七年级数学 第二章整式的加减单元测试卷含答案

合集下载

人教版数学七年级上册第二章整式的加减单元测试卷(含答案)

人教版数学七年级上册第二章整式的加减单元测试卷(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题(共12小题,总分36分)1.代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是33.多项式6x2y-3x-1的次数和常数项分别是()A 3和-1 B. 2和-1 C. 3和1 D. 2和14.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确是( )A 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m n+5n2m=" 0" D.–x =7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-18.多项式23635x x-+与3231257x mx x+-+相加后,不含二次项,则常数的值是( )A. B. 3- C. 2- D. 8-9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣510.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式 ( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y211.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A. 3aB. 6a +bC. 6aD. 10a -b12.两个完全相同的大长方形,长为a ,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是( )(用含a 的代数式表示)A. 12aB. 32a C. a D. 54a 二、填空题(共6小题,总分18分) 13.请写出一个系数是-2,次数是3的单项式:________________.14.若5m x n 3与-6m 2n y 是同类项,则xy 的值等于_________.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________. 18.观察下面的一列单项式:2x,-4x 2,8x 3,-16x 4,…根据你发现的规律,第n 个单项式为__________.三、解答题(共8小题,总分66分)19.化简:(1)3x 2-3x 2-y 2+5y +x 2-5y +y 2; (2) a 2b -0.4ab 2-12a 2b +25ab 2. 20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a 2+4ab +4b 2)=a 2-4b 2(1)求所捂的多项式;(2)当a =-1,b =2时,求所捂的多项式的值.24.已知A =2a 2-a,B =-5a +1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值. 25.先化简,再求值:已知a 2﹣1=0,求(5a 2+2a ﹣1)﹣2(a+a 2)的值.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).答案与解析一、选择题(共12小题,总分36分)1.在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式.【详解】在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是3【答案】D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy-的系数是35,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.多项式6x2y-3x-1的次数和常数项分别是()A. 3和-1B. 2和-1C. 3和1D. 2和1 【答案】A【解析】【分析】运用多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数即可得出答案.【详解】∵多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数∴多项式6x2y-3x-1的次数和常数项分别是:3和-1.故选A.【点睛】考查了多项式相关概念,正确把握多项式次数和常数项的定义(多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数)是解题关键.4.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y【答案】B【解析】【分析】对原式各项进行去括号变形得到结果,即可作出判断.【详解】解:A、a+(b-c)=a+b-c,错误;B、a-(b+c)=a-b-c,正确;C、m-2(p-q)=m-2p+2q,错误;D、x²-(-x+y)=x2+x-y,错误,故选B.【点睛】本题考查了去括号,熟练掌握去括号法则是解本题的关键.5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案.详解:22x y+,2ab,12,3x2+5x﹣2,abc,0,2x yx+,m中:有4个单项式:12,abc,0,m;2个多项式为:22x y+,3x2+5x-2.故选C.点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m=" 0" D.–x =m n+5n2【答案】C【解析】分析:根据同类项的概念及合并同类项的法则得出.详解:A、一个是数字,一个是字母,不是同类项,不能合并,错误;B、字母不同,不是同类项,不能合并,错误;C、正确;D、字母的指数不同,不是同类项,不能合并,错误.故选C.点睛:本题主要考查同类项的概念和合并同类项的法则.同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-1【答案】B【解析】试题分析:本题考查同类项的定义,单项式x2y m+2与x n y的和仍然是一个单项式,意思是x2y m+2与x n y是同类项,根据同类项中相同字母的指数相同得出.解:由同类项的定义,可知2=n,m+2=1,解得m=﹣1,n=2.故选B.考点:同类项.8.多项式2x mx x+-+相加后,不含二次项,则常数的值是( )312573635x x-+与32A. B. 3- C. 2- D. 8-【答案】B【解析】由题意可知36+12m=0,解得m=-3,故选B.9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣5【答案】A【解析】【分析】原式去括号整理后,将已知等式代入计算即可求出值.详解】∵m-x=2,n+y=3,∴原式=m-n-x-y=(m-x)-(n+y)=2-3=-1,故选A.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x2﹣2y2+(x2+y2),=(1+1)x2+(﹣2+1)y2,=2x2﹣y2,故选B.【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键.11.长方形一边长为2a+b,另一边为a-b,则长方形周长为()A. 3aB. 6a+bC. 6aD. 10a-b 【答案】C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.12.两个完全相同的大长方形,长为a,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是()(用含a的代数式表示)A. 12a B.32a C. a D.54a【答案】C【解析】【分析】设小长方形的长为x,宽为y,大长方形宽为b,表示出x、y、a、b之间的关系,然后求出阴影部分周长之差即可.【详解】设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意,得:x+2y=a、x=2y,则4y=a,图(1)中阴影部分周长为2b+2(a-x)+2x=2a+2b,图(2)中阴影部分的周长为2(a+b-2y)=2a+2b-4y,图(1)阴影部分周长与图(2)阴影部分周长之差为:(2a+2b)-(2a+2b-4y)=4y=a,故选C.【点睛】考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,总分18分)13.请写出一个系数是-2,次数是3的单项式:________________.【答案】-2a3(答案不唯一)【解析】分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.若5m x n3与-6m2n y是同类项,则xy的值等于_________.【答案】6【解析】【分析】根据同类项定义即可求x 、y 的值出答案.【详解】∵5m x n 3与-6m 2n y 是同类项,∴x=2,y=3∴xy=6.故答案是:6.【点睛】考查同类项的概念,解题的关键是熟练运用同类项的概念(含相同字母,且相同字母的指数也相同)求出x 、y 的值.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.【答案】1【解析】【分析】把多项式(8x 2-6ax+14)-(8x 2-6x+6)化简整理成(6-6a)x+8的形式,再根据其值与x 无关,可得关于a 的方程,解方程即可.【详解】原式=8x 2-6ax+14-8x 2+6x-6=(6-6a)x+8,∵整式(8x 2-6ax+14)-(8x 2-6x+6)的值与x 无关,∴6-6a=0,解得:a=1,故答案是:1.【点睛】考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.【答案】2【解析】试题分析:由题意可得:2x 2+3x+7=10,所以移项得:2x 2+3x=10-7=3,所求多项式转化为:6x 2+9x ﹣7=3(6x 2+9x)-7=3×3-7=9-7=2,故答案为2.考点:求多项式的值.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________.【答案】1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为118.观察下面的一列单项式:2x,-4x2,8x3,-16x4,…根据你发现的规律,第n个单项式为__________.【答案】(-1)n+1·2n·x n【解析】分析】通过观察题意可得:n为奇数时,单项式为正数;n为偶数时,单项式为负数.x的指数为n的值,2的指数为(n-1).由此可解出本题.【详解】解:∵2x=(-1)1+1•21•x1;-4x2=(-1)2+1•22•x2;8x3=(-1)3+1•23•x3;-16x4=(-1)4+1•24•x4;第n个单项式为(-1)n+1•2n•x n,故答案为:(-1)n+1•2n•x n.三、解答题(共8小题,总分66分)19.化简:(1)3x2-3x2-y2+5y+x2-5y+y2; (2) a2b-0.4ab2-12a2b+25ab2.【答案】(1) x2;(2)12a2b.【解析】【分析】直接合并同类项即可.【详解】(1)原式=(3x2-3x2+x2)+(y2-y2)+(5y-5y)=x2.(2)原式=(a2b-12a2b)+(-0.4a b2+25ab2)=12a2b.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.【答案】(1)-12;(2)-4.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;【详解】(1)2xy -12(4xy -8x 2y 2)+2(3xy -5x 2y 2) =2xy -2xy +4x 2y 2+6xy -10x 2y 2=6xy -6x 2y 2,当x =13,y =-3时,原式=6×13×(-3)-6×21()3×(-3)2=-6-6=-12. (2)原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b=(-1-1+2)a 2b +(3-4)ab 2=-ab 2,当a =1,b =-2时,原式=-1×(-2)2=-4. 【点睛】考查了整式的加减-化简求值,熟练掌握整式的运算法则是解本题的关键.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.【答案】263x x --+【解析】试题分析:==这个多项式为考点: 整式的加减22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.【答案】9【解析】【分析】根据单项式的概念即可求出答案.【详解】因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.【点睛】考查单项式的概念,解题关键是运用单项式的概念和分类讨论的思想.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a2+4ab+4b2)=a2-4b2(1)求所捂的多项式;(2)当a=-1,b=2时,求所捂的多项式的值.【答案】(1) 2a2+4ab;(2)-6.【解析】【分析】(1)根据题意列出整式相加减的式子,再去括号,合并同类项即可;(2)把3(1)中的式子即可.【详解】(1)所捂的多项式为:(a2-4b2)+(a2+4ab+4b2)=a2-4b2+a2+4ab+4b2=2a2+4ab.(2)当a=-1,b=2时,2a2+4ab=2×(-1)2+4×(-1)×2=2-8=-6.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.24.已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-12时,求3A-2B+2的值.【答案】(1)6a2+7a(2)-2 【解析】试题分析:(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把a=-12代入上式计算.试题解析:解:(1)3A﹣2B+2, =3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当a=-12时,3A﹣2B+2=6×(-12)2+7×(-12)=-2.考点:整式的加减—化简求值;整式的加减25.先化简,再求值:已知a2﹣1=0,求(5a2+2a﹣1)﹣2(a+a2)的值.【答案】2.【解析】【分析】原式去括号整理后,将已知等式变形后代入计算即可求出值.【详解】解:(5a2+2a-1)-2(a+a2)=5a2+2a-1-2a-2a2=3a2-1,因为a2-1=0,所以a2=1,所以原式=3×1-1=2.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).【答案】101a+5050m.【解析】【分析】由阅读材料可以看出,100个数相加,用第一项加最后一项可得101,第二项加倒数第二项可得101,…,共100项,可分成50个101,在计算a+(a+m)+(a+2m)+(a+3m)+…+(a+100d)时,可以看出a共有100个,m,2m,3m,…100m,共有100个,m+100m=101m,2m+99d=101d,…共有50个101m,根据规律可得答案.【详解】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.【点睛】考查了整式的加法,关键是根据阅读材料找出其中的规律,根据规律得出解题的技巧.。

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)一、单选题1.单项式32πx yz -的系数和次数分别是( )A .-2,6B . -2π,5C .-2,7D .-2π ,62.多项式233321x y x y --是( )A .二次三项式B .三次二项式C .四次三项式D .五次三项式3.下列语句错误的是( )A .数字0也是单项式B .单项式a -的系数与次数都是1C .12xy 是二次单项式 D .25m n 与22nm -是同类项4.下列化简结果正确的是( )A .-4a-a=-3aB .6x 2-2x 2=4C .6x 2y-6yx 2=0D .3x 2+2x 2=5x 45.下列说法正确的是( )A .25xy 的系数是5-B .单项式a 的系数为1、次数是0C .2325a b 的次数是6D .1xy x +-是二次三项式6.若关于x ,y 的多项式()223x axy bx y +---不含二次项,则a b -的值为( )A .0B .-2C .2D .-17.关于多项式3x 2﹣y ﹣3xy 3+x 5﹣1,下列说法错误的是( )A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣18.下列各组中的两项,属于同类项的是( )A .32x -与2x -B .12ab -与18baC .2x y 与2xy -D .4m 与4mn9.若一个多项式减去223a b -等于222a b +,则这个多项式是( )A .222a b -+B .222a b -C .222a b -D .222a b --二、填空题10.3227x y -的系数是 .11.若2m a b 与323n a b --是同类项,则m n +的值为 . 12.多项式233223xy x x y -+-的次数为 .13.一个多项式与2210x x --+的和是32x -,则这个多项式为 .三、解答题14.已知关于x 的多项式32322325mx x x x x nx -+-+-不含三次项和一次项,求n m 的值. 15.先化简,再求值:223252372x x x x ⎡⎤⎛⎫----⎪⎢⎥⎝⎭⎣⎦,其中2x =-. 四、综合题16.在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,并且a 是多项式﹣2x 2﹣4x+1的一次项系数,b 是数轴上最小的正整数,单项式-12x 2y 4的次数为c. (1)a = ,b = ,c = . (2)请你画出数轴,并把点A ,B ,C 表示在数轴上; (3)请你通过计算说明线段AB 与AC 之间的数量关系.17.已知整式 ()()3123a x x a ---+ .(1)若它是关于 x 的一次式,求 a 的值并写出常数项; (2)若它是关于 x 的三次二项式,求 a 的值并写出最高次项.18.计算:一个整式A 与多项式x2-x-1的和是多项式-2x2-3x+4.(1)请你求出整式A ; (2)当x=2时求整式A 的值19.已知多项式-3x m+1y 3+x 3y-3x 4-1是五次四项式,单项式3x 3n y 2的次数与这个多项式的次数相同.(1)求m ,n 的值.(2)把这个多项式按x 降幂排列.参考答案与解析1.【答案】B【解析】【解答】解:单项式32πx yz -的数字因数是2π-,所有字母的指数的和为3115++=所以该单项式的系数和次数分别是:2π-和5. 故答案为:B .【分析】根据单项式的系数和次数的定义逐项判断即可。

第二章 整式的加减单元测试卷(含答案)

第二章 整式的加减单元测试卷(含答案)

人教版七年级上册数学第二章测试卷(章末检测)一、选择题(每小题3分,共24分)1.10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.2.用代数式表示:a的2倍与3 的和.下列表示正确的是()A.2a-3 B.2a+3 C.2(a-3) D.2(a+3)3.当x=﹣1时,代数式3x+1的值是()A.﹣1 B.﹣2 C.4 D.﹣44.计算的结果是A.B.2a C.5a D.5.关于多项式,下列说法正确的是A.它的常数项是B.它是二次三项式C.它的二次项系数为D.它的三次项系数为06.已知x=-2017,计算|x2+2016x+1|+|x2+2018x-1|的值为()A.4034 B.4035 C.4036 D.40377.已知a+b=10,ab=-2,则(3a-2b)-(ab-5b)的值为()A.28 B.30 C.32 D.348.若单项式与的和仍是单项式,则nm的值是()A.3 B.6 C.8 D.9二、填空题(每小题3分,共21分)9.计算:﹣ab2﹣(﹣3ab2)=________10.若与是同类项,则______.11.单项式的次数是______.12.比-x2+x+3多x2+5x的是______________.13.多项式有__________项,其中次数最高的项是_____________.14.若多项式中不含xy项,则a=______,化简结果为_______________.15.已知下列等式:①;②;③;④;…………由此规律知,第⑤个等式是______________.三、解答题(共75分)16.先化简,再求值:(每小题4分,共12分)(1),其中,.(2)其中,.(3),其中,17.(8分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.18.(9分)已知代数式,当时,求的值;若的值与x的取值无关,求y的值.19.(8分)先化简再求值:已知:,求代数式的值.20.(8分)有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1.”甲同学把“x=”错抄成“x=-”,但他计算的结果也是正确的,试说明理由,并求出正确结果.21.(8分)已知﹣5.2x m+1y3与﹣100x4y n+1是同类项,求:m n+n m.22.(10分)暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠”;乙旅行社说:“所有人按全票价的六折优惠”.已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子表示甲、乙旅行社的收费;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.23.(12分)(1)设x+2z=3y,试判断x2﹣9y2+4z2+4xz的值是不是定值?如果是定值,求出它的值;否则请说明理由.(2)已知x2﹣2x=2,将下式先化简,再求值:(x﹣1)2+(x+3)(x﹣3)+(x﹣3)(x﹣1).人教版七年级上册数学第二章测试卷答案一、选择题1-5 BBBCA 6-8 CCB二、填空题9.2ab2 10.-6 11.六次14.2,15.三、解答题16.(1)(2)9 (3)-2021.(1)矩形的周长为4m;(2)矩形的面积为33.22.(1)20;(2)23.,4.24.225.1726.(1)a+ax;(2)选择甲旅行社更优惠27.(1)x2﹣9y2+4z2+4xz= x2+2xz+4z2+2xz﹣9y2=x(x+2z)+2z(x+2z) ﹣9y2=3y(x+2z)﹣9y2=9y2﹣9y2=0(2)1。

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)一、单选题(每题3分,共24分) 1.下列代数式书写规范的是( )A .22x yB .2m n ÷C . 5a ⨯D .213a 2.多项式22325xy xy -+的次数及最高次项的系数分别是( )A .3,-3B .2,-3C .5,-3D .3,33.若单项式242ab c -3的系数、次数分别是m 、n ,则( ) A .m=23,n=6 B .-m=23,n=6 C .m=23,n=7 D .-m=23,n=7 4.下列说法中,不正确...的是( ) A .13xy - 是整式 B .22+R R ππ是二次二项式C .多项式233a b ab --的三次项的系数为3- D .263+1x x -的项有 26 3 1x x -,, 5.若2110x +=,则42x +=( )A .19B .20C .21D .226.已知25x y -+=,则23(2)6125x y x y --+-的值是( )A .40B .100C .20-D .57.若12m x y -与2n x y 的和仍是单项式,则m n 的值( )A .3B .6C .8D .98.当1x =时,代数式334ax bx -+的值为7,则当=1x -时,这个式子的值为( )A .7B .6C .2D .1二、填空题(每题3分,共24分) 9.单项式235x yz π-的系数是 10.已知320a b -++=,则2+a b = .11.一个两位数的个位数字为m ,十位数字为n ,则这两位数表示为 .12.多项式25323ab a π+-的次数是 .三、解答题(共72分)17.化简:(1)3245a a +--;(2)()()22235x x +--;(3)()()22643241m m m m --+-+.18.先化简,再求值:()()22222825a b ab a b ab a b -+----,其中1a =-和13b =.19.有理数a ,b ,c 在数轴上的位置如图,化简a c a b c b -++--.20.若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n ----++-++,化简后是四次三项式,求m n +的值.21.如果关于x ,y 的单项式2m ax y 与235m bx y -的次数相同.(1)求m 的值.(2)若23250m m ax y bx y +=﹣且0xy ≠,求20132(25)m a b ++的值.22.已知22321A a ab a =+--和21B a ab =-+-.(1)若1a =-,15b =求()432A A B --的值. (2)若2A B +的值与a 的取值无关,求b 的值.23.如图,某公园有一块长为()21a -米,宽为a 米的长方形土地(一边靠着墙),现将三面留出宽都是x 米的小路,余下部分设计成花圃进行美化,并用篱笆把不靠墙的三边围起来.(1)用代数式表示所用篱笆的总长度;(2)6,3a x ==米,若篱笆的造价为60元/米,请计算全部篱笆的造价.24.如图是一所住宅的建筑平面图(图中长度单位:米).(1)用式子表示这所住宅的建筑面积.x 时,试计算该住宅的面积.(2)当6参考答案: 1.A2.A3.D4.C5.B6.B7.C8.D9.35π-10.1-11.10n m +/10m n + 12.3/三13.23x - -114.202315.()21826m y x ++ 16.1017.(1)3a --(2)231x +(3)2882m m --18.218ab -,2 19.2a -20.421.(1)3m =(2)022.(1)2-(2)25b =23.(1)()662a x --米;(2)篱全部篱笆的造价是960元24.(1)()22218m x x ++(2)266m。

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷满分100分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.代数式1﹣的意义是()A.1与x的差的倒数B.1与x的倒数的差C.x的倒数与1的差D.1与1除以x的商3.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列运算正确的是()A.4m﹣m=3B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=06.去括号1﹣(a﹣b)=()A.1﹣a+b B.1+a﹣b C.1﹣a﹣b D.1+a+b7.以下各组多项式按字母a降幂排列的是()A.3a﹣7a2+2﹣a3B.﹣7a2+3a+2﹣a3C.﹣a3+3a+2﹣7a2D.﹣a3﹣7a2+3a+28.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b9.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定10.已知a﹣b=3,c+d=2,则(a﹣d)﹣2(b﹣c)+(b+3d)的值为()A.7B.5C.1D.﹣5二.填空题(共6小题,满分24分,每小题4分)11.单项式的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.去括号7x3﹣[3x2﹣(x+1)]=.14.“直播带货”是今年的热词.某“爱心助农”直播间推出特产甜瓜,定价8元/千克,并规定直播期间一次下单超过5千克时,可享受九折优惠.李叔叔在直播期间购买此种甜瓜m千克(m>5),则他共需支付元.(用含m的代数式表示)15.若x2+3x=2,则代数式2x2+6x﹣4的值为.16.若多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,则m=.三.解答题(共7小题,满分46分)17.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.18.(6分)合并同类项(1)3a+2a﹣7a (2)﹣4x2y+8xy2﹣9x2y﹣21xy2.19.(6分)如果关于x的多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x3项和x项,求a,b的值.20.(6分)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.21.(7分)学完了《整式的加减》后,小刚与小强玩起了数字游戏:小刚对小强说:你任意写一个两位数,满足十位数字比个位数字大2;然后交换十位数字与个位数字,得到一个新的两位数;最后用其中较大的两位数减去较小的两位数.我就能知道这个差是多少.你知道这是为什么吗?这个差是多少呢?22.(7分)已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当a=﹣,b=0时,求(1)中式子的值.23.(8分)某国际化学校实行小班制教学,七年级四个班共有学生(6m﹣3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.(1)求三班的学生人数(用含m,n的式子表示);(2)求四班的学生人数(用含m,n的式子表示);(3)若四个班共有学生120人,求二班比三班多的学生人数?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.解:由代数式的定义得,代数式1﹣表示1与x的倒数的差,故B答案正确.故选:B.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.6.解:1﹣(a﹣b)=1﹣a+b,故选:A.7.解:多项式按字母a降幂排列的是﹣a3﹣7a2+3a+2.故选:D.8.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故选:C.9.解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.10.解:原式=a﹣d﹣2b+2c+b+3d=(a﹣b)+2(c+d),当a﹣b=3,c+d=2时,原式=3+4=7,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.12.解:根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为:﹣1.13.解:7x3﹣[3x2﹣(x+1)]=7x3﹣(3x2﹣x﹣1)=7x3﹣3x2+x+1.故答案为:7x3﹣3x2+x+1.14.解:由题意得:8×0.9m=7.2m,则他共需支付7.2m元.故答案为:7.2m.15.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为016.解:3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值=3mx2﹣x2+4x﹣2+4x2﹣4x+5=(3m+3)x2+3,∵多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,∴3m+3=0,∴m=﹣1,故答案为:﹣1.三.解答题(共7小题,满分46分)17.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).18.解:(1)原式=(3+2﹣7)a=﹣2a;(2)原式=(﹣4﹣9)x2y+(8﹣21)xy2=﹣13x2y﹣13xy2.19.解:根据题意得﹣(a﹣1)=0,﹣(b+1)=0,解得a=1,b=﹣1.20.解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.21.解:设原来的十位数,十位数字为x,则个位数字为:(x﹣2),故两位数是:10x+x﹣2=11x﹣2,交换十位数字与个位数字,得到的十位数是:10(x﹣2)+x=11x﹣20,故11x﹣2﹣(11x﹣20)=18,即较大的两位数减去较小的两位数的差为18.22.解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵a=﹣,b=0,∴6a2+3b2﹣10ab+11=6×+11=12.23.解:(1)一班人数为:m人.二班人数为:(2m﹣n)人.三班人数为:人;(2)四班人数为:==;(3)由题意可得:6m﹣3n=120,则2m﹣n=40,故二班比三班多的学生数为:===20﹣12=8(人)答:二班比三班多8人.。

人教版数学七年级上册:第2章 整式的加减 单元测试卷(含答案)

人教版数学七年级上册:第2章 整式的加减  单元测试卷(含答案)

第二章《整式的加减》单元测试(满分:150分时间:120分钟) 一、选择题(每小题4分,共40分)1.下列各式中不是单项式的是( )A.a3B.-15C.0 D.3a2.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费( )A.(3a+4b)元 B.(4a+3b)元C.4(a+b)元 D.3(a+b)元3.-[a-(b-c)]去括号正确的是( )A.-a-b+c B.-a+b-cC.-a-b-c D.-a+b+c4.多项式xy2+xy+1是( )A.二次二项式 B.二次三项式C.三次二项式 D.三次三项式5.下列运算中,正确的是( )A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b-3ba2=0 D.5a2-4a2=16.若-x3y a与x b y是同类项,则a+b的值为( )A.2 B.3 C.4 D.57.若A=3x2-4y2,B=-y2-2x2+1,则A-B等于( )A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+18.已知x-3y=-3,则5-x+3y的值为( )A.0 B.2 C.5 D.89.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.此空格的地方被钢笔水弄污了,那么空格中的一项是( )A.-xy B.xy C.-7xy D.7xy10.如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形,(不重复无缝隙),则长方形的长为( )A .2 cmB .2a cmC .4a cmD .(2a -2)cm二、填空题(每小题3分,共30分) 11.计算:2x +x =____________.12.单项式-2xy25的系数是____________,次数是____________.13.任写一个与-12a 2b 是同类项的单项式:____________.14.将多项式1-ab 2+a 3b -13a 2按字母a 降幂排列是________________.15.一个长方形的长为2a +3b ,宽为a +b ,则此长方形的周长为____________. 16.若式子mx 2+y 2-5x 2+5的值与字母x 的取值无关,则m 的值为____________. 17.某种商品原价是m 元,第一次降价打八折,第二次降价每件又减15元,第二次降价后每件的售价是____________元.18.一个多项式与2x 2-xy +3y 2的和是-2xy +x 2-y 2,则这个多项式是________________. 19.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________________.20.观察图形,则第n 个图形中三角形的个数为____________(用含n 的式子表示).三、(本大题12分) 21.(1)计算:①(3a 2+1)-(4a 3-3a 2); ②6a 2-[(5ab +a 2)+2ab];(2)先化简,再求值:2(x +x 2y)-23(6x 2y +3x)-y ,其中x =1,y =3.四、(本大题12分)22.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12还多1岁,求这三名同学的年龄的和.五、(本大题14分)23.小明在计算一种多项式减去2a 2+a -5的差时,因忘了对两个多项式用括号括起来,因此减式后面的两项没有变号,结果得到的差是a 2+3a -1.据此你能求出这个多项A 式吗?这两个多项式的差应该是多少?六、(本大题14分)24.如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(1)用a ,b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.七、(本大题12分)25.阅读材料:我们知道,4x+2x-x=(4+2-1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a +b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)看成一个整体,合并3(a-b)2-7(a-b)2+2(a-b)2的结果是____________;A.-6(a-b)2 B.6(a-b)2C.-2(a-b)2 D.2(a-b)2(2)已知x2+2y=5,求3x2+6y-21的值;拓广探索:(3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.八、(本大题16分)26.某校团委组织了有奖征文活动,并设立了一、二、三等奖,根据设奖情况买了50件奖品,其二等奖奖品的件数比一等奖奖品的件数的2倍少10,各种奖品的单价如下表所示:如果计划一等奖奖品买x件,买50件奖品的费用是y元.(1)先填表,再用含x的式子表示y,并化简;(2)若一等奖奖品买10件,则共花费多少?参考答案:11.3x 12. 52-3 13. a 2b(答案不唯一) 14.1ab -a 31-b a 223+ 15.6a+8b 16.517. (0.8m-15) 18. -x 2-xy-4y 219.-b+c+a 20.4n21.①原式=3a 2+1-4a 3+3a 2=-4a+6a 2+1.②原式=6a 2-5ab-2ab=5a 2-7ab (2)原式=2x+2x 2y-4x 2y-2x-y=-2x 2y-y当x=1,y=3时,原式=-2×12×3-3=922. 因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为(2m-4)岁, 又因为小华的年龄比小红的年龄的21还多1岁, 所以小华的年龄为[21(2m-4)+1]岁, 则这三名同学的年龄的和为:m+(2m-4)+[21(2m-4)+1]=m+2m-4+(m-2+1)=4m-5(岁), 答:这三名同学的年龄的和是(4m-5)岁23.根据题意,得A=a 2+3a-1+2a 2-a+5=3a 2+2a+4.这两个多项式的差应该是(3a 2+2a+4)-(2a 2+a-5)=3a 2+2a+4-2a 2-a+5=a 2+a+9.24.(1)阴影部分的面积为21b 2+21a(a+b). (2)当a=3,b=5时,21b 2+21a(a+b)=21×25+21×3×(3+5)=249,即阴影部分的面积为249.25.(1)C(2)因为x2+2y=5,所以原式=3(x2+2y)-21=15-21=-6(3)因为a-2b=3,2b-c=-5,c-d=10,所以原式=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b)+(2b-c)+(c-d)=3-5+10=826.(1)2x-10 60-3x依题意,得y=12x+10(2x-10)+5(60-3x)=12x+20x-100+300-15x=17x+200(2)当x=10时,17x+200=17×10+200=370.答:若一等奖奖品买10件,共花费370元。

人教版七年级数学上册《第二章 整式的加减》单元测试卷-含参考答案

人教版七年级数学上册《第二章 整式的加减》单元测试卷-含参考答案

人教版七年级数学上册《第二章整式的加减》单元测试卷-含参考答案一、选择题1.下列多项式中,是二次三项式的是()A.-x2-y3B.x3-y3C.x2+2xy+y2D.x+y+72.下列各式:−15a2b2,12x−1,−25,1x,x−y2,a2−2ab,其中单项式的个数有()A.1个B.2个C.3个D.4个3.下列各组式子中,是同类项的为()A.2a与2b B.a2b与2ab2C.2ab与−3ba D.3a2b与a2bc 4.下列说法正确的是()A.4a3b的次数是3 B.多项式x2−1是二次三项式C.2a+b−1的各项分别为2a,b,1 D.−3ab2的系数是−35.下列各组中的两个项不属于...同类项的是()A.3x2y和−2x2y B.−xy和2yx C.-1和114D.a2和326.多项式x2−3kxy−3y2+13xy−8合并同类项后不含xy项,则k的值是()A.13B.16C.19D.07.下列计算正确的是()A.3a+2b=5ab B.5y2−2y=3yC.a+6a=6a2D.m2n−2nm2=−nm28.若2x2−3xy−1−(−x2−7xy+2)=Ax2−Bxy+C,则A,B,C的值分别为()A.3,4,3 B.1,10,1 C.3,4,-3 D.3,-4二、填空题9.若单项式−3ab的次数是.10.多项式3x2+x−22中的常数项是.11.计算-x2+ 2x2的结果是.12.若2x3y2和−x m y2是同类项,则m的值是.13.多项式2x3−5x2+x−1与多项式3x3+(2m−1)x2−5x+3的和不含x2项,则m=.三、解答题14.计算:(1)(x2﹣x+4)+(2x﹣4+3x2);(2)6ab﹣2a2b2+4+3ab2﹣(2+6ab﹣2a2b2).15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值.2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.17.先化简,再求值:已知和(1)化简.(2)当,时,求的值.18.小丽放学回家后准备完成下面的题目:化简,发现系数“□”印刷不清楚.(1)她把“□”猜成3,请你化简;(2)她妈妈说:你猜错了,我看到该题的标准答案是6.请通过计算说明题中“□”是几.参考答案1.C2.B3.C4.D5.D6.C7.D8.D9.210.-111.x212.313.314.解:(1)原式=x2﹣x+4+2x﹣4+3x2=4x2+x.(2)原式=6ab﹣2a2b2+4+3ab2﹣2﹣6ab+2a2b2=6ab﹣6ab﹣2a2b2+2a2b2+3ab2﹣2+4=3ab2+2.15.解:∵关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是3,∴m+1=2,﹣n=2,解得:m=1,n=﹣2,∴m2+n3=1﹣8=﹣7.16.解:原式=2x3−4y2−x+2y−x+4y2−2x3=−2x+2y当x=−2,y=3时,原式=−2×(−2)+2×3=4+6=10.17.(1)解:(2)解:把,代入得:18.(1)解:;(2)解:设“□”是a∵标准答案是6∴.解得.∴题中“□”是5。

【精选6套】最新人教版数学七年级上册第二章整式的加减单元测试及答案.doc

【精选6套】最新人教版数学七年级上册第二章整式的加减单元测试及答案.doc

人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( ) A.4,3 B.4,-3 C.6,3 D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( ) A.2(x-y )=2x-y B.-(m-n )=-m+n C.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53- B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________.14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数)创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3. 当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ; 乙每份材料收2.5元印刷费, 故答案为25,50,2.5x ;(2)对甲来说,印刷大于800份时人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式 2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a ―b )]=___.16.的结果是___.17.小颖在计算a +N 时,误将“+”看成“―”,结果得3a ,则a +N =___. 18.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,•会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m ,再将实数对...(m ,1)放入其中后,得到的实数是___. 三、解答题(共66分) 19.化简:(1)-0.8a 2b -6ab -3.2a 2b +5ab +a 2b . (2)5(a -b )2-3(a -b )2-7(a -b )-(a -b )2+7(a -b ). 20.先化简,再求值:(1)5a 2-4a 2+a -9a -3a 2-4+4a ,其中a =-12. (2)5ab -92a 2b +12a 2b -(114ab +a 2b +5),其中a =1,b =-2. (3)2a 2-(3ab +b 2+a 2-ab )-2b 2,其中a 2-b 2=2,ab =-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a =1,b =-2时,原式=12.(3)2a 2-(3ab +b 2+a 2-ab )-2b 2=2a 2-3ab -b 2-a 2+ab -2b 2=a 2-b 2-2ab ,当a 2-b 2=2,ab =-3时,原式=8.21.依题意,得A =20-Q ,A =20-0.04n ,当n =150时,A =20-0.04×150=14(升). 22.因为7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2019=2019,所以a =2020,b =-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b ,个位数字为a (b >a ),则原两位数为10b +a ;第二步:交换后的两位数为10人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( ) A .-2x 2y 与xy 2B .x 2y 与x 2z C .3mn 与4nmD .-0.5ab 与abc2.已知苹果的单价为a 元/千克,香蕉的单价为b 元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________.12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 的取值无关,求y 的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12.原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A =5x 2-5x +3,B =x 2-x -1, 所以2A -B=2(5x 2-5x +3)-(x 2-x -1) =10x 2-10x +6-x 2+x +1 =9x 2-9x +7.18.解:(1)8x +6y +5(20―x ―y)=(3x +y +100)吨. 答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

七年级数学(上)第二章《整式的加减》章节检测含答案

七年级数学(上)第二章《整式的加减》章节检测含答案

七年级数学(上)第二章《整式的加减》章节检测一、选择题(每小题3分,共30分)1.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a2.在下列式子3ab ,-4x ,75abc -,π,2m n -,0.81,1y ,0中,单项式共有( ) A .5个 B .6个 C .7个 D .8个3.下列整式中,去括号后得a-b+c 的是( )A .a-(b+c )B .-(a-b )+cC .-a-(b+c )D .a-(b-c )4.下列说法中正确的是( )A .a 的指数是0B .a 没有系数C .87-是单项式D .-32x 2y 3 的次数是7 5.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x -26.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .24 7.已知a ,b 为自然数,则多项式122a b a b x y +-+的次数应当是( ) A .a B .b C .a+b D .a ,b 中较大的数8.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2C .1D .无法确定9.有理数m ,n 在数轴上的位置如图1所示,则化简│n │-│m-n │的结果是( )A .mB .2n -mC .-mD .m -2n图110.某企业今年3月份的产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月 份的产值是( )A .(a-10%)(a+15%)万元B .a (1-10%)(1+15%)万元C .(a-10%+15%)万元D .a (1-10%+15%)万元二、填空题(每小题4分,共24分)11.计算:3(2x+1)-6x= .12.-πx2y的系数是,次数是.13.如果单项式x a+1y3与2x3y b是同类项,那么a b= .14.某厂第一年生产a件产品,第二年比第一年增加了20%,则两年共生产产品件.15.按图2所示的程序计算,若开始输入的值为x=5,则最后输出的结果是.图216.用大小相同的小三角形摆成如图3所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形个.图3三、解答题(共66分)17.(每小题4分,共8分)计算:(1)3ab-4ab-(-2ab);(2)3x2+x3-(2x2-2x)+(3x-x2).18.(8分)先化简,再求值:2(a2b+ab2)-2(a2b-1)-3(ab2+1),其中a=-2,b=2.19.(8分)已知多项式7x m+kx2-(3n+1)x+5是关于x的三次三项式,并且一次项系数为-7,求m+n-k的值.20.(10分)小明做一道数学题:“已知两个多项式A,B,A=……,B=x2+3x-2,计算2A+B的值.”小明误把“2A+B”看成“A+2B”,求得的结果为5x2-2x+3,请求出2A+B的正确结果.21.(10分)学校多功能报告厅共有20排座位,其中第一排有a个座位,后面每排比前一排多2个座位.(1)用式子表示最后一排的座位数.(2)若最后一排有60个座位,则第一排有多少个座位?22.(10分)有这样一道题“计算:(2m4-4m3n-2m2n2)-(m4-2m2n2)+(-m4+4m3n-n3)的值,其中14 m=,n=-1.”小强不小心把14m=错抄成了14m=-,但他的计算结果却也是正确的,你能说出这是为什么吗?23.(12分)已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b-2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长.(2)当a=2,b=3时,求此三角形的周长.(3)当a=2,三角形的周长为27时,求此三角形各边的长.参考答案一、1.D 2.B 3.D 4.C 5.C 6.C 7.D 8.A 9.C 10.B二、11.3 12.-π 3 13.8 14.2.2a 15.120 16.(3n+4)三、17.解:(1)3ab-4ab-(-2ab)=3ab-4ab+2ab=ab;(2)3x2+x3-(2x2-2x)+(3x-x2)=3x2+x3-2x2+2x+3x-x2=x3+5x.18.解:2(a2b+ab2)-2(a2b-1)-3(ab2+1)=2a2b+2ab2-2a2b+2-3ab2-3=-ab2-1.当a=-2,b=2时,原式=-(-2)×22-1=8-1=7.19.解:由题意,得m=3,k=0,-(3n+1)=-7.解得n=2.所以m+n-k=3+2-0=5.20.解:由题意,得A=(5x2-2x+3)-2(x2+3x-2)=5x2-2x+3-2x2-6x+4=3x2-8x+7.所以2A+B=2(3x2-8x+7)+(x2+3x-2)=6x2-16x+14+x2+3x-2=7x2-13x+12.21.解:(1)最后一排的座位数(单位:个)为a+2×19=a+38.(2)由题意,得a+38=60,解得a=22.若最后一排有60个座位,则第一排有22个座位.22.解:(2m4-4m3n-2m2n2)-(m4-2m2n2)+(-m4+4m3n-n3)=2m4-4m3n-2m2n2-m4+2m2n2-m4+4m3n-n3=-n3.由于原式化简后不存在含m的项,14m=错抄成了14m=-不影响计算结果,所以才会出现小强计算结果也是正确的.23.解:(1)第二条边长(单位:厘米)为(a+2b)-(b-2)=a+b+2;第三条边长(单位:厘米)为a+b+2-3=a+b-1;周长(单位:厘米)为(a+2b)+(a+b+2)+(a+b-1)=3a+4b+1.(2)当a=2,b=3时,此三角形的周长为3a+4b+1=3×2+4×3+1=19(厘米).(3)当a=2,三角形的周长为27时,3×2+4b+1=27.解得b=5.所以a+2b=12,a+b+2=9,a+b-1=6.第一条边长12厘米,第二条边长9厘米,第三条边长6厘米.。

【6套】最新人教版数学七年级上册第二章整式的加减单元测试及答案.doc

【6套】最新人教版数学七年级上册第二章整式的加减单元测试及答案.doc

人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式 2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a―b)]=___.16.的结果是___.17.小颖在计算a+N时,误将“+”看成“―”,结果得3a,则a+N=___.18.数学家发明了一个魔术盒,当任意实数对...(a,b)进入其中时,•会得到一个新的实数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:请写出剩油量A与行驶路程n与耗油量Q之间的关系式,并计算当n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每小题3分,共30分)1.建军的作业本中有四道列代数式的题目,其中错误的是().A.减去5等于x的数是x+5 B.4与a的积的平方为4a2C.m与n的和的倒数为1m n+D.比x的立方的2倍小5的数是2x3-52.下列说法中,正确的是().A.15x+是多项式B.213xπ-的系数是13-C.2x2-1的项是2x2和1 D.3xy2-y2+6是三次三项式3图1 图23.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是().A.(1-10%)(1+15%)x万元B.(1-10%+15%)x万元C.(x-10%)(x+15%)万元D.(1+10%-15%)x万元4.敏敏手中的纸条上写着多项式a3+a x+1b-2a2b2,慧慧手中的纸条上写着单项式-a3 b4 c,若这两个式子的次数相等,则x的值为().A.5 B.6 C.7 D.85.若多项式m3+m x+1n-2m2n2与单项式-a3 b4 c的次数相等,则x的值为().A.5 B.6 C.7 D.85.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为().A.7 B.9 C.-7 D.-96.友龙在电脑中设置了一个运算程序:输入数a,加“⊗”键,再输入数b,得到运算a⊗b=2ab2+a2b. 若a=-2,b=3,则输出的值为().A.-9 B.-12 C.-24 D.67.有一个三位数,它的百位上的数字是a,十位上的数字比百位上的数字大1,个位上的数字比百位上的数字小1,则这个三位数一定是().A.2的倍数B.3的倍数C.5的倍数D.9的倍数8.已知y=x-1,则(x-y)2+(y-x)+1的值为().A.-1B.0 C.1 D.29.已知有理数a、b、c在数轴上的位置如图1所示,且a与b互为相反数,那么| a-c |-| b+c |的值为().A.0 B.1 C.a+b D.2c10.如图2,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”的图案,再将剪下的两个小长方形拼成一个新长方形,则新长方形的周长为().A.2a-3b B.4a-8b C.2a-4b D.4a-10b二、填空题(每小题3分,共24分)11.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电若不超过100度,每度按a元收费;若超过100度,那么超过部分每度按b元收费. 某户居民在一个月内用电160度,那么该户居民这个月应缴纳电费____________元.12.已知单项式2a3b n+1与单项式-3a m-2b2的和仍是单项式,则3m-4n=_________. 13.如图3,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示. 则打包带的长至少要____________.(用含x、y、z的代数式表示)图图414.已知(a +6)2+|b 2-2b -3 |=0,则2b 2-4b -a 的值为_________.15.已知关于x 的多项式(a +b )x 4+(b -2)x 3-2 (a +1)x 2+2ax -15中,不含x 3项和x 2项,则当x =-2时,这个多项式的值为__________.16.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第100个单项式是________. 17.已知x=34-12,y=32,求-x +(px -y 2)-2(x -y 2)的值,龙龙在做题时,把x 的值看成x=34,但最后也算出了正确的结果,若计算过程无误,由此可判定p 的值为_______. 18.出租车收费的标准因地而异,A 市的标准为:起步价10元,3千米后每千米为1.2元;B 市的标准为:起步价8元,3千米后每千米为1.4元. 则在A 市乘坐出租车x(x >3)千米比在B 市乘坐相同路程的出租车多花___________元. 三、解答题(共66分) 19.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若x =-6,求所捂二次三项式的值.20.(8分)如图4,一只蚂蚁从点A 沿数轴向右爬2个单位到达点B. 若点A 表示的数a为32-,设点B 所表示的数为b .(1)求b 的值;(2)先化简223(2)[322()]a ab a b ab b ---++,再求值.21.(8分)已知A=-6x 2+4x ,B=-x 2-3x ,C=5x 2-7x +4,小明和小金在计算时对x 分别取了不同的数值,并进行了多次计算,但所得A -B +C 的结果却是一样的,你认为这可能吗?说明你的理由. 22.(10分)张、王、李三家合办一个股份制企业,总股数为(5a 2-3a +3),每股20元,张家持有(2a 2+1)股,王家比张家少(a -1)股. (1)求王家和李家分别持有的股数.(2)若年终按持有股15%的比例支付股利,当a =300时,问李家能获得多少钱?222(3)51x x x --=-+第1个第2个第3个第4个23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:(1)填写下表:(2)归纳猜测第n个图形棋子的个数(用含n的代数式表示);(3)建军认为第671个图形有2016颗黑色棋子,你同意他的说法吗?请说明理由.24.(10分)观察代数式x-3x2+5x3-7x4+……并回答下列问题:(1)它的第100项是什么?(2)它的第n(n为正整数)项是什么?(3)当x=1时,求它的前2016项的和.参考答案一、选择题1.B.提示:列代数式表示“a与4的积的平方”为(4a)2.2.D.提示:选项A分母中含有字母,故不是多项式,选项B的系数是13π-,选项C的项是2x2和-1.3.A.提示:由于2月份产值是(1-10%)x万元,故3月份产值是在(1-10%)x万元的基础上增加了15%,即为(1-10%)(1+15%)x万元.4.B.提示:由于-a3 b4 c的次数为8,则a3+a x+1b-2a2b2的次数x+1+1=8,故x=6. 5.D.提示:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,所以2×1-3=x,故x=-1;又因为2x-7=y,即2×(-1)-7=y,故y=-9.6.C.提示:当a=-2,b=3时,2ab2+a2b=2×(-2)×32+(-2)2×3=-24.7.B .提示:根据题意得100a +10(a +1)+(a -1)=111a +9=3(37a +3),故为3的倍数. 8.C .提示:由y=x -1,得y -x=-1或x -y=1,整体代入得,原式=12+(-1)+1=1. 9.A .提示:因为a 与b 互为相反数,所以a +b=0;根据数轴得a -c <0,b +c >0,故原式=-(a -c)-(b +c)=-a +c -b -c=-(a +b)=0.10.B .提示:根据示意图知,剪下的两个小长方形拼成的新长方形的长为(a -b),宽为(a-3b),所以新长方形的周长为2(a -b)+2(a -3b) =2a -2b +2a -6b=4a -8b. 二、填空题11.(100a +60b). 提示:前100度按每度a 元收费,故可收100a 元;超过100度的部分有60度,可收60b 元.12.11.提示:根据题意,两个单项式是同类项,所以m -2=3,n +1=2,故m =5,n =1. 13.2x +4y +6z. 提示:根据打包方式知,包带等于“长”的有2x ,包带等于“宽”的有4y ,包带等于“高”的有6z ,所以总长为2x +4y +6z.14.2.提示:由题意得a +6=0,b 2-2b -3=0,故a =-6,b 2-2b =3. 所以2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.15.5.提示:根据题意,得a =-1,b =2,所以这个多项式为x 4-2x -15. 当x =-2时,x 4-2x -15=(-2)4-2×(-2)-15=5.16.199x 100. 提示:由于x 的指数是连续自然数,而系数是连续奇数,即系数为(2n -1),故第100个单项式的系数为2×100-1=199. 所以这个单项式为199x 100.17.3.提示:-x +(px -y 2)-2(x -y 2)=-x +px -y 2-2x +2y 2=(p -3)x +y 2,因为把x 的值看错,但结果仍正确,所以x 的系数p -3=0,故p=3.18.(2.6-0.2x). 提示:在A 、B 两市乘车的费用分别为 [10+1.2(x -3)]元和[8+1.4(x -3)]元,故A 市比B 市乘坐相同路程需多花[10+1.2(x -3)]-[8+1.4(x -3)]= (2.6-0.2x)元. 三、解答题 19.(1)设所捂的二次三项式为A ,则有A -2(x 2-3)=x 2-5x +1.所以A=(x 2-5x +1)+2(x 2-3)= x 2-5x +1+2x 2-6= 3x 2-5x -5. (2)当x=-2时,3x 2-5x -5=3×(-2)2-5×(-2)-5=17. 20.(1)由于31222-+=,所以12b =.(2)原式22(36)(3222)a ab a b ab b =---++2236328a ab a ab ab =---=-.当32a =-,b =12时,原式=-8×(32-)×12=6.21.可能. 理由如下:A -B +C=(-6x2人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每题3分,共30分) 1、用代数式表示比b 的18小7的数( ) A.18b +7 B.18b -7 C.18(b -7) D.78b - 2、下列代数式中,不是单项式的是( )A.5B.2x C.2x D.23a3、①; ②;③; ④分别是同类项的是( )(A )①② ; (B )①③; (C )②③ ; (D )②④ 4、-( a-1)-(-a-2)+3的值是( ) (A )4; (B )6;(C )0; (D )与的值有关。

人教版七年级上册数学第2章《整式的加减》单元测试卷(Word版,含答案)

人教版七年级上册数学第2章《整式的加减》单元测试卷(Word版,含答案)

人教版七年级上册数学第2章《整式的加减》单元测试卷题号一二三 总分 19 2021 22 23 24分数一.选择题(每题3分,共30分) 1.下列关于多项式﹣3a 2b +ab ﹣2的说法中,正确的是( ) A .最高次数是5 B .最高次项是﹣3a 2b C .是二次三项式D .二次项系数是02.下列说法中,不正确的是( ) A .﹣ab 2c 的系数是﹣1,次数是4 B .﹣1是整式C .6x 2﹣3x +1的项是6x 2、﹣3x ,1D .2πR +πR 2是三次二项式3.如果单项式3a m b 2c 是6次单项式,那么m 的值是( ) A .2B .3C .4D .54.若代数式2x |m |﹣(m +3)x +7是关于x 的三次二项式,那么m 的值为( ) A .﹣3B .3C .±3D .05、已知a ﹣b=3,c+d=2,则(b+c )﹣(a ﹣d )的值为( ) A 、1 B 、-1 C 、-5 D 、56、多项式1+2xy ﹣3xy 2的次数及最高次项的系数分别是( ) A 、3,﹣3 B 、2,﹣3 C 、5,﹣3 D 、2,37.当2x =时,多项式35ax bx -+的值是4,求当2x =-时,多项式35ax bx -+的是为( ) A .4-B .6C .5D .98.已知:||3a =,||4b =,则a b -的值是( ) A .1-B .1-或7-C .1±或7±D .1或79.设237M x x =++,234N x x =-+-,那么M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .无法确定10.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.222221131(3)(4)2222x xy y x xy y x -+---+-=-2y +,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是( ) A .7xy -B .7xy +C .xy -D .xy +二、 填空题(每题3分,共24分) 11.若与是同类项,则a 的值是______.12.若多项式是关于x ,y 的三次多项式,则______.13.已知﹣5x 3y |a |﹣(a ﹣5)x ﹣6是关于x 、y 的八次三项式,则a 的值为 . 14.多项式3﹣2xy 2+4x 2yz 的次数是 .15.如果单项式2x m ﹣1y 2与﹣3x 2y n +1是同类项,那么m +n = . 16.计算:2a 2﹣(a 2+2)= . 17.多项式中不含xy 项,则常数k 的值是 .18.如图所示的运算程序中,如果开始输入的x 值为,我们发现第1次输出的结果为,第2次输出的结果为,,第2021次输出的结果为 .三.解答题(共46分,19题6分,20 ---24题8分) 19.化简:(1)(5a 2+2a ﹣1)﹣4[3﹣2(4a +a 2)]. (2)3x 2﹣[7x ﹣(4x ﹣3)﹣2x 2].20.先化简,再求值:2ab +6(a 2b +ab 2)﹣[3a 2b ﹣2(1﹣ab ﹣2ab 2)],其中a 为最大的负整数,b 为最小的正整数.。

七年级数学上册《整式的加减》单元测试卷及答案

七年级数学上册《整式的加减》单元测试卷及答案

人教新版七年级上册《第2章整式的加减》单元测试(1)一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4 3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣44.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.46.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.17.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣109.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣411.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+112.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.当k=时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=.17.已知a2+a﹣3=0,则2024﹣a2﹣a=.18.x2﹣2x+y=x2﹣().19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?人教新版七年级上册《第2章整式的加减》单元测试卷(1)参考答案与试题解析一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数与次数分别为,4,故选:D.3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣4【考点】合并同类项.【分析】根据合并同类项的法则判断即可得结论.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.4.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy【考点】同类项.【分析】根据同类项的概念逐一判断即可得.【解答】解:A.﹣a2b和ab2相同字母的指数不相同,不是同类项;B.a2和22所含字母不相同,不是同类项;C.﹣ab2和2b2a所含字母相同,且相同字母的指数也相同,是同类项;D.2ab与2xy所含字母不相同,不是同类项;故选:C.5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的概念求出x、y的值,再代入所求式子计算即可.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.6.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【考点】合并同类项.【分析】直接利用两式可以合并进而得出m=n+2,即可得出答案.【解答】解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.7.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定【考点】整式的加减.【分析】直接利用整式的加减运算法则计算进而得出答案.【解答】解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10【考点】代数式求值.【分析】根据相反数的定义得:﹣2a﹣3b=﹣4,首先化简﹣4a﹣6b+1,然后把﹣2a﹣3b =﹣4代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.9.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【考点】代数式求值;有理数的混合运算.【分析】根据题意一一计算即可判断.【解答】解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣4【考点】多项式.【分析】根据多项式的定义即可求解.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.11.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+1【考点】多项式.【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.12.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【考点】整式的加减.【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式【考点】多项式.【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【解答】解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选:B.二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为2或1.【考点】多项式.【分析】根据多项式的次数定义和n是正整数得出4+n=6或4+n=5,求出n的值即可.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.当k=2时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.【考点】合并同类项;多项式.【分析】根据多项式的概念即可求出答案.【解答】解:∵多项式x2+kxy﹣2xy﹣6中不含xy项,∴原式=x2+(k﹣2)xy﹣6令k﹣2=0,∴k=2故答案为:2.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.【解答】解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.17.已知a2+a﹣3=0,则2024﹣a2﹣a=2021.【考点】代数式求值.【分析】由a2+a﹣3=0可得a2+a=3,再将a2+a=3整体代入要求的式子即可.【解答】解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.18.x2﹣2x+y=x2﹣(2x﹣y).【考点】去括号与添括号.【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.【解答】解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值14.【考点】整式的加减.【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【解答】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14.故答案为:14.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题.根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(3x2﹣3x2)+(2xy﹣3xy)+(4y2﹣4y2)=﹣xy.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.【考点】整式的加减—化简求值.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.【考点】整式的加减—化简求值.【分析】(1)先去掉括号,再合并同类项即可得出答案;(2)先去掉括号,再合并同类项即可;(3)先把给出的式子进行化简,再代入x,y的值进行计算即可;(4)根据题意先列出算式,再合并同类项,最后把x,y的值进行计算即可.【解答】解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=5a﹣6a+7b﹣3b+4c+5c=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=2a2b﹣6a2b﹣ab2﹣2ab2=﹣4a2b﹣3ab2;(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=1,y=﹣2时原式=(﹣2)2+5×1×(﹣2)=4﹣10=﹣6;(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)=8x2y﹣10xy2﹣3x2y+4y2=5x2y﹣10xy2+4y2当x=﹣2,y=1时,原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12=5×4×1﹣(﹣20)×1+4=20+20+4=44.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【考点】合并同类项;多项式;绝对值;代数式求值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【考点】列代数式.【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解答】解:(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.。

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)

人教版七年级数学上册第2章《整式的加减》单元测试题一.选择题1.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个2.若5y﹣2x=3,则代数式4﹣10y+4x的值是()A.﹣3 B.﹣2 C.0 D.73.多项式3xy2﹣2y+1的次数及一次项的系数分别是()A.3,2 B.3,﹣2 C.2,﹣2 D.4,﹣24.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列说法正确的是()A.单项式3ab的次数是1B.3a﹣2a2b+2ab是三次三项式C.单项式的系数是2D.﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5的项6.裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,则下列各式中,能正确表示这个商店第一季度的总利润的是()A.50(1+m)万元B.50(1+m)2万元C.[50+50(1+m)]万元D.[50+50(1+m)+50(1+m)2]万元7.下列计算正确的是()A.3a+4b=7ab B.3a﹣2a=1C.3a2b﹣2ab2=a2b D.2a2+3a2=5a28.若与的和是单项式,则a+b=()A.﹣3 B.0 C.3 D.69.已知A=x2+3y2﹣5xy与B=2xy+2x2﹣y2,则3A﹣B为()A.3x2+y2﹣3xy B.﹣x2+4y2﹣7xyC.x2+10y2﹣17xy D.5x2+8y2﹣13xy10.一个代数式加上﹣5+3x﹣6x2得到4x2﹣5x,则这个代数式是()A.10x2﹣8x+5 B.8x2﹣8x﹣5 C.2x2﹣8x+5 D.10x2﹣8x﹣5 11.下列去括号运算正确的是()A.﹣(x﹣y+z)=﹣x﹣y﹣zB.x﹣(y﹣z)=x﹣y﹣zC.x﹣2(x+y)=x﹣2x+2yD.﹣(a﹣b)﹣(﹣c﹣d)=﹣a+b+c+d12.一个多项式加上12y+7x+z2等于5y+3x﹣15z2,则这个多项式是()A.﹣7y﹣4x﹣16z2B.7y+4x+16z2C.17y+10x﹣14z2D.7y+4x﹣16z2二.填空题13.若a﹣2b=3,则4b﹣2a=.14.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费元.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.16.a的3倍与b的倒数的差,用代数式表示为.17.若代数式x2+x+3的值的值为7,则代数式的值为.18.已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n=.19.已知三角形的周长为3m﹣n,其中两边的和为2m,则此三角形第三边的长为.20.甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下颗球.三.解答题21.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.22.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).23.已知A=3a2b﹣2ab2+abc,小明错将“C=2A﹣B”看成“C=2A+B”,算得结果C=4a2b﹣3ab2+4abc.(1)求正确的结果的表达式;(2)小芳说(1)中结果的大小与c的取值无关,对吗?若a=2,b=,求(1)中代数式的值.24.先化简,再求值:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中x=1,y=﹣2.25.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣(xy﹣3x2)]+2xy,其中x是﹣2的倒数,y 是最大的负整数.参考答案1.解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.2.解:∵5y﹣2x=3,∴原式=4﹣2×(5y﹣2x)=4﹣2×3=﹣2,故选:B.3.解:多项式3xy2﹣2y+1的次数是:3,一次项的系数是:﹣2.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:A、单项式3ab的次数是2,故此选项错误;B、3a﹣2a2b+2ab是三次三项式,故此选项正确;C、单项式的系数是,故此选项错误;D、﹣4a2b,3ab,﹣5是多项式﹣4a2b+3ab﹣5的项,故此选项错误;故选:B.6.解:∵裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,∴二月份的利润为50(1+m)万元,三月份的利润为50(1+m)2,∴这个商店第一季度的总利润是[50+50(1+m)+50(1+m)2]万元.故选:D.7.解:A、3a和4b不能合并,故本选项不符合题意;B、3a﹣2a=a,故本选项不符合题意;C、3a2b和﹣2ab2不能合并,故本选项不符合题意;D、2a2+3a2=5a2,故本选项符合题意;故选:D.8.解:根据题意可得:,解得:,所以a+b=3+0=3,故选:C.9.解:∵A=x2+3y2﹣5xy与B=2xy+2x2﹣y2,∴3A﹣B=3(x2+3y2﹣5xy)﹣(2xy+2x2﹣y2)=3x2+9y2﹣15xy﹣2xy﹣2x2+y2=x2+10y2﹣17xy.故选:C.10.解:由题意得:这个代数式=(4x2﹣5x)﹣(﹣5+3x﹣6x2)=4x2﹣5x+5﹣3x+6x2=10x2﹣8x+5.故选:A.11.解:A、原式=﹣x+y﹣z,不符合题意;B、原式=x﹣y+z,不符合题意;C、原式=x﹣2x﹣2y=﹣x﹣2y,不符合题意;D、原式=﹣a+b+c+d,符合题意,故选:D.12.解:根据题意得:(5y+3x﹣15z2)﹣(12y+7x+z2)=5y+3x﹣15z2﹣12y﹣7x﹣z2=﹣7y ﹣4x﹣16z2,故选:A.13.解:∵a﹣2b=3.4b﹣2a=2(2b﹣a)=2×(﹣3)=﹣6.故答案为:﹣6.14.解:根据单价×数量=总价得,共需花费(30m+15n)元,故答案为:(30m+15n).15.解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.16.解:由题意可得:3a﹣.故答案为:3a﹣.17.解:∵x2+x+3=7,∴x2+x=4,∴原式=(x2+x)﹣5=×4﹣5=1﹣5=﹣4,故答案为:﹣418.解:﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.19.解:由题意可知:3m﹣n﹣2m=m﹣n.故答案为:m﹣n.20.解:设甲、乙、丙原来有a颗小球,乙最后剩下的小球有:a+2﹣(a﹣5)=a+2﹣a+5=7,故答案为:7.21.解:(1)多项式﹣2x2﹣4x+1的一次项系数是﹣4,则a=﹣4,数轴上最小的正整数是1,则b=1,单项式的次数为6,则c=6,故答案为:﹣4,1,6;(2)如图所示,,点A,B,C即为所求.;(3)AB=b﹣a=1﹣(﹣4)=5,AC=c﹣a=6﹣(﹣4)=10.∵10÷5=2,∴AC=2AB.22.解:(1)花坛的周长l=2a+2πr,(2)花坛的面积S=2ra+πr2,(3)l=2a+2πr=16+10π=47.4(米),S=2ra+πr2=2×5×8+3.14×25=158.5(平方米).23.解:(1)∵2A+B=C,∴B=C﹣2A=4a2b﹣3ab2+4abc﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc;∴2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2;(2)小芳说的对,与c无关,将a=2,b=代入,得:8a2b﹣5ab2==6.24.解:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy当x=1,y=﹣2时,原式=﹣6×1×(﹣2)=12.25.解:原式=2x2+5x2﹣2xy+xy﹣3x2+2xy=4x2+xy,∵x是﹣2的倒数,y是最大的负整数,∴x=﹣,y=﹣1,则原式=1.。

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷一.选择题(每题3分,共30分)1.下列代数式中,符合书写规则的是( )A .xB .x ÷yC .m ×2D .32.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .B .C .D .3关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.若x+y=1,则代数式3(4x-1)-2(3-6y )的值为( )A .-8B .8C .-3D .35.下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣17.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( )A .x 2-5y 2+1B .x 2-3y 2+1C .5x 2-3y 2-1D .5x 2-3y 2+18.两船从同一港口同时反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h ,水流的速度为a km/h ,3h 后,甲船比乙船多航行的路程是( )A .1.5a kmB .3a kmC .6a kmD .(150+3a )km 9.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.(﹣x 2+3xy 12-y 2)﹣(12-x 2+4xy 12-y 2)12=-x 2●,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A .﹣xyB .+xyC .﹣7xyD .+7xy10.如图,阴影部分的面积为A.B.C.D.二、填空题(共24分)11.减去3m后,等于3m2+m﹣1的多项式是.12.已知3a n b n﹣1与﹣5a2b2m(m是正整数)是同类项,那么(2m﹣1)2=.13.计算:(m+3m+5m+…+2019m)﹣(2m+4m+6m+…+2020m)=.14.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.15.如图,把五个长为b、宽为a的小长方形,按图1和图2两种方式放在一个宽为m的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C1,图2中阴影部分的周长为C2,若大长方形的长比宽大(6﹣a),则C2﹣C1的值为.16.如图,将图①中的四边形剪开得到图②,图中共有4个四边形;将图②中的一个四边形剪开得到图③,图中共有7个四边形;如此剪下去,第5个图中共有________个四边形,第n(n为正整数)个图中共有________个四边形.。

【数学测试6套】人教版七年级数学上册第二章整式加减单元测试(含答案).doc

【数学测试6套】人教版七年级数学上册第二章整式加减单元测试(含答案).doc

【数学测试6套】人教版七年级数学上册第二章整式加减单元测试(含答案).doc人教版七年级上册数学单元练习题:第二章整式的加减一、选择题1.单项式的系数是()A. B. π C. 2 D.2.下列各组式子中,是同类项的是()A. 3x2y与-3xy2B. 3xy与-2yxC. 2x与2x2D. 5xy与5yz3.在式子a2+2,,ab2,,﹣8x,0中,整式有()A. 6个B. 5个C. 4个D. 3个4.下列各式计算结果正确的是()A. a+a=a2B. (a﹣1)2=a2﹣1C. a?a=a2D. (3a)3=9a25.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 36.下列说法错误的是()A. 2x2﹣3xy﹣1是二次三项式B. ﹣x+1不是单项式C. 的系数是D. ﹣22xab2的次数是67.计算2a3+3a3结果正确的是()A. 5a6B. 5a3C. 6a6D. 6a38.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y9.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A. a=2bB. a=3bC. a=4bD. a=b10.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. ﹣1B. ﹣5C. 5D. 111.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题12.单项式﹣x3y的系数是________.13.多项式是a -2a -1 是________次________项式.14.下面是按一定规律排列的一列数:,- ,,- …那么第8个数是________.15.观察下列数:,,,,…按规律写出第6个数是________,第10个数是________,第n个数是________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________17.下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有________个★.三、解答题18.化简:(1)2x-5y-3x+y(2)19.先化简,再求值.,其中.20.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.21.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.参考答案一、选择题1.D2. B3.B4.C5. A6. D7. B8. C9.A 10.C 11. B二、填空题12. 13.三;三14. 15.;;16.x n+n217.(1+3n)三、解答题18.(1)解:2x-5y-3x+y=(2-3)x+(-5+1)y=-x-4y(2)解:=2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b19.解:原式=3x2-2xy- [x2-8x+8xy],=3x2-2xy- x2+4x-4xy,= x2-6xy+4x,当时,原式= ×(-2)2-6×(-2)×1+4×(-2),=10+12-8,=14.20.(1)解:上述等式的规律是:两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);如果用m表示十位数,n表示个位数的话,则第一个因数为10m+n,第二个因数为10m+(10﹣n),积为100m(m+1)+n(10﹣n);等式表示出来为:(10m+n )[10m+(10﹣n )]=100m (m+1)+n (10﹣n )(2)解:∵左边=(10m+n )(10m ﹣n+10), =(10m+n )[10(m+1)﹣n],=100m (m+1)﹣10mn+10n (m+1)﹣n 2 ,=100m (m+1)﹣10mn+10mn+10n ﹣n 2 , =100m (m+1)+n (10﹣n )=右边,∴(10m+n )[10m+(10﹣n )]=100m (m+1)+n (10﹣n )成立 21.(1)④4×6﹣52=﹣1(2)(2n ﹣1)(2n+1)﹣(2n )2=﹣1(3)解:左边=(2n ﹣1)(2n+1)﹣(2n )2=4n 2﹣1﹣4n 2=﹣1 所以(2)中所写的等式一定成立人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( ) A .-2x 2y 与xy 2B .x 2y 与x 2z C .3mn 与4nmD .-0.5ab 与abc2.已知苹果的单价为a 元/千克,香蕉的单价为b 元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab=6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________.12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A=2x2+3xy-2x-1,B=-x2+xy-1.(1)求3A+6B;(2)若3A+6B的值与x的取值无关,求y的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B =x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2 y9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12.原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2).当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A =5x 2-5x +3,B =x 2-x -1,所以2A -B=2(5x 2-5x +3)-(x 2-x -1) =10x 2-10x +6-x 2+x +1 =9x 2-9x +7.18.解:(1)8x +6y +5(20―x ―y)=(3x +y +100)吨.答:这20辆汽人教版初中数学七年级上册第2章《整式加减》单元测试卷一、单选题(每小题只有一个正确答案)1.下列各式:ab ,2x y -,2x,–xy 2,0.1,1π,x 2+2xy+y 2,其中单项式有( ) A .5个B .4个C .3个D .2个2.多项式x 3–2x 2y 2+3y 2每项的系数和是() A .1B .2C .5D .63.若单项式–2335a bc 的系数、次数分别是m 、n ,则( )A .m=?35,n=6 B .m=35,n=6 C .m=–35,n=5 D .m=35,n=5 4.下列各式中,不是整式的是(). A .3aB .2x = 1C .0D .xy5.对[()]a b c d --+去括号后的结果是(). A .a b c d --+ B .a b c d +-- C .a b c d -++D .a b c d -+-6.单项式﹣x 2y 的系数与次数分别是() A.-,3B.-,4C.-π,3D.-π,47.下列各式计算正确的是(). A .(2)2a a b b --=- B .2(3)242xy y xy xy y --=- C .233336ab a b ab +=D .3()3xy y xy y +-=8.下列各组单项式属于同类项的是().A .2a 与22aB .3m -与2mC .223a b 与22ab D .22a 与23a9.一个两位数,十位上的数字比个位上的数字小2,设十位上的数字为x ,则这个两位数可以表示为(). A .22x +B .22x -C .112x -D .112x +10.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .611.规定一种新运算,a *b =a +b ,a #b =a ﹣b ,其中a 、b 为有理数,化简a 2b *3ab +5a 2b #4ab 的结果为() A .6a 2b +abB .﹣4a 2b +7abC .4a 2b ﹣7abD .6a 2b ﹣ab12.一个多项式加上2325y y --得到多项式3546y y --,则原来的多项式为() A.325321y y y ++- B.325326y y y --- C.325321y y y +-- D.325321y y y ---二、填空题13.多项式2239x xy π++ 人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每小题3分,共30分)1.建军的作业本中有四道列代数式的题目,其中错误的是().A .减去5等于x 的数是x +5B .4与a 的积的平方为4a 2C .m 与n 的和的倒数为1m n+ D .比x 的立方的2倍小5的数是2x 3-5 2.下列说法中,正确的是().A .15x +是多项式 B .213x π-的系数是13- C .2x 2-1的项是2x 2和1 D .3xy 2-y 2+6是三次三项式3.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是().A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 4.敏敏手中的纸条上写着多项式a 3+a x +1b -2a 2b 2,慧慧手中的纸条上写着单项式-a 3 b 4 c ,若这两个式子的次数相等,则x 的值为().A .5B .6C .7D .85.若多项式m 3+m x +1n -2m 2n 2与单项式-a 3 b 4 c 的次数相等,则x 的值为().A .5B .6C .7D .8图3图1 图25.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为().A.7 B.9 C.-7 D.-96.友龙在电脑中设置了一个运算程序:输入数a,加“?”键,再输入数b,得到运算a?b=2ab2+a2b. 若a=-2,b=3,则输出的值为().A.-9 B.-12 C.-24 D.67.有一个三位数,它的百位上的数字是a,十位上的数字比百位上的数字大1,个位上的数字比百位上的数字小1,则这个三位数一定是().A.2的倍数B.3的倍数C.5的倍数D.9的倍数8.已知y=x-1,则(x-y)2+(y-x)+1的值为().A.-1B.0 C.1 D.29.已知有理数a、b、c在数轴上的位置如图1所示,且a与b互为相反数,那么| a-c |-| b+c |的值为().A.0 B.1 C.a+b D.2c10.如图2,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”的图案,再将剪下的两个小长方形拼成一个新长方形,则新长方形的周长为().A.2a-3b B.4a-8b C.2a-4b D.4a-10b二、填空题(每小题3分,共24分)11.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电若不超过100度,每度按a元收费;若超过100度,那么超过部分每度按b元收费. 某户居民在一个月内用电160度,那么该户居民这个月应缴纳电费____________元.12.已知单项式2a3b n+1与单项式-3a m-2b2的和仍是单项式,则3m-4n=_________. 13.如图3,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示. 则打包带的长至少要____________.(用含x、y、z的代数式表示)14.已知(a+6)2+|b2-2b-3 |=0,则2b2-4b-a的值为_________.15.已知关于x的多项式(a+b)x4+(b-2)x3-2 (a+1)x2+2ax -15中,不含x3项和x2项,则当x=-2时,这个多项式的值为__________.16.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第100个单项式是________.17.已知x=34-12,y=32,求-x+(px-y2)-2(x-y2)的值,龙龙在做题时,把x 的值看成第1个第2个第3个第4个图4x=34,但最后也算出了正确的结果,若计算过程无误,由此可判定p 的值为_______. 18.出租车收费的标准因地而异,A 市的标准为:起步价10元,3千米后每千米为1.2元;B 市的标准为:起步价8元,3千米后每千米为1.4元. 则在A 市乘坐出租车x(x >3)千米比在B 市乘坐相同路程的出租车多花___________元. 三、解答题(共66分)19.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若x =-6,求所捂二次三项式的值.20.(8分)如图4,一只蚂蚁从点A 沿数轴向右爬2个单位到达点B. 若点A 表示的数a为32-,设点B 所表示的数为b .(1)求b 的值;(2)先化简223(2)[322()]a ab a b ab b ---++,再求值.21.(8分)已知A=-6x 2+4x ,B=-x 2-3x ,C=5x 2-7x +4,小明和小金在计算时对x 分别取了不同的数值,并进行了多次计算,但所得A -B +C 的结果却是一样的,你认为这可能吗?说明你的理由.22.(10分)张、王、李三家合办一个股份制企业,总股数为(5a 2-3a +3),每股20元,张家持有(2a 2+1)股,王家比张家少(a -1)股. (1)求王家和李家分别持有的股数.(2)若年终按持有股15%的比例支付股利,当a =300时,问李家能获得多少钱?23.(10分)用同样大小的黑色棋子按如图所示的规律摆放:222(3)51x x x --=-+(1)填写下表:(2)归纳猜测第n个图形棋子的个数(用含n的代数式表示);(3)建军认为第671个图形有2016颗黑色棋子,你同意他的说法吗?请说明理由.24.(10分)观察代数式x-3x2+5x3-7x4+……并回答下列问题:(1)它的第100项是什么?(2)它的第n(n为正整数)项是什么?(3)当x=1时,求它的前2016项的和.参考答案一、选择题1.B.提示:列代数式表示“a与4的积的平方”为(4a)2.2.D.提示:选项A分母中含有字母,故不是多项式,选项B的系数是13π-,选项C的项是2x2和-1.3.A.提示:由于2月份产值是(1-10%)x万元,故3月份产值是在(1-10%)x万元的基础上增加了15%,即为(1-10%)(1+15%)x 万元.4.B.提示:由于-a3 b4 c的次数为8,则a3+a x+1b-2a2b2的次数x+1+1=8,故x=6. 5.D.提示:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,所以2×1-3=x,故x=-1;又因为2x-7=y,即2×(-1)-7=y,故y=-9.6.C.提示:当a=-2,b=3时,2ab2+a2b=2×(-2)×32+(-2)2×3=-24.7.B.提示:根据题意得100a+10(a+1)+(a-1)=111a+9=3(37a+3),故为3的倍数. 8.C.提示:由y=x-1,得y-x=-1或x-y=1,整体代入得,原式=12+(-1)+1=1. 9.A.提示:因为a与b互为相反数,所以a+b=0;根据数轴得a-c<0,b+c>0,故原式=-(a-c)-(b+c)=-a+c-b-c=-(a+b)=0.10.B.提示:根据示意图知,剪下的两个小长方形拼成的新长方形的长为(a-b),宽为(a -3b),所以新长方形的周长为2(a-b)+2(a-3b) =2a-2b+2a-6b=4a-8b.二、填空题11.(100a+60b). 提示:前100度按每度a元收费,故可收100a 元;超过100度的部分有60度,可收60b 元.12.11.提示:根据题意,两个单项式是同类项,所以m -2=3,n +1=2,故m =5,n =1. 13.2x +4y +6z. 提示:根据打包方式知,包带等于“长”的有2x ,包带等于“宽”的有4y ,包带等于“高”的有6z ,所以总长为2x +4y +6z.14.2.提示:由题意得a +6=0,b 2-2b -3=0,故a =-6,b 2-2b =3. 所以2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.15.5.提示:根据题意,得a =-1,b =2,所以这个多项式为x 4-2x -15. 当x =-2时,x 4-2x -15=(-2)4-2×(-2)-15=5.16.199x 100. 提示:由于x 的指数是连续自然数,而系数是连续奇数,即系数为(2n -1),故第100个单项式的系数为2×100-1=199. 所以这个单项式为199x 100.17.3.提示:-x +(px -y 2)-2(x -y 2)=-x +px -y 2-2x +2y 2=(p -3)x +y 2,因为把x 的值看错,但结果仍正确,所以x 的系数p -3=0,故p=3.18.(2.6-0.2x). 提示:在A 、B 两市乘车的费用分别为[10+1.2(x -3)]元和[8+1.4(x -3)]元,故A 市比B 市乘坐相同路程需多花[10+1.2(x -3)]-[8+1.4(x -3)]= (2.6-0.2x)元. 三、解答题 19.(1)设所捂的二次三项式为A ,则有A -2(x 2-3)=x 2-5x +1.所以A=(x 2-5x +1)+2(x 2-3)= x 2-5x +1+2x 2-6= 3x 2-5x -5. (2)当x=-2时,3x 2-5x -5=3×(-2)2-5×(-2)-5=17. 20.(1)由于31222-+=,所以12b =.(2)原式22(36)(3222)a ab a b ab b =---++2236328a ab a ab ab =---=-.当32a =-,b =12时,原式=-8×(32-)×12=6.21.可能. 理由如下:A -B +C=(-6x2人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每题3分,共30分) 1、用代数式表示比b 的18小7的数() A.18b +7 B.18b -7 C.18(b -7) D.78b - 2、下列代数式中,不是单项式的是()A.5B.2x C.2x D.23a3、①;②;③;④分别是同类项的是()(A )①② ;(B )①③;(C )②③ ;(D )②④ 4、-( a-1)-(-a-2)+3的值是()(A )4;(B )6;(C )0;(D )与的值有关。

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.已知一个多项式减去-2m结果等于m2+3m+2,这个多项式是()A.m2+5m+2B.m2-m-2C.m2-5m-2D.m2+m+22.下列各组单项式中,不是同类项的是()A. 3x2y与-2yx2B. 2ab2与-ba2C.xy3与5xy D. 23a与32a3.已知3xa-2是关于x的二次单项式,那么a的值为()A. 4B. 5C. 6D. 74.若-2am+4b4与5a2bn+1可以合并成一项,则mn的值是()A.-6B. 8C.-8D. 95.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A.a2-3a+4B.a2-3a+2C.a2-7a+2D.a2-7a+46.多项式a3-2a2b2+5b2的次数是()A. 2 B. 3 C. 4 D. 97.下列结论正确的是()A. 3x2-x+1的一次项系数是1B.xyz的系数是0C.a2b3c是五次单项式D.x5+3x2y4-2x3y是六次三项式8.有一组单项式:a2,-a32,a43,-a54…,请观察它们的构成规律,用你发现的规律写出第10个单项式为()A.a1010B.-a1010C.a1110D.-a11109.计算-3(x-2y)+4(x-2y)的结果是()A.x-2y B.x+2y C.-x-2y D.-x+2y10.有理数a,b,c在数轴上的位置如图所示,则|a+b|-2|c-b|+3|b+a|等于()A.-2b B. 0 C.-4a-b-3c D.-4a-2b-2c二、填空题11.去括号:3x-(a-b+c)=___________.12.a、b在数轴上的位置如图所示,化简|a+b|-2|a-b|=___________.13.有规律地排列着这样一些单项式:-xy,x2y,-x3y,x4y,-x5y,…,则第n个单项式(n≥1正整数)可表示为___________.14.10a-5减去(-5a+7)的差是___________.三、解答题15.化简:①4a2+3b2+2ab-3a2-4b2;①(2a-4b)-(3a+4b);①2(4a2b-10b3)+(-3a2b-20b3);①(-x2+3xy-4y3)-3(2xy-3y2).16.先化简,再求值:5(a2b+2ab2)-2(3a2b+5ab2-1),其中a=-2,b=2.17.已知多项式y4-x4+3x3y-1xy2-5x2y3.2(1)按字母x的降幂排列;(2)按字母y的升幂排列.18.观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①-2x,4x2,-8x3,16x4,-32x5,64x6,…①2x2,-3x3,5x4,-9x5,17x6,-33x7,…①(1)根据你发现的规律,第一行第8个单项式为___________;(2)第二行第n个单项式为___________;(3)第三行第8个单项式为___________;第n个单项式为___________.答案解析1.【答案】D【解析】设这个多项式为M ,则M =(m 2+3m +2)+(-2m )=m 2+3m +2-2m =m 2+m +2 2.【答案】B【解析】A 、字母相同且相同字母的指数也相同,故A 正确; B 、相同字母的指数不同不是同类项,故B 错误; C 、字母相同且相同字母的指数也相同,故C 正确; D 、字母相同且相同字母的指数也相同,故D 正确. 3.【答案】A【解析】因为3xa -2是关于x 的二次单项式, 所以a -2=2, 解得a =4 4.【答案】C【解析】根据题意可得m +4=2,n +1=4, 解得m =-2,n =3, 所以mn =-8. 5.【答案】D【解析】(6a 2-5a +3)-(5a 2+2a -1) =6a 2-5a +3-5a 2-2a +1 =a 2-7a +4. 6.【答案】C【解析】a 3-2a 2b 2+5b 2的次数是4. 7.【答案】D【解析】A 、3x 2-x +1的一次项系数是-1,故错误; B 、xyz 的系数是1,故错误; C 、a 2b 3c 是六次单项式,故错误; D 、正确. 8.【答案】D【解析】注意观察各单项式系数和次数的变化, 系数依次是1(可以看成是11),-12,13,-14…据此推测,第十项的系数为-110;次数依次是2,3,4,5…据此推出,第十项的次数为11.所以第十个单项式为-a11.10 9.【答案】A【解析】-3(x-2y)+4(x-2y)=-3x+6y+4x-8y=x-2y.10.【答案】D【解析】因为由图可知,a<b<0<c,|a|>|b|>c,所以a+b<0,c-b>0,b+a<0,所以原式=-(a+b)-2(c-b)-3(b+a)=-a-b-2c+2b-3b-3a=-4a-2b-2c.11.【答案】3x-a+b-c【解析】3x-(a-b+c)=3x-a+b-c.12.【答案】-3a+b【解析】由数轴可得b+a<0,a-b>0,则|a+b|-2|a-b|=-a-b-2(a-b)=-3a+b13.【答案】(-x)n y【解析】第n个单项可表示为(-x)n y14.【答案】15a-12【解析】(10a-5)-(-5a+7)=10a-5+5a-7=15a-12.15.【答案】解:①原式=(4-3)a2+(3-4)b2+2ab=a2+2ab-b2;①原式=2a-4b-3a-4b=-a-8b;①原式=8a2b-20b3-3a2b-20b3=5a2b-40b3;①原式=-x2+3xy-4y3-6xy+9y2=x2-4y3-3xy+9y2.【解析】①直接合并同类项即可;①①①先去括号,再合并同类项即可.16.【答案】解:原式=5a2b+10ab2-6a2b-10ab2+2=-a2b+2,当a=-2,b=2时,原式=-8+2=-6.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.17.【答案】解:(1)按字母x的降幂排列:−x4+3x3y−5x2y3−1xy2+y4;2(2)按字母y的升幂排列:−x4+3x3y−5x2y3−1xy2+y4.2【解析】(1)根据x的指数的从大到小顺序排列即可;(2)根据y的指数的从小到大顺序排列即可.18.【答案】(1)128x8(2)(-2)nxn(3)-129x9(-1)n+1(1+2n-1)xn+1【解析】通过观察很容易得到三组数据数字因数、字母次数之间的关系,根据规律写出相应的式子即可.解:因为第一行的每个单项式,数字因数后面都是前面的2倍,字母次数与这个单项式是第几个有关,根据这个规律可得第一行第8个单项式为 128x8;因为第二行的每个单项式,数字因数后面都是前面的(-2)倍,字母次数与这个单项式是第几个有关,根据这个规律可得第n个单项式为(-2)nxn;通过观察第三行的这组单项式,这组单项式符合(-1)n+1(1+2n-1)xn+1,第8个单项式是-129x9;第n个单项式为(-1)n+1(1+2n-1)xn+1.。

人教版七年级上第二章《整式的加减》单元测试题(含参考答案)

人教版七年级上第二章《整式的加减》单元测试题(含参考答案)

第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a32.单项式的系数是( )A.B.πC.2D.3.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+14.组成多项式2x2-x-3的单项式是下列几组中的()A.2x2,x,3B.2x2,-x,-3C.2x2,x,-3D.2x2,-x,35.下列各式按字母x的降幂排列的是()A.-5x2-x2+2x2B.ax3-2bx+cx2C.-x2y-2xy2+y2D.x2y-3xy2+x3-2y26.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A.7个B.6个C.5个D.4个7.多项式x|m|-(m-4)x+7是关于x的四次三项式,则m的值是( )A.4B.-2C.-4D.4或-48.已知有理数a,b,c在数轴上所对应点的位置如图所示,则代数式|a|+|a+b|+|c -a|-|b-c|=( )A.-3a B.2c-a C.2a-2b D.b9.如果|x-4|与(y+3)2互为相反数,则2x-(-2y+x)的值是( )A.-2B.10C.7D.610.已知M=4x2-x+1,N=5x2-x+3,则M与N的大小关系为( )A.M >N B.M<N C.M=N D.无法确定11.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:(2a2+3ab-b2)-(-3a2+ab +5b2)=5a2-6b2,一部分被墨水弄脏了.请问空格中的一项是( )A.+2ab B.+3ab C.+4ab D.-ab12.下列是由一些火柴搭成的图案,图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n○个图案用多少根火柴( )A.4n+3B.5n-1C.4n+1D.5n-4二、填空题13.单项式的系数是__,次数是__.14.请写出一个系数是-2,次数是3的单项式:________________.15.三个连续奇数,中间的一个是n,则这三个数的和是________.16.在代数式3xy2,m,6a2-a+3,,2,4x2yz-xy2,,中,单项式有________个,多项式有________个,整式有________个.17.已知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为_____.三、解答题18.化简:(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)19.化简(1)5x2+x+3+4x﹣8x2﹣2(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)(3)3(x2﹣5x+1)﹣2(3x﹣6+x2)20.已知:关于x的多项式2ax3-9+x3-bx2+4x3中,不含x3与x2的项.求代数式3(a2-2b2-2)-2(a2-2b2-3)的值.21..设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,(1)求B-2A(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.22.观察下列三行数:0,3, 8,15,24, …2,5,10,17,26, …②0,6,16,30,48, …③(1)第①行数按什么规律排列的,请写出来?(2)第②、③行数与第①行数分别对比有什么关系?)(3)取每行的第个数,求这三个数的和23.有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1.”甲同学把“x=”错抄成“x=-”,但他计算的结果也是正确的,试说明理由,并求出正确结果.参考答案1.C【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.详解:A、(b2)3=b6,故此选项错误;B、x3÷x3=1,故此选项错误;C、5y3•3y2=15y5,正确;D、a+a2,无法计算,故此选项错误.故选:C.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.2.D【解析】试题分析:单项式的系数是:.故选D.考点:单项式.3.B【解析】多项式0.3x2y﹣2x3y2﹣7xy3+1,有四项分别为:0.3x2y,﹣2x3y2,﹣7xy3,+1,最高次为5次,是五次四项式,故A正确;四次项的系数是-7,故B错误;常数项是1,故C正确;按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+1,故D正确,故符合题意的是B选项,故选B.4.B【解析】多项式是由多个单项式组成的,在多项式2x2﹣x﹣3中,单项式分别是2x2,﹣x,﹣3,故选:B.5.C【解析】【分析】根据题意将各式按字母x的降幂排列,就是要求x的指数从高到低排列.【详解】A. -5x2-x2+2x2,指数相同,不符合条件;B. ax3-2bx+cx2,没有按x降幂排列;C. -x2y-2xy2+y2,有按x降幂排列;D. x2y-3xy2+x3-2y2,没有按x降幂排列.故选:C【点睛】本题考核知识点:字母的降幂排列. 解题关键点:理解幂的意义.6.B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式.【详解】在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选:B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.7.C【解析】分析:根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.详解:∵多项式x|m|−(m−4)x+7是关于x的四次三项式,∴|m|=4,-(m-4)≠0,∴m=-4.故选:C.点睛:本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.8.A【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据数轴上点的位置得:b<a<0<c,∴a+b<0,c﹣a>0,b-c<0,则原式=﹣a﹣a﹣b+c﹣a+b﹣c=﹣3a.故选A.【点睛】本题考查了整式的加减,熟练掌握运算法则是解答本题的关键.9.A【解析】【分析】利用互为相反数两数之和为0列出关系式,根据非负数的性质求出x与y的值,原式去括号合并后代入计算即可求出值.【详解】∵|x﹣4|与(y+3)2互为相反数,即|x﹣4|+(y+3)2=0,∴x=4,y=﹣3,则原式=2x+2y﹣x=x+2y=4﹣6=﹣2.故选A.【点睛】本题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解答本题的关键.10.B【解析】分析:用N-M,去括号合并同类项后,根据差的符号情况可判断M与N的大小关系.详解:M=4x2-x+1,N=5x2-x+3,∴N-M=(5x2-x+3)-(4x2-x+1)=5x2-x+3-4x2+x-1=x2+2≥0,∴M<N.故选B.点睛:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11.A【解析】【分析】将等式右边的已知项移到左边,再去括号,合并同类项即可.【详解】依题意,空格中的一项是:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)﹣(5a2﹣6b2)=2a2+3ab﹣b2+3a2﹣ab﹣5b2﹣5a2+6b2=2ab.故选A.【点睛】本题考查了整式的加减运算.解决此类题目的关键是运用移项的知识,同时熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.12.C【解析】分析:注意认真观察图形,根据图形很容易发现规律:第n个图形是4n+1,可得答案..详解:第一个图需要5根.第二个图需要9根.比第一个图多4根.依此类推,第n个图中需要5+4(n-1)=4n+1.故选:C.点睛:此题考查了图形的变化类,关键是从图中特殊的例子推理得出一般的规律,本题的规律是每个图案都比上一个图案多一个五边形,但只增加4根火柴.13.4【解析】【分析】单项式就是数与字母的乘积,数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,据此即可求解.【详解】单项式的系数是:,次数是:1+3=4.故答案为:;4.【点睛】本题主要考查了单项式的系数与次数的定义,在写系数时,注意不要忘记前边的符号是解答此题的关键.14.-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】系数是-2,次数是3的单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.3n【解析】【分析】中间数为n,分别表示出其它两个数,求和即可.【详解】由题意得,其它两个数为:n-2,n+2,则三个数的和=n-2+n+n+2=3n.故答案为:3n.【点睛】本题考查了整式的加减,关键是表示出这三个连续奇数,属于基础题.16.336【解析】分析:根据单项式、多项式、整式的概念解答即可.详解:3xy2,m,2是单项式;6a2-a+3,4x2yz-xy2,是多项式;3xy2,m,6a2-a+3,2,4x2yz-xy2,是整式;,的分母中含有字母,不是整式(是分式).故答案为:3,3,6.点睛:本题考查了整式、单项式、多项式的识别,只含有加、减、乘、乘方的代数式叫做整式;其中不含有加减运算的整式叫做单项式,单独的一个数或衣蛾字母也是单项式;含有加减运算的整式叫做多项式.17.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为:118.x2﹣3xy+2y2.【解析】【分析】根据括号前是正号,去掉括号及正号,各项都不变,括号前是负号,去掉括号及负号,各项都变号,可去括号,再根据系数相加字母部分不变,合并同类项.【详解】原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=3x2﹣2x2﹣xy﹣2xy﹣2y2+4y2= x2﹣3xy+2y2.【点睛】本题考查了去括号与添括号,根据法则去括号添括号是解题的关键.19.(1)﹣3x2+5x+1;(2)3x3﹣7x2﹣3;(3)x2﹣21x+15.【解析】试题分析:(1)根据整式的加减法,合并同类项即可;(2)根据整式的加减法,先去括号,再合并同类项即可;(3)根据整式的加减法,先根据乘法分配律去括号,再合并同类项即可.试题解析:(1)5x2+x+3+4x﹣8x2﹣2=(5-8)x2+(1+4)x+(3-2)=-3x2+5x+1(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)= 2x3﹣3x2﹣3+x3-4x2=3 x3﹣7x2-3(3)3 (x2﹣5x+1)﹣2 (3x﹣6+x2)=3x2﹣15x+3-6x+12-2x2=x2-21x+1520.【解析】【分析】根据已知条件得出2a+1+4=0,﹣b=0,求出a、b的值,再去括号,合并同类项,最后代入求值即可.【详解】∵关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项,∴2a+1+4=0,﹣b=0,∴a=﹣2.5,b=0,∴3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)=3a2﹣6b2﹣6﹣2a2+4b2+6=a2﹣2b2=(﹣2.5)2﹣2×02=.【点睛】本题考查了整式的加减和求值,解答此题的关键是能根据整式的加减法则进行化简,难度不21.(1)﹣7x﹣5y;(2)-1.【解析】分析:(1)、根据多项式的减法计算法则得出答案;(2)、根据非负数的性质得出x 和y的值,然后根据B-2A=a进行代入得出a的值.详解:解:(1)、B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y(2)、∵|x﹣2a|+(y﹣3)2=0 ∴x=2a,y=3又B﹣2A=a,∴﹣7×2a﹣5×3=a,∴a=﹣1.点睛:本题主要考查的是多项式的减法计算法则,属于基础题型.在解答这个问题的时候我们一定要注意去括号的法则.22.(1)规律是:,,,,…;(2)第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍;(3)【解析】【分析】通过观察归纳可得:第①行数规律是序数平方减1,即,, ,,….通过观察归纳可得: 第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍.【详解】(1)规律是:,,,,….(2)第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍,(3)=【点睛】本题主要考查数字规律,解决本题的关键是要熟练掌握分析数字规律的方法.23.2【解析】【分析】原式去括号合并得到结果,即可作出判断.解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3.因为化简后的结果中不含x,所以原式的值与x的取值无关.当x=,y=-1时,原式=-2×(-1)3=2.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.。

人教版七年级数学上册单元测试卷第二章 《整式的加减》(含答案)

人教版七年级数学上册单元测试卷第二章 《整式的加减》(含答案)

人教版七年级数学上册单元测试卷第二章《整式的加减》一、选择题(共6小题,每小题4分,满分24分)1、整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b﹣1中单项式的个数有()A、2个B、3个C、4个D、5个2、在下列运算正确的是()A、2a+3b=5abB、2a﹣3b=﹣1C、2a2b﹣2ab2=0D、2ab﹣2ab=03、若代数式是五次二项式,则a的值为()A、2B、±2C、3D、±34、下列各组代数式中,是同类项的是()A、5x2y与xyB、﹣5x2y与yx2C、5ax2与yx2D、83与x35、下列各组中的两个单项式能合并的是()A、4和4xB、3x2y3和﹣y2x3C、2ab2和100ab2cD、6、某商品原价为100元,现有下列四种调价方案,其中0<n<m<100,则调价后该商品价格最低的方案是()A、先涨价m%,再降价n%B、先涨价n%,再降价m%C、行涨价%,再降价%D、先涨价%,再降价%二、填空题(共8小题,每小题4分,满分32分)8、去括号填空:3x﹣(a﹣b+c)= .9、多项式A:4xy2﹣5x3y4+(m﹣5)x5y3﹣2与多项式B:﹣2x n y4+6xy﹣3x﹣7的次数相同,且最高次项的系数也相同,则5m﹣2n= .10、一个长方形的一边为3a+4b,另一边为a+b,那么这个长方形的周长为.11、任写一个与是同类项的单项式:.12、设a﹣3b=5,则2(a﹣3b)2+3b﹣a﹣15的值是.13、已知a是正数,则3|a|﹣7a= .14、给出下列算式:32﹣12=8=8×1,52﹣32=16=8×2,72﹣52=24=8×3,92﹣72=32=8×4,…观察上面一系列等式,你能发现什么规律?设n(n≥1)表示自然数,用关于n的等式表示这个规律为:.三、解答题(共5小题,满分44分)15、化简:①(a+b+c)+(b﹣c﹣a)+(c+a﹣b);②(2x2﹣+3x)﹣4(x﹣x2+);③3a2﹣[8a﹣(4a﹣7)﹣2a2];④3x2﹣[7x﹣(﹣3+4x)﹣2x2].16、有一个两位数,它的十位数字是个位数字的8倍,则这个两位数一定是9的倍数,试说明理由.17、先化简,再求值:,其中,.18、(1)用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=5,h=4时,S的值.19、一艘轮船顺水航行3小时,逆水航行2小时,(1)已知轮船在静水中前进的速度是m千米/时,水流的速度是a千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?参考答案一、选择题(共6小题,每小题4分,满分24分)1、整式﹣3.5x3y2,﹣1,,﹣32xy2z,﹣x2﹣y,﹣a2b﹣1中单项式的个数有()A、2个B、3个C、4个D、5个考点:单项式。

第2章 整式的加减 人教版七年级数学上册单元测试卷(含解析)

第2章 整式的加减 人教版七年级数学上册单元测试卷(含解析)

人教版第二章整式的加减单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)小明比小华大2岁,比小强小4岁.如果小华是m岁,小强是( )A.m﹣2B.m+2C.m+4D.m+62.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2可以合并同类项,那么m和n的值分别为( )A.2,3B.3,2C.﹣3,2D.3,﹣23.(3分)为落实“双减”政策,某校利用课后服务开展形式多样的活动,七、八、九年级共有50人参加书法学习,其中七年级的人数比八年级人数的2倍少1人,设八年级的人数为x人,则九年级的人数为( )A.48﹣3x B.49﹣3x C.51﹣3x D.52﹣3x4.(3分)多项式(m﹣3)x|m﹣1|+mx﹣3是关于x的二次三项式,则m取值为( )A.3B.﹣1C.3或﹣1D.﹣3或15.(3分)下列说法错误的是( )A.π是单项式B.单项式﹣n的系数是﹣1C.单项式的次数是7D.是二次二项式6.(3分)用小棒按下面的规律拼摆八边形.萌萌、亮亮、乐乐、欢欢通过观察图形,找出了拼摆成的八边形的数量n和需要小棒的数量a之间的关系.下面说法正确的是( )A.萌萌:a=16+16n(n>3)B.亮亮:a=7n+1C.乐乐:a=8n﹣1D.欢欢:a=7n+n7.(3分)当a=1,b=﹣1时,代数式a+2b+2(a+2b)+1的值为( )A.3B.1C.0D.﹣28.(3分)如图,在一个直径是a+b的圆形纸板上挖去两个直径分别是a和b的小圆形纸板,则剩余纸板的面积是( )A.B.2πab C.D.π(a2﹣b2)9.(3分)探索规律:观察下面的一列单项式:x、﹣2x2、4x3、﹣8x4、16x5、…,根据其中的规律得出的第8个单项式是( )A.﹣64x8B.64x8C.128x8D.﹣128x810.(3分)在式子,﹣4x,abc,π,,0.81,,0中,单项式共有( )A.5个B.6个C.7个D.8个二.填空题(共6小题,满分18分,每小题3分)11.(3分)如果﹣4x3y n﹣4与3x3y是同类项,那么n= .12.(3分)一支铅笔的价钱是a元,一块橡皮的价钱是b元,买3支铅笔和7块橡皮应付 元.13.(3分)若a+2b﹣1=0,则3a+6b的值是 .14.(3分)如图,正方形中阴影部分的面积为 .15.(3分)已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|= .16.(3分)小明从东面上山西面下山,已知下山的路程是上山路程的三倍,上山的速度为a,下山的速度为b,则小明全程的平均速度为 .三.解答题(共9小题,满分72分)17.(6分)计算(1)x2﹣5y﹣4x2+y﹣1;(2)7a+3(a﹣3b)﹣2(b﹣3a).18.(6分)先化简,再求值:2(6y2﹣3y+2)+2(y﹣1)﹣(2+12y2),其中.19.(8分)已知x,y为有理数,现规定一种新运算“※”,满足x※y=2x﹣y.(1)求3※4的值;(2)求(2※2a)※(﹣3a)的值.20.(8分)每年的6月5日是“世界环境日”,中国的主题是“建设人与自然和谐共生的现代化“,希望小学组织六年级同学开展收集废弃的塑料瓶活动,男生一共收集了180个,女生收集的个数是男生的2.5倍,女生一共收集了多少个?21.(8分)公租房作为一种保障性住房,租金低、设施全受到很多家庭的欢迎.某市为解决市民的住房问题,专门设计了如图所示的一种户型,并为每户卧室铺了木地板,其余部分铺了瓷砖.(1)木地板和瓷砖各需要铺多少平方米?(2)若a=1.5,b=2,地砖的价格为100元/平方米,木地板的价格为200元/平方米,则每套公租房铺地面所需费用为多少元?22.(8分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)用含x,y的代数式表示阴影部分的周长.(2)用含x,y的代数式表示阴影部分的面积.(3)x=2,y=2.5时,计算阴影部分的面积.23.(8分)佳佳做一道题“已知两个多项式A,B,计算A﹣B”.佳佳误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请解决下列问题:(1)求出A;(2)求A﹣B的正确答案.24.(10分)南阳万德隆超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠方法低于200元不予优惠低于500元但不低于200元9折优惠不低于500元其中500元部分给予9折优惠,超过500元部分给予8折优惠(1)你一次性购物680元,那么实际付款 元;(2)某顾客在该超市一次性购物m元,当m小于500但不小于200时,他实际付款 元,当m大于或等于500时,他实际付款 元;(用含m的代数式表示)(3)班主任为了筹备元旦晚会,如果两次购物合计960元,第一次购物x(200<x<400)元,用含x的代数式表示两次购物班主任实际付款多少元?25.(10分)定义如下:存在数a,b,使得等式+=成立,则称数a,b为一对“互助数”,记为(a,b).比如:(0,0)是一对“互助数”.(1)若(1,b)是一对“互助数”,则b的值为 ;(2)若(﹣2,x)是一对“互助数”,求代数式(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)的值;(3)若(m,n)是一对“互助数”,满足等式m﹣n﹣(6m+2n﹣2)=0,求m和n的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)小明比小华大2岁,比小强小4岁.如果小华是m岁,小强是( )A.m﹣2B.m+2C.m+4D.m+6【解答】解:根据题意知,小明的年龄为(m+2)岁,则小强的年龄为m+2+4=m+6(岁),故选:D.2.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2可以合并同类项,那么m和n的值分别为( )A.2,3B.3,2C.﹣3,2D.3,﹣2【解答】解:由题意得:2m﹣5=1,n+2=3n﹣2,∴m=3,n=2,故选:B.3.(3分)为落实“双减”政策,某校利用课后服务开展形式多样的活动,七、八、九年级共有50人参加书法学习,其中七年级的人数比八年级人数的2倍少1人,设八年级的人数为x人,则九年级的人数为( )A.48﹣3x B.49﹣3x C.51﹣3x D.52﹣3x【解答】解:由题意得:七年级参加书法学习的人数为:(2x﹣1)人,则九年级参加书法学习的人数为:50﹣(2x﹣1)﹣x=(51﹣3x)人,故选:C.4.(3分)多项式(m﹣3)x|m﹣1|+mx﹣3是关于x的二次三项式,则m取值为( )A.3B.﹣1C.3或﹣1D.﹣3或1【解答】解:∵多项式(m﹣3)x|m﹣1|+mx﹣3是关于x的二次三项式,∴|m﹣1|=2,∴m=3,或m=﹣1,∵m﹣3≠0,∴m=﹣1,故选:B.5.(3分)下列说法错误的是( )A.π是单项式B.单项式﹣n的系数是﹣1C.单项式的次数是7D.是二次二项式【解答】解:A、π是单项式,故正确,不合题意;B、单项式﹣n的系数是﹣1,故正确,不合题意;C、单项式的次数是7,故正确,不合题意;D、不是整式,故错误,符合题意;故选:D.6.(3分)用小棒按下面的规律拼摆八边形.萌萌、亮亮、乐乐、欢欢通过观察图形,找出了拼摆成的八边形的数量n和需要小棒的数量a之间的关系.下面说法正确的是( )A.萌萌:a=16+16n(n>3)B.亮亮:a=7n+1C.乐乐:a=8n﹣1D.欢欢:a=7n+n【解答】解:根据题意,拼摆成n个八边形需要小棒的数量a=8+7(n﹣1)=7n+1,故选:B.7.(3分)当a=1,b=﹣1时,代数式a+2b+2(a+2b)+1的值为( )A.3B.1C.0D.﹣2【解答】解:a+2b+2(a+2b)+1=a+2b+2a+4b+1=3a+6b+1,当a=1,b=﹣1时,原式=3×1+6×(﹣1)+1=3+(﹣6)+1=3+1﹣6=﹣2,故选:D.8.(3分)如图,在一个直径是a+b的圆形纸板上挖去两个直径分别是a和b的小圆形纸板,则剩余纸板的面积是( )A.B.2πab C.D.π(a2﹣b2)【解答】解:由题意可得:剩余纸板的面积为:π()2﹣π()2﹣π()2==ab.故选:C.9.(3分)探索规律:观察下面的一列单项式:x、﹣2x2、4x3、﹣8x4、16x5、…,根据其中的规律得出的第8个单项式是( )A.﹣64x8B.64x8C.128x8D.﹣128x8【解答】解:根据题意得:第8个单项式是﹣27x8=﹣128x8.故选:D.10.(3分)在式子,﹣4x,abc,π,,0.81,,0中,单项式共有( )A.5个B.6个C.7个D.8个【解答】解:式子,﹣4x,abc,π,0.81,0是单项式,共6个,故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)如果﹣4x3y n﹣4与3x3y是同类项,那么n= 5 .【解答】解:∵﹣4x3y n﹣4与3x3y是同类项,∴n﹣4=1,解得:n=5.故答案为:5.12.(3分)一支铅笔的价钱是a元,一块橡皮的价钱是b元,买3支铅笔和7块橡皮应付 (3a+7b) 元.【解答】解:一支铅笔的价钱是a元,一块橡皮的价钱是b元,买3支铅笔和7块橡皮应付(3a+7b)元.故答案为:(3a+7b).13.(3分)若a+2b﹣1=0,则3a+6b的值是 3 .【解答】解:∵a+2b﹣1=0,∴a+2b=1,∴原式=3(a+2b)=3×1=3.故答案为:3.14.(3分)如图,正方形中阴影部分的面积为 2ab .【解答】解:.故答案为:2ab.15.(3分)已知数a,b,c在数轴上的位置如图所示,化简|a﹣b|+|a+b+c|﹣|c﹣b|= ﹣3b .【解答】解:由数轴上点的位置可得:c<b<0<a,且|a|<|b|,∴a﹣b>0,c﹣b<0,a+b+c<0,则|a﹣b|+|a+b+c|﹣|c﹣b|=a﹣b﹣a﹣b﹣c+c﹣b=﹣3b.故答案为:﹣3b16.(3分)小明从东面上山西面下山,已知下山的路程是上山路程的三倍,上山的速度为a,下山的速度为b,则小明全程的平均速度为 .【解答】解:设上山的路程是“1”,则下山的路程是“3”.∵上山的速度为a,下山的速度为b,∴上山的时间为,下山的时间,总时间为:+=,小明全程的平均速度为:(1+3)÷=,故答案为:.三.解答题(共9小题,满分72分)17.(6分)计算(1)x2﹣5y﹣4x2+y﹣1;(2)7a+3(a﹣3b)﹣2(b﹣3a).【解答】解:(1)原式=x2﹣4x2+y﹣5y﹣1=﹣3x2﹣4y﹣1;(2)原式=7a+3a﹣9b﹣2b+6a=16a﹣11b;18.(6分)先化简,再求值:2(6y2﹣3y+2)+2(y﹣1)﹣(2+12y2),其中.【解答】解:2(6y2﹣3y+2)+2(y﹣1)﹣(2+12y2)=12y2﹣6y+4+2y﹣2﹣2﹣12y2=﹣4y,∵,∴原式=﹣4×=﹣2.19.(8分)已知x,y为有理数,现规定一种新运算“※”,满足x※y=2x﹣y.(1)求3※4的值;(2)求(2※2a)※(﹣3a)的值.【解答】解:(1)3※4=2×3﹣4=6﹣4=2.(2)2※2a=2×2﹣2a=4﹣2a,(4﹣2a)※(﹣3a)=2×(4﹣2a)﹣(﹣3a)=8﹣4a+3a=8﹣a.20.(8分)每年的6月5日是“世界环境日”,中国的主题是“建设人与自然和谐共生的现代化“,希望小学组织六年级同学开展收集废弃的塑料瓶活动,男生一共收集了180个,女生收集的个数是男生的2.5倍,女生一共收集了多少个?【解答】解:180×2.5=450(个),答:女生一共收集了450个.21.(8分)公租房作为一种保障性住房,租金低、设施全受到很多家庭的欢迎.某市为解决市民的住房问题,专门设计了如图所示的一种户型,并为每户卧室铺了木地板,其余部分铺了瓷砖.(1)木地板和瓷砖各需要铺多少平方米?(2)若a=1.5,b=2,地砖的价格为100元/平方米,木地板的价格为200元/平方米,则每套公租房铺地面所需费用为多少元?【解答】解:(1)铺木地板的面积为:(5b﹣2b﹣b)×2a+(5a﹣2a)×2b=2b×2a+3a×2b=4ab+6ab=10ab(平方米);铺瓷砖的面积为:5a×5b﹣10ab=15ab(平方米).答:木地板需要铺10ab平方米,瓷砖需要铺15ab平方米.(2)当a=1.5,b=2时,10ab=10×1.5×2=30(平方米),15ab=15×1.5×2=45(平方米),∵地砖的价格为100元/平方米,木地板的价格为200元/平方米,∴每套公租房铺地面所需费用为:30×200+45×100=10500(元).答:每套公租房铺地面所需费用为10500元.22.(8分)某种T型零件尺寸如图所示(左右宽度相同),求:(1)用含x,y的代数式表示阴影部分的周长.(2)用含x,y的代数式表示阴影部分的面积.(3)x=2,y=2.5时,计算阴影部分的面积.【解答】解:(1)根据题意得:2(y+3y+2.5x)=5x+8y;(2)根据题意得:y•2.5x+3y•0.5x=4xy;(3)当x=2,y=2.5时,S=4×2×2.5=20.23.(8分)佳佳做一道题“已知两个多项式A,B,计算A﹣B”.佳佳误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请解决下列问题:(1)求出A;(2)求A﹣B的正确答案.【解答】解:(1)∵A+B=9x2﹣2x+7,B=x2+3x﹣2∴A=9x2﹣2x+7﹣(x2+3x﹣2)=9x2﹣2x+7﹣x2﹣3x+2=8x2﹣5x+9;(2)A﹣B=8x2﹣5x+9﹣(x2+3x﹣2)=8x2﹣5x+9﹣x2﹣3x+2=7x2﹣8x+11.24.(10分)南阳万德隆超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠方法低于200元不予优惠低于500元但不低于200元9折优惠不低于500元其中500元部分给予9折优惠,超过500元部分给予8折优惠(1)你一次性购物680元,那么实际付款 594 元;(2)某顾客在该超市一次性购物m元,当m小于500但不小于200时,他实际付款 0.9x 元,当m大于或等于500时,他实际付款 (0.8x+50) 元;(用含m的代数式表示)(3)班主任为了筹备元旦晚会,如果两次购物合计960元,第一次购物x(200<x<400)元,用含x的代数式表示两次购物班主任实际付款多少元?【解答】解:(1)∵680>500,∴其中500元部分给予9折优惠,超过500元部分给予8折优惠.∴王老师一次性购物680元,他实际付款:500×90%+(680﹣500)×80%=450+144=594(元).故答案为:594.(2)当m小于500但不小于200时,他实际付款(0.9m元);当m大于或等于500时,他实际付款:500×90%+80%(m﹣500)=(0.8m+50)元.故答案为:0.9m;(0.8m+50);(3)∵第一次购物x元,∴第二次购物(960﹣x)元.∵200<x<400,∴560≤960﹣x≤760.∴两次购物王老师实际付款:90%x+500×90%+(960﹣x﹣500)×80%=0.9x+450+368﹣0.8x=(0.1x+818)元.25.(10分)定义如下:存在数a,b,使得等式+=成立,则称数a,b为一对“互助数”,记为(a,b).比如:(0,0)是一对“互助数”.(1)若(1,b)是一对“互助数”,则b的值为 ﹣4 ;(2)若(﹣2,x)是一对“互助数”,求代数式(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)的值;(3)若(m,n)是一对“互助数”,满足等式m﹣n﹣(6m+2n﹣2)=0,求m和n的值.【解答】解:(1)∵(1,b)是一对“互助数”,∴+=,解得:b=﹣4,故答案为:﹣4;(2)∵(﹣2,x)是一对“互助数”,∴﹣1+=,解得:x=8,(﹣x2+3x﹣1)﹣(﹣x2+5x﹣15)==,当x=8时,原式=+16+2=﹣14;(3)∵(m,n)是一对“互助数”,∴,化简得:n=﹣4m①,由m﹣n﹣(6m+2n﹣2)=0化简得,②,把①代入②中得,,解得:m=,则n==2,∴m=,n=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章整式的加减单元测试卷
(时间:45分钟,满分:100分)
一、选择题(每小题4分,共32分)
1.下列各式中不是单项式的是()
A. B.-
C.0
D.
2.若-3x m+1y2 017与2x2 015y n是同类项,则|m-n|的值是()
A.0
B.1
C.2
D.3
3.下列运算正确的是()
A.3x3-5x3=-2x
B.6x3-2x3=3x
C.3x(x-4)=3x2-12x
D.-3(2x-4)=-6x-12
4.组成多项式6x2-2x+7的各项是()
A.6x2-2x+7
B.6x2,2x,7
C.6x2-2x,7
D.6x2,-2x,7
5.将2(x+y)+3(x+y)-4(x+y)合并同类项,得()
A.x+y
B.-x+y
C.-x-y
D.x-y
6.若多项式2x2+3y+7的值为8,则多项式6x2+9y+8的值为()
A.1
B.11
C.15
D.23
7.下列各项中的数量关系不能用式子2a+3b表示的是()
A.小红去商场买了2个单价为a元的本子和3支单价为b元的笔,她共花了多少钱?
B.全班同学都报名参加了课外活动小组,其中报2个小组的有a名同学,报3个小组的有b名同学,全班共有多少名同学?
C.小亮看书特别快,他借了一本课外书,5天就看完了,他有两天是每天看a页,有三天是每天看b页,这本书一共有多少页?
D.为了奖励“学雷锋先进个人”,学校买了两种奖品,其中2元的笔记本a本,3元的笔记本b本,学校买这些奖品共花了多少钱?
8.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n(n是正整数)的结果为()
1+8=?1+8+16=?1+8+16+24=?
A.(2n+1)2
B.(2n-1)2
C.(n+2)2
D.n2
二、填空题(每小题4分,共16分)
9.某地为了改造环境,计划从2016年开始用五年时间植树绿化荒山.如果每年植树绿化x公顷荒山,那么这五年内植树绿化荒山公顷.
10.同类项-a3b,3a3b,-a3b的和是.
11.三个连续奇数,设中间一个为2n+1,则这三个数的和是.
12.如图,它是一个程序计算器,用字母及符号把它的程序表达出来,如果输入m=3,那么输出.
三、解答题(共52分)
13.(10分)规定=a-b+c-d,试计算.
14.(10分)先化简,再求值:
-(xy-x2)+3+2,其中x=-2,y=.
15.(10分)用火柴棒按下列方式搭建三角形:
(1)填表:
(2)当三角形的个数为n时,火柴棒的根数为多少?
(3)当n=1 008时,火柴棒的根数是多少?
16.(10分)张华在一次测验中计算一个多项式加上5xy-3yz+2xz时,不小心看成减去5xy-
3yz+2xz,计算出错误结果为2xy+6yz-4xz,试求出原题目的正确答案.
17.(12分)一辆出租车从A地出发,在一条东西走向的街道上往返行驶,每次行驶的路程(记向东为正)记录如下(9<x<26,单位:km):
(1)说出这辆出租车每次行驶的方向;
(2)这辆出租车一共行驶了多少路程?
参考答案
一、选择题
1.D
2.D由同类项的定义可知,m+1=2015,n=2017,可求得m=2014,n=2017.
3.C∵3x3-5x3=-2x3,6x3-2x3=4x3,3x(x-4)=3x2-12x,-3(2x-4)=-6x+12,
∴运算正确的是C.
4.D
5.A可把x+y看成一个整体进行合并.
6.B由2x2+3y+7=8,得2x2+3y=1,
所以6x2+9y+8=3(2x2+3y)+8=11.
7.B
8.A∵1+8=9=32,1+8+16=25=52,1+8+16+24=49=72,…,
∴1+8+16+24+…+8n=(2n+1)2.
二、填空题
9.5x
10.a3b-a3b+3a3b+
=a3b=a3b.
11.6n+3其余两个奇数为2n-1,2n+3,它们的和是(2n-1)+(2n+1)+(2n+3)=2n-
1+2n+1+2n+3=6n+3.
12.-1
三、解答题
13.解:=(xy-3x2)-(-2xy-x2)+(-2x2-3)-(-5+xy)=xy-3x2+2xy+x2-2x2-3+5-xy=-4x2+2xy+2.
14.解:原式=-xy+x2+3y2-x2+xy-y2=-x2+2y2.
当x=-2,y=时,
原式=-(-2)2+2×
=-4+=-.
15.解:(1)3,5,7,9.
(2)(2n+1)根.
(3)当n=1008时,2n+1=2017.
答:当n=1008时,火柴棒的根数是2017.
16.解:2xy+6yz-4xz+2(5xy-3yz+2xz)=2xy+6yz-4xz+10xy-6yz+4xz=12xy.
17.解:(1)第1次向东,第2次向西;第3次向东,第4次向西.
(2)因为9<x<26,
所以总路程为
|x|++|x-5|+|2(9-x)| =x+x+(x-5)+2(x-9) =x+x-5+2x-18=km.。

相关文档
最新文档