高速铁路无砟轨道施工
高速铁路CRTSⅢ型板式无砟轨道底座施工工法(2)
高速铁路CRTSⅢ型板式无砟轨道底座施工工法高速铁路CRTSⅢ型板式无砟轨道底座施工工法一、前言高速铁路CRTSⅢ型板式无砟轨道底座施工工法是一种先进的铁路建设工法,运用了板式无砟轨道底座技术,旨在提高高速铁路的施工效率和建设质量。
本文将对该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例进行详细介绍,以便读者深入了解该工法的理论依据和实际应用。
二、工法特点CRTSⅢ型板式无砟轨道底座施工工法具有以下特点:1. 施工速度快:采用预制的板式无砟轨道底座,可以快速高效地完成施工,节约了大量的时间和人力资源。
2. 施工质量高:预制的板式无砟轨道底座具备优良的稳定性和承载能力,确保了高速铁路的运行安全和舒适度。
3. 环保节能:板式无砟轨道底座采用了可回收的材料,减少了对自然资源的消耗,同时减少了施工过程中的噪音和污染。
4. 维护方便:板式无砟轨道底座能够灵活拆卸和更换,方便后期的维护和修复工作。
三、适应范围CRTSⅢ型板式无砟轨道底座施工工法适用于高速铁路的建设,特别适用于地质条件较好的区域和平整的土地。
它可以满足不同线路和不同地区的需求,灵活应用于各种铁路建设项目。
四、工艺原理CRTSⅢ型板式无砟轨道底座施工工法的工艺原理是通过对施工工法与实际工程之间的联系和采取适当的技术措施,实现铺设板式无砟轨道底座的目标。
具体包括以下几个方面:1. 土地准备:施工前对土地进行必要的平整和处理,确保施工基础的均匀性和稳定性。
2. 基础处理:根据设计要求,对基础进行合理的处理,确保基础的承载能力和稳定性。
3. 底座安放:将预制的板式无砟轨道底座按照设计要求进行精确的安放和拼接,保证底座的整体性和稳定性。
4. 固定连接:通过钢筋混凝土柱和膨胀螺栓等固定连接件,将底座与基础进行牢固的连接,确保底座的稳定性和可靠性。
五、施工工艺CRTSⅢ型板式无砟轨道底座施工工艺主要包括以下几个阶段:1. 土地平整:对施工区域的土地进行平整处理,确保施工基础的均匀性和稳定性。
高速铁路无砟轨道路基封闭层施工工法
高速铁路无砟轨道路基封闭层施工工法高速铁路无砟轨道路基封闭层施工工法一、前言高速铁路的发展对基础设施建设提出了更高的要求,其中无砟轨道路基封闭层施工工法作为一种创新技术正在得到广泛应用。
本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例。
二、工法特点高速铁路无砟轨道路基封闭层施工工法的主要特点是:1. 与传统的石子碎石轨床相比,无砟轨道路基封闭层能够提供更稳定、更平顺的铁路运行条件;2. 技术成熟、应用广泛,已在多个高速铁路项目中成功施工;3. 对环境友好,能够减少噪音和振动,提高铁路运行的舒适性;4. 具有较长的使用寿命,减少了后期维护和修复的成本。
三、适应范围该工法适用于高速铁路的新建和改建工程,能够满足设计要求,并适应各种地质和气候条件。
四、工艺原理高速铁路无砟轨道路基封闭层施工工法的工艺原理是通过采取一系列的技术措施,保证路基的稳定性和平顺性,为后续的轨道安装提供良好的基础。
具体措施包括:1. 路基平整:去除路基上的杂物和不平整面,确保路基的均匀性和平整度;2. 封闭层材料的选择:选择寿命长、质量好的材料作为封闭层的填料,确保路基的稳定性和耐久性;3. 施工工艺的选择:根据实际工程要求选择合适的施工工艺,如喷射法、涂抹法等;4. 施工工艺的优化:通过优化施工工艺,提高施工效率和质量,减少人工成本和时间成本。
五、施工工艺高速铁路无砟轨道路基封闭层施工工法包括以下几个施工阶段:1. 路基准备:清理路基上的杂物,平整路基表面;2. 封闭层材料运输:将封闭层材料运输到施工现场,保证施工的顺利进行;3. 施工工艺选择:根据实际情况选择合适的施工工艺,如涂抹法、喷射法等;4. 施工工艺实施:根据选定的施工工艺进行具体的施工操作,包括材料的铺设、压实等;5. 质量检查:对施工工艺进行质量检查,包括封闭层厚度、均匀性等方面的检查;6. 完工验收:完成施工任务后,进行工程的验收。
浅谈高速铁路的无砟轨道施工技术
大陆桥视野·2016年第4期 111高速铁路轨道主要类型分为:有砟轨道和无砟轨道,无砟轨道有着很多优点,使用周期比较长,比其它轨道变形程序也小,有着耐用、稳定等特性,从而满足了在无砟轨道上运行的低成本运营,这也是高科技发展的必然选择。
但是,我国铁路在无砟轨道施工技术方面尚缺乏成熟经验,要建成我国一流的高速铁路,实现铁路与国际接轨的目标,还需要结合实际对无砟轨道施工技术继续进行探索。
一、无砟轨道施工前的准备工作无砟轨道是一项最新的技术,所以为了有效的保证施工的质量,需要在施工前对于所用参加施工的人员进行岗前培训,合格后持证上岗。
要在施工前对于施工中所需要的机械设备进行购置,并对其性能进行测试,合格后才可以在施工中进行应用。
同时在无砟轨道施工前还需要做好沉降分析评估,评估合格后才能进入具体的施工阶段。
原材料进场检验与存放严格控制好材料进厂的质量关,对于无砟轨道施工中所需要的原材料及部件在进场时,需要具有相关的质量证明文件,并做好相关的抽检工作,确保材料及部件合格后才能允许进 场。
材料进场后要进行分类,并标识清楚,做好材料及部件存放场地的相应措施,使其存放时能够满足相关的技术要求。
无砟轨道施工前需对桥面进行接口验收,接口验收的要求对桥面高程、桥面中线、桥面平整度、相邻梁端高差、桥面拉毛、桥面预埋件、桥面清洁度、桥面排水坡及泄水孔等项检验。
二、无砟轨道底座施工,道床板施工.(一)无砟轨道底座施工1.底座板放样。
底座板放样采用全站仪和水准仪进行。
直线地段底座板边线可成段多孔一次放样并弹设模板施工墨线,在此基础上,根据梁长、浅谈高速铁路的无砟轨道施工技术刘泽文 / 中铁三局集团有限公司运输工程分公司【摘 要】近年来,伴随着国家综合国力的全面提升,我国高速铁路建设取得历史性跨越,进入全面建设时期。
无砟轨道作为高速铁路的重要组成部分,它的施工质量和精度控制直接关系到运营阶段的行车安全,是保证列车正常运行的关键环节。
高速铁路无砟轨道路基封闭层施工工法(2)
高速铁路无砟轨道路基封闭层施工工法高速铁路无砟轨道路基封闭层施工工法一、前言高速铁路无砟轨道路基是高速铁路建设中的重要组成部分,其性能直接影响着铁路线路的安全、平稳和舒适运行。
其中,封闭层施工工法作为高速铁路无砟轨道路基中的一种重要施工技术,其优势在于能够有效提高路基的稳定性和承载力,具有广泛的应用前景。
二、工法特点无砟轨道路基封闭层施工工法相比传统的路基工程有以下几个显著特点:1. 高强度:封闭层采用高强度材料,能够有效地提高路基的承载力,保证轨道的稳定性和安全性。
2. 高耐久性:封闭层材料具有较好的抗老化和耐久性能,能够有效抵抗外界环境的影响,延长路基的使用寿命。
3. 快速施工:相比传统路基工程,无砟轨道路基封闭层施工工法施工周期短,能够快速投入使用,提高工程进度。
4. 环保节能:封闭层采用环保材料,对环境无污染,符合可持续发展的要求。
三、适应范围无砟轨道路基封闭层施工工法适用于各种土地条件下的高速铁路建设,特别是在土壤条件较差、平整度要求较高的区域具有更好的适应性。
四、工艺原理无砟轨道路基封闭层施工工法的基本原理是通过在原有路基上铺设一层高强度、高耐久性的封闭层材料,增加路基承载力,提高轨道的平稳性和安全性。
这种工法通过合理的材料选择、施工工艺和质量控制,能够确保施工的稳定性和质量达到设计要求。
五、施工工艺无砟轨道路基封闭层施工工法包括以下几个施工阶段:1. 路基准备:清理路基、修正地形和地貌,确保路基平整度满足施工要求。
2. 材料选择:选择适宜的封闭层材料,同时对其进行质量检测和合理的配比。
3. 施工工艺:采用机械设备将封闭层材料均匀地铺设在路基上,并通过辊压和振动等技术手段加固。
4. 质量控制:对施工过程中材料的质量进行监控,保证施工质量。
5. 验收和修复:对施工完成的封闭层进行验收,有问题的进行修复。
六、劳动组织无砟轨道路基封闭层施工工法的劳动组织包括施工队伍的组建、人员的培训和分工、施工进度的安排等,确保施工过程的协调和顺利进行。
高速铁路轨道施工技术—板式无砟轨道施工技术
施工控制测量
两布一膜及泡 沫板施工
底座板施工
轨道板施工
沥青水泥砂浆 灌注
剪切连接
钢轨铺设
侧向挡块施工
30
1.1 概述
路基段施工与桥梁段施工基本相同,主要区别有以下几点: (1)支承层无两布一膜滑动层、高强挤塑板以及钢筋。 (2)支承层直接浇注在路基基床表层上。 (3)路基上支承层施工无需设置临时端刺区、后浇注带等施工结构和工序。 (4)支承层需每隔2.5~5m 进行切缝处理,切缝深度至少10cm。
B|≤5mm。
轨道板与凸形挡台位置关系
(图片来源于道板精调 (1)将测量装置(自定心螺孔适配器、T型测量标架、螺栓孔速测标架
选择一种设备)放置于轨道板的固定位置上; (2) 用已设程序控制的全站仪测量放置在适配器或标架上的4个棱镜,
获取4个工位的调整量; (3) 按照4个显示器上的调整量用轨道板调整机具作相应调整; (4)重复精调作业步骤2和3,直至满足轨道板铺设允许偏差的要求。
目录
01 【 C R T S I 型 板 式 无 砟 轨 道 施 工 】
➢ 【混凝土底座施工】 ➢ 【凸型挡台施工】 ➢ 【轨道板铺设】 ➢ 【水泥乳化沥青砂浆及挡台树脂灌注】
1.1 概述
CRTSI型板式无砟轨道施工为自下而上施工。 施工技术主要包括四个部分: 1.混凝土底座施工 2.凸型挡台施工 3.轨道板铺设 4.水泥乳化沥青砂浆及挡台树脂灌注
凸型挡台树脂 (图片来源于网络)
(5)一个凸型挡台周围填充树脂必须一次性灌注完成;
(6)灌注后,凸型挡台填充树脂宜低于轨道板顶面5~10mm。
27
目录
01 【 C R T S I I 型 板 式 无 砟 轨 道 施 工 】
高速铁路无砟轨道及施工质量控制要点
高速铁路无砟轨道及施工质量控制要点一、高速铁路无砟轨道介绍高速铁路无砟轨道是指在铺设轨道时不使用传统的钢筋混凝土或木质枕木,而是采用一种名为“无砟轨道”的新型建材,使得轨距更加平稳,噪音更小、运行更平稳,同时大幅度降低了施工成本。
无砟轨道是一种利用砂、碎石、有机材料做成的复合材料,具备轻质、吸水性小、热胀冷缩系数小、抗拉强度高等优点。
二、高速铁路无砟施工质量控制要点2.1 预处理*土地开挖:在确保安全施工、确保车辆行驶平稳的基础上,可以通过挖掉所在区域必要的土质以及富含有害物质的杂质来创建基地。
这其中挖出来的石块将会被清理、筛选、超载运输至周围,被回收和再利用。
*沥青混合料制备:在施工的过程中,要确保使用合格的原材料,同时,在制作的时候也要确保沥青粘合剂的含量是正确的,同时确保沥青和其他建筑材料的比例是标准的。
建筑材料的比例会影响到整个工程的质量,所以必须要严格把控。
2.2 施工方式*无砟轨道枕木的安装:在施工的过程中需要对无砟轨道枕木进行安装,安装时要确保位置准确、牢固可靠,同时使用电钻对安装螺栓进行固定,防止在使用过程中发生松动。
*碾压:在对铁路进行铺设的过程中,碾压是必不可少的一个过程。
使用专用的铁路石子碾压机将砂和碎石固定在地基上,并保证铁路表面的平整度,碾压质量优良可以保证铁路的使用寿命,防止了车辆在行驶过程中出现颠簸和异响。
2.3 管理控制*现场管理:对现场的管理和控制是至关重要的。
现场管理应从原材料、工序、检验等环节入手,严格按照质量标准操作。
*质量控制:对于无砟轨道的质量控制是必要的。
这一方面包括了工序的控制、现场施工的监测、数据的统计和分析、工人的培训和督查等环节。
三、高速铁路无砟轨道的优点高速铁路无砟轨道已经成为中国高铁铁路建设的一个重要标志,它具备以下几个优点:*设备升级:无砟轨道采用了先进的加工设备,用于生产制造无砟轨道线路养护设备,提高设备的可靠性和效率。
*安全性提高:铁路无砟轨道大大降低了运营过程中车辆的推土和垮塌的风险,保证了列车的运行安全性。
高速铁路无砟轨道施工技术难点分析及问题处理
高速铁路无砟轨道施工技术难点分析及问题处理本文通过分析高速铁路无砟轨道施工技术的难点,以及无砟轨道施工过程中的一些常见问题及处理方法,对高速铁路无砟轨道施工关键技术及控制提出了一些建议。
为我国高速铁路无砟轨道施工技术快速发展提供借鉴。
标签:高速铁路;无砟轨道;施工技术;问题处理一、高速铁路无砟轨道施工技术的难点与普通铁路有砟轨道相比,高速铁路无砟轨道系统的施工工艺更为复杂,技术含量更高,其难点主要体现在以下几个方面:(1)无砟轨道基础地基沉降变形规律难以控制。
无砟轨道整体形态是通过扣件系统进行维持,因此,必须采取技术经济合理的处理措施保证轨道地基的稳定性。
(2)精密测量技术。
传统的测量技术已经无法满足高速铁路无砟轨道系统的施工建设需求,需要采用高精度的现代工程测量方法来保证无砟轨道线路平顺性。
(3)轨道平顺度控制。
高速铁路与普通铁路的最显著区别是需要一次性建成可靠、稳固的轨道基础工程和高平顺性的轨道结构。
轨道的高平顺性是实现列车高速运行的最基本条件。
道岔区无砟轨道施工应严格按相关规程进行,在保证无砟轨道的道岔间无缝的同时还要注意与不同区间、不同标段间无缝线路施工相互协调。
二、高速铁路CRTSⅡ型无砟轨道施工常见问题及处理方法(一)梁面处理梁面打磨及修补主要以梁端1.45m范围为重点进行修补。
1、常见遇到的问题梁端1.45m范围平整度要求2mm/1m,纵向长度保证1.45m,误差允许±5mm,但大多数1.45m范围平整度及长度不满足要求,必须处理。
且相邻梁端1.45m范围高差超过要求。
梁端1.45m范围与3.1m加高平台及剪力齿槽边高差为50mm,基本不满足要求。
2、处理方法梁端1.45m范围处理以打磨为主,如果相邻梁端1.45m范围高差大于1cm,则对较高一端采用风镐向下凿2cm,再采用修补砂浆修补找平,并保证与相邻梁端高差小于1cm。
若一端已凿到钢筋仍不能满足高差要求,则将另一端1.45m范围凿毛后用修补砂浆修补至高差满足要求。
高速铁路建设中的无砟轨道施工技术研究
高速铁路建设中的无砟轨道施工技术研究摘要:在高速铁路工程中,无砟轨道的可行性较佳,它能够大幅增强稳定性,轨道的刚度分布情况更为均匀,在后续运营中维护更为便捷,经过隧道区域时可以大幅缩减净空开挖量。
在这样大背景下,有必要对无砟轨道施工技术展开针对性分析。
关键词:高速铁路;无砟轨道;施工技术一、高速铁路无砟轨道建造工艺无砟轨道指的是将散碎型的碎石道床基础用水泥整体型基础结构来代替。
一般情况下,常规铁路路基结构的轨枕在进行铺垫时基本使用的是碎石料,即选取木枕部件或预制型水泥轨枕。
但无砟轨道中的轻轨选用的是水泥材料,并且在施工现场进行浇筑形成。
现阶段,我国高铁在建设时基本采用特制的钢筋混凝土材质的道床板,已很少在路基上使用煤炭碎片和石子。
因这种特制的道床板具有铺设效率高、运行平稳以及路轨构造快等特点,从而使其成为高速铁路建设的不二之选。
二、高速铁路无砟轨道施工技术特点无砟轨道具有的特点之一就是精准,即产生的偏差基本以毫米精度来核算,从而使高速铁路行驶中的平顺性以及稳定性得到满足。
还有无砟轨道这种建造工艺可使维修成本降低的同时也能降低粉尘污染,从而满足列车时速在250km以上的运行需求。
而无砟轨道施工的技术特点具体有这几点:①良好的结构平顺性和连续性。
无砟轨道在施工现场进行工业化浇注的部件有底座、下部基础以及道床板,同时无砟轨道的标准产品或工厂预制件有轨道板、扣件、微孔橡胶垫层以及双块式轨枕等,从而确保这些部件有着相同的性能。
而这样的组成结构使其轨道的弹性均匀性与结构连续性更优于有砟轨道,同时也使轨道的平顺性得到提升,为乘车质量的改善提供了良好条件;②良好的结构稳定性和恒定性。
在无砟轨道的所有结构中,作为无缝线路的轨道纵向阻力以及横向阻力对状态和材质多变的有碴道床不在依赖,因其具有的整体式轨下基础为无缝线路提供更恒定和更高的轨道横向阻力和轨道纵向阻力,使无砟轨道具有更长的使用寿命以及更好的耐久性;③良好的结构少维修性和耐久性。
高速铁路CRTSⅢ型板式无砟轨道智能精调施工工法
高速铁路CRTSⅢ型板式无砟轨道智能精调施工工法高速铁路CRTSⅢ型板式无砟轨道智能精调施工工法一、前言高速铁路是现代交通运输领域的重要组成部分,它的发展对于国际贸易和人员流动都有着重要的推动作用。
而作为高速铁路的基础设施之一,轨道的施工质量直接影响到列车的运行安全和乘客的舒适度。
为了提高轨道施工的质量和效率,高速铁路CRTSⅢ型板式无砟轨道智能精调施工工法应运而生。
本文将介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及相关的工程实例。
二、工法特点高速铁路CRTSⅢ型板式无砟轨道智能精调施工工法具有以下几个特点:1. 高精度:该工法采用了先进的激光测量技术和精确的控制系统,能够实现轨道的高精度定位。
2. 高效率:该工法使用了先进的施工设备和自动化工艺,能够提高施工效率,缩短施工周期。
3. 环保节能:该工法采用了无砟轨道技术,减少了使用传统轨道所需的大量砟石,降低了对环境的影响。
4. 维护成本低:该工法采用了优质的轨道材料和结构设计,提高了轨道的使用寿命,降低了维护成本。
三、适应范围高速铁路CRTSⅢ型板式无砟轨道智能精调施工工法适用于各类高速铁路线路的轨道施工,包括新建线路、重建线路以及提速改造工程。
四、工艺原理高速铁路CRTSⅢ型板式无砟轨道智能精调施工工法的核心是将施工工法与实际工程相结合,通过采取一系列的技术措施来实现高精度的施工。
具体来说,首先在施工前,需要对施工区域进行详细的测量和规划,在地面上设置基准点和参考线。
然后,根据设计要求进行坑槽开挖和基础处理工作。
接下来,通过布置线路档案信息,确定轨道的位置和高度。
施工过程中,通过使用先进的激光测量仪器对轨道进行精确的定位和计算,得出各个测点的坐标和高程信息。
然后,使用自动化施工设备进行轨道的铺设和调整,确保轨道的平整度和弧度满足设计要求。
最后,通过精密调整和测试,保证轨道的位置和高度的精度。
高速铁路高架站道岔埋入式无砟轨道板铺设施工工法(2)
高速铁路高架站道岔埋入式无砟轨道板铺设施工工法高速铁路高架站道岔埋入式无砟轨道板铺设施工工法一、前言高速铁路的发展,为交通运输提供了更高效、更安全的选择。
在高速铁路建设中,轨道的铺设是一项关键工作。
传统的铺轨方法通常需要设置道床和砟石等材料,而高速铁路高架站道岔埋入式无砟轨道板铺设工法则采用了一种更加先进和经济的方式,本文将对该工法进行介绍。
二、工法特点高速铁路高架站道岔埋入式无砟轨道板铺设工法的特点在于采用无砟轨道板铺设,即铺设一种特殊结构的轨道板,以减少对周围环境的影响。
同时,将道岔部分埋入地下,以提高线路的强度和稳定性。
这种工法具有施工快速、成本较低、使用寿命长等特点。
三、适应范围高速铁路高架站道岔埋入式无砟轨道板铺设工法适用于高速铁路高架站的铺轨工程,特别适用于城市建设密集区域,可以避免对建筑物和周围环境的破坏,同时能够提高线路的稳定性和安全性。
四、工艺原理通过将道岔部分埋入地下,可以减少对地表的挖掘和填土工作,减少施工时间和成本。
同时,采用无砟轨道板铺设,可以减少对周围环境的影响,提高线路的稳定性和使用寿命。
该工法的施工工艺与实际工程的联系紧密,采取了一系列的技术措施来确保施工质量和安全。
五、施工工艺高速铁路高架站道岔埋入式无砟轨道板铺设的施工工艺主要包括以下几个阶段:1. 前期准备:清理施工区域,确保施工区域的平整和稳定。
2. 预埋道岔设施:在施工区域按照设计要求预先埋入道岔设施,包括轨道板固定器等。
3. 铺设无砟轨道板:将无砟轨道板逐段铺设,并与预埋的道岔设施进行连接,保证线路的连续性。
4. 轨道板固定:使用专用设备将轨道板牢固地固定在地下,确保线路的稳定性。
5. 线路调整:对已铺设好的线路进行调整,包括水平和高程的调整,以满足设计要求。
6. 完善设施:根据需要,对轨道板进行维护和保养,确保线路的正常运行。
六、劳动组织在施工过程中,需要建立合理的劳动组织,确保施工的效率和质量。
包括分工合理、协调配合、科学安排工序等。
高速铁路无砟轨道施工技术难点及对策
高速铁路无砟轨道施工技术难点及对策导言高速铁路无砟轨道施工中,由于方案设计不合理,施工质量控制被忽视,影响无砟轨道施工效果,工程建设中主要面临的技术难点包括以下内容。
施工技术难点1.沉降控制施工建设中,与有砟轨道不同的是,无砟轨道整体形态保持依靠扣件体系,这是不可忽视的内容。
因此,整个施工过程中,确保地基基础稳固与可靠是十分必要的。
但在施工中,沉降控制是技术难点之一,地基基础通常会出现沉降或变形现象,需要做好沉降观察工作。
并且沉降规律难以把握,加大无砟轨道施工难度。
2.刚度控制当通过桥涵路段时,需要确保轨道的刚度均衡。
全面仔细进行调查和分析工作,采用合理的结构,严格落实各项规范要求。
但刚度控制是施工中比较难的内容,技术要点高,施工难度大。
施工人员应该严格落实各项规范要求,从整体上进行规划和设计,确保结构合理,有效满足施工需要。
3.精度控制无砟轨道施工技术要点高,科技含量足,采用以前的测量技术难以有效满足施工需要,无法让精度控制满足要求。
为有效保障高速铁路工程质量,提高路线的平顺度,发展并应用更高精度的现代测量设备和测量技术十分必要的,同时也是施工中面临的一大技术难题。
无砟轨道平顺度控制比较难,施工中需要一次成型,并且确保工程结构的稳固与可靠。
但在施工中,这些规范要求未能很好落实,相关技术措施没有得到严格遵循,不利于保障无砟轨道工程质量。
4.线型控制线型控制也是非常难的内容,施工中应该做好监测工作,保证线型平直,实现对施工效果的有效控制。
另外,还要注重地基基础施工的裂缝控制,建立完善的施工技术管理制度,严格遵循施工标准。
重视施工质量检测,及时发现和处理存在的问题,从而实现对无砟轨道施工效果的有效控制。
施工技术对策1.基础工程沉降控制技术对策无砟轨道施工技术具有自身显著特点,施工中应该加强质量控制,落实各项技术措施,有效控制基础沉降,确保列车安全通行。
保障高速铁路通行的平稳性是非常关键的环节,为促进该目标实现,应该加强沉降控制,落实各项施工技术标准。
浅谈高速铁路无砟轨道精调施工
注: ①高低和轨向偏差 为 15~ 2m波长 范围空 间曲线计算 零 . 4 线到波峰的幅值 ; ② 水 平 限值 不 包 含 曲线 按 规 定设 置 的超 高 值 及 超 高顺 坡 量 ; ③ 三 角坑 限值 包 含 缓 和 曲 线 超 高 顺坡 造 成 的 扭 曲 量 ; ④车体垂向加速度 幅值评 价采用 2 低 通滤波 , OHz 车体横 向加 速 度 幅 值 评 价 采 用 l z 通 滤 波 ; OH 低 ⑤ 避 免 出 现 连续 多 波 不 平 顺 和 轨 向 、 水平 逆 向复 合 不 平顺 ;
() 4 扣件 安 装 检 查 。包 括 : 装 的正 确 性 、 矩 是 否 达 到 安 扭 标准 , 下垫板安装正确性。 轨
行调整量模拟适算 , 建立 相对平顺 和变 化基准 点 , 力求 最大
的平 顺 , 小 的 调 整 量 。将 轨 道 各 项 几 何 尺 寸 全 部 调 整 到 允 最 许 范 围之 内 , 对 轨 道 线形 进 行 优 化 。 并
1 0 00。 /1 0
1 1 1 轨道静态精调 的时间 .. 轨道精调应在应 力放散 、 锁定 形成无缝 线路 、 焊接 接头 打磨完成后开始 。
1 12 轨道 精 调 前 的准 备 ..
() 1 轨道精调仪器 、 机具 的准备与校核 。包括 : 测量仪器
( 全站仪 、 轨道几何 状态 检测仪 、 棱镜 ) 道尺 、0m弦 线 、 、 3 塞
() 3 精调基本原则 :先轨向, “ 后轨距” “ ,先高低 , 后水平” 。
( ) 成 调 整 量 表 。对 计 算 的 调 整 量 进 行 核 对 优 化 后 形 4形 成正式“ 整量表”用于现场精调作业 。 调 , ( ) 砟 轨 道 静 态 平 顺 度 允 许 偏 差 见 表 1 5无 。
高速铁路无砟轨道施工技术难点分析
高速铁路无砟轨道施工技术难点分析摘要:我国高速铁路工程建设规模随着科技的发展和人们生活水平的提升而不断扩大。
使我国交通运输业得到快速发展,加快了商品流通速度,促使人们的生活更加便捷,带动了我国经济的发展。
在实际的工程项目建设过程中,高速铁路采用无砟轨道施工,无砟轨道结构往往采用的是特定的钢筋混凝土材料所制作成的道床板。
无砟轨道构造难度较低,铺设速度较快,并且稳定性更高,文章主要对无砟轨道施工技术难点进行分析。
通过采取对应措施对该问题进行处理,提高技术应用效果,延长工程使用寿命。
关键词:高速铁路;无砟轨道;施工技术;施工难点引言相较于其他的轨道施工技术,无砟轨道施工技术具备许多的应用优势,如环境污染小、施工速度快等。
不过从实际施工情况来看,该技术在施工过程中,还面临着一些施工难点,如路基沉降、铺设位置偏移等,这些问题也将影响到轨道最终的成型质量,通过采取措施对其进行优化处理,对于降低施工问题发生概率,提高轨道施工质量有着积极的作用。
1无砟轨道施工技术特点在高速铁路施工过程中,无砟轨道施工技术具有良好的应用优势:首先,无砟轨道的结构连续性以及平顺性比较优良。
因为无砟轨道的底座以及道床板都是现场工业化浇筑完成的,而双块式轨枕、轨道板以及微孔橡胶垫层、扣件以及钢轨等可以直接在工厂进行预制件生产,能够在极大限度提高高速铁路轨道的施工效率以及施工质量,可以在极大限度上提高高速列车在运行过程中的平稳性以及舒适性。
其次,无砟轨道的结构恒定性以及稳定性相对优良。
在无砟轨道结构中,整体式轨下基础能够为无缝线路提供更加恒定的轨道纵向阻力以及横向阻力,其耐久性以及使用寿命更长。
最后,无砟轨道的结构耐久性较强,并且其具有较强的少维修性能,这也是其在高速铁路施工过程中广泛应用的重要特点。
无砟轨道的维修工作量比较少,是一种省维修的轨道,能够在很大限度上延长线路的维修周期,从而确保客运专线列车的准点正常运行。
无砟轨道在列车荷载的作用下并不会产生变形积累情况,可以将无砟轨道的几何尺寸变化情况控制在轨下胶垫、构件以及钢轨的松动和磨损等因素中,能够有效降低轨道几何状态变化的速度,减少轨道养护维修的工作量,从而延长轨道的线路的维修周期。
高速铁路无砟轨道施工技术难点分析
高速铁路无砟轨道施工技术难点分析摘要:在高速铁路项目中,无砟轨道的可行性较好。
可大大提高稳定性,轨道刚度分布更均匀,后续运营维护更方便,通过隧道区时可大大减少净空开挖。
在此背景下,有必要对无砟轨道施工技术进行有针对性的分析。
关键词:高速铁路;无砟轨道施工;施工技术;技术难点引言高速铁路施工过程中的关键技术是无砟轨道施工技术。
由于其施工质量会影响列车运行的安全稳定,任何施工单位都应认真考虑其施工技术。
但在无碴轨道施工过程中,施工技术不熟练,缺乏相关施工经验,对施工造成严重影响。
1双块式无砟轨道简介我国高速铁路无砟轨道结构主要有以下七种形式:CRTS-Ⅰ板、CRTS-Ⅱ板、CRTS-Ⅲ板、CRTS-Ⅰ双块、CRTS-Ⅱ双块、道岔区板、道岔区预埋轨枕。
我国高速铁路双块式无砟轨道在充分借鉴国外高速铁路无砟轨道成熟技术的基础上,经过引进、消化、改造,逐步形成了具有自主知识产权的轨道排架施工方法,吸收和再创新。
目前,在我国高速铁路的发展过程中,CRTS-Ⅰ型双块式无砟轨道主要经历了三个发展阶段:以武广、郑西客运专线为代表的引进消化国外高速铁路技术的无砟轨道发展阶段,以兰新、大溪、贵广高速铁路为代表的无砟轨道发展阶段,以郑湾高速铁路为代表的智能无砟轨道发展阶段,引领了无砟轨道高速铁路技术的发展。
目前,双块式无砟轨道运营里程已达6850.0km,占国内高速铁路运营里程的60%。
双块式无砟轨道已成为我国高速铁路无砟轨道的主流结构形式,其建设水平代表着我国高速铁路的轨道建设水平。
因此,迫切需要通过提高双块式无砟轨道施工工装的智能化水平来提高双块式无砟轨道的施工水平。
双块式无砟轨道的轨道布置方法最初是对轨道布置高程和横向位置进行微调,使轨道施工测量数据与设计线路数据相吻合。
其结构由钢轨、弹性扣件、双块轨枕、道床板、底座/支撑层等组成(详细见图1)。
道床板扣件系统双块式轨枕底座/支撑层图1 CRTS-Ⅰ型双块式无砟轨道结构图2工程概况以某高速铁路工程为例,对无砟轨道的施工阶段进行了研究。
高速铁路CRTSⅡ型板式无砟轨道轨道精调施工简介
( 轨向和高低 ) 进行优化调整 ,合理控制轨距变化率和 水平变化率,使轨道静态精度规范要求。 动态调整 阶段主要通过对动态轨检 车的数据进行 分析,利用静态调整的方式对轨道进行调整。通过两个 阶段 的调整 ,最终使得无砟轨遭轨道状态满足动车组高
2 工 程施 工特 点分 析
本标段我公司负责轨道精调区段均为 C T I 型板 R SI
施工。轨道板承轨 台均 已经在轨道板厂经精密机床打 磨, 轨道板 出厂承轨 台位置偏差小于 01 m, . m 且轨道板 精 调 已考虑板 间搭 接误 差 :中线位 置允许偏 差小 于 0 l, .i n顶面高程允许偏差在 ±0 mm 范围 ,相邻轨道 5n . 5 板接缝处承轨台顶面相对高差在 ± . m 范围, 0r 3 a 平面位 置偏差在 ± . m 范围,并将轨道板全部纵连为一体 , 0m 3 即道床施工精确度很高且满足一定平顺性要求。因此 Ⅱ 型无砟轨道相对 I 型无砟轨道结构轨道精调偏差较小 , 轨道扣件调整量较少,此分项工程主要 目的即为消除轨 道板打磨 、 轨道板精调及灌浆等工序施工造成的轨道位 置偏差。 C T I R S I型板式无砟轨道采用 wJ 8 一 C型扣件系统,
具体 见图 1 。
钢 轨 钢轨垫板 铁垫板 弹性垫层 塑料套管
式无砟轨道结构 ,车站道岔区无砟轨道精调由其他单位
图 1 C T l 板式 无砟 轨道 扣件 系 统 R Sl 型 精调工作一般是在无缝线路完成后 ,即单根 50 0m 道几何状态进行不断完善的调整过程 ,包括对轨道线型
长钢轨铺设焊联 、应力放散 、锁定结束展开 ,前后分为 静态调整和动态调整两个阶段。只有静态调整达到静态 验收标准后 ,才能开始联调联试 。开始联调联试后 ,精 调 工 作 进 入 轨 道 动 态 调 整 阶段 ,该 阶段 主 要 通 过 10m/ 轨检车和 30 n h 6k h 5k Y 动车组对轨道状态进行检测
高铁无砟轨道施工技术研究
高铁无砟轨道施工技术研究1. 引言1.1 背景介绍高铁无砟轨道施工技术是指在高铁线路建设中,采用无砟轨道技术进行铺设的施工方法。
传统的铁路施工中,常常需要在轨道下面铺设一层砟石,以保证轨道的稳定性和承载能力。
而无砟轨道施工技术则是通过直接在路基上铺设轨道,省去了砟石铺设的步骤,大大提高了施工效率和节约了施工成本。
随着高铁建设的不断发展,尤其是高速铁路网的不断完善,对施工技术和工艺的要求也越来越高。
高铁无砟轨道施工技术的研究和应用,对于提高铁路建设工程的质量、效率和环境友好性具有重要意义。
深入研究高铁无砟轨道施工技术,总结经验,提出改进建议,具有重要的意义和价值。
本文将从高铁无砟轨道施工技术的概述、施工工艺及方法、施工设备及材料、施工质量控制、技术创新及发展趋势等方面进行探讨,旨在全面了解和总结高铁无砟轨道施工技术的相关知识,为今后的高铁建设提供技术支持和参考依据。
1.2 研究意义高铁无砟轨道施工技术的研究意义主要体现在以下几个方面:高铁无砟轨道施工技术的研究可以提高高铁线路的建设效率和质量。
无砟轨道相比传统的石子轨道具有施工周期短、维护成本低等优势,通过研究不断完善施工工艺和方法,可以提高施工效率,减少施工成本,同时也提升高铁线路的稳定性和安全性。
高铁无砟轨道施工技术的研究对于提高铁路运输的效率和舒适度具有重要意义。
无砟轨道具有减震降噪、减小动车运行阻力的特点,能够提高列车的运行速度和舒适度,减少对环境的影响,促进铁路运输的可持续发展。
高铁无砟轨道施工技术的研究还可以促进我国铁路工程领域的技术创新和发展。
随着高铁建设的不断推进,铁路施工技术也需要不断创新,通过研究无砟轨道施工技术,可以为我国铁路工程领域的发展提供新的思路和方法,推动铁路工程技术水平的不断提高。
1.3 研究目的高铁无砟轨道施工技术的研究目的主要包括以下几个方面:1. 提高施工效率:通过研究高铁无砟轨道施工技术,可以探讨如何提高施工效率和减少施工周期,从而更快地建成高铁项目,满足社会对高铁交通的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高速铁路无砟轨道施工
【摘要】无砟轨道作为高速铁路的重要组成部分,它的施工质量和精度控制直接关系到运营阶段的行车安全,是保证列车正常运行的关键环节。
贵广客运专线无砟轨道类型是采用crtsⅱ型系统,crtsⅱ型系统混凝土浇筑采用轨排架法。
【关键词】无砟轨道轨排架法设备粗调精调
一工程概况
贵广铁路客运专线无砟轨道,桥梁地段轨道结构高度为725mm (内轨顶面至混凝土底座底面),曲线超高在无砟轨道底座上设置;路基地段轨道结构高度为815mm(内轨顶面至支承层底面),曲线超高在路基基床表层上设置。
隧道地段轨道结构高度为515mm(内轨顶面至道床板底面),曲线超高在道床板上设置。
二施工设备
主要施工设备有:轨道排架,专用龙门吊,移动组装平台,专用吊具,纵横向模板等。
1、轨道排架:其主要部件有:托梁、工具轨(60kg/m钢轨)、定位夹板、楔形夹板、调整夹板、双块式轨枕定位标、中心标、螺柱支腿和轨向锁定器等。
螺柱支腿进行轨道排架的高低、水平的调整;轨向锁定器进行轨道排架的横向调整和固定,如图2-1。
选择排架类型和每榀轨排架长度需要综合考虑直线地段的长度、曲线半径大小、轨道排架加工精度、就位操作难易,以及所计算的曲线段矢量差值、相邻轨枕间距的内外侧弧形差值、枕内外侧弧形累计差
值等。
2、专用龙门吊:龙门吊安装在电缆槽或防护墙外侧,胶轮行走,行走机构采用变频技术实现快速行走、慢速安装排架。
电动葫芦选用md双速,实现快速起吊、慢速定位。
三轨排就位
布设轨排。
铺装龙门吊从分枕组装平台上吊起轨排运至铺设地点,按中线和高程定位。
安装轨向锁定器。
桥梁地段靠近防护墙一侧轨向锁定器一端支撑在防护墙底部,另一端支撑在轨排托梁的支腿上;靠近线路中线侧:在距离轨排拖梁支腿外侧50cm处钻孔(φ16,孔深3cm,孔距对应拖梁支腿位置)预埋长20cm的φ16圆钢,做为轨向锁定器的支撑。
路基地段采用路基专用轨向锁定器。
四轨排粗调
粗调顺序。
对某两个特定轨排架而言,粗调顺序为:1→4→5→8→2→3→6→7→1→2→3→4→5→6→7→8。
(见图4-1)中线调整。
配备全站仪和测量手簿,采用自由设站法定位,设站时应至少观测附近4对cpⅲ点,测量轨排框架拖梁上的中心基准器,轨排两侧各安排4人同时对轨向锁定器进行调整。
如中心基准器偏离轨道中线左侧,则采用54mm开口扳手松动右侧轨向锁定器(逆时针旋转),同时采用54mm开口扳手拧紧左侧轨向锁定器(顺时针旋转)使轨排向右移动至设计轨道中线位置后拧紧右侧轨向锁定器;如中心基准器偏离轨道中线右侧,则采用54mm开口扳手松
动左侧轨向锁定器(逆时针旋转),同时采用54mm开口扳手拧紧右侧轨向锁定器(顺时针旋转)使轨排向左移动至设计轨道中线位置后拧紧左侧轨向锁定器。
中线一次调整不到位时应循环进行,直到中线偏差满足±2mm要求;高程调整。
使用精密电子水准仪测量每榀轨排对应拖梁处钢轨的标高(每榀8个点),与设计轨面标高对照计算高程差。
当实测轨面标高低于设计轨面标高时,应采用36mm 套筒扳手顺时针旋转竖向螺杆使轨排上升至设计轨面标高;当实测轨面标高高于设计轨面标高时,应松开轨向锁定器,同时采用36mm 套筒扳手逆时针旋转竖向螺杆使轨排下降至设计轨面标高。
竖向螺杆每旋转120°将升降1mm,调整轨排标高时应逐点调整,粗调后的轨道高程误差控制在高程-2~0mm;
粗调完成后,相邻两排架间用夹板联结,接头螺栓按1-3-4-2
顺序采用活动扳手拧紧;
五轨道精调
全站仪设站。
采用莱卡1201+全站仪观测4对连续的cpⅲ点,自动平差、计算确定设站位置,如偏差大于0.7mm时,应删除1对精度最低的cpⅲ点后重新设站。
改变测站位置后,必须至少交叉观测后方利用过的6个控制点,并复测至少已完成精调的一组轨排,如偏差大于2mm时,应重新设站。
测量轨道数据。
轨道状态测量仪放置于轨道上,安装棱镜。
使用全站仪测量轨道状态测量仪棱镜。
小车自动测量轨距、超高、水平位置,接收观测数据,通过配套软件,计算轨道平面位置、水平、
超高、轨距等数据,将误差值迅速反馈到轨道状态测量仪的电脑显示屏幕上,指导轨道调整。
调整中线。
采用54mm开口扳手调节左右轨向锁定器,调整轨道中线,一次调整2组,左右各配2人同时作业。
在调整过程中,全站仪一直测量轨道状态测量仪棱镜,接收观测数据,通过配套软件,将误差值迅速反馈到轨道状态测量仪的电脑显示屏幕上,直到误差值满足要求后调整结束。
调整高程。
粗调后顶面标高应略低于设计顶面标高。
用36mm套筒扳手,旋转竖向螺杆,调整轨道水平、超高(旋松超高调整器,调整轨排倾角,使轨排框架至设计标高,旋紧两侧竖向螺杆,使竖向螺杆与地面垂直)。
调整后人工检查螺杆与混凝土是否密贴,保证螺杆底部不悬空。
调整螺柱时要缓慢进行,旋转120°为高程变化1mm。
注意事项1、精调顺序。
同粗调顺序。
2、精调在晚上进行,其它施工必须暂停,尤其是龙门吊施工。
3、顺接过渡方法。
前一站调
整完成后,下一站调整全站仪精度、测量小车精度符合规范要求的情
况下,两设站点测量同测点的绝对偏差值中线不大于0.5mm、高程不大于2mm;若偏差大于以上数据,则需要查找分析原因,首先是检查设站点1和设站点2的设站精度,如设站精度没有问题,则需要对cpⅲ控制点进行复测,以确保cpⅲ点的整体精度;过渡段
从顺接段后的第一个轨排架开始,每枕的数据递减值宜小于0.2mm,直到绝对偏差约为零为止。
4、所有测量仪器必须按相关标准实行定期检定。
5、测量区域停止其它施工作业。
6、轨排精调后应采取设置围栏(彩色三角旗)、并悬挂“精调区域,禁止跨越”标识牌等防护措施,确保轨排不被踩踏和撞击。
7、轨排精调后应尽早浇筑混凝土,如果轨排受到外部扰动,或放置时间过长(12h),或环境温度变化超过15℃时,必须重新检查确认合格后,方能浇筑混凝土。
六结束语
我们国家综合国力日益强大,经济高速发展,十二五规划中明确了我国铁路固定资产投资的规模为2.8万亿,其中2.3万亿为基本建设投资,到十二五期末快速铁路运营里程目标为四万公里。
为了完成这个目标还需要广大的铁路建设人员付出艰苦的努力,扎实工作,科学管理,建设出让人民满意、人民放心的快速铁路线,为国家铁路建设尽微薄之力。