
-1-
首页
核心素养培养目标
核心素养形成脉络
1.理解基底的定义,并能判断两个向量是否是 平面向量基本定理
基底.培养数学抽象及逻辑推理素养. 2.理解并掌握平面向量基本定理,会用基底表 示平面向量.培养数学抽象、数学运算素养. 3.掌握两个向量夹角以及两个向量垂直的定 义.培养数学运算、数学抽象素养.
05-第三节 平面向量基本定理及坐标表示-课时1 平面向量基本定理高中数学必修第二册人教版
1
,与相交于点.
3
(1)用和分别表示和;
【解析】 = + = −
因为 =
1
,所以
3
1
+ .
2
= + = − +
1
.
3
(2)若 = + = + ,求实数 和 的值.
【解析】 = + = + (− +
= + = + (− +
1
)
3
,
3
=
1
)
2
3
1− =
=
由平面向量基本定理,得൞
解得൞
= 1 − ,
=
2
= (1 − ) +
+ (1 − ).
4
,
5
3
.
5
,
2
第三节 平面向量基本定理及坐标
表示
课时1 平面向量基本定理
过能力 学科关键能力构建
2
的中点,为线段上一点,且满足
=
2
A.
3
7
9
+ ,则实数 =( A )
1
B.
3
1
C.−
3
2
D.−
3
【解析】 由题意,得 =
1
,
3
=
1
,且存在实数
2
使得
.
= + (1 − ) = ( + ) + (1 − )( + ) = ( +
4
1
1
人教版高中数学教案:第5章:平面向量,教案,课时第 (21)
第二十二教时教材:复习一——向量、向量的加法与减法、实数与向量的积目的:通过复习对上述内容作一次梳理,使学生对知识的理解与应用提高到一个新的水平。
过程:一、知识(概念)的梳理:1.向量:定义、表示法、模、几种特殊向量 2.向量的加法与减法:法则(作图)、运算律3.实数与向量的积:定义、运算律、向量共线的充要条件、平面向量的基本定义二、 例题:1.若命题M :'=;命题N :四边形ABB ’A ’是平行四边形。
则M 是N 的 ( C ) (A )充分不必要条件 (B ) 必要不充分条件(C )充要条件 (D ) 既不充分也不必要条件 解:若=,则 ||=||,且, 方向相同∴AA ’∥BB ’ 从而ABB ’A ’是平行四边形,即:M ⇒N 若ABB ’A ’是平行四边形,则|AA ’|=|BB ’|,且AA ’∥BB ’ ∴|'|=|'| 从而'=,即:N ⇒M 2.设A 、B 、C 、D 、O 是平面上的任意五点,试化简:1︒CD BC AB ++ 2︒BD AC DB ++ 3︒CO OB OC OA -+-- 解:1︒ 原式= =+=++)(2︒ 原式= =+=++)(3︒ 原式= =+=+-=--+-)()()( 3.a =“向东走5km ”,b =“向西走12km ”,试求a +b 的长度与方向。
解:如图:13125||22=+=(km )tan ∠AOB =512 , ∴∠AOB = arctan 512∴a + b 的长为13km ,方向与成arctan 512的角。
4.如图:1︒已知a 、b 、c 、d ,求作向量a -b 、c -d 。
2︒已知a 、b 、c ,求作a + c - b5.设x 为未知向量,a 、b 为已知向量,解方程2x -(5a +3x -4b )+21a -3b =0解:原方程可化为:(2x - 3x ) + (-5a +21a ) + (4b -3b ) = 0 ∴x =29-a + b6.设非零向量a 、b 不共线,c =k a +b ,d =a +k b (k ∈R),若c ∥d ,试求k 。
人教高中数学必修二B版《向量基本定理与向量的坐标》平面向量初步说课教学课件复习(向量基本定理)
课件 课件
课件
课件
和 e1+ke2
共线?
解:设 ke1+e2 与 e1+ke2 共线, 所以存在 λ 使 ke1+e2=λ(e1+ke2), 则(k-λ)e1=(λk-1)e2.
因为 e1 与 e2 不共线,所以只能有kλ-kλ-=10=,0,则 k=±1.
栏目 导引
第六章 平面向量初步
用基底表示向量
=a-23b.
第六章 平面向量初步
栏目 导引
第六章 平面向量初步
直线的向量参数方程式的应用
已知平面内两定点 A,B,对该平面内任一动点 C,总
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
栏目 导引
第六章 平面向量初步
4.直线上向量的运算与坐标的关系
假设直线上两个向量 a,b 的坐标分别为 x1,x2,即
a=x1e,b=x2e,则 a=b⇔__x_1_=__x_2___; a+b=_(_x_1+__x_2_)_e__.
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
D→F=D→E+E→F=-16b+13b-a=16b-a. 课件
高中数学_6.3 平面向量基本定理教学设计学情分析教材分析课后反思
平面向量基本定理教学设计数学课程标准解读中提出:数学学科是基础教育阶段最为重要的学科之一,通过基础教育阶段的数学教育,无论接受教育的人将来从事的工作是否与数学有关,终极培养目标都可描述为:会用数学眼光观察世界,会用数学思维思考世界,会用数学语言表达世界。
这“三会”就是高中阶段的数学学科核心素养。
以发展学生的数学学科核心素养为目标,设计了本节课。
【学习目标】知识与能力目标理解平面向量基本定理及其意义,并能运用平面向量基本定理解决简单平面几何问题。
过程与方法目标经历平面向量基本定理的探索与证明过程, 感悟数学抽象,逻辑推理,由特殊到一般等数学思想的作用,培养学生的学科素养。
情感态度与价值观目标在学习中注重培养学生合作交流的意识及积极探索勇于发现的学习品质。
【教学重点】平面向量基本定理的理解、定理的应用。
【教学难点】平面向量基本定理的理解及其推导。
【教学过程】(一)创设问题 引入新课情境:我们知道,世界上的所有旋律都是由7个基本音符谱成的,那么平面内的所有向量能否由几个基本向量来表示呢?【设计意图】通过类比的方法引入新课,激发学生的求知欲,并暗含平面向量基本定理的本质。
复习1:共线向量基本定理:复习2:向量求和的平行四边形法则?提出问题:反之呢?如图的向量 a 能否用向量表示呢?接着让学生拿出方格纸,通过作图的方法探究下面问题【设计意图】课程标准解读中曾指出:数学眼光是什么呢?主要表现为数学抽象,而与数学抽象关系密切的是直观想象,直观想象是实现数学抽象的思维基础。
因此在设计问题时,先把问题直观化,让同学们通过在方格纸上作图,直观感受向量的分解。
接着提出以下问题:1e 2e【师生活动】师生共同用PPT 展示向量a 的分解过程,并在展示过程中进一步提出小问题:(1)为何要把向量平移使其共起点?(2)利用什么知识对向量a 进行分解?(3)为什么OB OA a +=11e OA λ=22e OB λ=呢?学生回答问题。
高中数学第二章平面向量正交分解及坐标表示教案新人教版
2.3.2平面向量正交分解及坐标表示教学目标:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性.教学过程:一、复习引入: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += (1)1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = (2)2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x .特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.如图,在直角坐标平面内,以原点O 为起点作a =,则点A 的位置由a 唯一确定.设yj xi +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++=即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --=(2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.=OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=三、讲解范例:例1 已知A(x 1,y 1),B(x 2,y 2),求AB 的坐标.例2 已知a =(2,1), b =(-3,4),求a +b ,a -b ,3a +4b的坐标.例3 已知平面上三点的坐标分别为A(-2, 1), B(-1, 3), C(3, 4),求点D 的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD 时,由DC AB =得D 1=(2, 2)当平行四边形为ACDB 时,得D 2=(4, 6),当平行四边形为DACB 时,得D 3=(-6, 0) 例4已知三个力1F (3, 4), 2F (2, -5), 3F (x , y)的合力1F +2F +3F =0,求3F的坐标. 解:由题设1F +2F +3F =0 得:(3, 4)+ (2, -5)+(x , y)=(0, 0)即:⎩⎨⎧=+-=++054023y x ∴⎩⎨⎧=-=15y x ∴3F (-5,1) 四、课堂练习:1.若M(3, -2) N(-5, -1) 且 21=, 求P 点的坐标 2.若A(0, 1), B(1, 2), C(3, 4) , 则AB -2= .3.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) , 求证:四边形ABCD 是梯形.五、小结(略)六、课后作业(略)七、板书设计(略)八、课后记:。
人教版高中数学必修26.4平面向量的应用 教案
6.4平面向量的应用教学设计证明:如图,因为平面几何问题转化为向问题中的几何元素,将几何与向量的联系,用解:第一步,建立平面D(1,1),P(x,1-x),E(0,1-x),F(x,0)(1,),(,DP x x EF x x ∴=--=DP EF DP EF∴⊥∴⊥(1)(1)DP EF x x x x =---小结:①建立坐标系;②写出用到的点的坐标及向量坐标;③进行坐标运算;④还原为几何问题。
几何问题代数化数形结合思想2、如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC 的长.解 设AD →=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD →|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2, ∴5-2a ·b =4,∴a ·b =12.又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,∴|AC →|=6,即AC = 6.方法总结:向量在平面几何中常见的应用 (1)证明线段平行或点共线问题,以及相似问题,常用平行向量基本定理a ∥b ⇔a =λb (λ∈R ,b ≠0)⇔x 1y 2-x 2y 1=0(a =(x 1,y 1),b =(x 2,y 2))(2)证明线段垂直问题,如证明四边形是矩形、正方形,判断两直线(或线段)是否垂直等,常用向量垂直的条件:a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0(a =(x 1,y 1),b =(x 2,y 2))(3)求线段的长度或说明线段相等,常用公式:|a |=a 2=x 2+y 2(a =(x ,y ))或AB =|AB →|=x 1-x 22+y 1-y 22(A (x 1,y 1),B (x 2,y 2)) 知识探究(二):向量在物理中的应用举例下面,我们再来感受下向量在物理中的应用。
人教版高中数学必修第二册: 6.3.1平面向量基本定理【课件】
其中可作为这个平行四边形所在平面的一组基底的是( B )
A.①②
B.①③
C.①④
D.③④
解: ①与不共线;② = − ,则与共线; ③ 与不共
线; ④ = −,则与共线.由平面向量基底的概念知,只有不
共线的两个向量才能构成一组基底,故①③满足题意.故选B.
于是∆是直角三角形.
1. 在∆中, = ,
Ԧ
= ,若 ,分别在 , 边上,
2
1
A)
且 = 2, = 2.则向量 + 表示(
Ԧ
3
A.
B.
3
C.
D.
解:如图所示, = + ,
2
因为 = 2,所以 = 3 .
Ԧ 1 , 2 的方向分解,能
发现什么?
如图,过点C作平行于直线OB的直线,与直线OA交于点M;
过点C作平行于直线OA的直线,与直线OB交于点N,
则 = + . 由与1 共线,与2 共线可得,存在实数
1 ,2 ,使得 = 1 1 , = 2 2 ,所以Ԧ = 1 1 + 2 2 .
也就是说,与1 , 2 都不共线的向量都可以表示成
Ԧ
1 1 + 2 2
的形式.
问题3 当是与
Ԧ
Ԧ
1 或 2 共线的非零向量时, 是否也可以表
示成1 1 + 2 2 的形式?当是零向量呢?
Ԧ
平面内任一向量都可以按
Ԧ
1 , 2 的方向分解,表示成1 1 + 2 2
存在唯一一个实数,使 = .
Ԧ
思考 根据这一定理,我们知道,位于同一直线上的向量可以由位于
这条直线上的一个非零向量表示.那么,平面内任一向量是否可以由
高中数学_《平面向量基本定理》教学设计学情分析教材分析课后反思
《平面向量基本定理》教学设计一、教材分析教材用具体例子引出了定理,意在培养学生的观察、抽象、概括能力。
在平面上任一向量都可唯一的表示为两个不共线向量的线性组合。
对于平面上的向量,任意一组不共线向量都可作为基底。
平面向量基本定理是平面向量坐标表示的依据。
对于定理的证明教材作为选学内容出现,意在降低要求。
但证明存在性、唯一性的方法,既要证明存在性,又要证明唯一性,可以介绍给学生。
作为定理的应用,教材安排了例1、例2两个例题,给出了直线的向量参数方程式,以及线段中点的向量表达式。
二、教学基本条件分析1.学生条件:学生有较好的数学基础和数学理解能力,喜欢思考,乐于探究。
2.前期内容准备:前期学生刚刚学习了平面向量的加法、减法、数乘运算,以及向量共线的条件。
3.教学媒体条件:支持幻灯片及投影展示。
三、教学内容分析本节课的主要内容是平面向量基本定理,平面向量基本定理的应用1.教学重点:平面向量基本定理的应用2.教学难点:对平面向量基本定理的理解知识与技能目标:了解平面向量基本定理的条件和结论,会用它来表示平面的任一向量,为向量坐标化打下基础;过程与方法目标:通过平面向量基本定理的学习过程,让学生体验数学定理的产生、成过程,体验定理所蕴涵的数学思想方法;情感态度与价值观目标:通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生进一步体会向量是处理几何问题强有力的工具之一,培养学生的精神。
3.教学媒体条件:支持幻灯片展示。
四、教学方法本节内容是在学习了平面向量先行运算的基础上,进一步学习向量的坐标运算的基础。
教学中引导学生联系已有知识,在平面向量基本定理的教学中,采用让学生观察、抽象、概括的方式,自主得出定理;在定理的运用中,引导学生分析思路,总结规律,体验解题方法。
五、教学过程设计(一)音频、图片引入,出示课题(板书课题)【设计意图】:激发学生兴趣,引出课题。
(二)逐层深化,定理形成温故而知新:平行向量基本定理: 【设计意图】:回顾平行向量基本定理内容,引导学生发现在一维线性关系中数与形的完美结合,为下一步探索和理解平面向量基本定理做铺垫。
《平面向量》优秀说课稿(通用3篇)
《平面向量》优秀说课稿(通用3篇)作为一位不辞辛劳的人民教师,就不得不需要编写说课稿,通过说课稿可以很好地改正讲课缺点。
那么什么样的说课稿才是好的呢?下面是小编为大家整理的《平面向量》优秀说课稿(通用3篇),希望对大家有所帮助。
《平面向量》说课稿1一、说教材平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。
本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。
为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。
本节内容也是全章重要内容之一。
二、说学习目标和要求通过本节的学习,要让学生掌握(1):平面向量数量积的坐标表示。
(2):平面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三、说教法在教学过程中,我主要采用了以下几种教学方法:(1)启发式教学法因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!主要辅助教学的手段(powerpoint)(3)讨论式教学法主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四、说学法学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。
通过精讲多练,充分调动学生自主学习的积极性。
如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!五、说教学过程这节课我准备这样进行:首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:(1)模的计算公式(2)平面两点间的距离公式。
人教版高一数学课件:第二学期第五章第5.3.2节平面向量的基本定理
uuOurB AP
t
uuur AB
uuur uuur uuur
OP OA AP
uuur uuur
uuur A,P用 t A、B (t, 表R)
OP
P
B
OA t AB
A
uuur uuur uuur
OA t(AO OB) O
uuur uuur uuur
OA tOA tOB
ar 1er1 2er2
(5)一组平面向量的基底有多少对? (6)若基底选取不同,则表示同一向量的实数 、
(有无数对) 是否相同?
1 2
(可以不同,也可以相同)
r r r (7)特别的,若 a = 0 ,则有且只有 :
=
=0
12
0 0e1 0e2
r r (8)特别的,若 与 共线,则有, a e1
新疆 王新敞
奎屯
示.
新疆 王新敞
奎屯
教学重点:
平面内任一向量用两个不共线非零向量表示.
教学难点:
平面向量基本定理的理解.
2020/2/5
特级教师王新敞----源头学子
2
一、复习引入
uuur r uuur r
作法:作平行四边形ABCD,使AB a,AD b
uuur r uuur r BC b,DC a
ar 1er1 2er2
12
我们把不共线的向量
e 、 叫做表示 1
这一平面内所有向量的一组基底。
e 2 研究更一般的情况
2020/2/5
特级教师王新敞----源头学子
8
二、重难点讲解 平面向量基本定理: 探究:
(1)我们把不共线向量
高中数学平面向量教案(精选6篇)
高中数学平面向量教案(精选6篇)为大家收集的高中数学平面向量教案,欢迎阅读,希望大家能够喜欢。
高中数学平面向量教案精选篇1教学目标1、了解基底的含义,理解并掌握平面向量基本定理。
会用基底表示平面内任一向量。
2、掌握向量夹角的定义以及两向量垂直的定义。
学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。
如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备重点难点重点:对平面向量基本定理的探究难点:对平面向量基本定理的理解及其应用教学过程4.1第一学时教学活动活动1【导入】情景设置火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j。
活动2【活动】探究已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)做法:作OA=e1,OB=e2,OC=c,过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2。
因为OC=OM+ON,所以c=6 e1+6e2。
向量c=__6__e1+___6__e2活动3【练习】动手做一做请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2。
活动4【活动】思考问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?生:不行,e1,e2必须是平面内两不共线向量活动5【讲授】平面向量基本定理平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2。
平面向量基本定理及坐标运算(优质课)教案
1.7平面向量基本定理与坐标运算(优质课)教案教学目标:1.掌握平面向量的正交分解及其坐标表示;2.会用坐标表示平面向量的加、减与数乘运算.3.会用坐标表示平面向量共线的条件,进而解决一些相关问题.4.了解平面向量的基本定理及其意义.教学过程:一、平面向量基本定理:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个_____不共线_____不共线向量,那么对于这一平面内的__任一__向量a ,有且只有_一对实数λ1,λ2使a=λ11e +λ22e特别提醒:(1)我们把不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a 在给出基底1e 、2e 的条件下进行分解; (4)基底给定时,分解形式惟一 λ1,λ2是被a,1e ,2e 唯一确定的数量二、平面向量的坐标表示:如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个__单位向量_ i 、j 作为基底任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得a xi yj =+…………○1, 我们把),(y x 叫做向量a 的(直角)坐标,记作(,)a x y =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示 与.a 相等的向量的坐标也为..........),(y x特别地,(1,0)i =,(0,1)j =,0(0,0)=特别提醒:设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示三、平面向量的坐标运算:(1) 若11(,)a x y =,22(,)b x y =,则a b +=1212(,)x x y y ++,a b -= 1212(,)x x y y --两个向量和与差的坐标分别等于这两个向量相应坐标的和与差(2) 若),(11y x A ,),(22y x B ,则AB =()2121,x x y y --一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标(3)若(,)a x y =和实数λ,则a λ=(,)x y λλ实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标(4)向量平行的充要条件的坐标表示:设a=(x 1, y 1) ,b =(x 2, y 2) 其中b ≠aa ∥b (b≠0)的充要条件是12210x y x y -=类型一 平面向量基本定理的应用【例1】►(2012·南京质检)如图所示,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM→=λAB →+μAC →,则λ+μ=________.[审题视点] 由B ,H ,C 三点共线可用向量AB→,AC →来表示AH →.解析 由B ,H ,C 三点共线,可令AH→=xAB →+(1-x )AC →,又M 是AH 的中点,所以AM →=12AH →=12xAB →+12(1-x )AC→,又AM →=λAB →+μAC →.所以λ+μ=12x +12(1-x )=12. 答案 12应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.【训练1】 如图,两块斜边长相等的直角三角板拼在一起.若AD →=xAB →+yAC →,则x =________,y =________.BCAOM D解析以AB 所在直线为x 轴,以A 为原点建立平面直角坐标系如图,令AB =2,则AB→=(2,0),AC →=(0,2),过D 作DF ⊥AB 交AB 的延长线于F ,由已知得DF =BF =3,则AD→=(2+3, 3).∵AD→=xAB →+yAC →,∴(2+3,3)=(2x,2y ). 即有⎩⎨⎧2+3=2x ,3=2y ,解得⎩⎪⎨⎪⎧x =1+32,y =32.另解:AD →=AF →+FD →=⎝ ⎛⎭⎪⎫1+32AB →+32AC →, 所以x =1+32,y =32. 答案 1+32 32[例1] 在△OAB 中,OB OD OA OC21,41==,AD 与BC 交于点M ,设OA =a ,OB =b ,用a ,b 表示OM .[解题思路]:若21,e e是一个平面内的两个不共线向量,则根据平面向量的基本定理,平面内的任何向量都可用21,e e线性表示.本例中向量a ,b 可作基底,故可设=m a +n b ,为求实数m ,n ,需利用向量AM 与AD 共线,向量与CB 共线,建立关于m ,n 的两个方程.解析:设OM =m a +n b ,则(1)AM m a nb =-+,12AD a b =-+ ∵点A 、M 、D 共线,∴AM 与AD 共线,BACPNM∴5.011nm =--,∴m +2n =1. ① 而CM OM OC =-1()4m a nb =-+,14CB a b =-+∵C 、M 、B 共线,∴CM 与CB 共线,∴14141n m =--,∴4m +n =1. ② 联立①②解得:m =71,n =73,∴1377OM a b =+练习:1.若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是 ( )A .1e 与—2eB .31e 与22eC .1e +2e 与1e —2eD .1e 与21e 答案:D2.在△ABC 中,已知 AM ︰AB =1︰3, AN ︰AC =1︰4,BN 与CM 交于点P ,且, AC AB a b ==,试 用, a b 表示AP .解:∵ AM ︰AB =1︰3, AN ︰AC =1︰4,,∴ 1133AM AB a ==,1144AN AC b ==, ∵ M 、P 、C 三点共线,故可设 MP t MC =,t ∈R , 于是,1111()()33333tAP AM MP a tMC a t b a a tb =+=+=+-=-+…… ①同理可设设NP sNB =,s ∈R , 1()44sAP AN NP b sa =+=-+.…②由①②得 11()()b 03344t ss a t --+-+=,由此解得 112,113==t s ,∴ 321111AP a b =+.类型二 平面向量的坐标运算【例2】►(2011·合肥模拟)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3CA →,CN →=2CB→.求M ,N 的坐标和MN →. [审题视点] 求CA→,CB →的坐标,根据已知条件列方程组求M ,N .解 ∵A (-2,4),B (3,-1),C (-3,-4), ∴CA→=(1,8),CB →=(6,3). ∴CM→=3CA →=3(1,8)=(3,24),CN →=2CB →=2(6,3)=(12,6).设M (x ,y ),则CM→=(x +3,y +4).∴⎩⎨⎧ x +3=3,y +4=24,得⎩⎨⎧x =0,y =20.∴M (0,20). 同理可得N (9,2),∴MN→=(9-0,2-20)=(9,-18). 利用向量的坐标运算解题,主要就是根据相等的向量坐标相同这一原则,通过列方程(组)进行求解;在将向量用坐标表示时,要看准向量的起点和终点坐标,也就是要注意向量的方向,不要写错坐标.【训练2】 在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=( ). A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析 由题意得BD →=AD →-AB →=BC →-AB →=(AC →-AB →)-AB →=AC →-2AB →=(1,3)-2(2,4)=(-3,-5). 答案 B3. 若A(0, 1), B(1, 2), C(3, 4) 则AB -2BC = 答案:(-3,-3) 解:-2BC =(1,1)-2(2,2)=(-3,-3)4.若M(3, -2) N(-5, -1) 且 21=MN , 求P 点的坐标; 解:设P(x, y) 则(x-3, y+2)=21(-8, 1)=(-4, 21)⎪⎩⎪⎨⎧=+-=-21243y x ∴⎪⎩⎪⎨⎧-=-=231y x ∴P 点坐标为(-1, -23)类型三 平面向量共线的坐标运算【例3】►已知a =(1,2),b =(-3,2),是否存在实数k ,使得k a +b 与a -3b 共线,且方向相反?[审题视点] 根据共线条件求k ,然后判断方向.解 若存在实数k ,则k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4).若这两个向量共线,则必有 (k -3)×(-4)-(2k +2)×10=0.解得k =-13.这时k a +b =⎝ ⎛⎭⎪⎫-103,43,所以k a +b =-13(a -3b ). 即两个向量恰好方向相反, 故题设的实数k 存在.向量共线问题中,一般是根据其中的一些关系求解参数值,如果向量是用坐标表示的,就可以使用两个向量共线的充要条件的坐标表示列出方程,根据方程求解其中的参数值.【训练3】 (2011·西安质检)已知向量a =(1,2),b =(2,-3),若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( ). A.⎝ ⎛⎭⎪⎫79,73 B.⎝ ⎛⎭⎪⎫-73,-79 C.⎝ ⎛⎭⎪⎫73,79D.⎝ ⎛⎭⎪⎫-79,-73 解析 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1).∵(c +a )∥b ,∴-3×(1+m )=2×(2+n ),又c ⊥(a +b ), ∴3m -n =0,解得m =-79,n =-73. 答案 D9.已知)2,3(),2,1(-==b a ,当实数k 取何值时,k a +2b 与2a —4b 平行?【解析】方法一: ∵ 2a —4b 0≠,∴ 存在唯一实数λ使k a +2b =λ(2a —4b ) 将a 、b 的坐标代入上式得(k —6,2k +4)=λ(14,—4) 得k —6=14λ且2k +4= —4λ,解得k = —1方法二:同法一有k a +2b =λ(2a —4b ),即(k —2λ)a +(2+4λ)b =0∵a 与b 不共线,∴ ⎩⎨⎧=+=-04202λλk ∴k = —1一、选择题1.设e 1、e 2是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是( ) A .e 1+e 2和e 1-e 2B .3e 1-2e 2和4e 2-6e 1C .e 1+2e 2和e 2+2e 1D .e 2和e 1+e 2[答案] B[解析] ∵4e 2-6e 1=-2(3e 1-2e 2),∴3e 1-2e 2与4e 2-6e 1共线,不能作为基底. 2.下面给出了三个命题:①非零向量a 与b 共线,则a 与b 所在的直线平行;②向量a 与b 共线的条件是当且仅当存在实数λ1、λ2,使得λ1a =λ2b ; ③平面内的任一向量都可用其它两个向量的线性组合表示. 其中正确命题的个数是( ) A .0 B .1 C .2 D .3[答案] B[解析] 命题①两共线向量a 与b 所在的直线有可能重合;命题③平面内的任一向量都可用其它两个不共线向量的线性组合表示.故①③都不正确.3.给出下列结论:①若a ≠b ,则|a +b |<|a |+|b |;②非零向量a 、b 共线,则|a +b |>0;③对任意向量a 、b ,|a -b |≥0;④若非零向量a 、b 共线且反向,则|a -b |>|a |.其中正确的有( )个.( )A .1B .2C .3D .4[答案] B[解析] ①中有一个为零向量时不成立;②中a ,b 若是相反向量则不成立;③、④正确,故选B.4.已知向量e 1、e 2不共线,实数x 、y 满足(x -y )e 1+(2x +y )e 2=6e 1+3e 2,则x -y 的值等于( ) A .3 B .-3 C .6 D .-6[答案] C[解析] ∵e 1、e 2不共线,∴由平面向量基本定理可得⎩⎪⎨⎪⎧ x -y =62x +y =3,解得⎩⎪⎨⎪⎧x =3y =-3. 5.设一直线上三点A ,B ,P 满足AP →=λPB →(λ≠±1),O 为平面内任意一点,则OP →用OA →、OB →表示为( )A .OP →=OA →+λOB → B .OP →=λOA →+(1+λ)OB →C .OP →=OA →+λOB →1+λD .OP →=1λOA →+11-λOB →[答案] C[解析] ∵OP →=OA →+λPB →=OA →+λ(OB →-OP →)=OA →+λOB →-λOP →,∴(1+λ)OP →=OA →+λOB →,∴OP →=OA →+λOB→1+λ.6.(2014·广东文,3)已知向量a =(1,2)、b =(3,1),则b -a =( ) A .(-2,1) B .(2,-1) C .(2,0) D .(4,3)[答案] B[解析] ∵a =(1,2)、b =(3,1),∴b -a =(3-1,1-2)=(2,-1). 7.若向量BA →=(2,3)、CA →=(4,7),则BC →=( ) A .(-2,-4) B .(2,4) C .(6,10) D .(-6,-10)[答案] A[解析] BC →=BA →+AC →=BA →-CA →=(2,3)-(4,7)=(-2,-4).8.(2014·北京文,3)已知向量a =(2,4)、b =(-1,1),则2a -b =( ) A .(5,7) B .(5,9) C .(3,7) D .(3,9)[答案] A[解析] 2a -b =(4,8)-(-1,1)=(5,7)9.已知AB →=(5,-3)、C (-1,3)、CD →=2AB →,则点D 的坐标是( ) A .(11,9) B .(4,0) C .(9,3) D .(9,-3)[答案] D[解析] ∵AB →=(5,-3),∴CD →=2AB →=(10,-6), 设D (x ,y ),又C (-1,3), ∴CD →=(x +1,y -3),∴⎩⎪⎨⎪⎧ x +1=10y -3=-6,∴⎩⎪⎨⎪⎧x =9y =-3. 10.已知△ABC 中,点A (-2,3)、点B (-3,-5),重心M (1,-2),则点C 的坐标为( ) A .(-4,8) B .⎝⎛⎭⎫43,-43 C .(8,-4) D .(7,-2)[答案] C[解析] 设点C 的坐标为(x ,y ),由重心坐标公式,得⎩⎨⎧1=-2+(-3)+x3-2=3+(-5)+y3,解得⎩⎪⎨⎪⎧x =8y =-4.11.已知i 、j 分别是方向与x 轴正方向、y 轴正方向相同的单位向量,O 为原点,设OA →=(x 2+x +1)i -(x 2-x +1)j (其中x ∈R ),则点A 位于( )A .第一、二象限B .第二、三象限C .第三象限D .第四象限[答案] D[解析] ∵x 2+x +1>0,-(x 2-x +1)<0, ∴点A 位于第四象限. 二、填空题12.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________(用a 、b 表示).[答案] -14a +14b[解析] ∵AN →=3NC →,∴4AN →=3AC →=3(a +b ),AM →=a +12b ,∴MN →=34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b . 13.已知向量a 与b 不共线,实数x 、y 满足等式3x a +(10-y )b =(4y +7)a +2x b ,则x =________,y =________.[答案]4711 1611[解析] ∵a 、b 不共线,∴⎩⎪⎨⎪⎧3x =4y +710-y =2x,解得⎩⎨⎧x =4711y =1611.14.若点O (0,0)、A (1,2)、B (-1,3),且OA ′→=2OA →,OB ′→=3OB →,则点A ′的坐标为________.点B ′的坐标为________,向量A ′B ′→的坐标为________.[答案] (2,4) (-3,9) (-5,5) [解析] ∵O (0,0),A (1,2),B (-1,3), ∴OA →=(1,2),OB →=(-1,3),OA ′→=2×(1,2)=(2,4),OB ′→=3×(-1,3)=(-3,9).∴A ′(2,4),B ′(-3,9),A ′B ′→=(-3-2,9-4)=(-5,5).15.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=________. [答案] (-3,-5)[解析] AD →=BC →=AC →-AB →=(-1,-1).∴BD →=AD →-AB →=(-3,-5). 三、解答题16.如图,已知△ABC 中,M 、N 、P 顺次是AB 的四等分点,CB →=e 1,CA →=e 2,试用e 1、e 2表示CM →、CN →、CP →.[解析] 利用中点的向量表达式得: CN →=12e 1+12e 2;CM →=14e 1+34e 2;CP →=34e 1+14e 2.17.(1)设向量a 、b 的坐标分别是(-1,2)、(3,-5),求a +b ,a -b,2a +3b 的坐标; (2)设向量a 、b 、c 的坐标分别为(1,-3)、(-2,4)、(0,5),求3a -b +c 的坐标. [解析] (1)a +b =(-1,2)+(3,-5)=(-1+3,2-5)=(2,-3);a -b =(-1,2)-(3,-5)=(-1-3,2+5)=(-4,7);2a +3b =2(-1,2)+3(3,-5)=(-2,4)+(9,-15)=(-2+9,4-15)=(7,-11).(2)3a -b +c =3(1,-3)-(-2,4)+(0,5) =(3,-9)-(-2,4)+(0,5) =(3+2+0,-9-4+5) =(5,-8)._________________________________________________________________________________ _________________________________________________________________________________基础巩固一、选择题1.已知a =(-1,3)、b =(x ,-1),且a ∥b ,则x 等于( ) A .-3B .-13C .13D .3[答案] C [解析] 由a ∥b ,得(-1)×(-1)-3x =0,解得x =13. 2.(2014·安徽宿州市朱仙庄煤矿中学高一月考)若A (3,-6)、B (-5,2)、C (6,y )三点共线,则y =( )A .13B .-13C .9D .-9 [答案] D[解析] ∵A 、B 、C 共线,∴AB →与AC →共线,∵AB →=(-8,8),AC →=(3,y +6),∴-8(y +6)=24,∴y =-9.3.向量a =(3,1)、b =(1,3)、c =(k,7),若(a -c )∥b ,则k 等于( )A .3B .-3C .5D .-5 [答案] C[解析] a -c =(3-k ,-6),b =(1,3),由题意得,9-3k =-6,∴k =5.4.设e 1、e 2是两个不共线的向量,向量a =e 1+λe 2(λ∈R )与向量b =-(e 2-2e 1)共线,则( )A .λ=0B .λ=-1C .λ=-2D .λ=-12 [答案] D[解析] 由共线向量定理,存在t ∈R ,使a =t b ,即e 1+λe 2=t (-e 2+2e 1),∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧2t =1λ=-t ,解得λ=-12. 5.已知向量a =(3,4)、b =(cos α,sin α),且a ∥b ,则tan α=( )A .34B .43C .-43D .-34[答案] B[解析] ∵a ∥b ,∴3sin α-4cos α=0,∴tan α=43. 6.(2014·山东济南商河弘德中学高一月考)若向量b 与向量a =(2,1)平行,且|b |=25,则b =( )A .(4,2)B .(-4,2)C .(6,-3)D .(4,2)或(-4,-2)[答案] D [解析] 设b =(x ,y ),由题意,得⎩⎪⎨⎪⎧x 2+y 2=20x =2y , 解得⎩⎪⎨⎪⎧ x =4y =2或⎩⎪⎨⎪⎧x =-4y =-2. 二、填空题7.设i 、j 分别为x 、y 轴方向的单位向量,已知OA →=2i ,OB →=4i +2j ,AB →=-2AC →,则点C 的坐标为________.[答案] (1,-1)[解析] 由已知OA →=(2,0),OB →=(4,2),∴AB →=(2,2),设C 点坐标为(x ,y ),则AC →=(x -2,y ),∵AB →=-2AC →,∴(2,2)=-2(x -2,y ),∴⎩⎪⎨⎪⎧ -2(x -2)=2-2y =2,解得⎩⎪⎨⎪⎧x =1y =-1. ∴点C 的坐标为(1,-1).8.设向量a =(4sin α,3)、b =(2,3sin α),且a ∥b ,则锐角α=________.[答案] π4[解析] 由已知,得12sin 2α=6,∴sin α=±22,∴α为锐角,∴α=π4. 三、解答题9.设向量OA →=(k,12)、OB →=(4,5)、OC →=(10,k ),当k 为何值时,A 、B 、C 三点共线.[解析] ∵OA →=(k,12)、OB →=(4,5)、OC →=(10,k ),∴AB →=OB →-OA →=(4,5)-(k,12)=(4-k ,-7),BC →=OC →-OB →=(10,k )-(4,5)=(6,k -5).∵A 、B 、C 三点共线,∴AB →与BC →共线,∴(4-k )(k -5)-6×(-7)=0,解得k =11或k =-2.能力提升一、选择题1.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与b 共线,则( )A .λ=0B .e 2=0C .e 1∥e 2D .e 1∥e 2或λ=0[答案] D[解析] ∵a 、b 共线,∴存在t ∈R ,使a =t b ,∴e 1+λe 2=2t e 1,∴(1-2t )e 1+λe 2=0 ①若e 1、e 2共线,则一定存在t 、λ.使①式成立;若e 1、e 2不共线,则⎩⎪⎨⎪⎧1-2t =0λ=0. 2.已知平面向量a =(1,2)、b =(-2,m ),且a ∥b ,则2a +3b =( )A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10) [答案] C[解析] ∵a ∥b ,∴1×m -2×(-2)=0,∴m =-4.∴2a +3b =(2,4)+(-6,-12)=(-4,-8).3.已知平面向量a =(x,1)、b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线 [答案] C[解析] ∵a =(x,1),b =(-x ,x 2),∴a +b =(0,x 2+1),∵1+x 2≠0,∴向量a +b 平行于y 轴.4.已知向量a =(1,0)、b =(0,1)、c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向 [答案] D[解析] ∵c ∥d ,∴c =λd ,即k a +b =λ(a -b ),又a 、b 不共线,∴⎩⎪⎨⎪⎧ k =λ1=-λ,∴⎩⎪⎨⎪⎧λ=-1k =-1. ∴c =-d ,∴c 与d 反向.二、填空题5.已知a =(-2,3),b ∥a ,b 的起点为A (1,2),终点B 在坐标轴上,则B 点坐标为________.[答案] ⎝⎛⎭⎫0,72或⎝⎛⎭⎫73,0 [解析] 由b ∥a ,可设b =λa =(-2λ,3λ).设B (x ,y ),则AB →=(x -1,y -2)=b .由⎩⎪⎨⎪⎧ -2λ=x -13λ=y -2⇒⎩⎪⎨⎪⎧x =1-2λy =3λ+2. 又B 点在坐标轴上,则1-2λ=0或3λ+2=0,所以B ⎝⎛⎭⎫0,72或⎝⎛⎭⎫73,0. 6.已知点A (3,1)、B (0,0)、C (3,0).设∠BAC 的平分线AE 与BC 相交于E ,那么有BC →=λCE →,其中λ等于________.[答案] -3[解析] ∵AE 为∠BAC 的平分线,∴|BE →||CE →|=|AB →||AC →|=21=2. ∴BE →=-2CE →.∴BC →=BE →-CE →=-2CE →-CE →=-3CE →.三、解答题7.平面内给定三个向量a =(3,2)、b =(-1,2)、c =(4,1),(1)求满足a =m b +n c 的实数m 、n ;(2)若(a +k c )∥(2b -a ),求实数k .[解析] (1)∵a =m b +n c ,∴(3,2)=m (-1,2)+n (4,1)=(-m +4n,2m +n ).∴⎩⎪⎨⎪⎧ -m +4n =32m +n =2,解得⎩⎨⎧ m =59n =89.(2)∵(a +k c )∥(2b -a ),又a +k c =(3+4k,2+k ),2b -a =(-5,2),∴2×(3+4k )-(-5)×(2+k )=0.∴k =-1613. 8.已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且AE →=13AC →,BF →=13BC →, 求证:EF →∥AB →.[解析] 设E (x 1,y 1)、F (x 2,y 2),依题意有:AC →=(2,2)、BC →=(-2,3)、AB →=(4,-1).因为AE →=13AC →,所以AE →=⎝⎛⎭⎫23,23. 因为BF →=13BC →,所以BF →=⎝⎛⎭⎫-23,1.因为(x 1+1,y 1)=⎝⎛⎭⎫23,23,所以E ⎝⎛⎭⎫-13,23. 因为(x 2-3,y 2+1)=⎝⎛⎭⎫-23,1,所以F ⎝⎛⎭⎫73,0. ∴EF →=⎝⎛⎭⎫83,-23. 又因为4×⎝⎛⎭⎫-23-83×(-1)=0,所以EF →∥AB →. 9.已知直角坐标平面上四点A (1,0)、B (4,3)、C (2,4)、D (0,2),求证:四边形ABCD 是等腰梯形.[解析] 由已知,AB →=(4,3)-(1,0)=(3,3),CD →=(0,2)-(2,4)=(-2,-2).∵3×(-2)-3×(-2)=0,∴AB →与CD →共线.又AD →=(0,2)-(1,0)=(-1,2),∴3×(-1)-3×2≠0,∴AB →与AD →不共线.∴AB ∥CD ,AB 与AD 不平行.又|AB →|=32,|CD →|=22,∴|AB →|≠|CD →|,即AB ≠CD .∴BC →=(2,4)-(4,3)=(-2,1),AD →=(-1,2),∴|BC →|=5=|AD →|.故四边形ABCD 是等腰梯形.。
人教版高中数学教案:第5章:平面向量,教案,课时第 (7)
第七教时教材:5.3实数与向量的积综合练习《教学与测试》P141-144 67、68课目的:通过练习使学生对实数与积,两个向量共线的充要条件,平面向量的基本定理有更深刻的理解,并能用来解决一些简单的几何问题。
过程:一、复习:1.实数与向量的积 (强调:“模”与“方向”两点) 2.三个运算定律(结合律,第一分配律,第二分配律) 3.向量共线的充要条件4.平面向量的基本定理(定理的本身及其实质) 二、处理《教学与测试》1.当λ∈Z 时,验证:λ(a +b )=λa+λb证:当λ=0时,左边=0•(a +b )=0 右边=0•a+0•b =0 分配律成立 当λ为正整数时,令λ=n, 则有: n(a +b )=(a +b )+(a +b )+…+(a +b )=a +a +…+a +b +b +b +…+b =n a+n b 即λ为正整数时,分配律成立当为负整数时,令λ=-n (n 为正整数),有-n(a +b )=n[-(a +b )]=n[(-a )+(-b )]=n(-a )+n(-b )=-n a +(-n b )=-n a-n b 分配律仍成立综上所述,当λ为整数时,λ(a +b )=λa+λb 恒成立 。
2.如图,在△ABC 中,=a, =b AD 为边BC 的中线,G 为△ABC 的重心,求向量解一:∵=a , =b 则=21=21b∴AD =AB +BD =a +21b 而=32AD∴=32a +31b解二:过G 作BC 的平行线,交AB 、AC 于E 、F ∵△AEF ∽△ABC=32=32a =32=32bEG =21EF =31b∴=+=32a +31b3.在 ABCD 中,设对角线AC =a ,BD =b 试用a , b表示AB ,BC 解一:AO =OC =21a BO =21BD =21b∴=+=-=21a -21b=+=+=21a +21b解二:设=,=则+= +=a ∴ =21(a -b)-= -=b =21(a +b)即:AB =21(a -b ) BC =21(a +b)4.设1e , 2e 是两个不共线向量,已知=21e +k 2e , =1e +32e , =21e -2e , 若三点A, B, D 共线,求k 的值。
数学人教A版必修第二册6.3.1平面向量基本定理课件(5)
平面向量基本定理
探究思考4
平面内任何一个向量 a 都可以表示成 1e1 2 e2 的
情势,那么这种表示是唯一的吗?(即 e1, e2的系数 是唯一的吗?)
平面向量基本定理
假设:a 1e1 2 e2, a 1e1 2 e2 1e1 2 e2 1e1 2 e2
即 (1 1)e1 (2 2 )e2 0
B
EF
平面向量基本定理的应用
类比思考:
如图,OA,OB 不共线,且 AP t AB(t R) ,用 OA,OB 来表示OP.
OP (1 t)OA tOB
O
A
B
P
平面向量基本定理的应用
思考探究:
如果A,B,C三点共线,点O是平面内任意一点,
若OC OA OB ,则 , 之间具有怎样的数量关系?
6.3.1
平面向量基本定理
宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。 ——华罗
庚
学习 目标
1 平面向量基本定理
2 平面向量基本定理应用
3课堂小结 4课后作业
PART.01
平面向量基本定理
宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。 ——华罗
动手挑战并大胆分享你的求解思路
如图,OA,OB 不共线,且M为AB的中点,用 OA,OB 来表示 OM .
OM 1 OA 1 OB 22
O
A
M
B
平面向量基本定理的应用
如图,OA,OB 不共线,且E、F为AB的三等分点,用 OA,OB 来表示 . OE,OF
OE 2 OA 1 OB 33
O
A
探究思考2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3平面向量的基本定理及坐标表示
2.3.1 平面向量基本定理
教学目的:
(1)了解平面向量基本定理;
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解
决实际问题的重要思想方法;
(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
教学重点:平面向量基本定理.
教学难点:平面向量基本定理的理解与应用.
授课类型:新授课
教 具:多媒体、实物投影仪
教学过程:
一、 复习引入:
1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa
(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =0
2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λμ)a =λa μa , λ(a b )=λa λb
3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =
λa .
二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a
=λ11e λ22e .
探究:
(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量
三、讲解范例:
例1 已知向量1e ,2e 求作向量-2.51e 32e .
例2 如图 ABCD 的两条对角线交于点M ,且AB =a
,AD =b ,用a ,b 表示MA ,MB ,MC 和MD 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是
任意一点,求证:OA OB OC OD =4OE
例4(1)如图,
OA ,OB 不共线,AP =t AB (t ∈R )用OA ,OB 表示OP .
(2)设OA 、
OB 不共线,点P 在O 、A 、B 所在的平面内,且(1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线.
四、课堂练习:
1.设e 1、e 2是同一平面内的两个向量,则有( )
A .e 1、e 2一定平行
B .e 1、e 2的模相等
C .同一平面内的任一向量a 都有a =λe 1μe 2(λ、μ∈R )
D .若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1u e 2(λ、u ∈R )
2.已知矢量a = e 12e 2,b =2e 1e 2,其中e 1、e 2不共线,则ab 与c =6e 12e 2的关系
A .不共线
B .共线
C .相等
D .无法确定
3.已知向量e 1、e 2不共线,实数x 、y 满足(3x 4y )e 1(2x 3y )e 2=6e 13e 2,则xy 的值等于( )
A .3
B .-3
C .0
D .2
4.已知a 、b 不共线,且c =λ1a λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .
5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).
五、小结 平面向量基本定理平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e λ22e .
六、课后作业
已知 a =2e 13e 2,b = 2e 13e 2,其中e 1,e 2不共线,向量c =2e 19e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线.。