一元一次方程复习提纲

合集下载

(完整)一元一次方程复习讲义

(完整)一元一次方程复习讲义

一元一次方程复习讲义1.方程的有关概念2.等式的基本性质3.解一元一次方程的基本步骤:4.应用一元一次方程解决实际问题的一般步骤(1)审 (2)找 (3)设 (4)列 (5)解 (6)验 (7)答1.下列方程是一元一次方程的有哪些? x+2y=9 x 2-3x=111=x x x 3121=- 2x=1 3x –5 3+7=10 x 2+x=12、解下列方程:⑴ 103.02.017.07.0=--x x ⑵16110312=+-+x x⑶03433221=-+++++x x x ⑷2362132432⎪⎭⎫ ⎝⎛+--=+--x x x x x(5)|5x 一2|=33、8=x 是方程a x x 2433+=- 的解,又是方程 ()[]b x b x x x +=⎥⎦⎤⎢⎣⎡---913131的解,求 b4、小张在解方程1523=-x a (x 为未知数)时,误将 - 2x 看成 2x 得到的解为3=x ,请你求出原来方程的解5、已知关于x 的方程 ()()x n x m 121232+=-+无穷多解,求m 、n1、(本题7分)按要求完成下面题目:323221+-=--x x x解:去分母,得424136+-=+-x x x ……① 即 8213+-=+-x x ……②移项,得 1823-=+-x x ……③合并同类项,得 7=-x ……④∴ 7-=x ……⑤上述解方程的过程中,是否有错误?答:__________;如果有错误,则错在__________步。

如果上述解方程有错误,请你给出正确的解题过程:2、(本题7分)请阅读下列材料:让我们来规定一种运算:bcad dc ba -=,例如:5432=2×5-3×4=10-12=-2. 按照这种运算的规定,若2121x x-=23,试用方程的知识求x 的值。

3、检修一处住宅区的自来水管,甲单独完成需要14天,乙单独完成需18天,丙单独完成需要12天。

一元一次方程(复习)

一元一次方程(复习)
第三章 一元一次方程
小结与复习
要点梳理
考点讲练
课堂小结
课后作业
目标导学1
1.解一元一次方程的一般步骤:
(1) 去分母:方程两边都乘各分母的最小公倍数, 别漏乘.
(2) 去括号:注意括号前的系数与符号. (3) 移项:把含有未知数的项移到方程的左边,常 . 数项移到方程右边,移项注意要改变符号 (4) 合并同类项:把方程化成 ax = b (a≠0)的形式.
(5) 系数化为1:方程两边同除以 x 的系数,得 x=m 的形式.
2. 列方程解决实际问题的一般步骤: 审:审清题意,分清题中的已知量、未知量. 设:设未知数,设其中某个未知量为x. 列:根据题意寻找等量关系列方程. 解:解方程. 验:检验方程的解是否符合题意. 答:写出答案 (包括单位).
审题是基础,找 等量关系是关键.
(2) 工程问题中基本量之间的关系:
① 工作量 = 工作效率×工作时间; ② 合作的工作效率 = 工作效率之和; ③ 工作总量 = 各部分工作量之和 = 合作的工作效
率×工作时间; ④ 在没有具体数值的情况下,通常把工作总量看
做1.
例2 一项工作,甲单独做8天完成,乙单独做12天完 成,丙单独做24天完成.现甲、乙合作3天后,甲 因有事离去,由乙、丙合作,则乙、丙还要几天才 能完成这项工作?
10
解:设最多可以打 x 折,根据题意得
5001 40% x 500112%.
10 解得 x = 8.
答:广告上可写出最多打 8 折.
针对训练
7. 一家商店将某种商品按进价提高40%后标价,节假 日期间又以标价打八折销售,结果这种商品每件 仍可获利24元,问这件商品的进价是多少元?
解:设这件商品的进价是 x 元,根据题意得

一元一次方程-中考数学一轮复习考点专题复习大全(全国通用)

一元一次方程-中考数学一轮复习考点专题复习大全(全国通用)

考向09 一元一次方程【考点梳理】1.一元一次方程的一般式:ax+b=0(x 是未知数,a 、b 是常数,且a ≠0).2.一元一次方程解法的一般步骤:整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… 得到方程的解.3.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.【题型探究】题型一:一元一次方程定义1.(2021·全国·九年级专题练习)关于x 的一元一次方程2224a x m --+=的解为1x =,则a m +的值为( )A .9B .8C .7D .52.(2022·广东·九年级专题练习)已知关于x 的方程()()22426k x k x k -+-=+是一元一次方程,则方程的解为( )A .-2B .2C .-6D .-13.(2019·福建漳州·校联考中考模拟)若x =2是关于x 的一元一次方程ax -2=b 的解,则3b -6a +2的值是( ).A .-8B .-4C .8D .4题型二:一元一次方程方程的解法4.(2022·贵州黔西·统考中考真题)小明解方程12123x x +--=的步骤如下:解:方程两边同乘6,得()()31122x x +-=-①去括号,得33122x x +-=-②移项,得32231x x -=--+③合并同类项,得4x =-④以上解题步骤中,开始出错的一步是( )A .①B .②C .③D .④5.(2023·河北·九年级专题练习)解方程221123x x --=-,嘉琪写出了以下过程:①去分母,得3(2)62(21)x x -=--;②去括号,得36642x x -=--;③移项、合并同类项,得710x =;④系数化为1,得107x =,开始出错的一步是( ) A .① B .② C .③ D .④6.(2022·重庆南岸·统考一模)解一元一次方程()()11151753x x +=--的过程如下. 解:去分母,得()()3151557x x +=--. ①去括号,得3451557x x +=-+. ②移项、合并同类项,得823x =-. ③化未知数系数为1,得823x =-. ④ 以上步骤中,开始出错的一步是( )A .①B .②C .③D .④题型三:配套 工程和销售问题7.(2022·广西南宁·南宁二中校考三模)用200张彩纸制作圆柱,每张彩纸可制作圆柱侧面20个或底面60个,一个圆柱侧面与两个底面组成一个圆柱.为使制作的圆柱侧面和底面正好配套,设把x 张彩纸制作圆柱侧面,则方程可列为( )A .6020(200)x x =-B .20260(200)x x =⨯-C .26020(200)x x ⨯=-D .22060(200)x x ⨯=-8.(2021·新疆乌鲁木齐·乌鲁木齐市第六十八中学校考三模)某工程甲单独完成要25天,乙单独完成要20天.若乙先单独干10天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .101012025x ++=B .101012520x ++=C .101012520x -+=D .101012520x -+= 9.(2022·贵州遵义·统考二模)如图为某披萨店的公告.某会员购买一个榴莲披萨付款83.6元,则一个榴莲披萨调价前的原价为()A .72.2元B .78元C .80元D .96.8元题型四:比赛 积分和数字问题10.(2022·贵州铜仁·统考中考真题)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .1711.(2022·福建·模拟预测)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.设该店有x 间客房,则所列方程为( )A .7x-7=9x+9B .7x +9=9x+7C .7x +7=9x ﹣9D .7x-7=9x ﹣912.(2022·湖南长沙·模拟预测)《九章算术》一书中记载了一道题:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、物价各几何?题意是:有若干人一起买鸡,如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.则买鸡的人数和鸡的价钱各是( )A .8人,61文B .9人,70文C .10人,79文D .11人,110文题型五:几何 和差倍和水电问题13.(2022·江苏南通·统考模拟预测)如图,矩形ABCD 中,8cm AB =,4cm BC =,动点E 和F 同时从点A 出发,点E 以每秒2cm 的速度沿A D →的方向运动,到达点D 时停止,点F 以每秒4cm 的速度沿A B C D →→→的方向运动,到达点D 时停止.设点F 运动x (秒)时,AEF △的面积为()2cm y ,则y 关于x 的函数的图象大致为( )A .B .C .D .14.(2022·福建南平·统考模拟预测)中国一本著名数学文献《九章算术》,书中出现了一个“共买鸡问题”,原文是:今有共买鸡,人出九,盈十一;人出六,不足十六,问人数、物价各几何?其题意是:有若干人一起买鸡,如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.问买鸡的人数、鸡的价钱各是多少?设买鸡的人数为x ,则下面符合题意的方程是( )A .9+11616x x =-B .9+61611x x =+C .9+11616x x =+D .911616x x =+-15.(2018·四川绵阳·校联考中考模拟)滴滴快车是一种便捷的出行工具,计价规则如下表: 计费项目里程费 时长费 远途费 单价 1.8元/公里 0.3元/分钟 0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A .10分钟B .13分钟C .15分钟D .19分钟题型六:行程 比例和行程问题16.(2022·重庆璧山·统考一模)小明和爸爸从家里出发,沿同一路线到图书馆,小明匀速跑步先出发,2分钟后,爸爸骑自行车出发,匀速骑行一段时间后,在途中商店买水花费了5分钟,从商店出来后,爸爸的骑车速度比他之前的骑车速度增加60米/分钟,结果与小明同时到达图书馆.小明和爸爸两人离开家的路程s (米)与小明出发的时间t (分钟)之间的函数图像如图所示,则下列说法错误的是( )A .17a =B .小明的速度是150米/分钟C .爸爸从家到商店的速度是200米/分钟D .9t =时,爸爸追上小明17.(2023·福建泉州·泉州五中校考三模)明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注: 明代时 1 斤=16 两,故有“半斤八两”这个成语).设总共有 x 个人,根据题意所列方程正确的是( )A .7x - 4 = 9x +8B .7x +4 = 9x -8C .4879x x +-=D .4879x x -+= 18.(2019·湖北荆州·统考一模)在如图所示的2018年1月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( )A .23B .51C .65D .75题型七:一元一次方程的综合19.(2019·重庆·统考中考真题)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .6 20.(2020·江苏盐城·统考中考真题)把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .621.(2022·湖北宜昌·统考中考真题)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值; (3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【必刷基础】一、 单选题22.(2022·重庆沙坪坝·统考一模)若关于x 的方程25x a +=的解是2x =,则a 的值为( )A .9-B .9C .1-D .123.(2022·辽宁营口·统考中考真题)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( )A .24015015012x x +=⨯B .24015024012x x -=⨯C .24015024012x x +=⨯D .24015015012x x -=⨯24.(2022·江苏苏州·统考中考真题)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x步才能追上,根据题意可列出的方程是()A.60100100x x=-B.60100100x x=+C.10010060x x=+D.10010060x x=-25.(2022·云南昆明·云南师范大学实验中学校考三模)若整数a使关于x的方程21x a+=的解为负数,且使关于的不等式组()122113x axx⎧-->⎪⎪⎨+⎪-≥⎪⎩无解,则所有满足条件的整数a的值之和是()A.6 B.7 C.9 D.1026.(2022·湖南长沙·长沙市湘郡培粹实验中学校考三模)周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,张老师和8个学生跳舞……依次下去,一直到何老师,他和参加跳舞的所有学生跳过舞,这个晚会上参加跳舞的学生人数是()A.15 B.14 C.13 D.1227.(2022·山东济宁·济宁市第十三中学校考一模)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只;(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入-投入总成本).28.(2022·宁夏吴忠·校考一模)2020年,一场突如其来的疫情席卷全国,给人民生命、财产造成巨大损失,但英勇的中国人民不畏艰难,众志成城,最终取得了抗击疫情的阶段性胜利,疫情防控初期,某药店库存医用外科口罩10000副,进价2元/副,由于市民疯狂抢购,量价齐升,5天销售一空,通过5天的销售情况进行统计,得到数据如下:(1)求该药店这5天销售口罩的平均利润.(2)通过对上面表格分析,发现销售量y (副)与单价x (元/副)存在函数关系,求y 与x 的函数关系式.(3)该药店购进第二批口罩20000副,进价2.5元/副,虽然畅销,但被物价部门限价,每副口罩销售价为m 元,销售一半后,该药店响应国家号召,将剩余口罩全部捐献给了抗疫定点医院,若在两批口罩销售中,药店不亏也不赚,则m 的值是多少?【必刷培优】一、单选题29.(2022·云南德宏·统考模拟预测)若关于x 的方程()6324x k -=-的解为非负整数,且关于x 的不等式组()23432x x k x x ⎧-+≤-⎪⎨-≤⎪⎩无解,则符合条件的整数k 的值可以为( ) A .0 B .3 C .4 D .630.(2023·全国·九年级专题练习)解方程2233522x x x x x--+=--,以下去分母正确的是( ) A .22335x x x ---=B .22335x x x --+=C .()223352x x x x ---=-D .()223352x x x x --+=-31.(2022·广西钦州·统考模拟预测)《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有人共买鹅,人出九,盈十一;人出六,不足十六,人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.设买鹅的人数有x 人,可列方程为( )A .911616x x -=-B .911616x x -=+C .911616x x +=+D .911616x x +=-32.(2022·河北·统考二模)数学实践活动课上,陈老师准备了一张边长为a 和两张边长为()b a b >的正方形纸片如图1、图2所示,将它们无重叠的摆放在矩形ABCD 内,矩形未被覆盖的部分用阴影表示,设左下阴影矩形的周长为1l ,右上阴影矩形的周长为2l .陈老师说,如果126l l -=,求a 或b 的值.下面是四位同学得出的结果,其中正确的是( )A .甲:6a =,4b =B .乙:6a =,b 的值不确定C .丙:a 的值不确定,3b =D .丁:a ,b 的值都不确二、填空题33.(2022·山东济南·山东师范大学第二附属中学校考模拟预测)已知224x x +=,且224120ax ax +-=,则22a a +的值为______.34.(2022·江苏扬州·校考二模)我国古代名著《九章算术》中有一问题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”假设经过x 天相逢,则可列方程为_____.35.(2022·重庆大渡口·重庆市第三十七中学校校考二模)青团是清明节的一道极具特色的美食,据调查,广受消费者喜欢的口味分别是:红豆青团、肉松青团、水果青团,故批发商大量采购红豆青团、肉松青团、水果青团,为了获得最大利润,批发商需要统计数据,更好地进货.3月份批发商统计销量后发现,红豆青团、肉松青团、水果青团销量之比为2:3:4,随着市场的扩大,预计4月份青团总销量将在3月份基础上有所增加,其中水果青团增加的销量占总增加的销量的15,则水果青团销量将达到4月份总销量的13,为使红豆青团、肉松青团4月份的销量相等,则4月份肉松青团还需要增加的销量与4月份总销量之比为_____________.36.(2022·四川攀枝花·统考中考真题)如果一元一次方程的解是一元一次不等式组的解.则称该一元一次方程为该一元一次不等式组的关联方程.若方程1103x -=是关于x 的不等式组2220x n n x -≤⎧⎨-<⎩的关联方程,则n 的取值范围是 ___________.37.(2022·北京西城·校考模拟预测)我校学生会正在策划一次儿童福利院的慰问活动.为了筹集到600元活动资金,学生会计划定制一批穿校服的毛绒小熊和带有校徽图案的钥匙扣,表格中有这两种商品的进价和售价.另外,若将一个小熊和一个钥匙扣组成一份套装出售,则将售价打九折.为了更好的制定进货方案,学生会利用抽样调查的方式统计了校内学生对商品购买意向的百分比情况(见表格),若按照这个百分比情况定制商品,至少定制小熊______个和钥匙扣______个,才能筹集到600元资金(即获得600元利润).38.(2022·广西·统考中考真题)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.三、解答题39.(2022·福建泉州·校考三模)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额.注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000(180%)60260⨯-+=(元).(1)购买一件标价为1600元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x 元(1250)x >的商品,那么该顾客获得的优惠额为多少?(用含有x 的代数式表示)(3)若顾客在该商场第一次购买一件标价x 元(1250)x >的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为______元.40.(2022·河北邯郸·校考三模)如图,数轴上a 、b 、c 三个数所对应的点分别为A 、B 、C ,已知b 是最小的正整数,且a 、c 满足2(6)20c a -++=.(1)①直接写出数a、c的值,;②求代数式222+-的值;a c ac(2)若将数轴折叠,使得点A与点C重合,求与点B重合的点表示的数;(3)请在数轴上确定一点D,使得AD=2BD,则D表示的数是.41.(2022·江苏镇江·统考中考真题)某地交警在一个路口对某个时段来往的车辆的车速进行监测,统计数据如下表:车速(km/h)40 41 42 43 44 45频数 6 8 15 a 3 2其中车速为40、43(单位:km/h)的车辆数分别占监测的车辆总数的12%、32%.(1)求出表格中a的值;(2)如果一辆汽车行驶的车速不超过40km/h的10%,就认定这辆车是安全行驶.若一年内在该时段通过此路口的车辆有20000辆,试估计其中安全行驶的车辆数.42.(2022·广西玉林·统考二模)疫情期间,消毒液、口罩成为了咱们的生活必需品.淘宝某医用器械药房推出2种口罩进行销售,医用一次性口罩2.5元/个,医用外科口翠3元/个.(1)某地某学校购进两种口罩25000个,共花费70000元,请问学校购买医用外科口罩多少个?(2)因为4月份疫情逐渐过去,但口罩的市场需求盘依旧旺盛,该药房决定用320000元再次购进一批口罩进行销售.医用一次性口罩100个/盒,每盒120元,医用外科口罩50个/盒,每盒100元.要求购进的医用外科口罩个数不超过医用一次性口罩的2.6倍,但不低于医用一次性口罩的1.9倍.若这批口罩全部销售完毕,为使获利最大,该药房应如何进货?最大获利为多少元?43.(2021·贵州遵义·校考模拟预测)甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是______千米/小时;轿车的速度是______千米/小时.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)求货车出发多长时间两车相距90千米.参考答案:1.C【分析】先根据一元一次方程的定义可得出a 的值,再根据一元一次方程的解定义可求出m 的值,然后代入求值即可. 【详解】方程2224a x m --+=是关于x 的一元一次方程,21a ∴-=,解得3a =,∴方程为224x m -+=,又1x =是方程224x m -+=的解,2124m ∴⨯-+=,解得4m =,则347a m +=+=,故选:C .【点睛】本题考查了一元一次方程的定义、以及解定义,掌握理解一元一次方程的定义是解题关键.2.D【分析】利用一元一次方程的定义确定出k 的值,进而求出k 的值即可.【详解】解:∵方程()()22426k x k x k -+-=+是关于x 的一元一次方程,∴24020k k ⎧-=⎨-≠⎩, 解得:k =-2,方程为-4x =-2+6,解得:x =-1,故选:D .【点睛】此题考查了解一元一次方程,以及一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.3.B【分析】根据已知条件与两个方程的关系,可知2a- 2= b ,即可求出3b-6a 的值,整体代入求值即可.【详解】把x=2代入ax -2=b ,得2a- 2= b .所以3b-6a=-6.所以,3b -6a +2=-6+2=-4.故选B .【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.4.A【分析】按照解一元一次方程的一般步骤进行检查,即可得出答案.【详解】解:方程两边同乘6,得()()31622x x +-=-①∴开始出错的一步是①,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解决问题的关键.5.B【分析】解决此题应先去括号,再移项,移项时要注意符号的变化.【详解】在第②步,去括号得36642x x -=--,等式右边去括号时忘记变号,故选B .【点睛】解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1;在移项时要注意符号的变化,此题是形式较简单的一元一次方程.6.B【分析】检查解一元一次方程的解题过程,根据去分母,去括号,移项,合并同类项,系数华为1,找出出错的步骤,以及出错的原因.【详解】第②步出现错误,3451557x x +=-+. ②错误的原因是去括号时出现错误,应该改为:34515535x x +=-+.故选:B【点睛】此题考查了解一元一次方程,解方程去括号时,要注意不要漏乘括号里的每一项.7.D【分析】根据题意列出一元一次方程求解即可.【详解】解:设把x 张彩纸制作圆柱侧面,则有(200-x )张纸作圆柱底面,根据题意可得:22060(200)x x ⨯=-故选:D .【点睛】题目主要考查一元一次方程的应用,理解题意,列出方程是解题关键.8.D【分析】设甲、乙一共用x 天完成,根据题意,列出方程,即可求解.【详解】解:设甲、乙一共用x 天完成,根据题意得:101012520x -+=. 故选:D【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.9.C【分析】根据原价和售价的关系,列方程计算即可.【详解】解:设原价为x 元,由题意,得(1+10%)×95%·x =83.6,解得:x =80.故选:C .【点睛】此题考查了一元一次方程的应用—打折销售,解题的关键是确定等量关系列方程求解.10.B【分析】设小红答对的个数为x 个,根据抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分,列出方程求解即可.【详解】解:设小红答对的个数为x 个,由题意得()52070x x --=,解得15x =,故选B .【点睛】本题主要考查了一元一次方程的应用,正确理解题意是列出方程求解是解题的关键.11.C【分析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【详解】设该店有x 间客房,则7x+7=9x-9,故选:C.【点睛】本题考查了一元一次方程的应用,熟练掌握一元一次方程的解题方法是解题的关键.12.B【分析】买鸡的人数为x 人,根据“如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.”列出方程,即可求解.【详解】解:买鸡的人数为x 人,根据题意得:911616x x -=+ ,解得:9x = ,∴鸡的价钱为911991170x -=⨯-= ,答:买鸡的人数为9人,鸡的价钱为70文.故选:B【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.13.B【分析】由点的运动,可知点E 从点A 运动到点D ,用时2s ,点F 从点A 到点B ,用时2s ,从点B 运动到点C ,用时1s,从点C运动到点D,用时2s,y与x的函数图象分三段:①当0≤x≤2时,②当2<x≤3时,③当3<x≤5时,根据每种情况求出△AEF的面积.【详解】解:点E从点A运动到点D,用时2s,点F从点A到点B,用时2s,从点B运动到点C,用时1s,从点C 运动到点D,用时2s,∴y与x的函数图象分三段:①当0≤x≤2时,AE=2x,AF=4x,•2x•4x=4x2,∴y=12这一段函数图象为抛物线,且开口向上,由此可排除选项A和选项D;②当2<x≤3时,点F在线段BC上,AE=4,×4×8=16,此时y=12③当3<x≤5时,×4×(4+8+4−4x)=32−8x,由此可排除选项C.y=12故选:B.【点睛】本题考查了动点问题的函数图象,二次函数图象,三角形的面积,矩形的性质,根据题意理清动点的时间分段,并根据三角形的面积公式列出函数关系式是解题的关键,难度不大.14.D【分析】设买鸡的人数为x,根据鸡的价格不变,建立等量关系,列出相关方程即可.【详解】解:设买鸡的人数为x,则由题意有:-,=+x x911616故选:D.【点睛】本题考查了一元一次方程的实际应用,准确找到等量关系是解题的关键.15.D【分析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.16.D【分析】利用到商店时间+停留时间可确定A ,利用爸爸所用时间+2分与路程3300米可求小明速度可确定B ,利用设爸爸开始时车速为x 米/分,列方程求解即可确定C ,利用小明和爸爸行走路程一样,设t 分爸爸追上小明,列方程求解可知D .【详解】解:A .12517a +==,故A 正确,不合题意;B .小明的速度为330022150÷=米/分,故B 正确,不合题意;C .设爸爸开始时车速为x 米/分,()()1225603300x x -++=,解得200x =米/分,故爸爸从家到商店的速度为200米/分钟正确,不合题意;D .设y 分爸爸追上小明,()1502200y y +=,解得:6y =,故9t =时,爸爸追上小明,选项不正确,符合题意故选:D .【点睛】本题考查行程问题的函数图像,会看图像,能从中获取信息,掌握速度,时间与路程三者关系,把握基准时间是解题关键.17.B【分析】直接根据题中等量关系列方程即可.【详解】解:根据题意,7x +4 = 9x -8,故选:B .【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.18.B【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x ,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x ,因而这三个数的和一定是3的倍数.【详解】设中间的数是x ,则上面的数是x-7,下面的数是x+7,则这三个数的和是(x-7)+x+(x+7)=3x ,因而这三个数的和一定是3的倍数,则,这三个数的和都为3的倍数,观察只有51与75是3的倍数,但75÷3=25,25+7=32不符合题意,所以这三个数的和可能为51,故选B .。

第六章、一元一次方程复习提纲

第六章、一元一次方程复习提纲

第六章、一元一次方程一、概念掌握1、掌握一元一次方程的概念(只含有一个未知数,式子为整式,且未知数的次数为1的等式)。

型如“732=+x ”、“7=x ”、“x x -=+712”、“x 273-=”、 “)2(27)1(3--=-x x ”、 3)2(272)1(3--=-x x 这样的等式被称为一元一次方程。

注意型如“321=+x ”、 “31=+x x”、 “321=+”、“3=+x xy ”这样的等式不是一元一次方程。

2、能够识别一元一次方程(方程中是否含有未知数,分式等)。

3、能够区分方程和等式之间区别和联系:方程一定是等式,等式不一定是方程。

4、理解一元一次方程解的含义:使方程左右两边相等的未知数的值二、计算类型。

1、直接型:移项、合并同类项,系数化为1。

例题1、求方程x x 5942=-的解。

解:4295-=--x x (移项时要改变项的符号,“+”变“-”,“-”变“+”)4214-=-x (合并同类项,只对未知数的系数进行加减处理。

)34=x (系数化为1,有理数除法法则:同号得正,异号得负)变式练习1、求下列方程的解。

(1)、2332-=+x x (2)、213=-x2、去括号型:去括号,移项、合并同类项、系数化为1。

例题2、求方程1)1(234+-=+x x 的解。

解:12234+-=+x x (去括号、看符号、要变号、都变号,要扩倍、都扩倍。

)12324+--=-x x (移项时,先变号,再移动)42-=x (合并同类项,只对未知数的系数作处理)2-=x (系数化为1 ,有理数除法法则:同号得正,异号得负)变式练习2、求下列方程的解。

(1)、)3(22(2)1(3+=+-+x x x (2)、[])1(2)1(23x x x -=--3、去分母型:去分母(左右)、去括号、合并同类项,系数化为1。

例题3、求方程1615312=--+x x 的解。

解:6)15()12(2=--+x x (去分母、等式左右扩大相同倍数,整式也要扩倍)61524=+-+x x (去括号、看符号、要变号、都变号,要扩倍、都扩倍。

一元一次方程知识点总结教学提纲

一元一次方程知识点总结教学提纲

一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。

一元一次方程应用复习导纲

一元一次方程应用复习导纲

《一元一次方程应用复习》导学提纲班级姓名小组组内评价教师评价一、学习目标1、根据所学公式灵活找出等量关系式。

2、建立方程解决实际问题,发展分析问题和解决问题的能力3、极度热情,全力以赴,感受数学来源于生活,应用于生活。

二、学习过程(一)知识梳理:(1)列方程解决实际问题的主要步骤:1.设适当的未知数;2、找等量关系; 3.列出方程;4.解出方程;5.检验是否符合实际;6.答。

(2)先自己梳理一元一次方程应用所学内容,准备全班交流。

(二)基础练习1、月历中的方程月历上,爷爷生日那天的上、下、左、右4个日期的和为80,你能说出爷爷的生日是几号吗?2、变与不变要锻造一个直径为10厘米、高为8厘米的圆柱形毛胚,应截取直径为4厘米的圆钢多长?3、打折销售商店将一种夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这种夹克每件的成本价是多少?4、“希望工程”义演100个和尚分100个馒头。

大和尚一人分3个馒头,小和尚3人分1个馒头,大、小和尚各多少人?5、追击问题甲乙两人在一条长400米的环形跑道上跑步,甲的速度是360米/分,乙的速度是240米/分。

(1)、两人同时同地反向跑,几秒后两人第一次相遇?(2)、两人同时同地同向跑,多长时间两人第一次相遇?6、教育储蓄小彬将一笔压岁钱按一年定期储蓄存入“儿童银行”,年利率为10%,到期后将本金和利息取出,并将期中的50元捐给“希望工程”,剩余的又都按一年定期存入,这时存款的年利率已下调到上次存款时年利率的一半,这样到期后可得本金和利息共63元,你能算出小彬的这笔压岁钱是多少吗?我的疑惑:请将学习中未能解决的问题、有疑惑的问题、发现的新问题写下来,准备与小组同学或老师交流解决(三)拓展提高1、把99拆成4个数,使得第一个数加2,第二个数减2,第三个乘2,第四个数除以2,得到的结果相等,应怎样拆?我的疑惑(四)总结梳理------(回扣目标;理科注意知识建构,学科思想及方法的总结归纳)达标测试班级姓名小组组内评价教师评价一、必做1、小明把100元钱存入银行,一年后把本息取出103元。

一元一次方程全章复习

一元一次方程全章复习

一元一次方程全章复习第一单元:等式和方程。

要掌握以下几方面:1、关于等式的两条性质使用时应注意第一条性质,等式两边加上或减去时,可以是一个数或一个式子,所得结果仍是等式。

而性质二:乘或除,却只能是一个数而不能是式子(因为式子在字母取某些值时可能为零),这一点要引起我们的特别注意,否则就容易出错。

2、必须了解方程,方程的解和解方程的概念。

3、会检验一个数是不是方程的解(将此数分别代入方程的左右两边来进行检验)。

第二单元:一元一次方程的解法和应用。

1.解一元一次方程的一般步骤为:去分母,去括号,移项,合并,未知数的系数化为1。

去分母时易犯错误:1.忘记乘没有分母的项;2.当某项的分母全部约去后,分子是多项而没有添加括号而引起符号上的差错。

去括号时易犯错误:1.漏乘项;2.去括号时括号前是“-”号,括号内只有首项变号,其它各项没有都变号;移项时,移到等号另一边的项一定要变号,而只在一边变动的项不变号。

未知数的系数化为1时,要分清哪个是被除数,哪个是除数,尤其是未知数系数是分数时。

特别的,对于分子分母有小数的方程,一般先把小数化为整数,再按解方程的步骤进行。

(小数化整数时,有时用的是分数的基本性质,有时用的是等式的基本性质)2.列方程解应用题的步骤为:①审题:弄清题目和题目中的数量关系,分清已知和未知,适当设出未知数x;②找出能够表示应用问题全部含义的一个相等关系,从而列出方程;③解所列的方程并检验后写出答案。

列方程解应用题主要有三个困难:①找不到相等关系;②找到相等关系后不会列方程;③习惯于用小学的算术解法,对于代数解法(列方程解应用题)分析应用题不适应,不知道要抓相等关系。

解决这些困难就要养成分析问题的习惯,通过列表格,画直线图等方法找到相等关系。

并且对于题目中的条件要充分利用,不要漏掉,且题目中的条件每个只能用一次,不能重复利用。

否则,列出的就是一个恒等式,而不是一个方程。

综合练习题一、填空:1.方程3x-5=2x+3变形为3x-2x=3+5的依据是____________;方程7x=4变形为x=的依据是__________。

一元一次方程应用题复习提纲

一元一次方程应用题复习提纲

一元一次方程应用题复习提纲一.运用方程解决实际问题的一般过程是:1.审题:分析题意,找出题中的数量及其关系;2. 设元:选择一个适当的未知数用字母表示;3.列方程:根据等量关系列出方程;4. 解方程:求出未知数的值;5.答注:列方程的关键是:找出等量关系和设出适当的未知数二..列方程应注意3个问题:1. 方程两边单位要一致: 2. 方程两边量要一致; 3. 方程两边数量要相等三.应用题的基本类型和每个类型所用到的基本数量关系:(1)行程问题:路程=速度×时间。

相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。

追及问题:①甲、乙同时不同地,则:追者走的路程=前者走的路程+两地间的距离。

②甲、乙同地不同时,则:追者走的路程=前者走的路程环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。

飞行问题、航行问题,基本等量关系:顺流路程=逆流路程①顺流速度=船速+水速②逆流速度=船速-水速练习:例1:两辆汽车同时从相距600千米的两地相对开出,甲车每小时行200千米,乙车每小时行100千米。

两车什么时候相遇?例2:一拖拉机准要去拉货,每小时走30千米,出发2小时后,家中有事派一辆小轿车50千米/小时的速度去追拖拉机,问小轿车用多少时间可以追上拖拉机?例3:甲乙两人在400米长的环形跑道上跑步,甲速度是240米/分钟,乙速度是200米/分钟,两人同时同地出发,(1)若同向跑,几分钟后相遇?(2)若背向跑,几分钟后相遇?例4:一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。

已知水流的速度是3千米/时,求船在静水中的平均速度。

(2)工程问题:工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,公式:工作效率=工作总量÷工作时间,工作量=工作效率×工作时间=人均工效×工时×人数,工作效率=工作量工作时间等量关系:几人合作完成某项工作:每个人的工作量之和=总工作量。

初中一元一次方程知识点归纳

初中一元一次方程知识点归纳

初中一元一次方程知识点归纳
初中一元一次方程知识点归纳如下:
1. 一元一次方程的定义:一元一次方程是指方程中只有一个变量,且变量的最高次数为1的方程。

2. 方程的基本形式:一元一次方程的基本形式为ax+b=0,其
中a和b是已知实数,且a≠0。

3. 解方程的步骤:解一元一次方程的步骤主要包括去括号、合并同类项、移项、合并同类项、化简等。

4. 解方程的性质:一元一次方程的解具有唯一性,即要么无解,要么有唯一解。

5. 方程的解表示形式:一元一次方程的解有三种表示形式,即唯一解、无解和无穷多解。

6. 解方程的方法:解一元一次方程的方法主要包括正向代入、逆向代入、等式交换等。

7. 使用方程解实际问题:一元一次方程可以应用于实际问题中,通过建立方程并解方程可以求解实际问题。

8. 方程的应用领域:一元一次方程在代数、几何、物理等领域中都有广泛的应用。

9. 方程的相关概念:一元一次方程与方程的根、方程的系数、方程的次数等相关概念有着密切的联系。

10. 方程的扩展:一元一次方程是一元线性方程的特殊情况,线性方程还有更高次数的形式,如二次方程、三次方程等。

一元一次方程复习讲义

一元一次方程复习讲义

第三章一元一次方程复习讲义知识点1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.例1(1)怎样从等式x-5=y-5得到等式x=y?(2)怎样从等式3+x=1得到等式x=-2?(3)怎样从等式4x=12得到等式x=3?例2利用等式的性质解下列方程:(1)x+7=26(2)-5x=203.方程:只含有一个未知数,未知数的次数是1,等号两边都是整式,这样的方程叫做一元一次方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1. 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、匕是已知数,且aW0).8.一元一次方程解法的一般步骤:化简方程分数基本性质去分母同乘(不漏乘)最简公分母去括号先去小括号,再去中括号,最后去大括号.依据是去括号法则和乘法分配律,注意符号变化移项把含有未知数的项移到一边,常数项移到另一边.“过桥变号”,依据是等式性质一合并同类项将未知数的系数相加,常数项相加.依据是乘法分配律合并后注意符号系数化为1在方程的两边除以未知数的系数.依据是等式性质二.例1解下列方程[1]用合并同类项的方法解一元一次方程(1)2x-£%=6-8;(2)7x—2.5x+3x-1.5x=-15x4—6x3.[2]用移项的方法解一元一次方程(1)7-2x=3-4x(2)4x+10=6x[3]利用去括号解一元一次方程去括号法则:去掉“+()”,括号内各项的符号不变.去掉“-()”,括号内各项的符号改变.用三个字母a、b、c表示去括号前后的变化规律:a+(b+c)=a+b+ca-(b+c)=a—b—c(1)2x-(x+10)=5x+2(x—1)(2)3x—7(x—1)=3—2(x+3)[4]利用去分母解一元一次方程(总结:像上面这样的方程中有些系数是分数,如果能化去分母,把系数化为整数,则可以使解方程中的计算更方便些.)2x+2x+7x+x=33(2)3x+x-1=3-2x-1(1)^要点归纳1.去分母时,应在方程的左右两边乘以分母的最小公倍数;2.去分母的依据是等式性质2,去分母时不能漏乘没有分母的项;3.去分母与去括号这两步分开写,不要跳步,防止忘记变号.10.列一元一次方程解应用题:(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出 未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程(组)的应用题的一般步骤:审:审清题意,分清题中的已知量、未知量.设:设未知数,设其中某个未知量为x.列:根据题意寻找等量关系列方程.解:解方程.验:检验方程的解是否符合题意.答:写出答案(包括单位).[注意]审题是基础,找等量关系是关键.11.解实际应用题:知识点1:市场经,^、打折销售问题(1)商品利润=商品售价一商品成本价(3)商品销售额=商品销售价X 商品销售量(4)商品的销售利润=(销售价一成本价)X 销售量例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?变式1.某琴行同时卖出两台钢琴,每台售价为960元.其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?例2一件服装先将进价提高25%出售,后进行促销活动,又按标价的8折出售,此时售价为60元.请问商家是盈是亏,还是不盈不亏?例3.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出 售,但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?(2) 商品利润率= 商品利润 商品成本价X 100%例4.某商场国庆节搞促销活动,购物不超过200元不给优惠,超过200元但不超过500元的优惠10%,超过500元,其中500元按9折优惠,超过的部分按8折优惠。

一元一次方程章节复习

一元一次方程章节复习

一元一次方程复习知识点专题一:等式的概念和等式的性质1.等式:表示的式子,叫做等式2.等式的性质:性质1.等式两边同时加(或减)(),结果仍相等。

数学语言:如果a=b, 那么。

性质2:等式两边乘同一个数,或除以一个的数,结果仍相等数学语言:如果a=b,那么 ; 如果a=b(c≠0),那么。

专题二:方程的概念1.方程:含有的等式叫做方程2.方程的解:使方程左右两边的值相等的叫做方程的解,也叫做根。

只含有未知数,未知数的次数都是,等号两边都是,这样的方程叫做一元一次方程。

步骤:审,,列,解,检验结果是否符合。

一、填空题1.已知方程()121=--a x a 是关于x 的一元一次方程,则a =.2.三个连续偶数的和是66.若设中间一个偶数为x ,则另外两个偶数可表示为 , ,根据题意可列出方程 .3.王亮参加了一场知识竞赛,共得了82分.这次竞赛一共50道题,答对一道记2分,答错一道或不答均扣1分.王亮答对了 道题.4.在有理数集合里定义一种新运算“*”,规定*a b a b =+,则4*(*3)1x =中x 的值为 .二、选择题5.下列各式中,是一元一次方程的是( ) A .32x y -=B .210x -=C .23x = D .32x= 6.根据等式的性质,下列变形正确的是( ) A .如果2x =3,那么23x a a= B .如果x =y ,那么x ﹣5=5﹣y C .如果x =y ,那么﹣2x =﹣2yD .如果12x =6,那么x =3 7.下列方程中,解是x=4的方程是( ) A .3x=-2-10B .x+5=2x+1C .3x-8=5xD .3(x+2)=3x+28. 下列方程变形中,正确的是( )A .方程1125x x --=,去分母得()51210x x --= C .方程2332t =,系数化为1得1t = B .方程()3251x x -=--,去括号得3251x x -=-- D .方程3221x x -=+,移项得3212x x -=-+9.一项工程,甲独做3天完成,乙独做7天完成,两人共同合作,需x 天完成,可列方程( ) A .3x+7x=1 B .37x x +=1 C .(1137-)x=1 D .x=(1137-)-1 三、计算题(1)10673x x +=+ (2)21341510x x +-+= 四、综合题11.随着5G 时代的来临,张老师换了新发布的5G 手机并且需要新办一种5G 套餐.运营商提出了两种包月套餐方案,第一种是每50元月租费,流量资费0.4/GB 元;第二种是没有月租费,但流量资费0.6/GB 元.设张老师每月使用流量xGB .(1)张老师按第一种套餐每月需花费 元,按第二种套餐每月需花费 元;(用含x 的代数式表示)(2)若张老师这个月使用流量200GB ,通过计算说明哪种套餐比较合算: (3)张老师每月使用多少流量时,选择哪种套餐更合算?。

一元一次方程单元复习讲义

一元一次方程单元复习讲义

一元一次方程知识梳理一、主要概念1、方程:含有未知数的等式叫做方程。

2、一元一次方程:只含有一个未知数,未知数的指数是1的方程叫做一元一次方程。

3、方程的解:使方程左右两边相等的未知数的值叫做方程的解。

4、解方程:求方程的解的过程叫做解方程。

二、等式的性质等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

三、解一元一次方程的一般步骤及根据1、去分母-------------------等式的性质22、去括号-------------------分配律3、移项----------------------等式的性质14、合并----------------------分配律5、系数化为1--------------等式的性质26、验根---把根分别代入方程的左右边看求得的值是否相等。

四、解一元一次方程的注意事项1、分母是小数时,根据分数的基本性质,把分母转化为整数;2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;3、去括号时,不要漏乘括号内的项,不要弄错符号;4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。

五、列方程解应用题的一般步骤1、审题2、设未数3、找相等关系4、列方程5、解方程6、检验7、写出答案 六、一元一次方程ax=b 的解的情况: (1)当a≠0时,ax=b 有唯一的解。

(2)当a=0,b≠0时,ax=b 无解。

(3)当a=0,b=0时,ax=b 有无穷多个解。

课堂练习1、选项中是方程的是( )A.3+2=5 B. a-1>2 C. a 2+b 2-5 D. a 2+2a-3=5;2、下列各数是方程a 2+a+3=5的解的是( ) A.2 B. -2 C.1 D. 1和-2;3、下列方程是一元一次方程的是( ) A.x2+1=5 B. 3(m -1)-1=2 ; C. x-y=6 D.都不是 4、下列变形中,正确的是( )5、若=-=+++y x x y 则,0)5(22。

(完整版)一元一次方程复习资料

(完整版)一元一次方程复习资料

一元一次方程复习知识梳理一、等式的概念和性质1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式.在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.楷体五号2.等式的类型楷体五号(1)矛盾等式:无论用什么数值代替等式中的字母,等式总能成立.如:数字算式123+=.(2)条件等式:只能用某些数值代替等式中的字母,等式才能成立.方程56x+=需要1x=才成立.(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.如125+=,11x x+=-.注意:等式由代数式构成,但不是代数式.代数式没有等号.楷体五号3.等式的性质楷体五号等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b=,则a m b m±=±;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若a b=,则am bm=,a bm m=(0)m≠.注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边.(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果a b=,那么b a=.②等式具有传递性,即:如果a b=,b c=,那么a c=.黑体小四二、方程的相关概念黑体小四1.方程,含有未知数的等式叫作方程.注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.楷体五号2.方程的次和元楷体五号方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元.楷体五号3.方程的已知数和未知数楷体五号已知数:一般是具体的数值,如50x+=中(x的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有a、b、c、m、n等表示.未知数:是指要求的数,未知数通常用x、y、z等字母表示.如:关于x、y的方程2ax by c-=中,a、2b-、c是已知数,x、y是未知数.楷体五号4.方程的解楷体五号使方程左、右两边相等的未知数的值,叫做方程的解. 楷体五号5.解方程 楷体五号求得方程的解的过程.注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程. 6.方程解的检验 楷体五号要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是. 黑体小四三、一元一次方程的定义 黑体小四1.一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数. 楷体五号2.一元一次方程的形式 楷体五号标准形式:0ax b +=(其中0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式. 最简形式:方程ax b =(0a ≠,a ,b 为已知数)叫一元一次方程的最简形式. 注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.(2)方程ax b =与方程(0)ax b a =≠是不同的,方程ax b =的解需要分类讨论完成. 黑体小四四、一元一次方程的解法1.解一元一次方程的一般步骤 楷体五号(1)去分母:在方程的两边都乘以各分母的最小公倍数.注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号. (2)去括号:一般地,先去小括号,再去中括号,最后去大括号. 注意:不要漏乘括号里的项,不要弄错符号.(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边. 注意:①移项要变号;②不要丢项.(4)合并同类项:把方程化成ax b =的形式. 注意:字母和其指数不变.(5)系数化为1:在方程的两边都除以未知数的系数a (0a ≠),得到方程的解b x a=. 注意:不要把分子、分母搞颠倒. 楷体五号2.解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等. 3.关于x 的方程 ax b 解的情况 ⑴当a 0时,x⑵当a ,b 0时,方程有无数多个解 ⑶当a 0,b 0时,方程无解知识点1、等式的概念和性质【例1】 下列说法不正确的是( )A .等式两边都加上一个数或一个等式,所得结果仍是等式.B .等式两边都乘以一个数,所得结果仍是等式.C .等式两边都除以一个数,所得结果仍是等式.D .一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式. 【例2】 根据等式的性质填空.(1)4a b =-,则 a b =+; (2)359x -=,则39x =+ ;(3)683x y =+,则x = ;(4)122x y =+,则x = .知识点2、方程的相关概念【例3】 列各式中,哪些是等式?哪些是代数式,哪些是方程?①34a +;②28x y +=;③532-=;④1x y ->;⑤61x x --;⑥83x-=; ⑦230y y +=;⑧2223a a -;⑨32a a <-.【例4】 判断题.(1)所有的方程一定是等式. ( ) (2)所有的等式一定是方程. ( ) (3)241x x -+是方程. ( ) (4)51x -不是方程. ( ) (5)78x x =不是等式,因为7x 与8x 不是相等关系. ( ) (6)55=是等式,也是方程. ( ) (7)“某数的3倍与6的差”的含义是36x -,它是一个代数式,而不是方程. ( )知识点3、一元一次方程的定义【例5】 在下列方程中哪些是一元一次方程?哪些不是?说明理由:(1)3x+5=12; (2)31+x +2x=5; (3)2x+y=3; (4)y 2+5y -6=0;(5)x3-x =2.【例6】 已知2(1)(1)30k x k x -+-+=是关于x 的一元一次方程,求k 的值.【例7】 已知方程()7421=+--m x m 是关于x 的一元一次方程,则m=_________【例8】 已知方程1(2)40a a x--+=是一元一次方程,则a = ;x = .知识点4、一元一次方程的解与解法1、 一元一次方程的解题型一、根据方程解的具体数值来确定【例9】 若关于x 的方程a x x -=+332的解是2x =-,则代数式21aa -的值是_________。

一元一次方程复习资料

一元一次方程复习资料

6.一组学生去春游,预计共需费用120元,后来又有2少分摊3元,原来这组学生人数是( ) A 、15人 B 、 10人 C 、 12人 D 、8人7.小明存入100元人民币,存期一年,年利率为2那么小明存款到期交利息税后共得款 ( ) A.106元 B.102元 C.111.6元 D.101.6元8.如图,宽为50 cm 的长方形图案由10其中一个小长方形的面积为( ) A. 400 cm 2 B. 500 cm 2 C. 600 cm 2 D. 4000 cm 2 9.一家三口准备参加旅行团外出旅游,甲旅行社告知:票,小孩按半价优惠”,乙旅行社告知:即每人均按全价的8折收费”,若这两家旅行社每人的原价相同,那么可以算出( )A. 甲比乙优惠B. 乙比甲优惠C. 甲与乙相同D. 与原票价有关10.某种电脑价格六月份下降了10%,七月份上升了20%,则七月底的价格与原价相比( ) A.不增也不减 B.增加8% C.减少了9% D.减少了11.(07遵义)如图是2007年5月的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是( ) A .27 B .36 C .40 D .54 12.(07湖州)某商场出售甲、乙两种不同价格的笔记本电脑,其中甲电脑因供不应求,连续两次提价10%,而乙电脑因外观过时而滞销,只得连续两次降价10%,最后甲、乙两种电脑均以9801元售出。

若商场同时售出甲、乙电脑各一台与价格不升不降比较,商场的盈利情况是 ( )A .前后相同B .少赚598元C .多赚980.1元 D .多赚490.05元 13.(2011山东日照,4,3分)某道路一侧原有路灯106盏,相邻两盏灯的距离为36则需更换的新型节能灯有( ) A .54盏 B .55盏 C .56盏 D .57盏 14.(2011山西,10,2分)“五一”期间,某电器按成本价提高80%)销售,售价为2080元.设该电器的成本价为x 元,A .()130%80%2080x +⨯= B . 30%80%x ⋅⋅=C . 208030%80%x ⨯⨯= D . 30%x ⋅=15.(2011•柳州)九(3)班的50验做对的有40人,化学实验做对的有31有( ) A 、17人 B 、21人 C 、25人 D 、3716.(2011•铜仁地区4,3小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km 则据题意列出的方程是( )A 、B 、60512601015+=-x xC 、60512601015-=-x x D 、5121015-=+x x 17.(2011湖北荆州,6,3分)对于非零的两个有理数a 、b ,规定ab b a 11-=⊗,若1)1(1=+⊗x ,则x 的值为( ) A .23 B .31 C . 21 D . 21-㈡、填空题1. x 比它的一半大6,可列方程为 . 2.当m = 时,代数式353+m 的值是2. 3.若9a x b 3 与 – 7a 3x –4 b 3是同类项,则x= .4.三个连续整数的和为690,则这三个数分别为 .5.一个长方形周长是42cm,宽比长少3cm,如果设长为xcm,则根据题意列方程为 . 6.某校初一(8)班的男生比女生多2人,女生占全班人数的48﹪,这个班男生有 人,女生有 人.7.某人按定期一年将一定数额的人民币存入银行,年利率为2.2%,到期支取时扣除个人所得税(税率20%)实得利息352元,则他存入的人民币有 元。

一元一次方程(复习)

一元一次方程(复习)
1 1
= 3 ������ − 2 .
2
1Байду номын сангаас
总结:对于含有多重括号的方程,关键是去括号,去括号时可以由里向外,也可 以由外向里. 4、列一元一次方程解应用题的方法与题型: (1)列方程解决实际问题的一般步骤: ①找——找准等量关系,找出能够表示题意的等量关系. ②设——设未知数,弄清题意和找准等量系后,用字母表示题目中的一个 未知数. ③列——列出方程, 用含未知数的代数式表示出题目中的各种数量,依据找 准的等量关系,列出方程. ④解——解方程.解出所列的方程,求出未知数的值. ⑤答——作出应答,检验方程的解是否符合实际,作出回答且注明单位. (2)列方程解应用题的三种常用分析方法: ①等量分析法: 找出题中的等量关系, 分析相等关系的左、 右两边是否相符. ②图示法:根据题意画出示意图,利用图形来分析数量间的关系,从而列出 方程.(以线段示意图为主)
当������ ≠ 0 时,方程的解为������ =
当������ = 0,������ = 0 时,方程������������ = ������有无数多个解; 当������ = 0,������ ≠ 0 时,方程������������ = ������无解. (5)列方程解应用题的一般思路 实际问题 审题 找出等量关系 设未知数( 分直接设法和间接 设法) 列方程 解方程 检验解的合理性. (6)一般方法步骤(简单概括为“审、找、设、列、解、验、答”七个字) 即:①审清题意和题目中的已知数、未知数,用字母表示题目中的一个未知 数; ②找出能够表示应用题含义的一个相等关系; ③根据这个相等关系设出需要的未知数,从而列出方程; ④解这个方程,求出未知数的值;
③列表法: 对于较复杂的应用题, 可以将题中的各个量列在表格中进行分析, 从而找出等量关系列方程. (3)题型 ①等体积问题 例 1 一个圆柱形水桶,底面半径为 11cm,高 25cm,将满桶的水倒入底面长 30cm, 宽 20cm 的长方体容器, 问此长方体容器的高度至少要多少才不溢出水 ( 取 3.14,结果精确到 0.1cm)? ②打折销售问题 例 2 某商场对一家店商品进行调价,按原价的 8 折出售,仍可获利 10%, 此商品的原价是 2200 元,问商品的进价是多少? ③行程问题 例 3 甲、乙两人相距 40km,甲先出发 1.5h 后乙出发,两人同向而行,甲 在后,乙在前,甲的速度是 8km/h,乙的速度是 6km/h,问:甲出发几小时后追 上乙?(思考:如果甲乙两人相向而行,几小时后两人相遇?) ④工程量问题 例 4 甲、乙两水管往水池中注水,甲管单独打开用 20 小时可注满一池水, 乙管单独打开用 40 小时可注满一池水.现在甲管单独打开 8 小时后, 乙管才开始 工作,问两管一起打开后需多少小时可注满水池? 三、课后练习 1、解方程:3 ������ + 1 − 2 ������ − 1 = 2 ������ − 1 − 2 ������ + 1 . 2、解关于������的方程:3 ������ − ������ + 2 ������������ − 3 = 4(2������ ≠ 3). 3、某商品的进货单价为 280 元,按 25%的利润率确定售价.后因市场发生变化, 决定按原定价格的八五折出售,问这时每售出一件这种商品,商店获利多少? 4、用内径 18 毫米的圆柱形试管盛满水后,向一个底面是边长为 22 毫米的正方 形,高是 15 毫米的空长方体容器内倒水,倒满容器后试管内水面下降约多少 毫米? 5、两人在环形跑道上同向急走,一圈为 400 米,甲的速度为平均每分钟 80 米, 乙的速度是甲的 1.25 倍,如果乙在甲的前面 100 米,多少分钟后两人相遇? 6、一个蓄水池,装有甲、乙两个进水管和一个出水管丙,如果单独开放甲管, 45 分钟可注满水池;如果单独开放乙管,90 分钟可注满水池;如果单独开放 丙管,60 分钟可把满池水放完,问:三个水管一起开放,多少分钟可以注满 水池?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信孚教育一元一次方程复习提纲
一、 一元一次方程的定义
1.方程中只含有 个未知数,未知数的次
数都是 ,这样的方程叫做一元一次方程。

如:
3x+1=0,6x+5=7.
注:一元一次方程的分母中不含有未知
数,531=+x
不是一元一次方程。

2.使方程左右两边的值相等的未知数的值,叫
做方程的解。

练习:1.如果12)2(1=-⋅+-a x a 是关于x 的一元一
次方程,那么a 的值是多少?
2.已知m x m =+-632是关于x 的一元一方程,试求
代数式2013)3(-x 的值。

二、等式的性质
等式的性质1:等式两边同时加(或减)同一个
数(或式子),结果仍相等。

如果±=±=b c a b a 那么,。

等式的性质2:等式两边同乘同一个数,或除以
同一个不为0的数,结果仍相等。

如果。

那么;如果那么c b c a c b a bc ac b a =≠===),0(, 练习
1.如果b a b a 与那么3,535+=-之间的关系
是 。

2.已知73552=--x x ,利用等式的基本性质,求
x x -2的值
三、解一元二次方程
解一元二次方程步骤:去括号、移项、合并同
类项、系数化一。

1.新定义一种运算“⊗”,规定
32,=⊗-+=⊗x b a ab b a 若,那么x 的值
为 。

2.方程关于x 的方程1324+=+x m x 和方程
1423+=+x m x 的解相同,
(1)求m 的值;(2)根据所求的m 的值当2=-n m 时,试求n m +的值。

3.已知关于x 的方程143+=+x ax 的解为正整数,
求整数a 的值。

4.新定义一种运算“∞”规定)(b a b a b a --+=∞,
若0)1()2(=-∞-x x ,求x 的值。

5.若代数式是同类项,与)1(2445332---n n a b b a 试求代数
式20122)13(--n n 的值。

四、一元二次方程的应用
常用数量关系:
1.行程问题:路程=速度×时间
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
2.利润率问题:利润=售价-进价
利润率=100⨯进价利润%
售价=利润率)(进价+⨯1
3.工程问题:工作总量=工作效率×工作时间
4.浓度问题: %溶液质量
溶质质量浓度⨯= 溶质质量=溶液质量×浓度
溶液质量=溶质质量÷浓度
1、行程问题:
例题1、(相遇问题)甲、乙两人从相距为180千米的A 、
B 两地同时出发,甲骑自行车,乙开汽车,沿同一条路
线相向匀速行驶。

已知甲的速度为15千米/小时,乙的
速度为45千米/小时。

(1)经过多少时间两人相遇?
(2)相遇后经过多少时间乙到达A 地?
变式:甲、乙两人从A ,B 两地同时出发,甲骑自行车,
乙开汽车,沿同一条路线相向匀速行驶。

出发后经3 小
时两人相遇。

已知在相遇时乙比甲多行了90千米,相遇
后经 1小时乙到达A 地。

问甲、乙行驶的速度分别是多
少?
例题2、(追及问题)市实验中学学生步行到郊外旅行。

(1)班学生组成前队,步行速度为4千米/时,(2)班学生
组成后队,速度为6千米/时。

前队出发1小时后,后队
才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时。

(1)后队追上前队需要多长时间?
(2)后队追上前队时间内,联络员走的路程是多少?(3)两队何时相距3千米?
(4)两队何时相距8千米?
变式1:甲,乙两人登一座山,甲每分钟登高10米,并且先出发30分钟,乙每分钟登高15米,两人同时登上山顶。

甲用多少时间登山?这座山有多高?
变式2:甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人均匀速前进。

已知两人上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米。

求A,B两地之间的距离。

例题3、(环型跑道问题)一条环形跑道长400米,甲、乙两人练习赛跑,甲每分钟跑350米,乙每分钟跑250米。

(1)若两人同时同地背向而行,几分钟后两人首次相遇?变式:几分钟后两人二次相遇?
(2)若两人同时同地同向而行,几分钟后两人首次相遇?又经过几分钟两人二次相遇?
例题4、(顺、逆水问题)一轮船往返A,B两港之间,逆水航行需3时,顺水航行需2时,水流速度是3千米/时,则轮船在静水中的速度是多少?
变式:一架飞机在两城之间飞行,风速为24千米/小时。

顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程。

例题5、(错车问题)在一段双轨铁道上,两列火车同时驶过,A列车车速为20米/秒,B列车车速为24米/秒,若A列车全长180米,B列车全长160米,两列车错车的时间是多长时间?
变式1:一列火车匀速行驶,经过一条长300m的隧道需要20秒的时间。

隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,根据以上数据,你能求出火车的长度?
2、利润问题
(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.
变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.
(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.
变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.
变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.
变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?
变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?
变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?
变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?
3、工程问题:
(1)甲每天生产某种零件80个,3天能生产个零件。

(2)甲每天生产某种零件80个,乙每天生产某种零件x个。

他们5天一共生产个零件。

(3)甲每天生产某种零件80个,乙每天生产这种零件x个,甲生产3天后,乙也加入生产同一种零件,再经过5天,两人共生产个零件。

(4)一项工程甲独做需6天完成,甲独做一天可完成这项工程;若乙独做比甲快2天完成,则乙独做一天可完成这项工程的。

变式1:一件工作,甲单独做20小时完成,乙单独做12小时完成。

甲乙合做,需几小时完成这件工作?
变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成。

若甲先单独做4小时,剩下的部分由甲、乙合做,还需几小时完成?
变式3:一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5小时,然后由甲、乙合做,问还需几天完成?
变式4:整理一批数据,有一人做需要80小时完成。

现在计划先由一些人做2小时,在增加5人做8小时,完成这项工作的3/4,怎样安排参与整理数据的具体人数?
变式2:在一列火车经过一座桥梁,列车车速为20米/秒,全长180米,若桥梁长为3260米,那么列车通过桥梁需要多长时间?
4.浓度问题
例题:有含盐8%的盐水40㎏,要使盐水含盐量为20%,
(1)如果加盐,需要加多少千克盐?
(2)如果蒸发掉水分,需要蒸发多少千克的水?
变式1.要配置浓度为10%的盐水100千克,需要20%的盐水与5%的盐水各多少千克?
变式2.有两种合金,第一种含铜90%,第二种含铜80%,先要熔炼一种含铜82.5%的合金240千克。

两种合金各应多少千克?
5、分配问题:
例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?
变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?
变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?
6、匹配问题:
例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。

为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身
10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?。

相关文档
最新文档