高中数学归纳法大全数列不等式精华版
数学归纳法证明不等式
数学归纳法证明不等式归纳法由有限多个个别的特殊事例得出一般结论的推理方法。
那怎么用归纳法来证明不等式呢? 接下来店铺为你整理了数学归纳法证明不等式,一起来看看吧。
数学归纳法证明不等式的基本知识数学归纳法的基本原理、步骤和使用范围(1)在数学里,常用的推理方法可分为演绎法和归纳法,演绎法一般到特殊,归纳法是由特殊到一般.由一系列有限的特殊事例得出一般结论的推理方法,通常叫归纳法。
在归纳时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么结论是可靠的.这种归纳法叫完全归纳法(通常也叫枚举法)如果考察的只是某件事的部分情况,就得出一般结论,这种归纳法叫完全归纳法.这时得出的结论不一定可靠。
数学问题中,有一类问题是与自然数有关的命题,因为自然数有无限多个,我们不可能就所有的自然数一一加以验证,所以用完全归纳法是不可能的.然而只就部分自然数进行验证所得到的结论,是不一定可靠的例如一个数列的通项公式是an=(n2-5n+5)2容易验证a1=1,a2=1,a3=1,a4=1,如果由此作出结论——对于任何n∈N+, an=(n2-5n+5)2=1都成立,那是错误的.事实上,a5=25≠1.因此,就需要寻求证明这一类命题的一种切实可行、比较简便而又满足逻辑严谨性要求的新的方法——数学归纳法.(2)数学归纳法是一种重要的数学证明方法,其中递推思想起主要作用。
形象地说,多米诺骨牌游戏是递推思想的一个模型,数学归纳法的基本原理相当于有无限多张牌的多米诺骨牌游戏,其核心是归纳递推.一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用一下两个步骤:(1)证明当n=n0(例如n0=1或2等)时命题成立;(2)假设当n=k(k∈N+,且k≥n0)时命题成立,证明当n=k+1时命题也成立.在完成了这两个步骤以后,就可以断定命题对于不小于n0所有自然数都成立.这种证明方法称为数学归纳法.自然数公理(皮亚诺公理)中的“归纳公理”是数学归纳法的理论根据,数学归纳法的两步证明恰是验证这条公理所说的两个性质.数学归纳法的适用范围仅限于与自然数n有关的命题.这里的n是任意的正整数,它可取无限多个值.附录:下面是自然数的皮亚诺公理,供有兴趣的同学阅读.任何一个象下面所说的非空集合N的元素叫做自然数,在这个集合中的某些元素a与b之间存在着一种基本关系:数b是数a后面的一个“直接后续”数,并且满足下列公理:①1是一个自然数;②在自然数集合中,每个自然数a有一个确定“直接后续”数a’;③a’≠1,即1不是任何自然数的“直接后续”数;④由a’ =b’推出a=b,这就是说,每个自然数只能是另一个自然数的“直接后续”数;⑤设M是自然数的一个集合,如果它具有下列性质:(Ⅰ)自然数1属于M,(Ⅱ)如果自然数a属于M,那么它的一个“直接后续”数a’也属于M,则集合M包含一切自然数.其中第5条公理又叫做归纳公理,它是数学归纳法的依据.(3)数学归纳法可以证明与自然数有关的命题,但是,并不能简单地说所有涉及正整数n的命题都可以用数学归纳法证明.例如用数学归纳法证明(1+1)n(n∈N+)的单调性就难以实现.一般来说,n从k=n到k=n+1时,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.数学归纳法证明不等式例题。
高一数列和不等式知识点
高一数学数列知识总结一、看数列是不是等差数列有以下三种方法:①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n )③b kn a n +=(k n ,为常数).二、看数列是不是等比数列有以下两种方法:①)0,,2(1≠≥=-且为常数q n q a a n n ②112-+⋅=n n n a a a (2≥n ,011≠-+n n n a a a )三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足⎩⎨⎧≥≤+01m m a a 的项数m 使得m s 取最小值.在解含绝对值的数列最值问题时,注意转化思想的应用。
四.数列通项的常用方法:(1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①⎩⎨⎧≥-==-)2()111n S S n S a n n n (;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.第一节通项公式常用方法题型1 利用公式法求通项例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式: ⑴ 1322-+=n n S n ; ⑵12+=n n S . 总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示.题型2 应用迭加(迭乘、迭代)法求通项例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式;⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式.总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ⋅=+“;⑵迭加法、迭乘法公式:① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----② 1122332211a a a a a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=----- . 题型3 构造等比数列求通项例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法: ①令)(1λλ-=-+n n a p a ;② 在q pa a n n +=+1中令pqx x a a n n -=⇒==+11,∴)(1x a p x a n n -=-+; ③由q pa a n n +=+1得q pa a n n +=-1,∴)(11-+-=-n n n n a a p a a . 例4已知数列{}n a 中,n n n a a a 32,111+==+,求数列{}n a 的通项公式.总结:递推关系形如“nn n q pa a +=+1”通过适当变形可转化为:“q pa a n n +=+1”或“n n n n f a a )(1+=+求解. 例5已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.总结:递推关系形如“n n n a q a p a ⋅+⋅=++12”,通过适当变形转化为可求和的数列. 强化巩固练习1、已知n S 为数列{}n a 的前n 项和, )2,(23≥∈+=+n N n a S n n ,求数列{}n a 的通项公式.2、已知数列{}n a 中,)(0)1()2(,211++∈=+-+=N n a n a n a n n ,求数列{}n a 的通项公式.小结:数列通项的常用方法:⑴利用观察法求数列的通项;⑵利用公式法求数列的通项;⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)构造等差、等比数列求通项:①q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.3、数列{}n a 中,)(,111n n n a a n a a -==+,则数列{}n a 的通项=n a 。
高中数学数列知识点总结(精华版)
一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 1、已知*2()156n n a n N n =∈+,则在数列{}na 的最大项为__(答:125); 2、数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a );3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是()(答:A )二、 等差数列1、 等差数列的定义:如果数列{}a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
高中数列知识点总结公式大全
高中数列知识点总结公式大全一、数列的概念与简单表示法。
(一)数列的定义。
按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项。
数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),往后各项依次叫做这个数列的第2项,第3项,…,第n项,…。
(二)数列的表示法。
1. 列举法。
将数列中的项一一列举出来表示数列的方法。
例如数列1,3,5,7,9,·s。
2. 通项公式法。
如果数列{a_n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。
例如数列a_n=2n - 1,n∈ N^*就表示首项为1,公差为2的等差数列。
3. 图象法。
数列是特殊的函数,可以用图象来表示。
以序号n为横坐标,相应的项a_n为纵坐标,描点画图来表示数列。
其图象是一群孤立的点。
4. 递推公式法。
如果已知数列{a_n}的第1项(或前几项),且从第二项(或某一项)开始的任一项a_n与它的前一项a_n - 1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
例如斐波那契数列a_1=1,a_2=1,a_n=a_n - 1+a_n -2(n≥slant3,n∈ N^*)。
二、等差数列。
(一)等差数列的定义。
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
即a_n-a_n - 1=d(n≥slant2,n∈ N^*)。
(二)等差数列的通项公式。
a_n=a_1+(n - 1)d,其中a_1为首项,d为公差。
1. 推广公式。
a_n=a_m+(n - m)d,(m,n∈ N^*)。
(三)等差数列的前n项和公式。
1. S_n=frac{n(a_1+a_n)}{2}2. S_n=na_1+(n(n - 1))/(2)d(四)等差数列的性质。
1. 若m,n,p,q∈ N^*,且m + n=p + q,则a_m+a_n=a_p+a_q。
高中数学知识点总结(不等式选讲 第二节 不等式的证明)
第二节 不等式的证明一、基础知识1.基本不等式(1)定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.(3)定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)作差法的依据是:a -b >0⇔a >b . (2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.考点一 比较法证明不等式[典例] 已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.[解] (1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2,得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1, 从而(a +b )2-(1+ab )2 =a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a +b |<|1+ab |. [题组训练]1.当p ,q 都是正数且p +q =1时,求证:(px +qy )2≤px 2+qy 2. 解:(px +qy )2-(px 2+qy 2) =p 2x 2+q 2y 2+2pqxy -(px 2+qy 2) =p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0,所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立. 2.求证:当a >0,b >0时,a a b b≥(ab )+2a b .证明:∵a ab b ab+2a b =⎝⎛⎭⎫a b -2a b ,∴当a =b 时,⎝⎛⎭⎫a b -2a b =1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b.考点二 综合法证明不等式[典例] (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.[证明] (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3a +b 24(a +b )=2+3a +b 34,∴(a +b )3≤8,因此a +b ≤2.[解题技法] 综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系,合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.[题组训练]1.设a ,b ,c ,d 均为正数,若a +b =c +d ,且ab >cd ,求证:a +b >c +d . 证明:因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd . 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此 a +b >c +d .2.(2018·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧ x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧ 0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6, 解得-1<x <9,∴m =-1,n =9.(2)证明:由(1)知9x +y =1,又x >0,y >0, ∴⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,∴1x +1y ≥16,即x +y ≥16xy .考点三 分析法证明不等式[典例] (2019·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解] (1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2,得-1<x <1,即A ={x |-1<x <1}. (2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.[解题技法] 分析法证明不等式应注意的问题(1)注意依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论. (2)注意从要证不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)注意恰当地用好反推符号“⇐”或“要证明”“只需证明”“即证明”等词语. [题组训练]1.已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a . 证明:由a >b >c 且a +b +c =0, 知a >0,c <0. 要证b 2-ac <3a , 只需证b 2-ac <3a 2.∵a +b +c =0,∴只需证b 2+a (a +b )<3a 2, 即证2a 2-ab -b 2>0, 即证(a -b )(2a +b )>0, 即证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0, ∴(a -b )(a -c )>0显然成立, 故原不等式成立.2.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,求证:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[课时跟踪检测]1.已知△ABC 的三边a ,b ,c 的倒数成等差数列,试用分析法证明:∠B 为锐角. 证明:要证∠B 为锐角,只需证cos B >0, 所以只需证a 2+c 2-b 2>0, 即a 2+c 2>b 2,因为a 2+c 2≥2ac , 所以只需证2ac >b 2, 由已知得2ac =b (a +c ).所以只需证b (a +c )>b 2,即a +c >b ,显然成立. 所以∠B 为锐角.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(1)由ab =1a +1b ≥2ab,得ab ≥2,仅当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 3.(2019·南宁模拟)(1)解不等式|x +1|+|x +3|<4; (2)若a ,b 满足(1)中不等式,求证:2|a -b |<|ab +2a +2b |.解:(1)当x <-3时,|x +1|+|x +3|=-x -1-x -3=-2x -4<4,解得x >-4,所以 -4<x <-3;当-3≤x <-1时,|x +1|+|x +3|=-x -1+x +3=2<4恒成立, 所以-3≤x <-1;当x ≥-1时,|x +1|+|x +3|=x +1+x +3=2x +4<4,解得x <0,所以-1≤x <0. 综上,不等式|x +1|+|x +3|<4的解集为{x |-4<x <0}. (2)证明:因为4(a -b )2-(ab +2a +2b )2 =-(a 2b 2+4a 2b +4ab 2+16ab ) =-ab (b +4)(a +4)<0, 所以4(a -b )2<(ab +2a +2b )2, 所以2|a -b |<|ab +2a +2b |.4.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M . (1)求M ;(2)当x ∈M 时,求证:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2.当x ≤2时,由f (x )=x -1≤-1, 解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1, 解得x ≤43,显然不成立.故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x =-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数, ∴g (x )≤g (0)=0. 故x [f (x )]2-x 2f (x )≤0.5.(2019·西安质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎩⎪⎨⎪⎧-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3, 当且仅当(2x -1)(2x +2)≤0,即-1≤x ≤12时取等号,∴M =[3,+∞). t 2+1-3t -3t =t 3-3t 2+t -3t=t -3t 2+1t,∵t ∈M ,∴t -3≥0,t 2+1>0, ∴t -3t 2+1t ≥0,∴t 2+1≥3t+3t .6.(2019·长春质检)已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎪⎨⎪⎧-5x +9,x <32,-x +3,32≤x ≤2,5x -9,x >2.作出函数f (x )的图象如图所示.由图象可知,f (x )<2的解集为⎝⎛⎭⎫75,115. (2)证明:由图象可知f (x )的最小值为1, 由基本不等式可知a +b2≤ a +b2= 14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 7.已知函数f (x )=|2x -1|-⎪⎪⎪⎪x +32. (1)求不等式f (x )<0的解集M ;(2)当a ,b ∈M 时,求证:3|a +b |<|ab +9|.解:(1)f (x )=⎩⎪⎨⎪⎧52-x ,x <-32,-3x -12,-32≤x ≤12,x -52,x >12.当x <-32时,f (x )<0,即52-x <0,无解;当-32≤x ≤12时,f (x )<0,即-3x -12<0,得-16<x ≤12;当x >12时,f (x )<0,即x -52<0,得12<x <52.综上,M =⎩⎨⎧⎭⎬⎫x ⎪⎪-16<x <52. (2)证明:要证3|a +b |<|ab +9|,只需证9(a 2+b 2+2ab )<a 2b 2+18ab +81, 即证a 2b 2-9a 2-9b 2+81>0, 即证(a 2-9)(b 2-9)>0.因为a ,b ∈M ,所以-16<a <52,-16<b <52,所以a 2-9<0,b 2-9<0, 所以(a 2-9)(b 2-9)>0, 所以3|a +b |<|ab +9|.8.已知函数f (x )=m -|x +4|(m >0),且f (x -2)≥0的解集为[-3,-1]. (1)求m 的值;(2)若a ,b ,c 都是正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)法一:依题意知f (x -2)=m -|x +2|≥0, 即|x +2|≤m ⇔-m -2≤x ≤-2+m .由题意知不等式的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,-2+m =-1,解得m =1.法二:因为不等式f (x -2)≥0的解集为[-3,-1],所以-3,-1为方程f (x -2)=0的两根,即-3,-1为方程m -|x +2|=0的两根,所以⎩⎪⎨⎪⎧m -|-3+2|=0,m -|-1+2|=0,解得m =1.(2)证明:由(1)可知1a +12b +13c=1(a ,b ,c >0),所以a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫a 2b +2b a +⎝⎛⎭⎫a 3c +3c a +⎝⎛⎭⎫2b 3c +3c2b ≥9,当且仅当a =2b =3c ,即a =3,b =32,c =1时取等号.。
高考数学数列不等式证明题放缩法十种方法技巧总结(无师自通)
1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n !求证.2)1(2)1(2+<<+n S n n n例2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1−+>++++n n n f f f ! 例3 求证),1(221321N n n n C C C Cn n nn n n ∈>⋅>++++−!.例4 已知222121n a a a +++=L ,222121n x x x +++=L ,求证:n n x a x a x a +++!2211≤1.2.利用有用结论例5 求证.12)1211()511)(311)(11(+>−++++n n ! 例6 已知函数.2,,10,)1(321lg )(≥∈≤<⋅+−++++=∗n N n a nn a n x f xx x x 给定!求证:)0)((2)2(≠>x x f x f 对任意∗∈N n 且2≥n 恒成立。
例7 已知112111,(1).2n nna a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥;)(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L)例8 已知不等式21111[log ],,2232n n N n n ∗+++>∈>L 。
2[log ]n 表示不超过n 2log 的最大整数。
设正数数列}{n a 满足:.2,),0(111≥+≤>=−−n a n na a b b a n n n 求证.3,][log 222≥+<n n b ba n再如:设函数()x f x e x =−。
(Ⅰ)求函数()f x 最小值;(Ⅱ)求证:对于任意n N ∗∈,有1().1nn k k ene =<−∑ 例9 设n n na )11(+=,求证:数列}{n a 单调递增且.4<n a3. 部分放缩例10 设++=a na 21111,23a aa n ++≥L ,求证:.2<n a例11 设数列{}n a 满足()++∈+−=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有:2)(+≥n a i n ; 21111111)(21≤++++++na a a ii !. 4 . 添减项放缩例12 设N n n∈>,1,求证)2)(1(8)32(++<n n n . 例13 设数列}{n a 满足).,2,1(1,211!=+==+n a a a a nn n 证明12+>n a n 对一切正整数n 成立;5 利用单调性放缩: 构造函数例14 已知函数223)(x ax x f −=的最大值不大于61,又当]21,41[∈x 时.81)(≥x f (Ⅰ)求a 的值;(Ⅱ)设∗+∈=<<N n a f a a n n ),(,21011,证明.11+<n a n 例15 数列{}n x 由下列条件确定:01>=a x ,,211⎟⎟⎠⎞⎜⎜⎝⎛+=+n n n x a x x N n ∈. (I) 证明:对2≥n总有a x n≥;(II) 证明:对2≥n 总有1+≥n n x x6 . 换元放缩例16 求证).2,(1211≥∈−+<<∗n N n n n n例17 设1>a ,N n n ∈≥,2,求证4)1(22−>a n a n.7 转化为加强命题放缩例18 设10<<a ,定义a a a a a nn +=+=+1,111,求证:对一切正整数n 有.1>n a 例19 数列{}n x 满足.,212211nx x x x n n n +==+证明.10012001<x例20 已知数列{a n}满足:a 1=32,且a n=n 1n 13na n 2n N 2a n 1∗≥∈--(,)+- (1)求数列{a n }的通项公式;(2)证明:对一切正整数n 有a 1•a 2•……a n <2•n!8. 分项讨论例21 已知数列}{n a 的前n 项和n S 满足.1,)1(2≥−+=n a S n n n(Ⅰ)写出数列}{n a 的前3项321,,a a a ; (Ⅱ)求数列}{n a 的通项公式;(Ⅲ)证明:对任意的整数4>m ,有8711154<+++ma a a !.9. 借助数学归纳法例22(Ⅰ)设函数)10( )1(log )1(log )(22<<−−+=x x x x x x f ,求)(x f 的最小值;(Ⅱ)设正数n p p p p 2321,,,,!满足12321=++++n p p p p !,求证:np p p p p p p p n n −≥++++222323222121log log log log !10. 构造辅助函数法例23 已知()f x = 2ln 243x x +−,数列{}n a 满足()()*11 2 ,0211N n a f a n an ∈=<<−++(1)求()f x 在⎥⎦⎤⎢⎣⎡−021,上的最大值和最小值; (2)证明:102n a −<<; (3)判断n a 与1()n a n N ∗+∈的大小,并说明理由.例24 已知数列{}n a 的首项135a =,1321n n n a a a +=+,12n =L,,.(Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x>,21121(1)3n na x xx ⎛⎞−−⎜⎟++⎝⎠≥,12n =L ,,; (Ⅲ)证明:2121n n a a a n +++>+L .例25 已知函数f(x)=x 2-1(x>0),设曲线y=f(x)在点(x n ,f(x n ))处的切线与x 轴的交点为(x n+1,0)(n∈N *). (Ⅰ) 用x n 表示x n+1; (Ⅱ)求使不等式1n n x x +≤对一切正整数n 都成立的充要条件,并说明理由;(Ⅲ)若x 1=2,求证:.31211111121−≤++++++n n x x x !例1 解析 此数列的通项为.,,2,1,)1(n k k k a k !=+=2121)1(+=++<+<k k k k k k ∵,)21(11∑∑==+<<∴nk n n k k S k ,即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2ba ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里3,2=n 等的各式及其变式公式均可供选用。
数列及函数不等式
证:
1 4 x2n x2n1
1
1 1
4 (2n 1)(2n 1) 4 4n2 1 4 4n2
2 2n
1 n1 n
1
显然成立
2n
n1 n
左 2(1 2 2 3 .... n n 1) 2( n 1 1)
(三)其他结构裂项 *例1、数列 满足:
求 解:
的整数部分。
例2、
求证:
1
1
a1 a2 ... an1 a1 a2 ... an
左(1 1 )( 1
1 ) ... (
1
1
)
a1 a1 a2 a1 a2 a1 a2 a3
a1 a2 ... an1 a1 a2 ... an
1
1
1
a1 a1 a2 ... an a1
*2、an n(n 1), bn (n 1)2
背景:递归数列,数列不等式。 策略:递归公式变形,迭代,函数思想,恒等变形, 裂项求和,放缩法。
解析(1)
解析(2)
Sn
(a1
a2 )
(a2
a3 )
... (an
an1 )
1 2
an1
1
1 Sn 2 an1 1
2n 2 n
n 2(n 1)
练习:
*1、设 a1 1,an1 an n 1
2
... 2( 1
(k 1) k k k 1
k
1) k 1
累加得证。
例4、求证:
证:注意观察不等式两端结构,裂成n份比较。 累加得证。
练习:
1、设 x1 1,xn nn(n(1为n奇为数偶)数),求证:
1 1 ... 1 2( n 1 1)
(完整版)高中数学不等式知识点总结
选修4--5知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k>+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。
高三数学二轮复习口诀不等式和数列
高三数学二轮复习口诀:不等式和数列
有关高三数学二轮复习口诀:不等式和数列
高三数学二轮复习口诀:不等式和数列
关于高三数学二轮复习口诀:不等式和数列,高三数学二轮复习时需要大家对所有知识点进行一遍总结,不等式和数列是重要知识点,对于这部分知识点的学习,大家应该记住相关口诀,小编为大家提供高三数学二轮复习口诀:不等式和数列,供大家参考。
《不等式》
解不等式的途径,利用函数的.性质。
对指无理不等式,
化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图建模构造法。
《数列》
等差等比两数列,通项公式N项和。
两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。
数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。
归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。
还有数学归纳法,证明步骤程序化:
首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。
上面的高三数学二轮复习口诀:不等式和数列,对于大家的复习非常有帮助,希望大家好好利用。
s();
【有关高三数学二轮复习口诀:不等式和数列】。
高三数学不等式、数列、函数、导数重要知识点复习
不等式、数列、函数、导数重要知识点复习本次课课堂教学内容1.已知函数f (x )=-x 2+bx +c ,不等式f (x )>0的解集为{x |1<x <2}. (1)求不等式cx 2+bx -1>0的解集;(2)当g (x )=f (x )-mx 在x ∈[1,2]上具有单调性,求实数m 的取值范围.2.随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t (单位:分钟)满足:4≤t ≤15,t ∈N ,平均每趟地铁的载客人数p (t )(单位:人)与发车时间间隔t 近似地满足下列函数关系:p (t )=⎩⎪⎨⎪⎧1 800-159-t 2,4≤t <9,1 800,9≤t ≤15,其中t ∈N .(1)若平均每趟地铁的载客人数不超过1 500,试求发车时间间隔t 的值; (2)若平均每趟地铁每分钟的净收益为Q =6pt -7 920t-100(单位:元),问当发车时间间隔t 为多少时,平均每趟地铁每分钟的净收益最大?并求出最大净收益.3.已知函数f (x )=13x 3-x 2+ax (其中a 为实数).(1)若x =-1是f (x )的极值点,求函数f (x )的单调递减区间; (2)若f (x )在(-2,+∞)上是增函数,求a 的取值范围.4.已知函数f (x )=a e x -cos x -x (a ∈R ). (1)若a =1,证明:f (x )≥0;(2)若f (x )在(0,π)上有两个极值点,求实数a 的取值范围.5.定义在[0,+∞)上的函数f (x )满足:当0≤x <2时,f (x )=2x -x 2;当x ≥2时,f (x )=3f (x -2).将函数f (x )的极大值点从小到大依次记为a 1,a 2,…,a n ,并记相应的极大值为b 1,b 2,…,b n ,则a 1b 1+a 2b 2+…+a 20b 20的值为( ) A .19×320+1 B .19×319+1 C .20×319+1 D .20×320+16.已知数列{a n }中,a 1=1,a 2=3,且数列{a n +1-a n }是以2为公比的等比数列. (1)求数列{a n }的通项公式;(2)令c n =(-1)n +1a n ,求数列{c n }的前n 项和S n .7.已知数列{a n }的首项a 1=2,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是以12为公差的等差数列.(1)求数列{a n }的通项公式;(2)设b n =2n a n ,n ∈N *,数列{b n }的前n 项和为T n ,∈求证:数列⎩⎨⎧⎭⎬⎫T n n 为等比数列,∈若存在整数m ,n (m >n >1),使得T m T n =m S m +λn S n +λ,其中λ为常数,且λ≥-2,求λ的所有可能值.8.函数f (x )=(x -1)ln|x |的图象可能为( )9.将甲桶中的a 升水缓慢注入空桶乙中,t min 后甲桶剩余的水量符合指数衰减曲线y =a e nt .假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4升,则m 的值为( )A .5B .6C .8D .1010.素数也叫质数,部分素数可写成“2n -1”的形式(n 是素数),法国数学家马丁·梅森就是研究素数的数学家中成就很高的一位,因此后人将“2n -1”形式(n 是素数)的素数称为梅森素数.2018年底发现的第51个梅森素数是P =282 589 933-1,它是目前最大的梅森素数.已知第8个梅森素数为P =231-1,第9个梅森素数为Q =261-1,则QP 约等于(参考数据:lg2≈0.3)( )A .107B .108C .109D .101011.(2020·荆门模拟)定义函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得fx 1+f x 22=M ,则称函数f (x )在I 上的“均值”为M ,则函数f (x )=log 2x ,x ∈[1,22 020]的“均值”为________..本次课课后练习一、单项选择题1.(2020·沧州调研)集合M ={x |lg x >0},N ={x |x 2≤4},则M ∩N 等于( ) A .(-2,0) B .[1,2) C .(1,2] D .(0,2]2.复数z =1-2ii 在复平面内对应点的坐标是( )A .(2,1)B .(-2,-1)C .(1,2)D .(-1,-2)3.(2020·唐山段考)命题“∈x ∈R ,|x |+x 4≥0”的否定是( ) A .∈x ∈R ,|x |+x 4<0 B .∈x ∈R ,|x |+x 4≤0C .∈x 0∈R ,|x 0|+x 40≥0D .∈x 0∈R ,|x 0|+x 40<04.(2020·郑州模拟)已知向量a 与b 的夹角为π3,且|a |=1,|2a -b |=3,则|b |等于( )A. 3B. 2 C .1 D.325.有5个空盒排成一排,要把红、黄两个球放入空盒中,要求一个空盒最多只能放入一个球,并且每个球左右均有空盒,则不同的放入种数为( ) A .8 B .2 C .6 D .46.已知命题p :若a >b >0,则12log a <12log b +1,则命题p 及其逆命题、否命题、逆否命题中真命题的个数为( ) A .0 B .2 C .4 D .17.(2020·山东模拟)已知三棱锥S -ABC 中,∈SAB =∈ABC =π2,SB =4,SC =213, AB =2 , BC =6,则三棱锥S -ABC 的体积是( ) A .4 B .6 C .43 D .638.(2020·长沙模拟)已知定义在R 上的函数f (x )的图象关于y 轴对称,且当x ∈[0,+∞)时,f (x )+xf ′(x )>0,若a =0.76f (0.76),b =(log 0.76)f (log 0.76),c =60.6·f (60.6),则a ,b ,c 的大小关系是( ) A .c >a >b B .a >c >b C .b >a >c D .a >b >c二、多项选择题9.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论中一定正确的是( )注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多10.已知F 1,F 2分别是双曲线C :x 2-y 2=1的左、右焦点,点P 是双曲线上异于双曲线顶点的一点,且PF 1→·PF 2→=0,则下列结论正确的是( ) A .双曲线C 的渐近线方程为y =±x B .以F 1F 2为直径的圆的方程为x 2+y 2=1 C .F 1到双曲线的一条渐近线的距离为1 D .∈PF 1F 2的面积为111.如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,以下结论正确的是( )A .异面直线A 1D 与AB 1所成的角为60° B .直线A 1D 与BC 1垂直 C .直线A 1D 与BD 1平行 D .三棱锥A -A 1CD 的体积为16a 312.已知定义在R 上的偶函数f (x )满足f (x +4)=f (x )+f (2),且在区间[0,2]上是增函数,下列命题中正确的是( ) A .函数f (x )的一个周期为4B .直线x =-4是函数f (x )图象的一条对称轴C .函数f (x )在[-6,-5)上单调递增,在[-5,-4)上单调递减D .函数f (x )在[0,100]内有25个零点13.为回馈顾客,某商场拟通过模拟兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ∈顾客所获的奖励额为60元的概率; ∈顾客所获的奖励额的分布列及均值;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.。
高中数学的归纳不等式与数列极限
高中数学的归纳不等式与数列极限数学是一门精确而又严谨的科学,高中数学也是学生们学习的重要课程之一。
在高中数学学习中,归纳不等式与数列极限是两个重要的概念。
本文将对高中数学的归纳不等式与数列极限进行介绍与分析。
一、归纳不等式的概念及应用归纳不等式是数学归纳法在不等式证明中的应用。
数学归纳法是一种常用的证明方法,通过证明基本情形成立,以及假设某一情形成立,然后证明下一情形也成立,最终得出结论。
在归纳不等式的证明中,我们常常需要运用到数学推理、数学运算与恒等变形等方法。
具体来说,归纳不等式有着以下的基本形式:设P(n)为关于n的不等式,当n取某一特定值时,P(n)成立;如果当n=k时P(n)成立,那么当n=k+1时P(n)也成立。
通过上述归纳不等式的基本形式,可以帮助我们解决一些归纳证明问题。
以不等式的证明为例,我们可以通过证明基本情形成立,即n=1时不等式成立;然后假设n=k时不等式成立,即P(k)成立;最后通过推理和变形等方法证明当n=k+1时不等式也成立,即P(k+1)成立。
这就完成了整个归纳证明过程。
二、数列极限的概念及性质数列极限是高中数学中一个重要的概念,它与数列的发散和收敛性质密切相关。
数列极限描述了在无限项数列中,当项数趋近于无穷大时,数列中的项的极限情况。
对于数列{an},当对于任意的正数ε,都存在正整数N,使得当n>N时,满足|an-L|<ε,其中L为实数,就称L是数列{an}的极限,记作lim(n→∞)an=L。
数列极限具有以下的性质:1. 极限的唯一性:如果数列{an}的极限存在,那么它的极限是唯一的;2. 有界性:如果数列{an}收敛,则它是有界的;3. 保号性:如果数列{an}收敛且极限不等于0,那么存在正整数N,当n>N时,数列的项与极限同号。
通过对数列极限的学习,我们可以更好地理解数列的性质,同时也可以应用数列极限来解决一些实际问题。
三、归纳不等式与数列极限的联系归纳不等式与数列极限在高中数学中有着密切的联系,它们可以相互应用,互相支撑。
高级中学理科数学解题方法篇(数列不等式)
数列不等式三个考察点:①通项公式②求和③证不等式 一、通项公式学校的训练较多这里不详细介绍。
要熟练掌握:1、 待定系数法、不动点法、特征根法(连续两年中有考查)2、 熟悉变形。
包括:两边同时除以如n 2、平方、变倒数、因式分解、取对数、换元若不熟悉可以找讲义,或者高妙上有介绍 3、累加累乘法但是高考一般不会直白地给出关系,或者给出常见的通项公式。
高考题大多这样出题: 1、 与函数、解析几何结合这个范围太泛了不好归纳,难度一般不会太大,见招拆招即可 2、 给出不常规的通项公式,但有提示比如:1a =1,81+n a n a -161+n a +2n a +5=0(n ≥0),n b =211-n a ,求{n b }通项公式现在不可能把n a 通项公式求出再求n b ,那么显然n b 需先求出,故变形为n a =211+n b ,代入递推关系即可得036411=+-++nn n n b b b b ,再乘以n b 1+n b 即可。
还有一种情况便是先让考生得出1a 、2a 、3a 后猜想用数学归纳证明,有时不会提示考生要猜想,但别的常规方法得不出通项公式时要果断大胆猜想总之,这种题一定要顺着提示做通项公式中一定要重视的是累加累乘法 看上去似乎很简单:1121)()(a a a a a a n n n +-+⋯+-=-)0(1121≠••⋯•=-n n n n a a a aa a a 但是这却是解决不等式证明最原始也是最重要的方法。
原因很简单:高考考的是灵活,除了通项公式的变形,不动点法等方法灵活度不大,所以大多所谓的很难想的题目大多归根到底是递推。
比如:1、 奇偶项不同的数列。
奇项间或者偶项间的递推(后会介绍)2、 数归。
证明)()(n g n f <的核心便是)()1()()1(n g n g n f n f -+<-+3、 通过通过1+n a 与n a 间的关系得出n n qa a =+1或n n qa a <+1或n n qa a >+1,这是解决k S n <(k 为常数)。
高考数学复习口诀:不等式和数列
高考数学复习口诀:不等式和数列
2021年高考数学温习口诀:不等式和数列
【】有关于2021年高考数学温习口诀:不等式和数列是查字典数学网特别为您集合的,查字典数学网编辑将第一时间为您整理全国考试资讯信息,供大家参考!
不等式
解不等式的途径,应用函数的性质。
对指在理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,协助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争上下。
直接困难剖析好,思绪明晰综合法。
非负常用基本式,正面难那么反证法。
还有重要不等式,以及数学归结法。
图形函数来协助,画图建模结构法。
数列
等差等比两数列,通项公式N项和。
两个有限求极限,四那么运算顺序换。
数列效果多变幻,方程化归全体算。
数列求和比拟难,错位相消巧转换,
扬长避短高斯法,裂项求和公式算。
归结思想十分好,编个
顺序好思索:
一算二看三联想,猜想证明不可少。
还有数学归结法,证明步骤顺序化:
首先验证再假定,从K向着K加1,推论进程须详尽,归结原理来一定。
总之,在倒计时的百天里,考生只需在片面温习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,在高考中取得优秀的效果。
查字典数学网高考频道为大家整理了2021年高考数学温习口诀:不等式和数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§数学归纳法1.数学归纳法的概念及基本步骤数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是:(1)验证:n=n0 时,命题成立;(2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立.根据(1)(2)可以断定命题对一切正整数n都成立.2.归纳推理与数学归纳法的关系数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时,需要特别注意:(1)用数学归纳法证明的对象是与正整数n有关的命题;(2)在用数学归纳法证明中,两个基本步骤缺一不可.1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1.2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法.3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须依题目的要求严格按照数学归纳法的步骤进行,否则不正确.4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确.6.在学习和使用数学归纳法时,需要特别注意:(1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立;(2)在用数学归纳法证明中,两个基本步骤缺一不可.数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题.证明:12+122+123+…+12n -1+12n =1-12n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k ,那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1 =1-12k +12k +1=1-2-12k +1=1-12k +1=右边. 这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任何n ∈N +都成立.用数学归纳法证明:1-12+13-14+…+12n -1-12n=1n +1+1n +2+…+12n . [证明] ①当n =1时,左边=1-12=12=11+1=右边, ∴当n =1时,等式成立.②假设n =k 时等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k . 则当n =k +1时,左边=1-12+13-14+…+12k -1-12k +12k +1-12k +2=(1k +1+1k +2+…+12k )+12k +1-12k +2=(1k +2+…+12k +12k +1)+(1k +1-12k +2) =1k +2+…+12k +12k +1+12k +2=右边. ∴n =k +1时等式成立.由①②知等式对任意n ∈N +都成立.[点评] 在利用归纳假设论证n =k +1等式成立时,注意分析n =k 与n =k +1的两个等式的差别.n =k +1时,等式左边增加两项,右边增加一项,而且右式的首项由1k +1变到1k +2.因此在证明中,右式中的1k +1应与-12k +2合并,才能得到所证式.因此,在论证之前,把n =k +1时等式的左右两边的结构先作一下分析是有效的.证明不等式用数学归纳法证明:对一切大于1的自然数n ,不等式⎝⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1>2n +12成立. [证明] ①当n =2时,左=1+13=43,右=52,左>右,∴不等式成立.②假设n =k (k ≥2且k ∈N *)时,不等式成立,即⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1>2k +12, 那么当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1[1+12k +1-1]>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +3·2k +12·2k +1=2k +1+12,∴n =k +1时,不等式也成立.∴对一切大于1的自然数n ,不等式成立.[点评] (1)本题证明n =k +1命题成立时,利用归纳假设并对照目标式进行了恰当的缩小来实现,也可以用上述归纳假设后,证明不等式k +12k +1>2k +1+12成立.(2)应用数学归纳法证明与非零自然数有关的命题时要注意两个步骤:• 第①步p (n 0)成立是推理的基础;• 第②步由p (k )⇒p (k +1)是推理的依据(即n 0成立,则n 0+1成立,n 0+2成立,…,从而断定命题对所有的自然数均成立).• 另一方面,第①步中,验证n =n 0中的n 0未必是1,根据题目要求,有时可为2,3等;第②步中,证明n =k +1时命题也成立的过程中,要作适当的变形,设法用上上述归纳假设 .(2013·大庆实验中学高二期中)用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ≥2).[分析] 按照数学归纳法的步骤证明,由n =k 到n =k +1的推证过程可应用放缩技巧,使问题简单化.[证明] 1°当n =2时,1+122=54<2-12=32,命题成立.2°假设n =k 时命题成立,即1+122+132+…+1k 2<2-1k当n=k+1时,1+122+132+…+1k2+1k+12<2-1k+1k+12<2-1k+1k k+1=2-1k+1k-1k+1=2-1k+1命题成立.由1°、2°知原不等式在n≥2时均成立.证明整除问题用数学归纳法证明下列问题:(1)求证:3×52n+1+23n+1是17的倍数;(2)证明:(3n+1)·7n-1能被9整除.[分析](2)先考察:f(k+1)-f(k)=18k·7k+27·7k,因此,当n=k+1时,(3k+4)7k+1=(21k+28)·7k-1=[(3k+1)·7k-1]+18k·7k+27·7k.[证明](1)当n=1时,3×53+24=391=17×23是17的倍数.假设3×52k+1+23k+1=17m(m是整数),则3×52(k+1)+1+23(k+1)+1=3×52k+1+2+23k+1+3=3×52k+1×25+23k+1×8=(3×52k+1+23k+1)×8+17×3×52k+1=8×17m+3×17×52k+1=17(8m+3×52k+1),∵m、k都是整数,∴17(8m+3×52k+1)能被17整除,即n=k+1时,3×52n+1+23n+1是17的倍数.(2)令f(n)=(3n+1)·7n-1①f(1)=4×7-1=27能被9整除.②假设f(k)能被9整除(k∈N*),∵f(k+1)-f(k)=(3k+4)·7k+1-(3k+1)·7k=7k·(18k+27)=9×7k(2k+3)能被9整除,∴f(k+1)能被9整除.由①②可知,对任意正整数n,f(n)都能被9整除.[点评]用数学归纳法证明整除问题,当n=k+1时,应先构造出归纳假设的条件,再进行插项、补项等变形整理,即可得证.(2014·南京一模)已知数列{a n}满足a1=0,a2=1,当n∈N+时,a n+2=a n+1+a n.求证:数列{a n}的第4m+1项(m∈N+)能被3整除.[证明](1)当m=1时,a4m+1=a5=a4+a3=(a3+a2)+(a2+a1)=(a2+a1)+2a2+a1=3a2+2a1=3+0=3.即当m=1时,第4m+1项能被3整除.故命题成立.(2)假设当m=k时,a4k+1能被3整除,则当m=k+1时,a4(k+1)+1=a4k+5=a4k+4+a4k+3=2a4k+3+a4k+2=2(a4k+2+a4k+1)+a4k+2=3a4k+2+2a4k+1.显然,3a4k+2能被3整除,又由假设知a4k+1能被3整除.∴3a4k+2+2a4k+1能被3整除.即当m=k+1时,a4(k+1)+1也能被3整除.命题也成立.由(1)和(2)知,对于n∈N+,数列{a n}中的第4m+1项能被3整除.几何问题平面内有n个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点.求证:这n个圆把平面分成n2-n+2个部分.[分析]用数学归纳法证明几何问题,主要是搞清楚当n=k+1时比n=k时,分点增加了多少,区域增加了几块.本题中第k+1个圆被原来的k个圆分成2k条弧,而每一条弧把它所在的部分分成了两部分,此时共增加了2k个部分,问题就容易得到解决.[解析] ①当n=1时,一个圆把平面分成两部分,12-1+2=2,命题成立.②假设当n=k时命题成立(k∈N*),k个圆把平面分成k2-k+2个部分.当n=k+1时,这k+1个圆中的k个圆把平面分成k2-k+2个部分,第k+1个圆被前k个圆分成2k条弧,每条弧把它所在部分分成了两个部分,这时共增加了2k个部分,即k+1个圆把平面分成( k2-k+2)+2k=(k+1)2-(k+1)+2个部分,即命题也成立.由①、②可知,对任意n∈N*命题都成立.[点评]利用数学归纳法证明几何问题应特别注意语言叙述准确清楚,一定要讲清从n=k到n=k+1时,新增加量是多少.一般地,证明第二步时,常用的方法是加一法.即在原来k的基础上,再增加1个,也可以从k+1个中分出1个来,剩下的k个利用假设.[分析] 找到从n =k 到n =k +1增加的交点的个数是解决本题的关键.[证明] (1)当n =2时,两条直线的交点只有一个.又f (2)=12×2×(2-1)=1,∴当n =2时,命题成立.(2)假设n =k (k ≥2)时,命题成立,即平面内满足题设的任何k 条直线交点个数f (k )=12k (k -1),那么,当n =k +1时,任取一条直线l ,除l 以外其他k 条直线交点个数为f (k )=12k (k -1),l 与其他k 条直线交点个数为k .从而k +1条直线共有f (k )+k 个交点,即f (k +1)=f (k )+k =12k (k -1)+k =12k (k -1+2)=12k (k +1)=12(k +1)[(k +1)-1],∴当n =k +1时,命题成立.由(1)(2)可知,对n ∈N +(n ≥2)命题都成立.[点评] 关于几何题的证明,应分清k 到k +1的变化情况,建立k 的递推关系.探索延拓创新归纳—猜想—证明(2014·湖南常德4月,19)设a >0,f (x )=ax a +x,令a 1=1,a n +1=f (a n ),n ∈N +. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式;(2)用数学归纳法证明你的结论.[解析] (1)∵a 1=1,∴a 2=f (a 1)=f (1)=a 1+a ;a 3=f (a 2)=a 2+a;a 4=f (a 3)=平面内有n (n ∈N +,n ≥2)条直线,其中任何两条不平行,任何三条不过同一点,证明交点的个数f (n )=n (n -1)2.a 3+a . 猜想 a n =a n -1+a (n ∈N +). (2)证明:(ⅰ)易知,n =1时,猜想正确.(ⅱ)假设n =k 时猜想正确,即a k =a k -1+a, 则a k +1=f (a k )=a ·a k a +a k =a ·a k -1+a a +a k -1+a =a k -1+a +1=a[k +1-1]+a. 这说明,n =k +1时猜想正确. 由(ⅰ)(ⅱ)知,对于任何n ∈N +,都有a n =an -1+a已知数列{x n }满足x 1=12,x n +1=11+x n,n ∈N +. (1)猜想数列{x 2n }的单调性,并证明你的结论;(2)证明:|x n +1-x n |≤16 ⎝ ⎛⎭⎪⎫25n -1. [解析] (1) 解: 由x 1=12及x n +1=11+x n,得x 2=23,x 4=58,x 6=1321. 由x 2>x 4>x 6,猜想数列{x 2n }是单调递减数列.下面用数学归纳法证明:①当n =1时,已证明x 2>x 4,命题成立.②假设当n =k 时,命题成立,即x 2k >x 2k +2.易知x n >0,那么,当n =k +1时,x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x 2k +3-x 2k +11+x 2k +11+x 2k +3 =x 2k -x 2k +21+x 2k 1+x 2k +11+x 2k +21+x 2k +3>0,即x 2(k +1)>x 2(k +1)+2.也就是说,当n =k +1时命题也成立.综合①和②知,命题成立.(2)证明:当n =1时,|x n +1-x n |=|x 2-x 1|=16,结论成立.当n ≥2时,易知0<x n -1<1.∴1+x n -1<2,x n =11+x n -1>12. ∴(1+x n )(1+x n -1)=⎝⎛⎭⎪⎫1+11+x n -1(1+x n -1)=2+x n -1≥52. ∴|x n +1-x n |=⎪⎪⎪⎪⎪⎪11+x n -11+x n -1=|x n -x n -1|1+x n 1+x n -1≤25|x n -x n -1|≤⎝ ⎛⎭⎪⎫252|x n -1-x n -2|≤…≤ ⎝ ⎛⎭⎪⎫25n -1|x 2-x 1|=16⎝ ⎛⎭⎪⎫25n -1. 易错辨误警示判断2+4+…+2n =n 2+n +1对大于0的自然数n 是否都成立?若成立请给出证明.[误解] 假设n =k 时,结论成立,即2+4+…+2k =k 2+k +1,那2+4+…+2k +2(k +1)=k 2+k +1+2(k +1)=(k +1)2+(k +1)+1.即当n =k +1时,等式也成立.因此,对大于0的自然数n,2+4+…+2n =n 2+n +1都成立.[误解] 假设n =k 时,结论成立,即2+4+…+2k =k 2+k +1,那2+4+…+2k +2(k +1)=k 2+k +1+2(k +1)=(k +1)2+(k +1)+1.即当n =k +1时,等式也成立.因此,对大于0的自然数n,2+4+…+2n =n 2+n +1都成立.• [正解] 不成立.当n =1时,左边=2,右边=12+1+1=3,左边≠右边,所以不成立.[点评] 用数学归纳法证明命题的两个步骤是缺一不可的.特别是步骤(1),往往十分简单,但却是不可忽视的步骤.本题中,虽然已经证明了:如果n =k 时等式成立,那么n =k +1时等式也成立.但是如果仅根据这一步就得出等式对任何n ∈N +都成立的结论,那就错了.事实上,当n=1时,上式左边=2,右边=12+1+1=3,左边≠右边.而且等式对任何n 都不成立.这说明如果缺少步骤(1)这个基础,步骤(2)就没有意义了.用数学归纳法证明12×4+14×6+16×8+…+12n(2n+2)=n4(n+1)(n∈N+).[误解](1) 略.(2) 假设当n=k(k≥1,k∈N+)时等式成立,那么当n=k+1时,直接使用裂项相减法求得12×4+14×6+16×8+…+12k2k+2+12k+22k+4=12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫12-14+⎝⎛⎭⎪⎫14-16+…+⎝⎛⎭⎪⎫12k-12k+2+⎝⎛⎭⎪⎫12k+2-12k+4=12⎝⎛⎭⎪⎫12-12k+4=k+14[k+1+1],即n=k+1时命题成立.[正解](1)当n=1时,左边=12×4=18,右边=18,等式成立.(2)假设当n=k(k≥1,k∈N+)时,1 2×4+14×6+16×8+…+12k(2k+2)=k4(k+1)成立.那么当n=k+1时,1 2×4+14×6+16×8+…+12k(2k+2)+1(2k+2)(2k+4)=k4(k+1)+14(k+1)(k+2)=k(k+2)+1 4(k+1)(k+2)=(k+1)24(k+1)(k+2)=k+14(k+2)=k+14[(k+1)+1].所以当n=k+1时,等式成立.由(1)(2)可得对一切n∈N+等式都成立.[点评]这里没有用归纳假设,是典型的套用数学归纳法的一种伪证.用数学归纳法证明1+12+13+…+12n>n+12(n∈N+).[误解] (1)当n =1时,左边=1+12=32,右边=1+12=1.显然左边>右边,即n =1时命题成立.(2)假设当n =k (k ≥1,k ∈N +)时命题成立,即1+12+13+…+12k >k +12.[正解] (1)略.(2)假设当n =k (k ≥1,k ∈N +)时不等式成立,即1+12+13+…+12k >k +12,则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +1>k +12+12k +1+12k +2+… +12k +1>k +12+12k +1+12k +1+…+12k +1 =k +12+2k 2k +1=k +12+12=(k +1)+12, 即n =k +1时不等式也成立.由(1)(2)可得对一切n ∈N +不等式都成立.[点评] 从n =k 到n =k +1时,增加的不止一项,应为12k +1+12k +2+…+12k +2k ,共有2k 项,并且k +12+12k +1>k +12+12也是错误的.。