节点电压法-节点电压法g

合集下载

节点电压法

节点电压法

节点电压法1. 介绍节点电压法是电路分析中常用的一种方法,通过对电路中每个节点的电压进行分析,可以得到电路中各个元件的电流及节点之间的关系。

这种方法主要基于基尔霍夫电流定律,即电路中进入节点的电流等于出节点的电流之和,利用此定律可以建立节点电压方程组,通过求解方程组可以得到电路中各个节点的电压。

2. 节点电压法的步骤节点电压法的分析步骤如下:2.1 确定参考节点首先,在电路中选择一个节点作为参考节点,将其电压设为0V。

通常选择接地节点作为参考节点。

2.2 标记其他节点的电压对于除参考节点外的每一个节点,都用一个未知变量来表示其电压值,并用标号或符号标记。

2.3 列节点电流方程基于基尔霍夫电流定律,对于每个节点,列出关于该节点的电流方程。

电流方程是根据所连接的元件和电压源的电流关系得到的。

2.4 列电压方程对于每一个节点,利用电压源的正负端的电位差与该节点电压的关系,列出电压方程。

2.5 解方程组将所得到的所有电流方程和电压方程组成一个方程组,通过求解这个方程组可以得到各个节点的电压值。

3. 举例说明下面以一个简单的电路进行举例,说明节点电压法的应用:电路图电路图首先,我们选择节点A作为参考节点。

然后,我们标记节点B和节点C的电压分别为Vb和Vc。

根据基尔霍夫电流定律,我们可以得到以下电流方程:•I1 = I2 + I3•I2 = I4 + I5根据电压源的正负端的电位差与该节点电压的关系,我们可以得到以下电压方程:•Vb = 5 - 10I2•Vc = 15 - 10I4将得到的电流方程和电压方程组成方程组:•I1 = I2 + I3•I2 = I4 + I5•Vb = 5 - 10I2•Vc = 15 - 10I4通过求解这个方程组,我们可以得到节点B和节点C的电压值。

进而可以计算出电路中各个元件的电流值。

4. 节点电压法的优势节点电压法具有以下优势:4.1 适用于复杂电路节点电压法可以用于分析复杂电路,无论电路中是否存在电流源或电压源,都可以通过建立方程组来求解节点电压。

电路分析方法介绍及应用-节点电压法

电路分析方法介绍及应用-节点电压法
《电路分析与实践项目化教程》
指针式万用表的设计 电路分析方法介绍及应用
《电路分析与实践项目化教程》
目录
CONTENTS
1 什么是节点电压法 2 节点电压法的推倒 3 节点电压法的应用
一、什么是节点电压法
节点电压法的定义
在具有n个节点的电路中,任选其中一个节点作为参考点, 其余个各节点相对参考点的电压叫做该节点的节点电压,以电路 的(n-1)个节点电压为未知数,按KCL列(n-1)个节点电流方 程联立求出节点电压,再求出其它各支路电压或电流的方法称为 节点电压法。
………………………………
G u (n1)1 10 G u (n1)2 20 G u (n1)(n1) (n1)0 iS (n1)(n1)
三、节点电压法的应用
例: 用节点电压法求图中各电阻支路电流。
三、节点电压法的应用
1、列出节点方程,整理得
节点 (11)u1 1u2 5
2u1 u2 5
2021/8/18
2021/8/18
2021/8/18
2021/8/18
2021/8/18
2021/8/18
2021/8/18
2021/8/18
2021/8/18
2021/8/18
节点电压法
总结
一、 指定电路中任一节点为参考节点,用接 地符号表示,标出各独立节点的编号;
二点 i2 i5 i6 0
u6 u20 u30 V2 V3
对节点 i3 i4 i6 iS2
(6)PTC起动器
图3-22 用PTC起动的单相异步电动机
PTC起动器又称半导体起动器,具有正温度系数的热敏电阻器 件,具有在陶瓷原料中掺入微量稀土元素烧结后制成的半导体晶 体结构。它具有随温度的升高而电阻值增大的特点,有着无触点 开关的作用。

节点电压法

节点电压法
式中, 称为自由导,为连接到第 个节点各支路电导之和,值恒正。
称为互电导,为连接于节点 与 之间支路上的电导之和,值恒为负。
流入第 个节点的各支路电流源电流值代数和,流入取正,流出取负。
三仅含电流源时的节点法
第一步,适当选取参考点;
第二步,利用直接观察法形成方程;
第三步,求解。
四含电压源的节点法
第一类情况:含实际电压源:作一次等效变换。
c.添加约束方程:
d.求解
五含受控源时的节点法(如图3-10)
图3-10
第一步,选取参考节点;
第二步,先将受控源作独立电源处理,利用直接观察法列方程;
第三步,再将控制量用未知量表示
第四步,整理求解。
(注意:G12≠G21)
六含电流源串联电阻时的节点法(如图3-11)
图3 -11
结论:与电流源串联的电阻不出现在自导或互导中。
第二类情况:含理想电压源。
①仅含一条理想电压源支路,如图3-8。
图3-8
a.取电压源负极性端为参考点:则
b.对不含有电压源支路的节点利用直接观察法列方程:
c.求解
②含多条不具有公共端点的理想电压源支路,如图3-9。
图3- 9
a.适当选取参考点:令 ,则 。
b.虚设电压源电流为I,利用直接观察法形成方程
完备性:电路中所有支路电压都可以用节点电压表示。
二节点电压法
以独立节点的节点电压作为独立变量,根据KCL列出关于节点电压的电路方程,进行求解的过程。
建立方程的过程(如图3-7)
图3-7
第一步,适当选取参考点。
第二步,根据KCL列出关于节点电压的电路方程。
节点1:
节点2:
节点3:

电工技术:节点电位的概念;节点电位法解题思路

电工技术:节点电位的概念;节点电位法解题思路

二、节点电压法的解题思路
1.节点电压法:以(n-1)个节点电压为未知量,运用KCL列出(n-1)个电流 方程,联立解出节点电压,进而求得其它未知电压和电流的分析方法称为节 点电压法,简称节点法。 2.节点电压法的推导
V0 0
节点电压:U10、U20
应用KCL可写出:
节点1: I1 I 2 I 3 I S1 节点2: I3 I 4 +I 5
(3)解方程组得
U10 40V U 20 42V
三、利用节点电压法求解各支路电流的一般步骤
(4)求各支路电流。
I1 I2 I3 I4 U 10 40 8A R1 5 U 10 40 2A R2 20 U 10 U 20 40 42 1A R3 2 U 20 42 1A R4 42
电流为负,说明实际方向与参考方向相反
3. 求解方程得到节点电压
4. 求解其它待求量
如果要求其它量,利用求出的节点电压进一步求解。
三、利用节点电压法求解各支路电流的一般步骤
例1:求如图所示电路中各支 路电流。已知: I S1 9 A,
U S 5 48V , R1 5 R2 20解:(1)选节点0为参考节点,其余两个节 点的电压分别是U10、U20 。
(2)列出该电路的节点电压方程
1 1 1 1 U 10 U 20 I S1 R R2 R R 3 3 1 1 U 1 1 1 U 20 S 5 U 10 R R3 R5 3 R4 R5
R3 2, R5 3, R4 42
U 20 G4U 20 R4 U 20 U S 5 G5 (U 20 U S 5 ) R5

节点电压法

节点电压法

09379090 葛佳音一、节点电压:指独立节点对非独立节点的电压。

二、基本指导思想用未知的节点电压代替未知的支路电压来建立电路方程,以减少联立方程的元数。

三、步骤应用基尔霍夫电流定律建立节点电流方程,然后用节点电压去表示支路电流,最后求解节点电压。

具体如下:1、选择参考节点,设独立节点电位选定参考节点和各支路电流的参考方向,并对独立节点分别应用基尔霍夫电流定律列出电流方程2、根据基尔霍夫电压定律和欧姆定律,建立用节点电位和已知的支路电阻表示支路电流的支路方程3、将支路方程和节点方程相结合,消去节点方程中的支路电流变量,代之以节点电位变量,经移项整理后,获得以两节点电位为变量的节点方程4、解方程得节点电位5、由节点电位求支路电压,进而求支路电流四、P74 例3.1应注意的细节:1、假设参考节点的原因:电压是指电路中两点A、B之间的电位差。

所以,由选取节点的电位可以表示支路电压。

2、不用考虑V1、V2谁大谁小。

可任意设一个电流方向。

但为减少出错,R2上的电流若写成(V1-V2)/R2,则默认R2上的电流朝向节点2。

3、不用考虑串并联。

这也是节点电压法的一大优势。

4、电路图中是电流源(不是电流表)。

***电流源(符号如下图):R→∞电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。

在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。

在原理图上这类电阻应简化掉。

负载阻抗只有并联在电流源上才有意义,与内阻是分流关系。

***电压源(如下图):R→0稳博电压源电压源就是给定的电压,随着你的负载增大,电流增大,理想状态下电压不变,实际会在传送路径上消耗,你的负载增大,消耗增多。

电压源的内阻相对负载阻抗很小,负载阻抗波动不会改变电压高低。

在电压源回路中串联电阻才有意义,并联在电压源的电阻因为它不能改变负载的电流,也不能改变负载上的电压,这个电阻在原理图上是多余的,应删去。

负载阻抗只有串联在电压源回路中才有意义,与内阻是分压关系。

2.4 节点电压法

2.4 节点电压法
2.4 2.4 节点电压法
节点电压法:以结点电压为未知量列写电路方程分析 节点电压法:以结点电压为未知量列写电路方程分析 电压为未知量 电路的方法。适用于结点较少的电路。先求出节点电 电路的方法。适用于结点较少的电路。先求出节点电 然后应用欧姆定律求出各支路电流的方法。 压,然后应用欧姆定律求出各支路电流的方法。 节点电压:在电路中选定一个参考点, 节点电压:在电路中选定一个参考点,其它节点与参 考点的电位差即为节点电压, 考点的电位差即为节点电压,方向为从独立节点指向 参考结点。 参考结点。 基本思路:选定一个参考点,以剩余(n-1)个节点电压 基本思路:选定一个参考点,以剩余 个节点电压 为未知量, 个独立节点列写KCL方程,先求出 方程, 为未知量,对(n-1)个独立节点列写 个独立节点列写 方程 节点电压,再求其他量。 节点电压,再求其他量。
例:试列写电路的节点电压方程 1 GS + 2 Us _ G4 G5 G1 G3 G2
3 (G1+G2+GS)un1-G1un2-Gsun3=GSUS (G1 +G3 + G4)un2-G1un1-G4un3 =0 (G4+G5+GS)un3-GSun1-G4un2 =-USGS
用节点电压法求图中各电阻支路电流。 例:用节点电压法求图中各电阻支路电流。
-i3+i5=-iS2
i1+i2=iS1+iS2 -i2+i4+i3=0 -i3+i5=-iS2
把支路电流用结点 电压表示: 电压表示:
iS2
1
iS1
i2 R2 R1 R4
i3 R3
2 i 4
3
i1
R5 i5 + uS _

节点电压法

节点电压法

写成一般形式为
其中G 称为节点自电导 节点自电导, 其中 11、 G22、G33称为节点自电导,它们分别是各节点全部 电导的总和。 此例中 11= G1+ G4+ G5, G22= G2 + G5+ G6, G33= 电导的总和。 此例中G G3+ G4+ G6。 G i j ( i≠j )称为节点 i 和 j 的互电导 是节点 和j 间电导总和的负 称为节点 的互电导,是节点 是节点i 称为 此例中G 值。此例中 12= G21=-G5, G13= G31=-G4 , G23= G32=- G6。 iS11、iS22、iS33是流入该节点全部电流源电流的代数和。此例 是流入该节点全部电流源电流的代数和。 中iS11=iS1,iS22=0,iS33=-iS3。
例3. 用节点电压法求图 (a)电路的电压u和支路电流i1,i2。
解:先将电压源与电阻串联等效变换为电流源与电阻并联, 如图(b)所示。对节点电压u来说 ,图(b)与图(a)等效。只需列 出一个节点方程。
(1S + 1S + 0.5S)u = 5A + 5A
解得
u=
10A = 4V 2.5S
按照图(a)电路可求得电流i1和i2
例5 用节点电压法求图电路的结点电压。
解:由于14V电压源连接到结点①和参考结点之间,结点 ①的结点电压 u1=14V成为已知量,可以不列出结点①的结点方程。考虑到8V电压源电流i 列出的两个结点方程为:
(1S)u1 + (1S + 0.5S)u2 + i = 3A (0.5S)u1 + (1S + 0.5S)u3 i = 0
整理得到:
5u1 2u2 u3 = 12V 2u1 + 11u2 6u3 = 6V u 6u + 10u = 19V 2 3 1

[电路分析]节点电压法

[电路分析]节点电压法

节点电压法.一、节点电压方程出发点进一步减少方程数,用未知的节点电压代替未知的支路电压来建立方程。

图3.2-1电路共有4个节点、 6条支路(把电流源和电导并联的电路看成是一条支路)。

用支路电流法计算,需列写6个独立的方程选取节点d为参考点,d点的电位为,则节点a、b、c为独立的节点,它们与d 点之间的电压称为各节点的节点电压(node voltage),实际上就是各点的电位。

这样a、b、c的节点电压是。

各电导支路的支路电流也就可用节点电压来表示结论:用3个节点电压表示了6个支路电压。

进一步减少了方程数。

1、节点电压方程根据KCL,可得图3.2-1电路的节点电压方程节点电压方程的一般形式自电导×本节点电压-Σ(互电导×相邻节点电压)= 流入本节点的所有电流源的电流的代数和自电导(self conductance)是指与每个节点相连的所有电导之和,互电导(mutual conductance)是指连接两个节点之间的支路电导。

节点电压法分析电路的一般步骤确定参考节点,并给其他独立节点编号。

列写节点电压方程,并求解方程,求得各节点电压。

由求得的节点电压,再求其他的电路变量,如支路电流、电压等。

例3.2-1 图3.2-1所示电路中,G1=G2=G3=2S,G4=G5=G6=1S,,,求各支路电流。

解:1. 电路共有4个节点,选取d为参考点,。

其他三个独立节点的节点电压分别为。

2. 列写节点电压方程节点a:节点b:节点c:代入参数,并整理,得到解方程,得3. 求各支路电流特别注意:节点电压方程的本质是KCL,即Σ(流出电流) =Σ(流入电流),在节点电压方程中,方程的左边是与节点相连的电导上流出的电流之和,方程的右边则是与节点相连的电流源流入该节点的电流之和。

如果某个电流源上还串联有一个电导,那么该电导就不应再计入自电导和互电导之中,因为该电导上的电流(与它串联的电流源的电流)已经计入方程右边了。

节点电压法

节点电压法

(1)增设电流变量:程中。由于增设了一个未知量,必须补充一个该 电压源电压与相关节点电压关系的方程,以使方程数与变量数相等。 (2)当所求问题并未指定参考节点时,可选取其中一个或是仅有的一 个无伴电压源相关的两节点之一作为参考节点,则另一节点的电压 即为已知,就等于该电压源电压的正值或负值(独立电压源的情况) 或者可以用其他节点电压来表示(受控电压源的情况),因而无需列 写该节点的节点电压方程。 (3)转移无伴电压源:将无伴电压源分移到其他支路上。 (4)超结点法;在设定后各个结点电压变量后,为避开电压源支路 将它及其两端结点用虚线包围起来,形成一个所谓的超结点,实 质上就是广义结点,再对超结点列写KCL方程。为使方程数与变 量数相等,必须增补一个方程,即该电压源的电压与相关结点电 压关系的方程。本方法适用于多个无伴电压源的情况。
结点电压法
节点电压法
定义:以节点电压为求解变量建立电路方程进行 分析计算的方法,简称为节点法。
受控源的处理方法:
先把受控源作为独立源扯理列写结点电压方程, 再将受控源的控制量用结点电压表示后代人所列 写的节点电压方程并整理之,以使需要求的节点 电压变量均位于方程左边。
结点电压法
无伴电压源(独立的或受控的)支路的处理方法:

电路基础-§2-4节点电压法

电路基础-§2-4节点电压法

第二章电阻电路§2-4 节点电压法一、节点电压法(一)节点电压的概念任意选择电路中某一节点为参考节点,其他节点称为独立节点,各独立节点与参考节点之间的电压称为节点电压。

节点电压的参考方向一般选择为独立节点指向参考节点,因此节点电压就是节点电位。

一旦选定节点电压,各支路电压均可用节点电压表示,连在独立节点与参考节点之间的支路电压等于相应节点的节点电压。

连在独立节点之间的支路电压等于两个相关节点的节点电压之差。

电路中所有支路电压都可以用节点电压表示。

(二)节点电压方程⎪⎭⎪⎬⎫=++=++=++333332321312232322212111313212111s n n n s n n n s n n n i u G u G u G i u G u G u G i u G u G u G ⎪⎪⎭⎪⎪⎬⎫=+++=+++=+++snn nn nn n n n n s nn n n n s nn n n n i u G u G u G i u G u G u G i u G u G u G 2211222222121111212111(三)节点电压法的解题步骤(1)指定参考节点,其余节点独立节点与参考节点之间的电压即为节点电压,其参考方向时由独立节点指向参考节点。

(2)求出各节点的自电导、各相邻节点间的互电导、各节点电源电流,按式(2-14)方法列写节点方程。

(3)求解节点电压方程,得出各节点电压值。

(4)指定支路电流的参考方向,根据支路电流与节点电压的关系,求出各支路电流。

(5)如果电路中含有电压源与电阻的串联组合时,先将其等效变换为电流源与电阻并联的组合,然后再列写节点电压方程,进行计算。

(6)如果电路中含有电压源并没有电阻与之串联,可用下列方法:①尽可能选用电压源支路的负极性端作为参考节点,这时该支路另一端的节点电压就已知(节点电压等于电压源电压),该节点方程也就不用列写了,其余节点方程仍按一般方法列写;②假设流过电压源的电流为,增加了一个变量,同时补充一个节点电压与电压源电压关系的方程,这样就能可以解出节点电压。

关于节点电压法

关于节点电压法

关于节点电压法关于节点电压法: 场到路已经讲了,被冠以阳春白雪。

现在来个俗的节点电压法,不象场路之说,这在任何一本《电路》书中都有提及。

 从场中得到了KVL、KCL、I = U/R、I = C dU / dt 和U = L dI / dt,接下来如何玩呢?自然是解方程,但如何能充分利用上面的条件来列出方程来呢?答案是,节点电压法和网孔电流法。

下面简单介绍节点电压法: 所谓节点电压法,首先得标定电压:选定一个参考节点,令其为零电压(通常是地线)。

然后标定所有的节点电压Uk(注意,节点电压的标定实际上就用到了KVL条件。

为何?自己想)。

标定完节点电压后,就可以利用KCL写方程了。

原则上,一个节点对应于一个方程(∑Ij = 0),其形式为: ∑(Uk - Uj)/Rj + ∑Cj d(Uk - Uj)/dt + ∑[(1/Lj)∫(Uk - Uj)dt + I0j] = 0 其中Uk 为此方程对应的那个节点电压,Uj 为邻近诸节点的电压(j 为求和变量),Rj、Cj 和Lj 为连接此节点到邻近节点的电阻、电容和电感参数,I0j 为电感上电流的初始值。

 这显然是个微分-积分方程。

若要解纯微分方程的话,上述方程再对时间求导一次便可,这时I0j 将消失。

由于除参考节点外,每个节点存在一个方程,而且是相互独立的,所以可以解出每个节点的电压。

这就是节点电压法。

 关于节点电压法的具体描述和特殊用法(如超级节点的选择),建议找本《电路》仔细领会。

在此只是想说明,电路的分析及其解是有章可循的,而这些章法就那幺几条,没什幺特殊玄妙之处。

 扩展阅读:高手讲解信号与系统。

节点电压法一般步骤

节点电压法一般步骤

节点电压法一般步骤针对电子工程专业初学者《节点电压法一般步骤》同学们,今天咱们来聊聊节点电压法。

这可是电路分析里的一个重要方法哦!想象一下,你有一个电路,就像一个错综复杂的迷宫。

节点电压法就是帮你找到走出迷宫的路。

第二步,列出节点电压方程。

这就像是在每个路口做个标记,告诉你该怎么走。

比如说,对于一个节点,流入的电流等于流出的电流。

第三步,解方程。

这就像拿着地图,算出从起点到终点的路线。

把方程里的未知数解出来,你就知道每个节点的电压啦。

比如说,一个简单的电路,有两个电阻和一个电源。

通过节点电压法,咱们就能轻松算出每个电阻两端的电压,是不是很神奇?加油哦,同学们,多练练,这个方法就会变得超级简单!《节点电压法一般步骤》嘿,刚接触电路分析的小伙伴们!今天咱们来搞定节点电压法。

假设你正在组装一个电路玩具,节点电压法就是你的组装说明书。

然后呢,根据电路里的元件,列出节点电压方程。

这就像把每个零件的位置和连接方式写下来。

比如说,有个电路里有三个电阻和一个电池,用节点电压法,很快就能算出各个部分的电压,让电路在你眼前变得清清楚楚。

多试试,你会发现这一点儿也不难!《节点电压法一般步骤》小伙伴们,咱们一起来学节点电压法!想象一下,电路就像一个城市的交通网,节点就是各个路口。

第二步,算每个节点流入和流出的电流,列出方程,就像记录每个路口的车流量。

第三步,解这些方程,就知道每个路口的交通状况啦,也就是节点的电压。

举个例子,一个电路里有灯泡和电池,用节点电压法就能知道灯泡能有多亮。

是不是挺有趣?快来试试吧!《节点电压法一般步骤》同学们,准备好探索电路的奥秘了吗?今天来讲节点电压法。

比如说你有个电路,就像一个拼图。

第二步,根据电流的进出,写出节点电压方程,这就是拼图的小块。

第三步,把方程解出来,整个拼图就完整啦,你也就知道每个节点的电压了。

像那种有几个电阻和电容的电路,用这个方法,一下子就清楚啦。

加油,相信你们能行!《节点电压法一般步骤》亲爱的小伙伴们,咱们要攻克节点电压法啦!假设电路是个大花园,节点就是花朵。

节点电压法

节点电压法

节点电压法1. 引言节点电压法(Node Voltage Method)是一种常用的电路分析方法,用于解析复杂电路中的电流和电压。

其基本思想是以电路节点的电压作为基准,通过建立节点方程来求解电路中的各个分支电流和节点电压。

本文将介绍节点电压法的基本原理、应用步骤以及示例分析。

在使用节点电压法时,我们需要了解电路中的阻抗、电流、电压等概念,以及使用基本的电路分析方法和电路分析工具。

2. 基本原理在电路中,节点是指电路中的连接点,电路中的每个元件(例如电阻、电容、电感等)可以看作是连接在不同节点之间的连接器。

节点电压法的基本原理是,将每个节点的电压视为未知量,通过建立节点方程求解电路中的电流和电压。

节点电压法的基本假设是电路满足基尔霍夫定律和欧姆定律。

基尔霍夫定律规定,在任意一点,进入该点的电流等于出该点的电流之和。

欧姆定律则说明了电流和电压之间的关系。

3. 应用步骤使用节点电压法进行电路分析,首先需要完成以下几个步骤:步骤一:确定参考节点在使用节点电压法进行电路分析时,我们需要选择一个节点作为参考节点(Ground)。

通常选择与电路中最多连接元件的节点作为参考节点,并将其电压设定为零。

步骤二:标记节点电压对于每个非参考节点,我们需要引入一个未知量,即节点电压。

这些节点电压可以通过使用一个字母加上节点编号来标记,例如V1、V2、V3等。

步骤三:建立节点方程对于每个非参考节点,我们利用基尔霍夫定律和欧姆定律建立节点方程。

基尔霍夫定律告诉我们输入节点的电流等于输出节点的电流之和,而欧姆定律则告诉我们电流和电压之间的关系。

步骤四:求解方程通过解析节点方程,我们可以得到每个节点的电压值。

这些节点电压值可以用于计算电流和其他电路参数。

4. 示例分析下面通过一个简单的电路示例来演示节点电压法的应用。

电路示例电路示例假设我们需要求解电阻R2和电感L1中的电流以及各个节点的电压。

首先选择节点A作为参考节点,并将其电压设定为0V。

3第三节 节点电压法

3第三节  节点电压法
(3)联立求解方程组,得出各节点电压。
(4)选定各支路电流的参考方向,根据节点电压与支路电流的关系求各支路电流或其它需要求的电量。
2.注意事项
(1) 注意各节点电压的参考方向都是由独立节点指向参考节点。
(2)对有n 个节点的电路,能列 (n-1) 个节点电压方程。
(3)以节点电压为独立变量根据 KCL 列写独立节点的节点电流方程,方程的左边是无源元件电流的代数和,自导上的电流恒为 “ + ” ,互导上的电流为 “ - ” ;方程右边为独立电流源的代数和,当电流源的正方向指向该节点时取 “+” ,反之取 “ - ” 。
4.应用四:电路中某条支路含有受控源时,节点电压法的应用。
例4用节点电压法求电路中的电流I。
图3.11
解:以0点为参考节点,列节点电压方程为
U=U20
解方程组得:U10=-24V U20=8V
所求的支路电流为:
各支路电流值分别为:
I3=I1-I2=-2A
I4=3A
3.应用三:若电路中某一支路是理想电流源串联电阻时,节点电压法的应用。
例3 电路如下图所示,用节点电压法求各支路电流。
图3.10
解:该电路有三个节点,以0号节点为参考节点,节点1,2的节点电压方程为:
解方程组得U10=4V、U20=-4V
各支路电流为:
第三节 节点电压法
组织教学
复习旧课内容:
图3.6
以上图为例,让学生们复习前面学习的回路电流法和支路电流法。
新课导入
新授课内容
一、定义及应用范围
节点电压法:以电路的节点电压为未知量来分析电路的一种方法。
节点电压:在电路的n个节点中,任选一个为参考点,把其余(n-1)个各节点对参考点的电压叫做该节点的节点电压。电路中所有支路电压都可以用节点电压来表示。

节点电压法的步骤

节点电压法的步骤

节点电压法的步骤一、引言节点电压法是电路分析中的一种重要方法,它可以用来求解复杂的电路问题。

在进行节点电压法的分析时,需要按照一定的步骤进行操作。

本文将详细介绍节点电压法的步骤。

二、节点电压法的基本原理在进行节点电压法分析时,需要先了解其基本原理。

节点电压法是以每个节点的电势差为变量,通过列方程组求解各个节点的电势差,并进而得到各个元件上的电流和功率等信息。

因此,在使用该方法时,需要先确定每个节点的参考点,并将其与其他未知量联系起来。

三、确定参考点在使用节点电压法进行分析时,需要先确定一个参考点。

通常情况下,选择一个处于地位较高或者比较容易处理的点作为参考点。

在实际应用中,可以根据具体情况选择不同位置作为参考点。

四、标记未知量在确定参考点之后,需要标记出所有未知量。

通常情况下,在使用节点电压法进行分析时,我们会标记出每个元件两端所对应的未知量,并以该未知量作为该元件所对应方程式中的变量。

五、列方程组在标记出所有未知量之后,需要列出方程组。

通常情况下,在使用节点电压法进行分析时,我们会根据参考点的位置,将每个节点的电势差表示为该节点与参考点之间的电势差。

然后,我们会根据各个元件两端所对应的未知量,列出相应的方程式,并将其放入方程组中。

六、解方程组在列出方程组之后,需要解出各个未知量。

通常情况下,在使用节点电压法进行分析时,我们可以采用高斯消元法或者克拉默法等方法来解出方程组中的各个未知量。

七、检验结果在解出各个未知量之后,需要对结果进行检验。

通常情况下,在使用节点电压法进行分析时,我们可以通过计算每个元件上的电流和功率等信息来检验结果是否正确。

八、总结综上所述,节点电压法是一种重要的电路分析方法。

在进行该方法的分析时,需要按照一定步骤进行操作。

具体而言,需要确定参考点、标记未知量、列方程组、解方程组以及检验结果等步骤。

通过这些步骤的操作,可以得到准确可靠的分析结果。

节点电压法

节点电压法

节点电压法节点电压法是分析计算电路的基本方法之一,对于分析支路数目较多、节点较少的电路较方便。

在具有n 个节点的电路中,任选一个节点为参考点,其余n-1个节点称为独立节点。

节点电压的参考方向通常是从独立节点指向参考节点。

如图2.16所示电路中有三个节点,如选0节点为参考点,则节点1和节点2为独立节点,节点电压为10U 和20U 。

节点1: 1234I I I I =++节点2: 4657I I I I +=+根据KVL 和欧姆定律有: ()110111101S S U U I G U U R -==- 1022102U I G U R == 1033103U I G U R == ()10201244102044U U U I G U U R R -===- 2055205U I G U R == ()220662206S S U U I G U U R -==- 2077207U I G U R == 将支路电流代入节点电流方程中整理得:节点1: ()1234104201111S S G G G G U G U GU I +++-==节点2: ()4104567206222S S G U G G G G U G U I -++++==从以上两个方程中解得10U 和20U ,则各支路电流可求。

令123411G G G G G +++=为节点1的自导,456722G G G G G +++=为节点2 的自导,因4G 接于节点1和2之间,所以12214G G G ==为互导,则自导总是正的,互导总是负的。

将这一规律推广到一般形式:1110122013301(1)011...n n S G U G U G U G U I -++++= 2110222023302(1)022...n n S G U G U G U G U I -++++=(1)110(1)220(1)330(1)(1)(1)0(1)(1)...n n n n n n S n n G U G U G U G U I --------++++=。

节点电压法

节点电压法
Gij :节点i与节点j之间的互电导(mutual conductance),等于i、j两
节点的公有电导之和。互导总为负。 即行列式是对称的。
Gij G ji
X
isii :连接于节点i的各电流源电流的代数和。若电流源的电流流入
节点,则为正;否则为负。
3.按要求列出节点电压方程

G2
第 6 页

节点电压是一组完备的独立电路变量。
X

2. 节点电压分析法
以节点电压作为电路变量列写方程进行求解 的方法。
3 页
X

图例说明:1.选取合适节点电压

G2
4 页

is3
2 1 3 4

is1
G5
G4

G6

5

6


电路及其图
X
2. 确定各对应要素
G11un1 G12un 2 G13un 3 is11 G21un1 G22un 2 G23un 3 is 22 G u G u G u i 32 n 2 33 n 3 s 33 31 n1
1 1 1 un1 un 2 is R2 is R1 R2 1 u 1 1 1 u u R n1 R R R n 2 R4 3 4 2 2
① R2 ②
u R1
R4

R3
u

u un1 un 2

R1
R
R2

is
对于节点②

1 1 1 1 R R un 2 R un1 R un3 is 2 1 2 1

专题三、节点电压法

专题三、节点电压法

弥尔曼定理 应用举例
电路中含电流源的情况
设:U B 0 则:
E1 IS R1 UA 1 1 1 R1 R 2 RS
A I2
当电路中含有无伴电压源或受控源时的处理:
1.对含有无伴电压源支路的电路的处理:(1)选取电压源“-”联接的节点作为 参考点,“+”端联接的节点电压等于电压源的电压,为已知量。不再列出该节 点的节点电压方程。(2)将电压源支路的电流作为未知量,视为电流源电流, 计入相应的节点电压方程中。
2。对含有受控源的电路,将受控源视为独立电源,列写节点电压方程,然 后将受控源的控制量用节点电压表示,计入节点电压方程中。
i 1A
类型6:支路电流源与电阻串联。
u3
列出如下节点方程(如图)
解:电路中含有与is(或受控电流 源)串联的电阻R2,
R4 R2 u1 R3 R1
+
R5
u2 is
R2所在支路电流唯一由电流源is确
定,对外电路而言,与电流源串联 的电阻R2无关,不起作用,应该去 掉。 所以其电导1/R2不应出现在节点方 程中,则节点电压方程如下所示:
般形式为:
三、节点电压法计算举例
结点分析法的计算步骤如下: 1 . 选 定 参考 结 点 。 标出各 节 点 电 压,其 参 考 方 向总是 独 立 结 点为 “ + ”,参考结点为“ - ” 。 2.用观察法列出全部(n-1)个独立节点的节点电压方程。 3.求解节点方程,得到各节点电压。 4.选定支路电流和支路电压的参考方向,计算各支路电流和支路电压。 5.根据题目要求,计算功率和其他量等.
如图所示电路各支路电压可表示为:
u10=un1
u12=un1-un2 u23=un2-un3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1S)u1 i 5A (0.5S)u2 i 2A
补充方程 u1u2 6V
解得
u14V ,u2 2V A i ,1A
15
例5 用节点电压法求图电路的结点电压。
解:由于14V电压源连接到结点①和参考结点之间,结点 ①的结点电压 u1=14V成为已知量,可以不列出结点①的结点方程。考虑到8V电压源电流i 列出的两个结点方程为:
A
5
从上可见,由独立电流源和线性电阻构成电路的节点方程,其 系数很有规律,可以用观察电路图的方法直接写出结点方程。
由独立电流源和线性电阻构成的具有n个结点的电路,其节点 方程的一般形式为:
A
6
三、节点电压法计算举例
结点分析法的计算步骤如下: 1.选定参考结点。标出各节点电压,其参考方向总是独 立结点为 “ + ”,参考结点为“ - ” 。 2.用观察法列出全部(n-1)个独立节点的节点电压方程。 3.求解节点方程,得到各节点电压。 4.选定支路电流和支路电压的参考方向,计算各支路电 流和支路电压。 5.根据题目要求,计算功率和其他量等.
3.3 节点电压法
一、节点电压法
在具有n个节点的电路(模型)中,可以选其中一个节点作为参 考点,其余(n-1)个节点的电位,称为节点电压。
节点电压的符号用Un1或Una等表示。
以节点电压作为未知量,根据KCL,列出对应于独立节点的 节点电流方程,然后联立求出各节点电压,再求出其它各支路 电压或电流的方法称为节点电压法。
(2S)u1(2S3S6S)u2(6S)u31A 81A 2
(1S)u1(6S)u2(1S6S3S)u32A 56A
A
10
整理得到:
5u1 2u2 u3 12V 2u1 11u2 6u3 6V u1 6u2 10u3 19V
解得结点电压
u1 1V
u
2
2V
u 3 3 V
求得另外三个支路电压为:
A
1
如图所示电路各支路电压可表示为:
u10=un1 u12=un1-un2 u23=un2-un3 u20=un2 u30=un3
节点电压法
A
2
二、结点方程
下面以图示电路为例说明如何建立结点方程。
对电路的三个独立结点列出KCL方程:
i1 i4 i5 iS1
i2 i5 i6 0
i3 i4 i6A iS2
(1 S1 S0.5 S )u5A 5A
A
13
解得 u 10A 4V 2.5S
按照图(a)电路可求得电流i1和i2
i1 5 V 1 4 V 1 Ai2 4 V 2 1V 0 3 A
A
14
例4 用结点电压法求图示电路的节点电压。
解:选定6V电压源电流i的参考方向。计入电流变量I 列出 两个结点方程:
解得各节点电压为:
u11V u2 3V
选定各电阻支路电流参考方向如图所示,可求得:
i1 (1S)u1 1A
i2 (2S)u2 6A
i3 (1S)(u1 uA2) 4A
9
例2.用节点电压法求图示电路各支路电压。
解: 参考节点和节点电压如图所示。列出三个结点方程:
(2S2S1S)u1(2S)u2(1S)u36A1A 8
2。对含有受控源的电路,将受控源视为独立电源,列写节点 电压方程,然后将受控源的控制量用节点电压表示,计入节点电 压方程中。
A
12
例3. 用节点电压法求图 (a)电路的电压u和支路电流i1,i2。
解:先将电压源与电阻串联等效变换为电流源与电阻并联, 如图(b)所示。对节点电压u来说 ,图(b)与图(a)等效。只需列 出一个节点方程。
A
7
例1. 用节点电压法求图2-28电路中各电阻支路电流。
解:用接地符号标出参考结点,标出两个节点电压u1和u2 的参考方向,如图所示。用观察法列出结点方程:
(1S (1 S)1uS1) u1(1 S(1S2)uS2)u25A 10 A
A
Байду номын сангаас
8
图2-28
整理得到:
2u1 u2 5V u1 3u2 10V
G i j ( ij )称为节点 i 和 j 的互电导,是节点i 和j 间电导总和的负
值。此例中G12= G21=-G5, G13= G31=-G4 , G23= G32=- G6。
iS11、iS22、iS33是流入该节点全部电流源电流的代数和。此例 中iS11=iS1,iS22=0,iS33=-iS3。
u4 u3 u1 4V u5 u1 u2 3V u6 u3 u2 1V
A
11
当电路中含有无伴电压源或受控源时的处理:
1.对含有无伴电压源支路的电路的处理:(1)选取电压源“-”联 接的节点作为参考点,“+”端联接的节点电压等于电压源的电压, 为已知量。不再列出该节点的节点电压方程。(2)将电压源支路 的电流作为未知量,视为电流源电流,计入相应的节点电压方程 中。
3
列出用结点电压表示的电阻 VCR方程:
i1 i4 i5 iS1 i2 i5 i6 0
i3 i4 i6 iS2
代入KCL方程中,经过整理后得到:
A
4
写成一般形式为
其中G11、 G22、G33称为节点自电导,它们分别是各节点全部 电导的总和。 此例中G11= G1+ G4+ G5, G22= G2 + G5+ G6, G33= G3+ G4+ G6。
A
17
四、弥尔曼定理:
对只含有两个节点的电路,如图所示,用观察法可列出一个独立 节点的电压方程:
(
1 R1
1 R2
1 R3
1 R4
)U
n1
U S1 R1
U S2 R2
U S3 R3
整理得
U S1 U S 2 U S3
U n1 (
R1 1
R2 11
R3 1
)
R1 R 2 R3 R 4
对只含有两个节点的电
(1S)u1(1S0.5S)u2i3A
(0.5S)u1(1SA0.5S)u3i0
16
(1S)u1(1S0.5S)u2i3A (0.5S)u1(1S0.5S)u3i0
补充方程
u2u3 8V
代入u1=14V,整理得到:
1.5u2 1.5u3 24V u2 u3 8V
解得:
u 2 1V 2u 34 Vi 1A
U S
U n1
R或 1
R
U n1 ( G U S ) G
A
路, 其节点电压可表示为
18
上式称为弥尔曼定理。分子表示电流源电流或等效电流 源电流代数和。分母表示独立节点连接的各支路的 电导之和。电流源电流或等效电流源电流参考方向 指向独立节点取“+”,反之取“-”。
相关文档
最新文档