圆柱,圆锥,圆台和球 (高考题)
04 圆柱、圆锥、圆台的表面积和体积(原卷版)
专题04圆柱、圆锥、圆台的表面积和体积题型一圆柱的表面积【例1】已知圆柱的底面半径r=1,母线长l与底面的直径相等,则该圆柱的表面积为( )A.6π B.8π C.9π D.10π【变式1-1】一个高为2的圆柱,底面周长为2π.该圆柱的表面积为.【变式1-2】一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比值是()A.142ππ+B.122ππ+C.12ππ+D.142ππ+【变式1-3】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.122π B.12π C.82π D.10π题型二圆锥的表面积【例2】若圆锥的轴截面是顶角为120的等腰三角形,且圆锥的母线长为2,则该圆锥的侧面积为()A.B.2πC.D.【变式2-1】把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为()A.10 B.C.D.【变式2-2】已知某圆锥的底面半径为8,高为6,则该圆锥的表面积为_________.【变式2-3】圆锥的高和底面半径相等,它的一个内接圆柱的高和圆柱底面半径也相等.求圆柱的表面积和圆锥的表面积之比;【变式2-4】一个圆柱内接于一个底面半径为2,高为4的圆锥,则内接圆柱侧面积的最大值是()A.32πB.3πC.5πD.4π题型三圆台的表面积【例3】圆台的上下底面半径分别为1、2,母线与底面的夹角为60°,则圆台的侧面积...为________.【变式3-1】圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的表面积为574π,则圆台较小的底面半径为____________.【变式3-2】圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,求圆台的表面积.【变式3-3】已知圆台的上、下底面的面积之比为9∶25,那么它的中截面截得的上、下两台体的侧面积之比是____________.【变式3-4】圆台的母线长为8 cm,母线与底面成60°角,轴截面的两条对角线互相垂直,求圆台的表面积.题型四圆柱的体积【例4】如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( )A.π B.2π C.4π D.8π【变式4-1】(多选)圆柱的侧面展开图是长12cm,宽8cm的矩形,则这个圆柱的体积可能是( )A.288πcm3B.192πcm3C.288π cm3D.192π cm3【变式4-2】周长为20cm的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为_____3cm.【变式4-3】如图,已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是________.题型五圆锥的体积【例5】已知圆锥的母线长为5,底面周长为6π,则它的体积为()A.10πB.12πC.15πD.36π【变式5-1】将半径为3,圆心角为23π的扇形作为侧面围成一个圆锥,则该圆锥的体积为()A.πB.C.3πD.3【变式5-2】已知圆锥的表面积为9π,它的侧面展开图是一个半圆,则此圆锥的体积为()A.3 B.3πC.9 D.9π【变式5-3】若一个圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积之比是( )A.1 B.1∶2 C.3∶2 D.3∶4题型六圆台的体积方法概要:台体的体积转化为求锥体的体积.根据台体的定义进行“补形”,还原为锥体,采用“大锥体”减去“小锥体”的方法求台体的体积.【例6】已知某圆台的上、下底面面积分别是π,4π,侧面积是6π,则这个圆台的体积是_______.【变式6-1】圆台上底半径为2,下底半径为6,母线长为5,则圆台的体积为()A.40πB.52πC.50πD.212 3π【变式6-2】古代将圆台称为“圆亭”,《九章算术》中“今有圆亭,下周三丈,上周二丈,高一丈,问积几何?”即一圆台形建筑物,下底周长3丈,上底周长2丈,高1丈,则它的体积为()A.198π立方丈B.1912π立方丈C.198π立方丈D.19π12立方丈【变式6-3】设圆台的高为3,如图,在轴截面A1B1BA中,∠A1AB=60°,AA1⊥A1B,则圆台的体积为____________.题型七球的表面积和体积【例7】(1)已知球的直径为6 cm,求它的表面积和体积;(2)已知球的表面积为64π,求它的体积;(3)已知球的体积为500π3,求它的表面积.【变式7-1】若一个球的直径为2,则此球的表面积为()A.2πB.16πC.8πD.4π【变式7-2】两个球的半径相差1,表面积之差为28π,则它们的体积和为____________.【变式7-3】三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A.1倍B.2倍C.95倍D.74倍题型八球的截面问题【例8】一平面截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为( )A.6π B.43π C.46π D.63π【变式8-1】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,若不计容器厚度,则球的体积为( )A.500π3cm3B.866π3cm3C.1372π3cm3D.2048π3cm3【变式8-2】球的表面积为400π,一个截面的面积为64π,则球心到截面的距离为____________.【变式8-3】一个距离球心为3的平面截球所得的圆面面积为π,则球的体积为____________。
1.1.3 圆柱 圆锥 圆台和球
张喜林制§1.1.3 圆柱、圆锥、圆台和球教材知识检索考点知识清单基本概念1.以矩形一边所在的直线为旋转轴,其余三边旋转一周而形成的曲面所围成的几何体叫做____,旋转轴叫做____,垂直于轴的边旋转形成的圆面叫做圆柱的____,平行于轴的边旋转形成的曲面叫做圆柱的____,无论旋转到什么位置都不垂直于轴的这条边叫做____.2.以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转一周而形成的曲面所围成的几何体叫做____,斜边旋转形成的曲面叫做____,无论旋转到什么位置,这条边都叫做 ,另一条直角边旋转形成的面叫做____.3.以直角梯形的直角腰所在的直线为旋转轴,其余三边旋转一周而形成的曲面所围成的几何体叫做 ,垂直于轴的边旋转形成的圆面叫做圆台的 ,另一条斜腰旋转形成的曲面叫做圆台的 ,这条边无论旋转到什么位置都叫做____.4.一个半圆绕着它的直径所在的直线旋转一周所形成的曲面叫做 ;球面围成的几何体,叫做 ;形成球的半圆的圆心叫做 ;连接球面上的点和球心的线段,叫做 ;连接球面上两点且通过球心的线段叫做____,球面也可以看作 的点的集合.要点核心解读1.圆柱、圆锥、圆台的性质(1)对于圆柱的性质,要注意以下两点:一是轴线垂直于圆柱的底面;二是三个截面的性质——平行于底面的截面是与底面全等的圆,轴截面是一个由上、下底面圆的直径和母线组成的矩形,平行于轴线的截面是一个由上、下底面圆的弦和母线组成的矩形.(2)对于圆锥的性质,要注意以下两点:一是两类截面——平行于底面的截面是与底面相似的圆,过圆锥的顶点且与底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形;二是圆锥的母线l 、高h 和底面圆的半径R 组成一个直角三角形,有关圆锥的计算一般归结为解这个直角三角形,往往会用到关系式.222R h l +=(3)对于圆台的性质,要注意以下两点:一是圆台的母线共点,所以由任意两条母线确定的截面为一等腰梯形,但是与上、下底面都相交的截面不一定是梯形;二是圆台的母线l 、高h 和上底面圆的半径r 、下底面的半径R 组成一个直角梯形,且有222)(r R h l -+=成立,有关圆台的计算问题,常归结为解这个直角梯形:2.球的截面性质(1)球心和截面圆心的连线垂直于截面;(2)如图1-1-3 -1所示,球心到截面的距离d 与球的半径R 及截面圆的半径r ,有如下关系:.22d R r -=球面被经过球心的平面截得的圆叫做球的大圆;被不经过球心的平面截得的圆叫做球的小圆.由于球的大圆含有球的全部元素,所以在解答有关球的计算问题时,常作出球的一个大圆,化“球”为“圆”,利用平面几何的有关定理来解决.3.圆柱、圆锥和圆台的轴截面及侧面展开图(1)圆柱的轴截面及侧面展开图(如图1-1-3 -2所示).(2)圆锥的轴截面及侧面展开图(如图1-1-3 -3所示).(3)圆台的轴截面及侧面展开图(如图1-1-3 -4所示)4.球面距离(1)球面距离的概念.在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的-段劣弧的长度,我们把这段弧长叫做两点的球面距离.(2)地球的经度和纬度.当把地球看作—个球时,经线是球面上从北极到南极的半个大圆.00经线(本初子午线)、东经180。
1. 1.2 圆柱,圆锥.圆台和球
1.1.2圆柱、圆锥、圆台和球在我们生活的世界中,从土木建筑到家居装潢,从机械设计到商品包装,从航空测绘到零件视图……无不存在着形状各异的物体,它们蕴含着形状各异的圆柱、圆锥、圆台和球等空间图形.每种空间图形各自具有不同的几何结构特征,与我们的生活息息相关,因此对空间图形的研究和应用非常重要.1.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面,过轴的截面是全等矩形.2.以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.旋转轴叫做圆锥的轴;垂直于轴的直角边旋转而成的圆面叫做圆锥的底面;斜边旋转而成的曲面叫做圆锥的侧面;斜边叫做圆锥的母线,过轴的截面是全等的等腰三角形.3.用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.原圆锥的底面和截面分别叫做圆台的下底面和上底面.4.以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.5.由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.6.柱体:棱柱、圆柱;锥体:棱锥、圆锥;台体:棱台、圆台;球体是七种最基本的简单几何体,日常生活中见到的各种几何体则是由它们所组合成的简单组合体.7.由一些简单的几何体组合而成的几何体叫做简单组合体.简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成.8.简单组合体包括:多面体与多面体的组合、多面体与旋转体的组合、旋转体与旋转体的组合;在画简单组合体时,要把遮住的部分用虚线来表示或不画.,圆柱、圆锥、圆台、球的结构特征圆柱的结构特征:①两底面是全等的圆面;②所有母线长相等且互相平行;③过圆柱的轴截面都是全等矩形;④圆柱沿着它的一条母线剪开后的侧面展开图是矩形.圆锥的结构特征:①平行于底面的截面都是相似的圆;②所有母线长相等且相交于一点;③过圆锥的轴截面都是全等的等腰三角形;④圆锥沿它的一条母线剪开的侧面展开图是扇形.圆台的结构特征:①平行于底面的截面都是相似的圆;②所有母线长相等且延长线相交于一点;③过圆台的轴截面都是全等的等腰梯形;④圆台沿它的一条母线剪开后的侧面展开圆是扇环.球的结构特征:①过球心的截面都是全等的圆;②球的直径垂直截面,所截得的都是相似的圆.理解和掌握圆柱、圆锥、圆台、球的结构特征,要学会从直观感受空间旋转体的形成过程,从实物中概括出圆柱、圆锥、圆台和球的定义,以定义展开,多进行类比、归纳和整理,通过比较四者间的异同点加强记忆.圆柱、圆锥、圆台的截面包括平行于底面的截面和过轴的截面(简称轴截面)两类,球的截面有大圆和小圆之分,谨记其截面的形状是关键.基础巩固知识点一圆柱、圆锥和圆台的结构特征1.在几何体:①圆柱;②圆锥;③圆台;④球中,轴截面一定是圆面的有________(填序号).解析:根据结构特征判断.2.下列命题中说法错误的是________(填序号).①以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱;②以直角三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面围成的几何体叫做圆锥;③以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面围成的几何体叫做圆锥;④以等腰三角形的底边上的高所在直线为旋转轴,其余各边旋转形成的曲面围成的几何体叫做圆锥.解析:根据圆锥定义知②中应改为以一条直角边旋转.答案:②3.以下命题正确的是________(填序号).①通过圆台侧面上一点有无数条母线;②夹在圆柱的两个平行截面间的几何体还是圆柱;③圆锥截去一个小圆锥后剩余部分是圆台;④棱锥截去一个小棱锥后剩余部分是棱台.解析:根据定义判定③正确;①中只有一条母线;②中两个平行截面应与底面平行;④中小棱锥底面应与大棱锥底面平行.答案:③知识点二球的结构特征4.半圆绕着直径旋转一周所得的几何图形是________.解析:注意球与球面、半圆与半圆面的区别.5.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行平面间的距离为________.解析:由截面的周长分别为6π和8π得两个截面半径分别为3和4,又球的半径为5,故圆心到两个截面的距离分别为4和3.故当两个截面在球心同一侧时,平行平面间的距离为4-3=1,当两个截面在球心两侧时,平行平面间的距离为4+3=7.答案:1或7知识点三组合体的有关问题6.一个正方体内接于一个球,过球心作一截面,如下图所示,则截面的可能图形是________(填序号).解析:当截面平行于正方体的一个侧面时得③,当截面过正方体对角线时得②,当截面不平行于任何侧面也不过对角线时得①,但无论如何都不能得出④.答案:①②③7.如下图,一个圆环面绕着过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.试着说出它的名称为________.解析:旋转形成的几何体是由两个同心球构成的,即大球中挖去一个同心的小球.答案:空心球8.描述下列几何体的结构特征.解析:(1)两个圆台组合而成的组合体;(2)圆台挖去一个等高圆锥而成的组合体;(3)圆锥挖去一个等高三棱锥而成的组合体.能力升级综合点一空间旋转体的组合与分割9.作一个圆柱的内接正三棱柱,又作这个三棱柱的内切圆柱,那么两个圆柱的底面半径之比为________.解析:两个圆柱的底面半径之比即为正三角形的外接圆与内切圆半径之比.答案:2∶1综合点二 旋转体中的简单计算10.用平行于圆锥的底面的平面截圆锥,所得截面面积与底面面积的比是1:3,这个截面把圆锥的母线分为两段的比是________.解析:面积比为相似比的平方.答案:1(3-1)11.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.解析:设底面半径为r ,母线为l ,则2πr =πl ,∴l =2r .答案:60°综合点三 相切球的空间想象12.把四个半径为R 的小球放在桌面上,使下层三个,上层一个,两两相切,求上层小球最高处离桌面的距离.解析:如右图,由于四个半径为R 的球两两相切,故四个球的球心构成一个棱长为2R 的正四面体O 4O 1O 2O 3,因为底面等边三角形O 1O 2O 3的高为32×2R ,∴该棱锥的高OO 4=(2R )2-⎝ ⎛⎭⎪⎫233R 2=263R .∴上层小球最高处离桌面的距离d =263R +R +R =⎝⎛⎭⎪⎫2+263R .。
高考球类型及例题
高考球类型及例题 Prepared on 22 November 2020高考球类型及例题1、球定义2、球面距离经度纬度:此类题主要目的在于明确经度和纬度概念,注意及利用圆的有关性质,弧长公式,球的截面的性质等球截面:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两 个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.3、球内接多面体:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题4、多面体内切球、:解决有关几何体接切的问题,如何选取截面是个关键.5、球与球外切:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比总之:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.类型例题一球定义例1 过球面上两点作球的大圆,可能的个数是( ).A .有且只有一个B .一个或无穷多个C .无数个D .以上均不正确分析:对球面上两点及球心这三点的位置关系进行讨论.当三点不共线时,可以作一个大圆;当三点共线时,可作无数个大圆,故选B .答案:B 说明:解此易选出错误判断A .其原因是忽视球心的位置. 类型例题二球面距离经度纬度例1.已知地球的半径为R ,球面上B A ,两点都在北纬45 圈上,它们的球面距离为R 3π,A 点在东经30 上,求B 点的位置及B A ,两点所在其纬线圈上所对应的劣弧的长度.分析:求点B 的位置,如图就是求B AO 1∠的大小,只需求出弦AB 的长度.对于AB 应把它放在OAB ∆中求解,根据球面距离概念计算即可.解:如图,设球心为O ,北纬45 圈的中心为1O ,由B A ,两点的球面距离为R 3π,所以AOB ∠=3π, ∴OAB ∆为等边三角形.于是R AB =.由R R B O A O 2245cos 11=⋅== , 22121AB B O A O =+∴.即B AO 1∠=2π. 又A 点在东经30 上,故B 的位置在东经120 ,北纬45 或者西经60 ,北纬45 .B A ,∴两点在其纬线圈上所对应的劣弧R A O ππ4221=⋅. 说明:此题主要目的在于明确经度和纬度概念,及利用球的截面的性质和圆的有关性质设计计算方案.类型例题三球截面例1 在球心同侧有相距cm 9的两个平行截面,它们的面积分别为249cm π和2400cm π.求球的表面积.分析:可画出球的轴截面,利用球的截面性质,求球的半径.解:如图为球的轴截面,由球的截面性质知,21//BO AO ,且若1O 、2O 分别为两截面圆的圆心,则11AO OO ⊥,22BO OO ⊥.设球的半径为R .∵ππ4922=⋅B O ,∴)(72cm B O =同理ππ40021=⋅A O ,∴)(201cm A O =设xcm OO =1,则cm x OO )9(2+=.在A OO Rt 1∆中,22220+=x R ;在B OO Rt 2∆中,2227)9(++=x R ,∴222)9(720++=+x x ,解得15=x ,∴22222520=+=x R ,∴25=R∴)(2500422cm R S ππ==球.∴球的表面积为22500cm π.例2.用两个平行平面去截半径为R 的球面,两个截面圆的半径为cm r 241=,cm r 152=.两截面间的距离为cm d 27=,求球的表面积.分析:此类题目的求解是首先做出截面图,再根据条件和截面性质做出与球的半径有关的三角形等图形,利用方程思想计算可得.解:设垂直于截面的大圆面交两截面圆于2211,B A B A ,上述大圆的垂直于11B A 的直径交2211,B A B A 于21,O O ,如图2.设2211,d OO d OO ==,则⎪⎩⎪⎨⎧=+=+=+2222222121152427R d R d d d ,解得25=R .)(2500422cm R S ππ==∴圆.说明:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.例3 A 、B 是半径为R 的球O 的球面上两点,它们的球面距离为R 2π,求过A 、B 的平面中,与球心的最大距离是多少分析:A 、B 是球面上两点,球面距离为R 2π,转化为球心角2π=∠AOB ,从而R AB 2=,由关系式222d R r -=,r 越小,d 越大,r 是过A 、B 的球的截面圆的半径,所以AB 为圆的直径,r 最小.解:∵球面上A 、B 两点的球面的距离为R 2π. ∴2π=∠AOB ,∴R AB 2=.当AB 成为圆的直径时,r 取最小值,此时R AB r 2221==,d 取最大值, R r R d 2222=-=, 即球心与过A 、B 的截面圆距离最大值为R 22. 说明:利用关系式222d R r -=不仅可以知二求一,而且可以借此分析截面的半径r 与球心到截面的距离d 之间的变化规律.此外本题还涉及到球面距离的使用,球面距离直接与两点的球心角AOB ∠有关,而球心角AOB ∠又直接与AB 长度发生联系,这是使用或者求球面距离的一条基本线索,继续看下面的例子.例4 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,那么这个球的半径为( ).A .34B .32C .2D .3 分析:利用球的概念性质和球面距离的知识求解.设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r .如图所示,设三点A 、B 、C ,O 为球心,362ππ==∠=∠=∠COA BOC AOB .又∵OB OA =,∴AOB ∆是等边三角形,同样,BOC ∆、COA ∆都是等边三角形,得ABC ∆为等边三角形,边长等于球半径R .r 为ABC ∆的外接圆半径,R AB r 3333==,3233==r R . 答案:B 说明:本题是近年来球这部分所出的最为综合全面的一道题,除了考查常规的与多面体综合外,还考查了球面距离,几乎涵盖了球这部分所有的主要知识点,是一道不可多得的好题.类型例题四球内接例1.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算.例2 半径为R 的球内接一个各棱长都相等的四棱锥.求该四棱锥的体积.分析:四棱锥的体积由它的底面积和高确定,只需找到底面、高与球半径的关系即可,解决这个问题的关键是如何选取截面,如图所示.解:∵棱锥底面各边相等,∴底面是菱形.∵棱锥侧棱都相等,∴侧棱在底面上射影都相等,即底面有外接圆.∴底面是正方形,且顶点在底面上的射影是底面中心,此棱锥是正棱锥.过该棱锥对角面作截面,设棱长为a ,则底面对角线a AC 2=,故截面SAC 是等腰直角三角形.又因为SAC 是球的大圆的内接三角形,所以R AC 2=,即R a 2=.∴高R SO =,体积33231R SO S V =⋅=底. 说明:在作四棱锥的截面时,容易误认为截面是正三角形,如果作平等于底面一边的对称截面(过棱锥顶点,底面中心,且与底面一边平行),可得一个腰长为斜高、底为底面边长的等腰三角形,但这一等腰三角形并不是外接球大圆的内接三角形.可见,解决有关几何体接切的问题,如何选取截面是个关键.解决此类问题的方法通常是先确定多面体的棱长(或高或某个截面内的元素)与球半径的关系,再进一步求解.例3 在球面上有四个点P 、A 、B 、C ,如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===.求这个球的表面积.分析:24R S π=球面,因而求球的表面关键在于求出球的半径R .解:设过A 、B 、C 三点的球的截面半径为r ,球心到该圆面的距离为d ,则222d r R +=.由题意知P 、A 、B 、C 四点不共面,因而是以这四个点为顶点的三棱锥ABC P -(如图所示).ABC ∆的外接圆是球的截面圆.由PA 、PB 、PC 互相垂直知,P 在ABC 面上的射影'O 是ABC ∆的垂心,又a PC PB PA ===,所以'O 也是ABC ∆的外心,所以ABC ∆为等边三角形, 且边长为a 2,'O 是其中心,从而也是截面圆的圆心.据球的截面的性质,有'OO 垂直于⊙'O 所在平面,因此P 、'O 、O 共线,三棱锥ABC P -是高为'PO 的球内接正三棱锥,从而'PO R d -=.由已知得a r 36=,a PO 33'=,所以2'2222)(PO R r d r R -+=+=,可求得a R 23=,∴2234a R S ππ==球面. 说明:涉及到球与圆柱、圆锥、圆台切接问题,一般作其轴截面;涉及到球与棱柱、棱锥、棱台的切接问题,一般过球心及多面体中特殊点或线作截面,把空间问题化为平面问题,进而利用平面几何的知识寻找几何体元素间的关系.例4 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴222AC BC AB =+,ABC ∆是以AC 为斜边的直角三角形.∴ABC ∆的外接圆的半径为15,即截面圆的半径15=r , 又球心到截面的距离为R d 21=, ∴22215)21(=-R R ,得310=R . ∴球的表面积为πππ1200)310(4422===R S .说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.例如,过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 例5 正三棱锥ABC P -的侧棱长为l ,两侧棱的夹角为α2,求它的外接球的体积.分析:求球半径,是解本题的关键.解:如图,作⊥PD 底面ABC 于D ,则D 为正ABC ∆的中心.∵⊥OD 底面ABC ,∴O 、P 、D 三点共线. ∵l PC PB PA ===,α2=∠APB .∴ααsin 22cos 2222l l l AB =-=.∴αsin 33233==AB AD , 设β=∠APD ,作PA OE ⊥于E ,在APD Rt ∆中,∵αβsin 332sin ==PA AD , 又R OA OP ==,∴l PA PE 2121==. 在POE Rt ∆中,∵αβ2sin 3412cos -===lPE PO R , ∴)sin 43(2sin 433sin 34123422332ααπαπ--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=l l V 球. 说明:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这类截面通常指圆锥的轴截面、球的大圆、多面体的对角面等,在这个截面中应包括每个几何体的主要元素,且这个截面必须能反映出体和体之间的主要位置关系和数量关系.类型例题五球外切例1.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图2的截面图,在图2中,观察R 与r 和棱长间的关系即可. 解:如图2,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,. 则由3,1==AC AB 得R CO r AO 3,321==.3)(3=+++∴R r R r ,233133-=+=+∴r R . (1)设两球体积之和为V ,则))((34)(342233r Rr R R r r R V +-+=+=ππ =[]=-+rR r R 3)(233342π⎥⎦⎤⎢⎣⎡--)233(3)233(233342R R π =⎥⎦⎤⎢⎣⎡-+--22)233(2)33(3323334R R π 当433-=R 时,V 有最小值.∴当433-==r R 时,体积之和有最小值. 例2.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.解:如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.设R OA r OO ==,1,正四面体的一个面的面积为S .图2依题意得)(31r R S V BCD A +=-, 又S r V V BCD O BCD A ⋅⨯==--3144 r r R 4=+∴即r R 3=. 所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R r ππ外接球的体积内切球的体积. 说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 41=(h 为正四面体的高),且外接球的半径r R 3=.例3 已知棱长为3的正四面体ABCD ,E 、F 是棱AB 、AC 上的点,且FC AF 2=,AE BE 2=.求四面体AEFD 的内切球半径和外接球半径.分析:可用何种法求内切球半径,把AEF D V -分成4个小体积(如图).解:设四面体AEFD 内切球半径为r ,球心N ,外接球半径R ,球心M ,连结NA 、NE 、NF 、ND ,则EFD N ADE N AFD N AEF N AEFD V V V V V ----+++=.四面体AEFD 各面的面积为2392==∆∆ABC AEF S S ,23332==∆∆ABC AFD S S ,43331==∆∆ABC AED S S . DEF ∆各边边长分别为3=EF ,7==DE DF , ∴345=∆DEF S . ∵2292==ABCD ADEF V V , )(31DEF AED AFD AEF AEFD S S S S r V ∆∆∆∆+++=, ∴)43543323323(3122+++=r ,∴86=r . 如图,AEF ∆是直角三角形,其个心是斜边AF 的中点G .设ABC ∆中心为1O ,连结1DO ,过G 作平面AEF 的垂线,M 必在此垂线上, 连结1GO 、MD .∵ABC MG 平面⊥,ABC DO 平面⊥1,∴1//DO MG ,1GO MG ⊥.在直角梯形DM GO 1中,11=GO ,61=DO ,R MD =,1222-=-=R AG AM MG ,又∵22121)(MD GO MG DO =+-,∴2221)16(R R =+--, 解得:210=R . 综上,四面体AEFD 的内切球半径为86,外接球半径为210. 说明:求四面体外接半径的关键是确定其球心.对此多数同学束手无策,而这主要是因本题图形的背景较复杂.若把该四面体单独移出,则不参发现其球心在过各面三角形外心且与该三角形所在平面垂直的直线上,另还须注意其球心不一定在四面体内部.本题在求四面体内切球半径时,将该四面体分割为以球心为顶点,各面为底面的四个三棱锥,通过其体积关系求得半径.这样分割的思想方法应给予重视.例4 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.解:如图,作轴截面,设球未取出时,水面高h PC =,球取出后,水面高x PH =. ∵r AC 3=,r PC 3=,则以AB 为底面直径的圆锥容积为3233)3(31r r r ππ=⋅=, 334r V π=球. 球取出后,水面下降到EF ,水的体积为32291)30tan (3131x PH PH PH EH V πππ=︒=⋅⋅=水. 又球圆锥水V V V -=,则33334391r r x πππ-=, 解得r x 315=. 答:球取出后,圆锥内水平面高为r 315.说明:抓住水的何种不变这个关键,本题迅速获解.例5 正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.分析:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,而点面距离常可以用等体积法解决.解:如图,球O 是正三棱锥ABC P -的内切球,O 到正三棱锥四个面的距离都是球的半径R .PH 是正三棱锥的高,即1=PH .E 是BC 边中点,H 在AE 上,ABC ∆的边长为62,∴26263=⨯=HE . ∴3=PE 可以得到2321=⋅===∆∆∆PE BC S S S PBC PAC PAB . 由等体积法,ABC O PBC O PAC O PAB O ABC P V V V V V -----+++= ∴R R ⨯⨯+⨯⨯⨯=⨯⨯363132******** 得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球. ∴33)26(3434-==ππR V 球. 说明:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比如:四个半径为R 的球两两外切,其中三个放在桌面上,第四个球放在这三个球之上,则第四个球离开桌面的高度为多少这里,四个球的球心这间的距离都是R 2,四个球心构成一个棱长为R 2的正四面体,可以计算正四面体的高为R R 362236=⨯,从而上面球离开桌面的高度为R R 3622+. 例6求球与它的外切圆柱、外切等边圆锥的体积之比.分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.解:如图,等边SAB ∆为圆锥的轴截面,此截面截圆柱得正方形11CDD C ,截球面得球的大圆圆1O .设球的半径R OO =1,则它的外切圆柱的高为R 2,底面半径为R ; R O O OB 330cot 1=︒⋅=,R R OB SO 33360tan =⋅=︒⋅=, ∴334R V π=球,3222R R R V ππ=⋅=柱,3233)3(31R R R V ππ=⋅⋅=锥,∴964∶∶∶∶锥柱球=V V V .。
高一数学圆柱、圆锥、圆台和球的表面积与体积
1.若圆锥的底面半径为1,高为3,则圆锥的表面积为(
)
A.π
B.2π
C.3π
D.4π
2.圆台的体积为7π,上、下底面的半径分别为1和2,则圆台的高为( )
A.3
B.4
C.5
D.6
3.若球的体积与其表面积数值相等,则球的半径等于( )
A.12
B.1
C.2
D.3 4.用与球心距离为2的平面去截球,所得的截面面积为π,则球的体积为( ) A.20π3
B.
205π3 C.205π D.100π3 5.两个半径为1的实心铁球,熔化成一个大球,这个大球的半径是________.
6.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积
相等,且S 1S 2=94,则V 1V 2
的值是________. 7.圆柱有一个内接长方体AC 1,长方体体对角线长是10 2 cm ,圆柱的侧面展开平面图为矩形,此矩形的面积是100π cm 2,求圆柱的体积.
参考答案:1. C 2. A 3. D 4. B 5. 32 6.32
7. 解 设圆柱底面半径为r cm ,高为h cm.
如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,
则⎩
⎨⎧(2r )2+h 2=(102)2,2πrh =100π,∴⎩⎨⎧r =5,h =10. ∴V 圆柱=Sh =πr 2h =π×52×10
=250π(cm 3).
∴圆柱体积为250π cm 3.。
高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册
8.3。
2圆柱、圆锥、圆台、球的表面积和体积课后篇巩固提升基础达标练1。
(多选题)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A。
圆柱的侧面积为2πR2B.圆锥的侧面积为2πR2C。
圆柱的侧面积与球的表面积相等D.圆柱、圆锥、球的体积之比为3∶1∶2R,则圆柱的侧面积为2πR×2R=4πR2,∴A错误;圆锥的侧面积为πR×R=πR2,∴B错误;球的表面积为4πR2,∵圆柱的侧面积为4πR2,∴C正确;∵V圆柱=πR2·2R=2πR3,V圆锥=πR2·2R=πR3,V球=πR3,∴V圆柱∶V圆锥∶V球=2πR3∶πR3∶πR3=3∶1∶2,∴D正确.2.若一个正方体内接于表面积为4π的球,则正方体的表面积等于()A.4 B。
8 C。
8 D.8x,球半径为R,则S球=4πR2=4π,∴R=1。
∵正方体内接于球,∴x=2R=2,∴x=,∴S正=6x2=6×=8。
3。
(2019广东高二期末)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D—ABC体积的最大值为()A。
12 B.18C.24D.54点M为三角形ABC的中心,E为AC的中点,当DM⊥平面ABC时,三棱锥D—ABC的体积最大,此时,OD=OB=R=4.∵S△ABC=AB2=9,∴AB=6.∵点M为△ABC的中心,∴BM=BE=2。
∴Rt△OMB中,有OM==2。
∴DM=OD+OM=4+2=6。
∴(V D—ABC)max=×9×6=18。
故选B。
4。
《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A。
高中数学 必修2(人教版)8.3.2圆柱、圆锥、圆台、球的表面积和体积
圆 台
上底半径为r,下底半径为R,高为h,V=
1 3
π(r2+rR+R2)h
球
V=43πR3
状元随笔 (1)求旋转体的表面积时,要清楚常见旋转体的侧 面展开图是什么,关键是求其母线长与上、下底面的半径.
(2)柱体、锥体、台体体积之间的关系 柱体、锥体、台体的关系如下:
(3)两个结论 ①两个球的体积之比等于这两个球的半径之比的立方. ②两个球的表面积之比等于这两个球的半径之比的平方.
易错警示
易错原因
纠错心得
球心所在的截面位置判断错误, 对多面体及外接球的几何特点理
解模糊,基本量之间的关系不 清.
解决此类问题要确定球心的位置 及其所在的截面,在截面中寻找 球半径与多面体基本量的关系.
×2×1×r×2+
ห้องสมุดไป่ตู้
1 3
×
1 2
×1×1×r+
1 3
×12× 2× 答案:4π
5-12×r,解得r=14. 故内切球的表面积为4πr2=π4.
方法归纳
对于正四面体,有以下结论:
(1)正四面体的外接球与内切球的球心重合;
(2)棱长为a的正四面体的高为
6 3
a,其外接球的半径为
6 4
a,
内切球的半径为
解析:设球的半径为R,则圆柱的底面半径为R,高为2R. ∵V球=43πR3,V圆柱=πR2·2R=2πR3, ∴V球:V圆柱=43πR3:2πR3=23. 答案:2:3
易错辨析 对球的“切、接”的结构特点认识模糊致错 例5 设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点在 一个球面上,则该球的表面积为( ) A.πa2 B.73πa2 C.74πa2 D.5πa2
解析:在三棱锥P - ABC中,PA,PB,PC两两垂直,则以 PA,PB,PC为邻边作一长方体,所以三棱锥P - ABC的外接球即
高中数学必修2 1.1.3圆柱、圆锥、圆台和球
1.1.3圆柱、圆锥、圆台和球学习目标1. 能概述圆柱、圆锥、圆台台体、球的结构特征;2.能在几何体中进行相关的简单运算;3. 能描述一些简单组合体的结构.学法指导自学教材P11~ P12,弄清楚圆柱、圆锥、圆台的结构特征探究1:圆柱的结构特征问题:观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?1;以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做旋转轴叫做圆柱的;垂直于轴的边旋转而成的圆面叫做圆柱的;平行于轴的边旋转而成的曲面叫做圆柱的;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的,如图所示:圆柱用表示它的轴的字母表示,图中的圆柱可表示为OO .探究2:圆锥的结构特征问题:下图的实物是一个圆锥,与圆柱一样也是平面图形旋转而成的. 仿照圆柱的有关定义,你能定义什么是圆锥以及圆锥的轴、底面、侧面、母线吗?试在旁边的图中标出来.新知2:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表示它的轴的字母表示.棱锥与圆锥统称为锥体.探究3:圆台的结构特征问题:下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?新知3;直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分也是圆台.圆台和圆柱、圆锥一样,也有轴、底面、侧面、母线,请你在上图中标出它们,并把圆台用字母表示出来. 棱台与圆台统称为台体.反思:结合结构特征,从变化的角度思考,圆台、圆柱、圆锥三者之间有什么关系?探究4:球的结构特征问题:球也是旋转体,怎么得到的?新知4:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母O表示,如球O.探究5:简单组合体的结构特征问题:矿泉水塑料瓶由哪些几何体构成?灯管呢?新知5:由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.※典型例题例将下列几何体按结构特征分类填空:⑴集装箱⑵运油车的油罐⑶排球⑷羽毛球⑸魔方⑹金字塔⑺三棱镜⑻滤纸卷成的漏斗⑼量筒⑽量杯⑾地球⑿一桶方便面⒀一个四棱锥形的建筑物被飓风挂走了一个顶,剩下的上底面与地面平行;①棱柱结构特征的有________________________;②棱锥结构特征的有________________________;③圆柱结构特征的有________________________;④圆锥结构特征的有________________________;⑤棱台结构特征的有________________________;⑥圆台结构特征的有________________________;⑦球的结构特征的有________________________;⑧简单组合体______________________________.※动手试试'',剩下的几何体是什么?截去的几何体是什练.如图,长方体被截去一部分,其中EH‖A D么?三、总结提升※学习小结1. 圆柱、圆锥、圆台、球的几何特征及有关概念;2. 简单组合体的结构特征.※知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形.学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. Rt ABC∆三边长分别为3、4、5,绕着其中一边旋转得到圆锥,对所有可能描述不对的是().A.是底面半径3的圆锥B.是底面半径为4的圆锥C.是底面半径5的圆锥D.是母线长为5的圆锥2. 下列命题中正确的是().A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线3. 一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为().A. B.4. 已知,ABCD为等腰梯形,两底边为AB,CD.且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体.5. 圆锥母线长为R__________.课后作业1.如图,是由等腰梯形、矩形、半圆、倒形三角对接形成的轴对称平面图形,若将180后形成一个组合体,下面它绕轴旋转0说法不正确的是___________A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点,则球心到截面的距离为多少?2. 用一个平面截半径为25cm的球,截面面积是249cm。
高考立体几何中的数学文化题
专题三立体几何中的数学文化题一.考点解读:立体几何中的数学文化题一般以我国古代发现的球(圆柱、圆锥、圆台)的体积公式和“牟合方盖”“阳马”“鳖臑”“堑堵”“刍薨”等为背景来考查空间几何体的三视图、几何体的体积与表面积以及空间位置关系等.二.数学文化的典型题:(1)牟合方盖:牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,类似于微元法。
由于其采用的模型像一个牟合的方形盒子,故称为牟合方盖。
刘徽在他的注中对“牟合方盖”有以下的描述:“取立方棋八枚,皆令立方一寸,积之为立方二寸。
规之为圆囷,径二寸,高二寸。
又复横规之,则其形有似牟合方盖矣。
八棋皆似阳马,圆然也。
按合盖者,方率也。
丸其中,即圆率也。
”所以“牟合方盖”是我国古代利用立体几何模型和数学思想方法解决数学问题的代表之一,解题从识“图”到想“图”再到构“图”,考生要经历分析、判断的逻辑过程。
(2)商功:商功是中国古代九章算术之一,即测量体积,计算工程用工的方法。
《周礼·地官·保氏》“六曰九数”,注:“九数:方田、粟米、差分、少广、商功、均输、方程、赢不足、旁要。
”贾公彦疏:“九数者方田已下皆依九章筭术而言。
”严复《救亡决论》:“其中相地设险,遮扼钩联,又必非不知地不知商功者所得与也。
”我国古代数学强调“经世济用”,涉及的研究大多与实际生活、生产联系紧密,体现出明显的问题式、综合性的特征.结合立体几何中的基础知识设问,强化了数学文化的传承和数学应用意识的培养。
(3)祖暅原理:祖暅原理也称祖氏原理,一个涉及几何求积的著名命题,是中国南北朝时代的伟大科学家祖暅在5世纪末提出的体积计算的原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,上述原理在中国被称为祖暅原理,国外则一般称之为卡瓦列利原理。
2021年高考数学真题分类汇编专题11:立体几何
2021年高考数学真题分类汇编专题11:立体几何一、单选题1. ( 2分) (2021·全国甲卷)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A-EFG后,所得多面体的三视图中,正试图如右图所示,则相应的侧视图是()A. B. C. D.2. ( 2分) (2021·全国甲卷)已知A,B,C是半径为1的求O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O-ABC的体积为()A. B. C. D.3. ( 2分) (2021·全国乙卷)在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A. B. C. D.4. ( 2分) (2021·新高考Ⅰ)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2C. 4D. 45. ( 2分) (2021·新高考Ⅱ卷)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A. B. C. D.6. ( 2分) (2021·新高考Ⅱ卷)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为()A. 26%B. 34%C. 42%D. 50%7. ( 2分) (2021·北京)定义:24小时内降水在平地上积水厚度()来判断降雨程度.其中小雨(),中雨(),大雨(),暴雨(),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A. 小雨B. 中雨C. 大雨D. 暴雨8. ( 2分) (2021·北京)某四面体的三视图如图所示,该四面体的表面积为()A. B. 4 C. D. 29. ( 2分) (2021·浙江)某几何体的三视图如图所示,则该几何体的体积是()A. B. 3 C. D.10. ( 2分) (2021·浙江)如图已知正方体,M,N分别是,的中点,则()A. 直线与直线垂直,直线平面B. 直线与直线平行,直线平面C. 直线与直线相交,直线平面D. 直线与直线异面,直线平面11. ( 2分) (2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为,则这两个圆锥的体积之和为()A. B. C. D.二、多选题12. ( 3分) (2021·新高考Ⅰ)在正三棱柱ABC- 中,AB=AA1=1,点P满足,其中λ∈[0,1],∈[0,1],则()A. 当λ=1时,△P的周长为定值B. 当=1时,三棱锥P-A1BC的体积为定值C. 当λ= 时,有且仅有一个点P,使得D. 当= 时,有且仅有一个点P,使得B⊥平面A P13. ( 3分) (2021·新高考Ⅱ卷)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是()A. B.C. D.三、填空题14. ( 1分) (2021·全国甲卷)己知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.15. ( 1分) (2021·全国乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为________(写出符合要求的一组答案即可).四、解答题16. ( 10分) (2021·全国甲卷)已知直三棱柱中,侧面为正方形.分别为和的中点,.(1)求三棱锥F-EBC的体积;(2)已知为棱上的点,证明:.17. ( 10分) (2021·全国甲卷)已知直三棱柱ABC-A1B1C1.中,侧面AA1B1B为正方形,AB= BC = 2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF丄A1B1.(1)证明:BF⊥DE;(2)当为B1D何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?18. ( 10分) (2021·全国乙卷)如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC 的中点,且PB⊥AM,(1)求BC;(2)求二面角A-PM-B的正弦值。
高二数学柱锥台球的结构特征试题
高二数学柱锥台球的结构特征试题1.设正三棱锥的高为,侧棱与底面成角,则点到侧面的距离为___________.【答案】【解析】过正三棱锥的顶点作底面的垂线,垂足设为,则为底面的中心,连接并延长交于,则有,连接,则,因此面,从而面面,交线为,过点作的垂线,垂足为,则即为点到侧面,由侧棱与底面成角,知,又,则有,从而,进而,在△中,运用等面积思想有,得.【考点】立体几何中的有关计算.2.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧且相距是1,那么这个球的半径是 ( )A.4B.3C.2D.5【答案】B【解析】设球的半径为,且大圆到球心的距离为,则有,可得:,故B.【考点】球的性质.3.给出以下结论:①有两个侧面是矩形的棱柱是直棱柱;②各侧面都是正方形的棱柱一定是正棱柱;③对角面都是全等的矩形的直四棱柱一定是长方体;④一个三棱锥四个面可以都为直角三角形;⑤长方体一条对角线与同一个顶点的三条棱所成的角为,则.其中正确的是 .(将正确结论的序号全填上)【答案】④⑤【解析】①不正确,因为两个是矩形的侧面平行时,棱柱也可能为斜棱柱;②不正确,因为底面有可能为菱形;③不正确,因为当对角面为特殊的矩形即正方形时,底面可能为菱形;④正确,此时底面为直角三角形,三条侧棱也两两垂直;⑤正确,设长方体的长宽高分别为,则对角线长为,则,,,所以。
【考点】棱柱的概念4.以正方体的任意4个顶点为顶点的几何形体有①空间四边形;②每个面都是等边三角形的四面体;③最多三个面是直角三角形的四面体;④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.【答案】①②④【解析】①只要不在同一平面上的四个点连结而成的四边形都是空间四边形. ②从一个顶点出发与它的三个对角面的顶点连结所成的四棱锥符合条件.最多有四个直角四面体.由一个顶点和又该点出发的两条棱的端点及一个对角面的定点四点即可.所以③不成立. ④显然成立.故选①②④.【考点】1.空间图形的判断.2.空间中线面间的关系.5.平行四边形的两邻边的长为和,当它分别饶边和旋转一周后,所形成的几何体的体积之比为().A.B.C.D.【答案】B【解析】不妨把平行四边形特定为矩形(特殊化思想),则.【考点】几何体的体积6.如图,一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.【答案】3∶1∶2【解析】设球的半径为r,则三个几何体的体积分别为V1=πr2·2r=2πr3,V2=πr2·2r=πr3,V3=πr3,所以三个几何体的体积之比为3∶1∶2.【考点】圆柱,圆锥,球的体积7.已知正三棱锥,点都在半径为的球面上,若两两互相垂直,则球心到截面的距离为________。
高考数学-立体几何(含22年真题讲解)
高考数学-立体几何(含22年真题讲解)1.【2022年全国甲卷】如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,×2×2=12.则该直四棱柱的体积V=2+42故选:B.2.【2022年全国甲卷】在长方体ABCD−A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B 所成的角均为30°,则()A.AB=2AD B.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°【解析】 【分析】根据线面角的定义以及长方体的结构特征即可求出. 【详解】 如图所示:不妨设AB =a,AD =b,AA 1=c ,依题以及长方体的结构特征可知,B 1D 与平面ABCD 所成角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成角为∠DB 1A ,所以sin30∘=cB 1D=bB 1D ,即b =c ,B 1D =2c =√a 2+b 2+c 2,解得a =√2c .对于A ,AB =a ,AD =b ,AB =√2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成角为∠BAE ,因为tan∠BAE =c a=√22,所以∠BAE ≠30∘,B 错误;对于C ,AC =√a 2+b 2=√3c ,CB 1=√b 2+c 2=√2c ,AC ≠CB 1,C 错误; 对于D ,B 1D 与平面BB 1C 1C 所成角为∠DB 1C ,sin∠DB 1C =CDB 1D=a2c =√22,而0<∠DB 1C <90∘,所以∠DB 1C =45∘.D 正确. 故选:D .3.【2022年全国甲卷】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A .√5B .2√2C .√10D .5√104【答案】C 【解析】设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,根据圆锥的侧面积公式可得r 1=2r 2,再结合圆心角之和可将r 1,r 2分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解. 【详解】解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则S 甲S 乙=πr 1l πr 2l =r1r 2=2, 所以r 1=2r 2, 又2πr 1l+2πr 2l=2π,则r 1+r 2l=1,所以r 1=23l,r 2=13l ,所以甲圆锥的高ℎ1=√l 2−49l 2=√53l ,乙圆锥的高ℎ2=√l 2−19l 2=2√23l , 所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×√53l 19l ×2√23l =√10.故选:C.4.【2022年全国乙卷】在正方体ABCD −A 1B 1C 1D 1中,E ,F 分别为AB,BC 的中点,则( ) A .平面B 1EF ⊥平面BDD 1 B .平面B 1EF ⊥平面A 1BD C .平面B 1EF//平面A 1AC D .平面B 1EF//平面A 1C 1D【答案】A 【解析】 【分析】证明EF ⊥平面BDD 1,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设AB =2,分别求出平面B 1EF ,A 1BD ,A 1C 1D 的法向量,根据法向量的位置关系,即可判断BCD . 【详解】解:在正方体ABCD −A 1B 1C 1D 1中, AC ⊥BD 且DD 1⊥平面ABCD , 又EF ⊂平面ABCD ,所以EF ⊥DD 1,因为E,F 分别为AB,BC 的中点, 所以EF ∥AC ,所以EF ⊥BD , 又BD ∩DD 1=D , 所以EF ⊥平面BDD 1, 又EF ⊂平面B 1EF ,所以平面B 1EF ⊥平面BDD 1,故A 正确;如图,以点D 为原点,建立空间直角坐标系,设AB =2,则B 1(2,2,2),E (2,1,0),F (1,2,0),B (2,2,0),A 1(2,0,2),A (2,0,0),C (0,2,0), C 1(0,2,2),则EF ⃑⃑⃑⃑⃑ =(−1,1,0),EB 1⃑⃑⃑⃑⃑⃑⃑ =(0,1,2),DB ⃑⃑⃑⃑⃑⃑ =(2,2,0),DA 1⃑⃑⃑⃑⃑⃑⃑⃑ =(2,0,2),AA 1⃑⃑⃑⃑⃑⃑⃑ =(0,0,2),AC ⃑⃑⃑⃑⃑ =(−2,2,0),A 1C 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(−2,2,0),设平面B 1EF 的法向量为m ⃑⃑ =(x 1,y 1,z 1), 则有{m ⃑⃑ ⋅EF ⃑⃑⃑⃑⃑ =−x 1+y 1=0m ⃑⃑ ⋅EB 1⃑⃑⃑⃑⃑⃑⃑ =y 1+2z 1=0 ,可取m ⃑⃑ =(2,2,−1),同理可得平面A 1BD 的法向量为n 1⃑⃑⃑⃑ =(1,−1,−1), 平面A 1AC 的法向量为n 2⃑⃑⃑⃑ =(1,1,0), 平面A 1C 1D 的法向量为n 3⃑⃑⃑⃑ =(1,1,−1), 则m ⃑⃑ ⋅n 1⃑⃑⃑⃑ =2−2+1=1≠0,所以平面B 1EF 与平面A 1BD 不垂直,故B 错误; 因为m ⃑⃑ 与n 2⃑⃑⃑⃑ 不平行,所以平面B 1EF 与平面A 1AC 不平行,故C 错误; 因为m ⃑⃑ 与n 3⃑⃑⃑⃑ 不平行,所以平面B 1EF 与平面A 1C 1D 不平行,故D 错误, 故选:A.5.【2022年全国乙卷】已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.√33D.√22【答案】C【解析】【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为α,则S ABCD=12⋅AC⋅BD⋅sinα≤12⋅AC⋅BD≤12⋅2r⋅2r=2r2(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2又r2+ℎ2=1则VO−ABCD =13⋅2r2⋅ℎ=√23√r2⋅r2⋅2ℎ2≤√23√(r2+r2+2ℎ23)3=4√327当且仅当r2=2ℎ2即ℎ=√33时等号成立,故选:C6.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km 2;水位为海拔157.5m 时,相应水面的面积为180.0km 2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为(√7≈2.65)( ) A .1.0×109m 3 B .1.2×109m 3 C .1.4×109m 3 D .1.6×109m 3【答案】C 【解析】 【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出. 【详解】依题意可知棱台的高为MN =157.5−148.5=9(m),所以增加的水量即为棱台的体积V . 棱台上底面积S =140.0km 2=140×106m 2,下底面积S ′=180.0km 2=180×106m 2, ∴V =13ℎ(S +S ′+√SS ′)=13×9×(140×106+180×106+√140×180×1012) =3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m 3).故选:C .7.【2022年新高考1卷】已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3≤l ≤3√3,则该正四棱锥体积的取值范围是( ) A .[18,814]B .[274,814]C .[274,643]D .[18,27]【答案】C 【解析】 【分析】设正四棱锥的高为ℎ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】∵ 球的体积为36π,所以球的半径R =3, 设正四棱锥的底面边长为2a ,高为ℎ, 则l 2=2a 2+ℎ2,32=2a 2+(3−ℎ)2, 所以6ℎ=l 2,2a 2=l 2−ℎ2所以正四棱锥的体积V =13Sℎ=13×4a 2×ℎ=23×(l 2−l 436)×l 26=19(l 4−l 636), 所以V ′=19(4l 3−l 56)=19l 3(24−l 26),当3≤l ≤2√6时,V ′>0,当2√6<l ≤3√3时,V ′<0, 所以当l =2√6时,正四棱锥的体积V 取最大值,最大值为643, 又l =3时,V =274,l =3√3时,V =814,所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是[274,643]. 故选:C.8.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( ) A .100π B .128π C .144π D .192π【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径r 1,r 2,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径r 1,r 2,所以2r 1=3√3sin60∘,2r 2=4√3sin60∘,即r 1=3,r 2=4,设球心到上下底面的距离分别为d 1,d 2,球的半径为R ,所以d 1=√R 2−9,d 2=√R 2−16,故|d 1−d 2|=1或d 1+d 2=1,即|√R 2−9−√R 2−16|=1或√R 2−9+√R 2−16=1,解得R2=25符合题意,所以球的表面积为S=4πR2=100π.故选:A.9.【2022年北京】已知正三棱锥P−ABC的六条棱长均为6,S是△ABC及其内部的点构成的集合.设集合T={Q∈S|PQ≤5},则T表示的区域的面积为()A.3π4B.πC.2πD.3π【答案】B【解析】【分析】求出以P为球心,5为半径的球与底面ABC的截面圆的半径后可求区域的面积.【详解】设顶点P在底面上的投影为O,连接BO,则O为三角形ABC的中心,且BO=23×6×√32=2√3,故PO=√36−12=2√6.因为PQ=5,故OQ=1,故S的轨迹为以O为圆心,1为半径的圆,而三角形ABC内切圆的圆心为O,半径为2×√34×363×6=√3>1,故S的轨迹圆在三角形ABC内部,故其面积为π故选:B10.【2022年浙江】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.22πB.8πC.223πD.163π【答案】C【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm,圆台的下底面半径为2cm,所以该几何体的体积V=12×43π×13+π×12×2+13×2×(π×22+π×12+√π×22×π×12)=22π3cm3.故选:C.11.【2022年浙江】如图,已知正三棱柱ABC−A1B1C1,AC=AA1,E,F分别是棱BC,A1C1上的点.记EF与AA1所成的角为α,EF与平面ABC所成的角为β,二面角F−BC−A的平面角为γ,则()A.α≤β≤γB.β≤α≤γC.β≤γ≤αD.α≤γ≤β【答案】A【解析】【分析】先用几何法表示出α,β,γ,再根据边长关系即可比较大小.【详解】如图所示,过点F作FP⊥AC于P,过P作PM⊥BC于M,连接PE,则α=∠EFP,β=∠FEP,γ=FMP,tanα=PEFP =PEAB≤1,tanβ=FPPE=ABPE≥1,tanγ=FPPM≥FPPE=tanβ,所以α≤β≤γ,故选:A.12.【2022年新高考1卷】(多选)已知正方体ABCD−A1B1C1D1,则()A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【答案】ABD【解析】【分析】数形结合,依次对所给选项进行判断即可. 【详解】如图,连接B 1C 、BC 1,因为DA 1//B 1C ,所以直线BC 1与B 1C 所成的角即为直线BC 1与DA 1所成的角,因为四边形BB 1C 1C 为正方形,则B 1C ⊥ BC 1,故直线BC 1与DA 1所成的角为90°,A 正确;连接A 1C ,因为A 1B 1⊥平面BB 1C 1C ,BC 1⊂平面BB 1C 1C ,则A 1B 1⊥BC 1, 因为B 1C ⊥ BC 1,A 1B 1∩B 1C =B 1,所以BC 1⊥平面A 1B 1C , 又A 1C ⊂平面A 1B 1C ,所以BC 1⊥CA 1,故B 正确; 连接A 1C 1,设A 1C 1∩B 1D 1=O ,连接BO ,因为BB 1⊥平面A 1B 1C 1D 1,C 1O ⊂平面A 1B 1C 1D 1,则C 1O ⊥B 1B , 因为C 1O ⊥B 1D 1,B 1D 1∩B 1B =B 1,所以C 1O ⊥平面BB 1D 1D , 所以∠C 1BO 为直线BC 1与平面BB 1D 1D 所成的角,设正方体棱长为1,则C 1O =√22,BC 1=√2,sin∠C 1BO =C 1O BC 1=12,所以,直线BC 1与平面BB 1D 1D 所成的角为30∘,故C 错误;因为C 1C ⊥平面ABCD ,所以∠C 1BC 为直线BC 1与平面ABCD 所成的角,易得∠C 1BC =45∘,故D 正确. 故选:ABD13.【2022年新高考2卷】(多选)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED,AB =ED =2FB ,记三棱锥E −ACD ,F −ABC ,F −ACE 的体积分别为V 1,V 2,V 3,则( )A.V3=2V2B.V3=V1C.V3=V1+V2D.2V3=3V1【答案】CD【解析】【分析】直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3=V A−EFM+V C−EFM计算出V3,依次判断选项即可.【详解】设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√(2a)2+(√2a)2=√6a,FM=√a2+(√2a)2=√3a,EF=√a2+(2√2a)2=3a,EM2+FM2=EF2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,故A、B错误;C、D正确.故选:CD.14.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;(2)6403√3.【解析】【分析】(1)分别取AB,BC的中点M,N,连接MN,由平面知识可知EM⊥AB,FN⊥BC,EM=FN,依题从而可证EM⊥平面ABCD,FN⊥平面ABCD,根据线面垂直的性质定理可知EM//FN,即可知四边形EMNF为平行四边形,于是EF//MN,最后根据线面平行的判定定理即可证出;(2)再分别取AD,DC中点K,L,由(1)知,该几何体的体积等于长方体KMNL−EFGH的体积加上四棱锥B−MNFE体积的4倍,即可解出.(1)如图所示:,分别取AB,BC 的中点M,N ,连接MN ,因为△EAB,△FBC 为全等的正三角形,所以EM ⊥AB,FN ⊥BC ,EM =FN ,又平面EAB ⊥平面ABCD ,平面EAB ∩平面ABCD =AB ,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知EM//FN ,而EM =FN ,所以四边形EMNF 为平行四边形,所以EF//MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以EF//平面ABCD . (2)如图所示:,分别取AD,DC 中点K,L ,由(1)知,EF//MN 且EF =MN ,同理有,HE//KM,HE =KM ,HG//KL,HG =KL ,GF//LN,GF =LN ,由平面知识可知,BD ⊥MN ,MN ⊥MK ,KM =MN =NL =LK ,所以该几何体的体积等于长方体KMNL −EFGH 的体积加上四棱锥B −MNFE 体积的4倍.因为MN =NL =LK =KM =4√2,EM =8sin60∘=4√3,点B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =2√2,所以该几何体的体积V =(4√2)2×4√3+4×13×4√2×4√3×2√2=128√3+2563√3=6403√3.15.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【答案】(1)证明见解析;(2)√55.【解析】【分析】(1)作DE⊥AB于E,CF⊥AB于F,利用勾股定理证明AD⊥BD,根据线面垂直的性质可得PD⊥BD,从而可得BD⊥平面PAD,再根据线面垂直的性质即可得证;(2)以点D为原点建立空间直角坐标系,利用向量法即可得出答案.(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD//AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=12,故DE=√32,BD=√DE2+BE2=√3,所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD ⊥平面PAD , 又因PA ⊂平面PAD , 所以BD ⊥PA ;(2)解:如图,以点D 为原点建立空间直角坐标系, BD =√3,则A(1,0,0),B(0,√3,0),P(0,0,√3),则AP⃑⃑⃑⃑⃑ =(−1,0,√3),BP ⃑⃑⃑⃑⃑ =(0,−√3,√3),DP ⃑⃑⃑⃑⃑ =(0,0,√3), 设平面PAB 的法向量n⃑ =(x,y,z), 则有{n →⋅AP →=−x +√3z =0n →⋅BP →=−√3y +√3z =0,可取n ⃑ =(√3,1,1), 则cos〈n ⃑ ,DP ⃑⃑⃑⃑⃑ 〉=n ⃑ ⋅DP ⃑⃑⃑⃑⃑⃑|n ⃑ ||DP ⃑⃑⃑⃑⃑⃑ |=√55, 所以PD 与平面PAB 所成角的正弦值为√55.16.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求三棱锥F−ABC 的体积.【答案】(1)证明详见解析(2)√34【解析】【分析】(1)通过证明AC⊥平面BED来证得平面BED⊥平面ACD.(2)首先判断出三角形AFC的面积最小时F点的位置,然后求得F到平面ABC的距离,从而求得三棱锥F−ABC的体积.(1)由于AD=CD,E是AC的中点,所以AC⊥DE.由于{AD=CDBD=BD∠ADB=∠CDB,所以△ADB≅△CDB,所以AB=CB,故AC⊥BD,由于DE∩BD=D,DE,BD⊂平面BED,所以AC⊥平面BED,由于AC⊂平面ACD,所以平面BED⊥平面ACD.(2)依题意AB=BD=BC=2,∠ACB=60°,三角形ABC是等边三角形,所以AC=2,AE=CE=1,BE=√3,由于AD=CD,AD⊥CD,所以三角形ACD是等腰直角三角形,所以DE=1. DE2+BE2=BD2,所以DE⊥BE,由于AC∩BE=E,AC,BE⊂平面ABC,所以DE⊥平面ABC.由于△ADB ≅△CDB ,所以∠FBA =∠FBC , 由于{BF =BF∠FBA =∠FBC AB =CB ,所以△FBA ≅△FBC ,所以AF =CF ,所以EF ⊥AC ,由于S △AFC =12⋅AC ⋅EF ,所以当EF 最短时,三角形AFC 的面积最小值. 过E 作EF ⊥BD ,垂足为F ,在Rt △BED 中,12⋅BE ⋅DE =12⋅BD ⋅EF ,解得EF =√32,所以DF =√12−(√32)2=12,BF =2−DF =32,所以BF BD =34.过F 作FH ⊥BE ,垂足为H ,则FH //DE ,所以FH ⊥平面ABC ,且FHDE =BFBD =34, 所以FH =34,所以V F−ABC =13⋅S △ABC ⋅FH =13×12×2×√3×34=√34.17.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD 所成的角的正弦值为4√37【解析】 【分析】(1)根据已知关系证明△ABD ≌△CBD ,得到AB =CB ,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE ⊥DE ,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可. (1)因为AD =CD ,E 为AC 的中点,所以AC ⊥DE ;在△ABD 和△CBD 中,因为AD =CD,∠ADB =∠CDB,DB =DB ,所以△ABD ≌△CBD ,所以AB =CB ,又因为E 为AC 的中点,所以AC ⊥BE ; 又因为DE,BE ⊂平面BED ,DE ∩BE =E ,所以AC ⊥平面BED , 因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC ⊥EF ,所以S △AFC =12AC ⋅EF , 当EF ⊥BD 时,EF 最小,即△AFC 的面积最小. 因为△ABD ≌△CBD ,所以CB =AB =2, 又因为∠ACB =60°,所以△ABC 是等边三角形, 因为E 为AC 的中点,所以AE =EC =1,BE =√3, 因为AD ⊥CD ,所以DE =12AC =1,在△DEB 中,DE 2+BE 2=BD 2,所以BE ⊥DE .以E 为坐标原点建立如图所示的空间直角坐标系E −xyz ,则A (1,0,0),B(0,√3,0),D (0,0,1),所以AD ⃑⃑⃑⃑⃑ =(−1,0,1),AB ⃑⃑⃑⃑⃑ =(−1,√3,0), 设平面ABD 的一个法向量为n⃑ =(x,y,z ), 则{n ⃑ ⋅AD ⃑⃑⃑⃑⃑ =−x +z =0n ⃑ ⋅AB⃑⃑⃑⃑⃑ =−x +√3y =0,取y =√3,则n ⃑ =(3,√3,3),又因为C (−1,0,0),F (0,√34,34),所以CF⃑⃑⃑⃑⃑ =(1,√34,34), 所以cos⟨n ⃑ ,CF ⃑⃑⃑⃑⃑ ⟩=n ⃑ ⋅CF⃑⃑⃑⃑⃑|n ⃑ ||CF⃑⃑⃑⃑⃑ |=√21×√74=4√37,设CF 与平面ABD 所成的角的正弦值为θ(0≤θ≤π2), 所以sinθ=|cos⟨n ⃑ ,CF⃑⃑⃑⃑⃑ ⟩|=4√37, 所以CF 与平面ABD 所成的角的正弦值为4√37.18.【2022年新高考1卷】如图,直三棱柱ABC −A 1B 1C 1的体积为4,△A 1BC 的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值. 【答案】(1)√2 (2)√32【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面ABB 1A 1,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱ABC −A 1B 1C 1中,设点A 到平面A 1BC 的距离为h , 则V A−A 1BC =13S △A 1BC ⋅ℎ=2√23ℎ=V A 1−ABC =13S △ABC ⋅A 1A =13V ABC−A 1B 1C 1=43,解得ℎ=√2,所以点A 到平面A 1BC 的距离为√2; (2)取A 1B 的中点E ,连接AE ,如图,因为AA 1=AB ,所以AE ⊥A 1B , 又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B , 且AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC , 在直三棱柱ABC −A 1B 1C 1中,BB 1⊥平面ABC ,由BC ⊂平面A 1BC ,BC ⊂平面ABC 可得AE ⊥BC ,BB 1⊥BC , 又AE,BB 1⊂平面ABB 1A 1且相交,所以BC ⊥平面ABB 1A 1,所以BC,BA,BB 1两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以AA 1=AB =2,A 1B =2√2,所以BC =2, 则A(0,2,0),A 1(0,2,2),B(0,0,0),C(2,0,0),所以A 1C 的中点D(1,1,1), 则BD⃑⃑⃑⃑⃑⃑ =(1,1,1),BA ⃑⃑⃑⃑⃑ =(0,2,0),BC ⃑⃑⃑⃑⃑ =(2,0,0), 设平面ABD 的一个法向量m ⃑⃑ =(x,y,z),则{m ⃑⃑ ⋅BD ⃑⃑⃑⃑⃑⃑ =x +y +z =0m ⃑⃑ ⋅BA ⃑⃑⃑⃑⃑ =2y =0,可取m⃑⃑ =(1,0,−1),设平面BDC 的一个法向量n ⃑ =(a,b,c),则{m ⃑⃑ ⋅BD ⃑⃑⃑⃑⃑⃑ =a +b +c =0m ⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =2a =0, 可取n⃑ =(0,1,−1), 则cos〈m ⃑⃑ ,n ⃑ 〉=m⃑⃑⃑ ⋅n ⃑ |m ⃑⃑⃑ |⋅|n ⃑ |=√2×√2=12, 所以二面角A −BD −C 的正弦值为√1−(12)2=√32.19.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 【答案】(1)证明见解析 (2)1113 【解析】 【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA =OB ,再根据直角三角形的性质得到AO =DO ,即可得到O 为BD 的中点从而得到OE //PD ,即可得证; (2)过点A 作Az //OP ,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得; (1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P −ABC 的高,所以PO ⊥平面ABC ,AO,BO ⊂平面ABC , 所以PO ⊥AO 、PO ⊥BO ,又PA =PB ,所以△POA ≅△POB ,即OA =OB ,所以∠OAB =∠OBA ,又AB ⊥AC ,即∠BAC =90°,所以∠OAB +∠OAD =90°,∠OBA +∠ODA =90°, 所以∠ODA =∠OAD所以AO =DO ,即AO =DO =OB ,所以O 为BD 的中点,又E 为PB 的中点,所以OE //PD ,又OE ⊄平面PAC ,PD ⊂平面PAC , 所以OE //平面PAC(2)解:过点A 作Az //OP ,如图建立平面直角坐标系, 因为PO =3,AP =5,所以OA =√AP 2−PO 2=4,又∠OBA =∠OBC =30°,所以BD =2OA =8,则AD =4,AB =4√3,所以AC =12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C (0,12,0),所以E (3√3,1,32), 则AE ⃑⃑⃑⃑⃑ =(3√3,1,32),AB ⃑⃑⃑⃑⃑ =(4√3,0,0),AC ⃑⃑⃑⃑⃑ =(0,12,0), 设平面AEB 的法向量为n ⃑ =(x,y,z ),则{n ⃑ ⋅AE ⃑⃑⃑⃑⃑ =3√3x +y +32z =0n ⃑ ⋅AB ⃑⃑⃑⃑⃑ =4√3x =0 ,令z =2,则y =−3,x =0,所以n ⃑ =(0,−3,2);设平面AEC 的法向量为m⃑⃑ =(a,b,c ),则{m ⃑⃑ ⋅AE ⃑⃑⃑⃑⃑ =3√3a +b +32c =0m ⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =12b =0 ,令a =√3,则c =−6,b =0,所以m ⃑⃑ =(√3,0,−6);所以cos⟨n⃑ ,m⃑⃑ ⟩=n⃑ ⋅m⃑⃑⃑|n⃑ ||m⃑⃑⃑ |=√13×√39=−4√313设二面角C−AE−B为θ,由图可知二面角C−AE−B为钝二面角,所以cosθ=−4√313,所以sinθ=√1−cos2θ=1113故二面角C−AE−B的正弦值为1113;20.【2022年北京】如图,在三棱柱ABC−A1B1C1中,侧面BCC1B1为正方形,平面BCC1B1⊥平面ABB1A1,AB=BC=2,M,N分别为A1B1,AC的中点.(1)求证:MN∥平面BCC1B1;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.条件①:AB⊥MN;条件②:BM=MN.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)见解析(2)见解析【解析】【分析】(1)取AB的中点为K,连接MK,NK,可证平面MKN//平面CBB1C1,从而可证MN//平面CB B1C1.(2)选①②均可证明BB1⊥平面ABC,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.(1)取AB的中点为K,连接MK,NK,由三棱柱ABC −A 1B 1C 1可得四边形ABB 1A 1为平行四边形, 而B 1M =MA 1,BK =KA ,则MK //BB 1,而MK ⊄平面CBB 1C 1,BB 1⊂平面CBB 1C 1,故MK //平面CBB 1C 1, 而CN =NA,BK =KA ,则NK //BC ,同理可得NK //平面CBB 1C 1, 而NK ∩MK =K,NK,MK ⊂平面MKN ,故平面MKN //平面CBB 1C 1,而MN ⊂平面MKN ,故MN //平面CBB 1C 1, (2)因为侧面CBB 1C 1为正方形,故CB ⊥BB 1, 而CB ⊂平面CBB 1C 1,平面CBB 1C 1⊥平面ABB 1A 1, 平面CBB 1C 1∩平面ABB 1A 1=BB 1,故CB ⊥平面ABB 1A 1, 因为NK //BC ,故NK ⊥平面ABB 1A 1, 因为AB ⊂平面ABB 1A 1,故NK ⊥AB ,若选①,则AB ⊥MN ,而NK ⊥AB ,NK ∩MN =N , 故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB ⊥MK ,所以AB ⊥BB 1,而CB ⊥BB 1,CB ∩AB =B ,故BB 1⊥平面ABC ,故可建立如所示的空间直角坐标系,则B(0,0,0),A(0,2,0),N(1,1,0),M(0,1,2), 故BA ⃑⃑⃑⃑⃑ =(0,2,0),BN ⃑⃑⃑⃑⃑⃑ =(1,1,0),BM ⃑⃑⃑⃑⃑⃑ =(0,1,2), 设平面BNM 的法向量为n⃑ =(x,y,z), 则{n ⃑ ⋅BN ⃑⃑⃑⃑⃑⃑ =0n ⃑ ⋅BM ⃑⃑⃑⃑⃑⃑ =0,从而{x +y =0y +2z =0,取z =−1,则n⃑ =(−2,2,−1), 设直线AB 与平面BNM 所成的角为θ,则 sinθ=|cos〈n ⃑ ,AB ⃑⃑⃑⃑⃑ 〉|=42×3=23. 若选②,因为NK //BC ,故NK ⊥平面ABB 1A 1,而KM ⊂平面MKN , 故NK ⊥KM ,而B 1M =BK =1,NK =1,故B 1M =NK , 而B 1B =MK =2,MB =MN ,故△BB 1M ≅△MKN , 所以∠BB 1M =∠MKN =90°,故A 1B 1⊥BB 1, 而CB ⊥BB 1,CB ∩AB =B ,故BB 1⊥平面ABC ,故可建立如所示的空间直角坐标系,则B(0,0,0),A(0,2,0),N(1,1,0),M(0,1,2), 故BA⃑⃑⃑⃑⃑ =(0,2,0),BN ⃑⃑⃑⃑⃑⃑ =(1,1,0),BM ⃑⃑⃑⃑⃑⃑ =(0,1,2), 设平面BNM 的法向量为n⃑ =(x,y,z),则{n ⃑ ⋅BN ⃑⃑⃑⃑⃑⃑ =0n ⃑ ⋅BM ⃑⃑⃑⃑⃑⃑ =0,从而{x +y =0y +2z =0,取z =−1,则n ⃑ =(−2,2,−1), 设直线AB 与平面BNM 所成的角为θ,则 sinθ=|cos〈n ⃑ ,AB⃑⃑⃑⃑⃑ 〉|=42×3=23.21.【2022年浙江】如图,已知ABCD 和CDEF 都是直角梯形,AB//DC ,DC//EF ,AB =5,DC =3,EF =1,∠BAD =∠CDE =60°,二面角F −DC −B 的平面角为60°.设M ,N 分别为AE,BC 的中点.(1)证明:FN ⊥AD ;(2)求直线BM 与平面ADE 所成角的正弦值. 【答案】(1)证明见解析; (2)5√714.【解析】 【分析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H ,由平面知识易得FC =BC ,再根据二面角的定义可知,∠BCF =60∘,由此可知,FN ⊥BC ,FN ⊥CD ,从而可证得FN ⊥平面ABCD ,即得FN ⊥AD ;(2)由(1)可知FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以可以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N −xyz ,求出平面ADE 的一个法向量,以及BM ⃑⃑⃑⃑⃑⃑ ,即可利用线面角的向量公式解出. (1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点交于点G 、H .∵四边形ABCD 和EFCD 都是直角梯形,AB//DC,CD//EF,AB =5,DC =3,EF =1,∠BAD =∠CDE =60°,由平面几何知识易知,DG =AH =2,∠EFC =∠DCF =∠DCB =∠ABC =90°,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt △EGD 和Rt △DHA ,EG =DH =2√3, ∵DC ⊥CF,DC ⊥CB ,且CF ∩CB =C ,∴DC ⊥平面BCF,∠BCF 是二面角F −DC −B 的平面角,则∠BCF =60∘, ∴△BCF 是正三角形,由DC ⊂平面ABCD ,得平面ABCD ⊥平面BCF ,∵N 是BC 的中点,∴ FN ⊥BC ,又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN ⊥CD ,而BC ∩CD =C ,∴FN ⊥平面ABCD ,而AD ⊂平面ABCD ∴FN ⊥AD . (2)因为FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点, NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N −xyz ,设A(5,√3,0),B(0,√3,0),D(3,−√3,0),E(1,0,3),则M (3,√32,32),∴BM ⃑⃑⃑⃑⃑⃑ =(3,−√32,32),AD ⃑⃑⃑⃑⃑ =(−2,−2√3,0),DE⃑⃑⃑⃑⃑ =(−2,√3,3) 设平面ADE 的法向量为n⃑ =(x,y,z) 由{n ⃑ ⋅AD ⃑⃑⃑⃑⃑ =0n ⃑ ⋅DE ⃑⃑⃑⃑⃑ =0 ,得{−2x −2√3y =0−2x +√3y +3z =0 ,取n ⃑ =(√3,−1,√3),设直线BM 与平面ADE 所成角为θ, ∴sinθ=|cos〈n⃑ ,BM ⃑⃑⃑⃑⃑⃑ 〉|=|n⃑ ⋅BM ⃑⃑⃑⃑⃑⃑⃑ ||n⃑ |⋅BM ⃑⃑⃑⃑⃑⃑⃑ |=|3√3+√32+3√32|√3+1+3⋅√9+34+94=√3√7⋅2√3=5√714.1.(2022·全国·模拟预测)已知正方体中1111ABCD A B C D -,E ,G 分别为11A D ,11C D 的中点,则直线1A G ,CE 所成角的余弦值为( )A B C D 【答案】C 【解析】 【分析】根据异面直线所成角的定义,取AB 的中点F ,则∠ECF (或其补角)为直线1A G 与CE 所成角,再解三角形即可得解. 【详解】如图所示:,取AB 的中点F ,连接EF ,CF ,易知1A G CF ∥,则∠ECF (或其补角)为直线1A G 与CE 所成角.不妨设2AB =,则CF =EF =3EC =,由余弦定理得cosECF ∠==,即直线1A G 与CE 故选:C .2.(2022·全国·模拟预测(理))如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90ABC ∠=︒,111111AA A B B C ===,2AB =,则AC 与平面11BCC B 所成的角为( )A .30B .45︒C .60︒D .90︒【答案】A 【解析】 【分析】将棱台补全为棱锥,利用等体积法求A 到面11BCC B 的距离,结合线面角的定义求AC 与平面11BCC B 所成角的大小. 【详解】将棱台补全为如下棱锥D ABC -,由90ABC ∠=︒,111111AA A B B C ===,2AB =,易知:2DA BC ==,AC = 由1AA ⊥平面ABC ,,AB AC ⊥平面ABC ,则1AA AB ⊥,1AA AC ⊥,所以BD =CD =222BC BD CD +=,所以122BCD S =⨯⨯=△A 到面11BCC B 的距离为h ,又D ABC A BCD V V --=,则111222323h ⨯⨯⨯⨯=⨯h = 综上,AC 与平面11BCC B 所成角[0,]2πθ∈,则1sin 2h AC θ==,即6πθ=. 故选:A3.(2022·浙江湖州·模拟预测)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒ D .四面体PBCD 【答案】C 【解析】 【分析】对于A ,取BD 的中点M ,即可得到BD ⊥面PMC ,A 选项可判断对于B ,采用反证法,假设DP BC ⊥,则BC ⊥面PCD ,再根据题目所给的长度即可判断;对于C ,当面PBD ⊥面BCD 时,此时直线DP 与平面BCD 所成角有最大值,判断即可;对于D ,当面PBD ⊥面BCD 时,此时四面体PBCD 的体积有最大值,计算最大体积判断即可 【详解】如图所示,取BD 的中点M ,连接,PM CMBCD △是以BD 为斜边的等腰直角三角形,BD CM ∴⊥ABD △为等边三角形,BD PM ∴⊥BD ∴⊥面PMC ,BD PC ∴⊥ ,故A 正确 对于B ,假设DP BC ⊥,又BC CD ⊥BC ∴⊥面PCD ,BC PC ∴⊥,又2,PB BC ==1PC ⎤⎦,故DP 与BC 可能垂直,故B 正确当面PBD ⊥面BCD 时,此时PM ⊥面BCD ,PDB ∠即为直线DP 与平面BCD 所成角 此时60PDB ︒∠=,故C 错误当面PBD ⊥面BCD 时,此时四面体PBCD 的体积最大,此时的体积为:111(332BCDV S PM ==⨯=,故D 正确 故选:C4.(2022·河南安阳·模拟预测(理))已知球O 的体积为125π6,高为1的圆锥内接于球O ,经过圆锥顶点的平面α截球O 和圆锥所得的截面面积分别为12,S S ,若125π8S =,则2S =( )A .2BCD .【答案】C 【解析】 【分析】根据给定条件,求出球O 半径,平面α截球O 所得截面小圆半径,圆锥底面圆半径,再求出平面α截圆锥所得的截面等腰三角形底边长及高即可计算作答. 【详解】球O 半径为R ,由34π125π36R =得52R =,平面α截球O 所得截面小圆半径1r ,由21128π5πS r ==得1r =因此,球心O 到平面α的距离1d r ===,而球心O 在圆锥的轴上,则圆锥的轴与平面α所成的角为45,因圆锥的高为1,则球心O 到圆锥底面圆的距离为132d =,于是得圆锥底面圆半径2r =,令平面α截圆锥所得截面为等腰PAB △,线段AB 为圆锥底面圆1O 的弦,点C 为弦AB 中点,依题意,145CPO ∠=,111CO PO ==,PC =AB ==所以212AB S PC =⋅=. 故选:C 【点睛】关键点睛:解决与球有关的内切或外接问题时,关键是确定球心的位置,再利用球的截面小圆性质求解.5.(2022·浙江·模拟预测)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2,1BD DE ==,点P 在线段EF 上,给出下列命题:①存在点P ,使得直线//DP 平面ACF ②存在点P ,使得直线DP ⊥平面ACF③直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎣⎦④三棱锥A CDE -的外接球被平面ACF 所截取的截面面积是98π 其中所有真命题的序号是( ) A .①③ B .①④C .②④D .①③④ 【答案】D 【解析】 【分析】取EF 中点推理判断①;假定DP ⊥平面ACF ,分析判断②;确定直线DP 与平面ABCD 所成角,求出临界值判断③;求出ACF 外接圆面积判断④作答.令AC BD O =,连接,FO DF ,令EF 中点为G ,连DG ,如图,依题意,O 是,BD AC 的中点,对于①,在矩形BDEF 中,//DO FG ,DO FG =,四边形DOFG 是平行四边形,直线//DG OF ,OF ⊂平面ACF ,DG ⊄平面ACF ,则//DG 平面ACF ,当P 是线段EF 中点G 时,直线//DP 平面ACF ,①正确;对于②,假定直线DP ⊥平面ACF ,由①知,DP OF ⊥,DP DG ⊥,当点P 在线段EF 上任意位置(除点G 外),PDG ∠均为锐角,即DP 不垂直于DG ,也不垂直于OF ,因此,不存在点P ,使得直线DP ⊥平面ACF ,②不正确;对于③,平面BDEF ⊥平面ABCD ,DP 在平面ABCD 内射影在直线BD 上,直线DP 与平面ABCD 所成角为PDB ∠,当点P 由点E 运动到点F 的过程中,PDB ∠逐渐减小,当P 与E 重合时,PDB ∠最大,为90EDB ∠=,max (sin )1PDB ∠=,当P 与F 重合时,PDB ∠最小,为FDB ∠,min (sin )BF PDB DF ∠==所以直线DP 与平面ABCD 所成角的正弦值的取值范围是⎤⎥⎣⎦,③正确;对于④,在ACF 中,2AC =,|AF CF ==FO sin OF FAC AF ∠==由正弦定理得ACF 外接圆直径2sin FC r FAC ==∠半径r =圆面积为298S r ππ==,三棱锥A CDE -的外接球被平面ACF 所截取的截面是ACF 外接圆, 因此三棱锥A CDE -的外接球被平面ACF 所截取的截面面积是98π,④正确, 所以所有真命题的序号是①③④. 故选:D6.(2022·四川省泸县第二中学模拟预测(文))已知1O 是正方体1111ABCD A B C D -的中心O 关于平面1111D C B A 的对称点,则下列说法中正确的是( )A .11O C 与1A C 是异面直线B .11OC ∥平面11A BCD C .11O C AD ⊥ D .11O C ⊥平面11BDD B【答案】B 【解析】 【分析】根据正方体的性质、空间直线与平面的位置关系,即可对选项做出判断. 【详解】连接1A C 、1AC ,交于点O ,连接11A C 、11B D ,交于点P . 连接AC 、BD 、1A B 、1D C 、1O O .由题可知,1O 在平面11A C CA 上,所以11O C 与1A C 共面,故A 错误;在四边形11OO C C 中,11//O O C C 且11O O C C =,所以四边形11OO C C 为平行四边形. 11//O C OC ∴.OC ⊂平面11A BCD ,11O C ⊄平面11A BCD ,11O C ∴∥平面11A BCD ,故B 正确;由正方体的性质可得1111AC B D ⊥,因为1111O B O D =,所以111O P B D ⊥,又111O P AC P =,11B D ∴⊥平面111O AC , 1111B D O C ∴⊥,又11//B D BD , 11BD O C ∴⊥,而AD 与BD 所成角为45︒,所以显然11O C 与AD 不垂直,故C 错误;显然11O C 与11O B 不垂直,而11O B ⊂平面11BDD B ,所以11O C 与平面11BDD B 不垂直,故D 错误. 故选:B.7.(2022·北京·北大附中三模)已知平面,,αβγ,直线m 和n ,则下列命题中正确的是( ) A .若,m m αβ⊥⊥,则αβ∥ B .若,αγβγ⊥⊥,则αβ∥ C .若,m n m α⊥⊥,则n α∥ D .若,m n αα∥∥,则m n ∥ 【答案】A 【解析】 【分析】对于A 选项,垂直于同一条直线的两个平面互相平行;对于B 选项,垂直于同一个平面的两个平面有可能相交,也有可能互相平行; 对于C 选项,由线面垂直的性质即可判断;对于D 选项,平行于同一个平面的两条直线有可能相交、平行或异面. 【详解】选项A 正确,因为垂直于同一直线的两个平面互相平行; 选项B 错误,平面α和β也可以相交; 选项C 错误,直线n 可能在平面α内; 选项D 错误,直线m 和n 还可能相交或者异面. 故选:A.8.(2022·云南师大附中模拟预测(理))已知正方形ABCD 的边长为ABC 沿对角线AC 折起,使得二面角B AC D --的大小为90°.若三棱锥B ACD -的四个顶点都在球O 的球面上,G 为AC 边的中点,E ,F 分别为线段BG ,DC 上的动点(不包括端点),且BE ,当三棱锥E ACF -的体积最大时,过点F 作球O 的截面,则截面面积的最小值为( )A .B .2πC .32πD .89π【答案】D 【解析】 【分析】根据面面垂直的判定定理得BG ⊥平面ACD ,继而表示出三棱锥E ACF -的体积,求出x =V 取得最大值,在∠GCF 中,由余弦定理,得GF =当GF 垂直于截面时,截面圆的面积最小,继而得解. 【详解】因为正方形ABCD 的边长为4AC =.如图,由于平面ABC ⊥平面ACD ,平面ABC 平面ACD AC =,又G 为AC 边的中点,则有BG AC ⊥,所以BG ⊥平面ACD .设CF x =(0x <<,则BE =,所以三棱锥E ACF -的体积13ACF V S EG ==△2111122sin 4(22))323223AC CF ACF EG x x x ⨯∠=⨯⨯-=-,当x =时,V 取得最大值.由于GA GB GC GD ===,则球O 的球心即为G ,且球O 的半径2R =.又在△GCF中,由余弦定理,得cos GF GC CF ACF =∠=。
高中数学课时跟踪检测(二)--圆柱、圆锥、圆台、球及简单组合体--
课时跟踪检测(二)圆柱、圆锥、圆台、球及简单组合体的结构特征层级一学业水平达标1.如图所示的图形中有()A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球解析:选B根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.2.下列命题中正确的是()A.将正方形旋转不可能形成圆柱B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.通过圆台侧面上一点,有无数条母线解析:选C将正方形绕其一边所在直线旋转可以形成圆柱,所以A错误;B中必须以垂直于底边的腰为轴旋转才能得到圆台,所以B错误;通过圆台侧面上一点,只有一条母线,所以D错误,故选C.3.截一个几何体,所得各截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球D.圆台解析:选C由球的定义知选C.4.将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的底面周长是()A.4π B.8πC.2π D.π解析:选C边长为1的正方形以其一边所在的直线为旋转轴旋转一周,得到的几何体是底面半径为1的圆,其周长为2π·1=2π.5.一个直角三角形绕斜边旋转360°形成的空间几何体是()A.一个圆锥B.一个圆锥和一个圆柱C.两个圆锥D.一个圆锥和一个圆台答案:C6.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________.解析:由圆锥的定义知是两个同底的圆锥形成的组合体.答案:两个同底的圆锥组合体7.一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,截去小圆锥的母线长为3 cm,则圆台的母线长为________ cm.解析:如图所示,设圆台的母线长为x cm,截得的圆台的上、下底半径分别为r cm,4r cm,根据三角形相似的性质,得33+x=r4r,解得x=9.答案:98.如图是一个几何体的表面展成的平面图形,则这个几何体是________.答案:圆柱9.如图,在△ABC中,∠ABC=120°,它绕AB边所在直线旋转一周后形成的几何体结构如何?解:旋转后的几何体结构如下:是一个大圆锥挖去了一个同底面的小圆锥.10.指出图中的三个几何体分别是由哪些简单几何体组成的.解:(1)几何体由一个圆锥、一个圆柱和一个圆台拼接而成.(2)几何体由一个六棱柱和一个圆柱拼接而成.(3)几何体由一个球和一个圆柱中挖去一个以圆柱下底面为底面、上底面圆心为顶点的圆锥拼接而成.层级二应试能力达标1.下列结论正确的是()A.用一个平面去截圆锥,得到一个圆锥和一个圆台B.经过球面上不同的两点只能作一个最大的圆C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D须用平行于圆锥底面的平面截才能得到圆锥和圆台,故A错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B错误;正六棱锥的侧棱长必然要大于底面边长,故C错误.故选D.2.如图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由2个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余各面均为三角形解析:选D该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.故D说法不正确.3.用一张长为8,宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是() A.2B.2πC.2π或4π D.π2或π4解析:选C如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.4.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面、下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是()A.①②B.①③C.①④D.①⑤解析:选D一个圆柱挖去一个圆锥后,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分,故选D.5.用一个平面去截几何体,如果截面是三角形,那么这个几何体可能是下面哪几种:________(填序号).①棱柱;②棱锥;③棱台;④圆柱;⑤圆锥;⑥圆台;⑦球.解析:可能是棱柱、棱锥、棱台与圆锥.答案:①②③⑤6.某地球仪上北纬30°纬线圈的长度为12π cm,如图所示,则该地球仪的半径是________cm.解析:如图所示,由题意知,北纬30°所在小圆的周长为12π,则该小圆的半径r=6,其中∠ABO=30°,所以该地球仪的半径R=6cos 30°=4 3 cm.答案:4 37.圆台的母线长为2a,母线与轴的夹角为30°,一个底面的半径是另一个底面的半径的2倍,求两底面的半径及两底面面积之和.解:设圆台上底面半径为r,则下底面半径为2r.将圆台还原为圆锥,如图,则有∠ABO =30°.在Rt△BO′A′中,rBA′=sin 30°,∴BA′=2r.在Rt△BOA中,2rBA=sin 30°,∴BA=4r.又BA-BA′=AA′,即4r-2r=2a,∴r=a.∴S=πr2+π(2r)2=5πr2=5πa2.∴圆台上底面半径为a,下底面半径为2a,两底面面积之和为5πa2.8.圆锥底面半径为1 cm,高为 2 cm,其中有一个内接正方体,求这个内接正方体的棱长.解:圆锥的轴截面SEF、正方体对角面ACC1A1如图.设正方体的棱长为x cm,则AA1=x cm,A1C1=2x cm.作SO⊥EF于点O,则SO= 2 cm,OE=1 cm.∵△EAA1∽△ESO,∴AA1SO=EA1EO,即x2=1-22x1.∴x=22,即该内接正方体的棱长为22cm.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
1.1.3圆柱、圆锥、圆台和球解读
o
圆台的性质: 1、圆台的母线长都相等. 2、平行于底面的截面 都是圆. 3、圆台的轴通过两底面圆的圆心,并 且与底面垂直. 4、轴截面(经过圆台轴的平面截圆台所得的 截面)是全等的等腰梯形,腰长就是母线长.
例1 .用一个平行于圆锥底面的平面截这 个圆锥,截得圆台上下底面半径的比是 1 :4,截去的圆锥的母线长是3cm,求 圆台的母线长.
圆锥的性质:
①圆锥的轴通过底面圆的圆心,并且 与底面垂直. ②圆锥的母线长都相等.
③平行于底面的截面都是圆. ④轴截面(经过圆锥轴的平面截圆锥所 得的截面)是全等的等腰三角形. ⑤圆锥的侧面展开图是扇形,底面圆周长 与母线长分别对应扇形的弧长和半径.
知识探究(三):圆台的结构特征
思考1:用一个平行于圆锥底面的平面去 截圆锥,截面与底面之间的部分叫做圆 台.圆台可以由什么平面图形旋转而形成?
顶点
轴 母线
底面
侧面
母线
旋转轴叫做圆锥的轴,垂直于轴的边旋转 而成的圆面叫做圆锥的底面,斜边旋转而 成的曲面叫做圆锥的侧面,斜边在旋转中 的任何位置叫做圆锥侧面的母线.
思考3:经过圆锥任意两条母线的截面是 什么图形?
思考4:经过圆锥的轴的截面称为轴截面, 你能说出圆锥的轴截面有哪些基本特征 吗?
以矩形的一边所在直线为旋转轴,其 余三边旋转形成的面所围成的旋转体.
思考2:在圆柱的形成中,旋转轴叫做圆柱的轴, 垂直于轴的边旋转而成的圆面叫做圆柱的底面, 平行于轴的边旋转而成的曲面叫做圆柱的侧面, 平行于轴的边在旋转中的任何位置叫做圆柱侧面 的母线. 你能结合图形正确理解这些概念吗? 轴 侧面
h
h
l
l
(l 3 (5 1) 5)
问题:
圆柱、圆锥、圆台、球的表面积和体积
8. 3.2 圆柱、圆锥、圆台、球的表面积和体积 学习指导核心素养1.知道圆柱、圆锥、圆台、球的表面积和体积公式.2.能用表面积和体积公式解决简单的实际问题.直观想象、数学运算:利用公式计算圆柱、圆锥、圆台、球的表面积与体积.[学生用书P75]1.圆柱、圆锥、圆台的表面积圆柱底面积:S 底=πr 2侧面积:S 侧=2πrl 表面积:S =2πr (r +l ) 圆锥底面积:S 底=πr 2侧面积:S 侧=πrl 表面积:S =πr (r +l ) 圆台上底面面积:S 上底=πr ′2 下底面面积:S 下底=πr 2侧面积:S 侧=πl (r +r ′)表面积: S =π(r ′2+r 2+r ′l +rl )2.圆柱、圆锥、圆台的体积 V 圆柱=πr 2h (r 是底面半径,h 是高), V 圆锥=13πr 2h (r 是底面半径,h 是高),V 圆台=13 πh (r ′2+r ′r +r 2)(r ′,r 分别是上、下底面半径,h 是高).3.球的表面积和体积 表面积:S =4πR 2. 体积:V =43πR 3.1.圆柱、圆锥、圆台的侧面积公式之间有什么关系? 提示:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 2.球面能展开成平面图形吗? 提示:不能展开成平面图形.1.判断正误(正确的打“√”,错误的打“×”) (1)圆柱的侧面面积等于底面面积与高的积.( )(2)圆柱、圆锥、圆台的展开图分别是一个矩形、扇形、扇环.( ) (3)决定球的大小的因素是球的半径.( )(4)球面被经过球心的平面截得的圆的半径等于球的半径.( ) 答案:(1)× (2)× (3)√ (4)√2.若圆锥的底面半径为3 ,高为1,则圆锥的体积为( ) A .π3B .π2C .πD .2π答案:C3.若一个球的直径为 2,则此球的表面积为( ) A .2π B .16π C .8π D .4π解析:选D .因为球的直径为 2,所以球的半径为 1,所以球的表面积 S =4πR 2=4π.4.圆柱的侧面展开图是长 12 cm ,宽 8 cm 的矩形,则这个圆柱的体积为( ) A .288π cm 3B .192πcm 3C .288π cm 3或192π cm 3D .192π cm 3解析:选 C .当圆柱的高为 8 cm 时, V =π×⎝⎛⎭⎫122π 2×8=288π (cm 3),当圆柱的高为 12 cm 时,V =π×⎝⎛⎭⎫82π 2×12=192π(cm 3). [学生用书P75]探究点1 圆柱、圆锥、圆台的表面积 [问题探究]求圆柱、圆锥、圆台的表面积时,关键是什么?探究感悟:求圆柱、圆锥的表面积时,关键是求其母线长与底面的半径;求圆台的表面积时,关键是求其母线长与上、下底面的半径.(1)若圆锥的高为3,底面半径为4,则此圆锥的表面积为( ) A .40π B .36π C .26πD .20π(2)圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,则圆台的表面积为( ) A .81π B .100π C .168πD .169π【解析】 (1)圆锥的母线l =32+42 =5,所以圆锥的表面积为π×42+π×4×5=36π.故选B.(2)圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,则它的母线长为l =h 2+(R -r )2 =(4r )2+(3r )2 =5r =10,所以r =2,R =8.故S 侧=π(R +r )l =π×(8+2)×10=100π,S 表=S 侧+πr 2+πR 2=100π+4π+64π=168π.故选C.【答案】 (1)B (2)C圆柱、圆锥、圆台的表面积的求解步骤解决圆柱、圆锥、圆台的表面积问题,要利用好旋转体的轴截面及侧面展开图,借助于平面几何知识,求得所需几何要素,代入公式求解即可,基本步骤如下:(1)得到空间几何体的展开图; (2)依次求出各个平面图形的面积; (3)将各平面图形的面积相加.1.若一个圆柱的轴截面是面积为9的正方形,则这个圆柱的侧面积为( ) A .9π B .12π C .272πD .454π解析:选A.由于圆柱的轴截面是面积为9的正方形,则h =2r =3,所以圆柱的侧面积为2πr ·h =9π.2.如图,已知直角梯形ABCD ,BC ∥AD ,∠ABC =90°,AB =5,BC =16,AD =4,求以BC 所在直线为轴旋转一周所得几何体的表面积.解:以BC 所在直线为轴旋转一周所得几何体是圆柱和圆锥的组合体,如图.其中圆锥的高为16-4=12,圆柱的母线长为AD =4,圆锥的母线长CD =13,故该几何体的表面积为2π×5×4+π×52+π×5×13=130π.探究点2 圆柱、圆椎、圆台的体积(2021·贵州安顺高二期末)若一个圆锥的侧面展开图是半径为3,圆心角为120°的扇形,求该圆锥的体积.【解】 设圆锥底面半径为r ,则由题意得2πr =120180·π·3,解得r =1.所以底面面积为S =πr 2=π. 又圆锥的高h =32-12 =22 ,故圆锥的体积V =13 Sh =13 ×π×22 =223π.求圆柱、圆锥、圆台的体积问题,一是要牢记公式,然后观察空间图形的构成,是单一的旋转体,还是组合体;二是注意旋转体的构成,以及圆柱、圆锥、圆台轴截面的性质,从而找出公式中需要的各个量,代入公式计算.1.圆台上、下底面面积分别是π,4π,侧面积是6π,则这个圆台的体积是( ) A .233 πB .2 3C .736πD .733π解析:选D.S 1=π,S 2=4π,所以r =1,R =2,S 侧=6π=π(r +R )l ,所以l =2,所以h=3 .所以V =13 π(1+4+2)×3 =733π.故选D.2.若一圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积的比值为( )A .1B .12C .32D .34解析:选D.设圆柱底面圆半径为R ,圆锥底面圆半径为r ,高都为h ,由已知得2Rh =rh ,所以r =2R ,所以V 柱∶V 锥=πR 2h ∶13πr 2h =3∶4,故选D.探究点3 球的表面积与体积 [问题探究]用一个平面去截球体,截面是什么形状?该截面的几何量与球的半径之间有什么关系? 探究感悟:用一个平面去截球体,截面是圆面.在不过球心的截面图中,截面圆与球的轴截面的关系如图所示.其关系为R 2=d 2+r 2.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为( ) A .8π3B .32π3C .8πD .82π3【解析】 设球的半径为R ,则截面圆的半径为R 2-1 ,所以截面圆的面积为S =π(R 2-1 )2=(R 2-1)π=π,所以R 2=2,所以球的表面积S =4πR 2=8π.故选C. 【答案】 C(1)球的表面积和体积的求解关键因为球的表面积和体积都与球的半径有关,所以在解答这类问题时,设法求出球的半径是解题的关键.(2)球的截面问题的解题技巧①有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题. ②解题时要注意借助球半径R 、截面圆半径r 、球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.1.(2021·江苏徐州高一期中)一个球的表面积是16π,那么这个球的体积为( ) A .163 πB .323 πC .643πD .2563π解析:选B.设这个球的半径为R ,则4πR 2=16π,解得R =2,所以这个球的体积V =43 πR 3=323π.故选B. 2.两个球的半径相差 1,表面积之差为 28π,则它们的体积之和为________. 解析:设大、小两球半径分别为 R ,r ,则⎩⎪⎨⎪⎧R -r =1,4πR 2-4πr 2=28π,所以⎩⎪⎨⎪⎧R =4,r =3.所以体积之和为 43 πR 3+43 πr 3=364π3 .答案:364π3探究点4 与球有关的切、接问题(1)一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为 1,2,3,则此球的表面积为________.(2)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.【解析】 (1)长方体外接球直径长等于长方体体对角线长,即 2R =12+22+32 =14 ,所以球的表面积 S =4πR 2=14π.(2)设球O 的半径为r ,则圆柱的底面半径为r ,高为2r ,所以V 1V 2 =πr 2·2r 43πr 3 =32.【答案】 (1)14π (2)32(1)常见几何体与球的切、接问题的解题策略①处理有关几何体外接球或内切球的相关问题时,要注意球心的位置与几何体的关系.一般情况下,由于球的对称性,球心总在特殊位置,比如中心、对角线的中点等.②解决此类问题的实质就是根据几何体的相关数据求球的直径或半径,关键是根据“切点”和“接点”作出轴截面图,把空间问题转化为平面问题来计算.(2)几个常用结论①球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径. ②球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. ③球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径.将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( )A .4π3B .2π3C .3π2D .π6解析:选A.由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43 ×π×13=4π3.[学生用书P77]1.已知圆柱的底面半径r =1,母线长l 与底面的直径相等,则该圆柱的表面积为( ) A .6π B .8π C .9πD .10π解析:选A.因为圆柱的表面积为2πr 2+2πrl ,r =1,l =2,所以圆柱的表面积为6π.故选A.2.若球的大圆面积扩大为原来的2倍,球的体积扩大为原来的( ) A .8倍 B .4倍 C .22 倍D .2倍解析:选C.球的大圆面积扩大为原来的2倍,则球的半径扩大为原来的2 倍,所以球的体积扩大为原来的22 倍.3.设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B .73 πa 2C .113πa 2D .5πa 2解析:选B.由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP =23 ×32 a =33 a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝⎛⎭⎫33a 2 +⎝⎛⎭⎫12a 2=712 a 2,故 S 球=4πR 2=73 πa 2.4.已知圆台上、下底面半径分别为1,2,高为3,则圆台的体积为__________. 解析:由公式知V 圆台=13 π(1+2+4)×3=7π.答案:7π5.如图所示,在边长为4的正三角形ABC 中,E ,F 分别是AB ,AC 的中点,AD ⊥BC ,EH ⊥BC ,FG ⊥BC ,D ,H ,G 为垂足,若将正三角形ABC 绕AD 旋转180°,求阴影部分形成的几何体的体积.解:由题意知,旋转后几何体是一个圆锥,从下面挖去一个圆柱,且圆锥的底面半径为2,高为23 ,圆柱的底面半径为1,高为3 .所求旋转体的体积为大圆锥的体积减去里面小圆柱的体积,即V 旋转体=13 ×π×22×23 -π×12×3 =533 π,故所求旋转体的体积为533π. [学生用书P217(单独成册)][A 基础达标]1.在△ABC 中,AB =4,BC =3,AC =5,现以AB 所在直线为轴旋转一周,则所得几何体的表面积为( )A .24πB .21πC .33πD .39π解析:选A.因为在△ABC 中,AB =4,BC =3,AC =5,所以△ABC 是以∠B 为直角的直角三角形,故以AB 所在直线为轴旋转一周得到的几何体为圆锥,所以圆锥的底面半径为3,母线长为5,所以底面周长为6π,侧面积为12 ×6π×5=15π,所以几何体的表面积为15π+π×32=24π.故选A.2.两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A .2∶3 B .4∶9 C .2 ∶3D .8 ∶27解析:选B.设两个球的半径分别为r ,R ,则⎝⎛⎭⎫43πr 3 ∶⎝⎛⎭⎫43πR 3 =r 3∶R 3=8∶27, 所以r ∶R =2∶3,所以S 1∶S 2=r 2∶R 2=4∶9.3.(多选)如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R 相等,则下列结论正确的是( )A .圆柱的侧面积为2πR 2B .圆锥的侧面积为2πR 2C .圆柱的侧面积与球面面积相等D .圆柱、圆锥、球的体积之比为3∶1∶2解析:选CD.依题意得球的半径为R ,则圆柱的侧面积为2πR ×2R =4πR 2,所以A 错误;圆锥的侧面积为πR ×5 ·R =5 πR 2,所以B 错误;球面面积为4πR 2,因为圆柱的侧面积为4πR 2,所以C 正确;因为V 圆柱=πR 2·2R =2πR 3,V 圆锥=13 πR 2·2R =23 πR 3,V 球=43 πR 3,所以V 圆柱∶V 圆锥∶V 球=2πR 3∶23 πR 3∶43πR 3=3∶1∶2,所以D 正确.故选CD.4.将半径为R 的半圆卷成一个圆锥,则它的体积是( ) A .524 πR 3 B .58 πR 3 C .324πR 3 D .38πR 3 解析:选C.设圆锥的底面半径为r ,则2πr =πR ,所以r =R2 .所以圆锥的高h =R 2-r 2 =32R . 所以圆锥的体积V =13 πr 2×h =13 π(R 2 )2×32 R =324πR 3.故选C.5.若两球的体积之和是 12π,经过两球球心的截面圆周长之和为 6π,则两球的半径之差为( )A .1B .2C .3D .4解析:选 A .设两球的半径分别为 R ,r (R >r ),则由题意得⎩⎪⎨⎪⎧4π3R 3+4π3r 3=12π,2πR +2πr =6π,解得⎩⎪⎨⎪⎧R =2,r =1.故 R -r =1. 6.一个高为2的圆柱,底面周长为2π,该圆柱的表面积为________.解析:由底面周长为2π可得底面半径为1.S 底=πr 2=π,S 侧=2πr ·h =4π,所以S 表=2S底+S 侧=6π.答案:6π7.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________. 解析:设圆锥的母线为l ,圆锥底面半径为r ,由题意可知,πrl +πr 2=3π,且πl =2πr .解得r =1,即圆锥的底面直径为2.答案:28.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的铁球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的铁球(如图所示),则铁球的半径是________cm.解析:设铁球的半径为x cm ,由题意得πx 2×8=πx 2×6x -43 πx 3×3,解得x =4.答案:49.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:该组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π, 该组合体的体积V =43 πr 3+πr 2l =43 π×13+π×12×3=13π3.10.已知一个圆锥的底面半径为R ,高为H ,在其内部有一个高为x 的内接圆柱. (1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大?解:(1)作圆锥的轴截面,如图所示.因为rR =H -x H,所以r =R -RH x ,所以S 圆柱侧=2πrx =2πRx -2πR Hx 2(0<x <H ). (2)因为-2πRH<0,所以当x =2πR 4πR H=H2 时,S 圆柱侧最大.故当x =H2时,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.[B 能力提升]11.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为323 π,那么这个正三棱柱的体积是( )A .963B .163C .243D .483解析:选D.由题意可知正三棱柱的高等于球的直径,从棱柱中间平行棱柱底面截得球的大圆内切于正三角形,正三角形与棱柱底面三角形全等,设三角形边长为a ,球半径为r ,由V 球=43 πr 3=323 π,得r =2.由S 柱底=12 a ×r ×3=34 a 2,得a =23 r =43 ,所以V 柱=S柱底·2r =483 .12.如图,一个盛满溶液的玻璃杯,其形状为一个倒置的圆锥,现放一个球状物体完全浸没于杯中,球面与圆锥侧面相切,且与玻璃杯口所在平面相切,则溢出溶液的体积为( )A .8327 πB .4327 πC .16327πD .32327π解析:选D.由题意,设球的半径为r ,作出玻璃杯的轴截面,可得一个半径为r 的圆内切于一个边长为4的等边三角形,此等边三角形的高h =23 .根据中心(重心)的性质可得,球的半径r =13 h =233 ,所以球的体积V =43 πr 3=43 π×⎝⎛⎭⎫233 3 =32327 π.即溢出溶液的体积为32327π,故选D.13.(多选)如图所示,△ABC 的三边长分别是AC =3,BC =4,AB =5,过点C 作CD ⊥AB ,垂足为D ,下列说法正确的是( )A .以BC 所在直线为轴,将此三角形旋转一周,所得旋转体的侧面积为15πB .以BC 所在直线为轴,将此三角形旋转一周,所得旋转体的体积为36π C .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的侧面积为25πD .以AC 所在直线为轴,将此三角形旋转一周,所得旋转体的体积为16π解析:选AD.以BC 所在直线为轴旋转时,所得旋转体为底面半径为3,母线长为5,高为4的圆锥,所以侧面积为π×3×5=15π,体积为13 ×π×32×4=12π,所以A 正确,B 错误;以AC 所在直线为轴旋转时,所得旋转体为底面半径为4,母线长为5,高为3的圆锥,侧面积为π×4×5=20π,体积为13×π×42×3=16π,所以C 错误;D 正确.故选AD.14.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,过A 1,C 1,B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D 1,这个几何体的体积为403.(1)求棱AA 1的长;(2)求经过A 1,C 1,B ,D 四点的球的表面积和体积.解:(1)设AA 1=x ,依题意可得403 =2×2·x -13 ×12 ×2×2·x ,解得x =4,故棱AA 1的长为4.(2)依题意可知, 经过A 1,C 1,B ,D 四点的球就是长方体ABCD -A 1B 1C 1D 1的外接球,这个球的直径就是长方体的体对角线,所以球的直径2R =22+22+42 =26 ,解得R =6 .故所求球的表面积为4πR 2=24π,体积为43·πR 3=86 π.[C 拓展探究]15.如图,用一边长为2 的正方形硬纸,按各边中点垂直折起4个小三角形,做成一个“底座”,将体积为4π3 的球放入其中,“底座”形状保持不变,则球的最高点与“底座”底面的距离为( )A .62 +32 B .32C .22 +32D .32 +32解析:选D.由题意,可得“底座”的底面是边长为1的正方形,则经过4个小三角形的顶点截球所得的截面圆的直径为1.因为球的体积为4π3 ,所以球的半径为1,所以球心到截面圆的距离为1-⎝⎛⎭⎫122 =32 ,因为垂直折起的4个小直角三角形斜边上的高为12,所以球的最高点与“底座”底面的距离为32 +1+12 =32 +32.故选D. 16.如图,四边形ABCD 是正方形,BD ︵是以 A 为圆心、AB 为半径的弧,将正方形 ABCD 以 AB 为轴旋转一周,求图中 Ⅰ,Ⅱ,Ⅲ 三部分经旋转所得几何体的体积之比.解:Ⅰ生成圆锥,Ⅱ生成的是半球去掉Ⅰ生成的圆锥,Ⅲ生成的是圆柱去掉扇形 ABD 生成的半球.设正方形的边长为 a ,则Ⅰ,Ⅱ,Ⅲ 三部分经旋转所得几何体的体积分别为 V Ⅰ,V Ⅱ,V Ⅲ,则 V Ⅰ=13 πa 3,V Ⅱ=12 ×43 πa 3-13 πa 3=13 πa 3,V Ⅲ=πa 3-12 ×43 πa 3=13πa 3.所以三部分经旋转所得几何体的体积之比为1∶1∶1.。
高考数学复习考点知识与解题方法专题讲解34---空间几何体的表面积和体积
高考数学复习考点知识与解题方法专题讲解 专题34 空间几何体的表面积和体积【考纲要求】1.会计算柱、锥、台、球的表面积和体积.【知识清单】知识点1.几何体的表面积圆柱的侧面积 rl S π2=圆柱的表面积 )(2l r r S +=π圆锥的侧面积 rl S π=圆锥的表面积 )(l r r S +=π圆台的侧面积 l r r S )(+'=π圆台的表面积 )(22rl l r r r S +'++'=π球体的表面积 24R S π=柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积. 知识点2.几何体的体积圆柱的体积 h r V 2π=圆锥的体积 h r V 231π=圆台的体积 )(3122r r r r h V '++'=π 球体的体积 334R V π= 正方体的体积 3a V =正方体的体积 abc V =【考点梳理】考点一 :几何体的面积【典例1】(2020·天津高考真题)若棱长为则该球的表面积为( )A .12πB .24πC .36πD .144π 【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.【典例2】(2020·全国高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514-B .512-C .514+D .512+ 【答案】C【解析】如图,设,CD a PE b ==,则PO ==, 由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去). 故选:C.【规律方法】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.【变式探究】1.(2018·全国高考真题(理))已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB ∆的面积为__________.【答案】【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB ,因为SAB 的面积为,l 所以221802l l ⨯==,因为SA 与圆锥底面所成角为45°,所以底面半径为πcos,4l =因此圆锥的侧面积为2ππ.2rl l ==2.(2019·福建高三月考)已知四面体ABCD 内接于球O ,且2AB BC AC ===,若四面体ABCD ,球心O 恰好在棱DA 上,则球O 的表面积是_____. 【答案】16π【解析】如图:在三角形ABC 中,因为222AB BC AC +=,所以△ABC 为直角三角形,所以三角形ABC 的外接圆的圆心为AC 的中点1O ,连1OO ,根据垂径定理,可得1OO ⊥平面ABC ,因为1,O O 为,AD AC 的中点可知DC ⊥平面ABC ,所以DC 为四面体ABCD 的高.所以11323DC ⨯=,解得DC =所以4AD ==. 所以四面体ABCD 的外接球的半径为2,表面积为24R π=24216ππ⨯=.【总结提升】计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法. 高频考点二 :几何体的体积【典例3】(2019·北京高考真题(文))某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,几何体的体积()3142424402V =-+⨯⨯=. 【典例4】(2020·江苏省高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】2π【解析】正六棱柱体积为2624⨯⨯圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为: 2π【总结提升】 (1)已知几何体的三视图求其体积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表体积公式求其体积.(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.(3)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(4)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(5)三视图形式:若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解提醒:处理高线问题时,经常利用的方法就是“等积法”.【变式探究】1.(2020·全国高一课时练习)已知ABC ∆的三边长分别是3AC =,4BC =,5AB =.下列说法正确的是( )A .以BC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的侧面积为15πB .以BC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的体积为36π C .以AC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的侧面积为25πD .以AC 所在直线为旋转轴,将此三角形旋转一周,所得旋转体的体积为16π【答案】AD【解析】以BC 所在直线为轴旋转时,所得旋转体是底面半径为3,母线长为5,高为4的圆锥,其侧面积为3515ππ⨯⨯=,体积为2134123ππ⨯⨯⨯=,故A 正确,B 错误; 以AC 所在直线为轴旋转时,所得旋转体是底面半径为4,母线长为5,高为3的圆锥,侧面积为4520ππ⨯⨯=,体积为2143163ππ⨯⨯⨯=,故C 错误,D 正确. 故选:AD.2.(2019·湖南高三月考(理))正方体1111ABCD A B C D -的棱长为2,点E 、F 、G 分别是AB 、AD 、1AA 的中点,以EFG ∆为底面作直三棱柱(侧棱垂直底面的棱柱),若此直三棱柱另一底面的三个顶点也都在该正方体的表面上,则该直三棱柱的体积为( )B.2C.32D.34【答案】C【解析】如图,连接11A C ,1C D ,1AC , 1BC ,分别取11A C 、1BC 、1C D 中点M 、N 、Q ,连接MQ ,MN ,NQ ,FQ ,EN ,GM由中位线定理可得111111111//,,//,,//,222GM AC GM AC FQ AC FQ AC EN AC EN AC === 又1AC EFG ⊥平面,∴三棱柱EFG NQM —是正三棱柱2EFG S ∆==112h GM AC ===,∴三棱柱32EFG NQM V =— 答案选C【方法总结】求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.高频考点三 : 几何体的展开、折叠、切、截问题【典例5】(2020·全国高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】A【解析】 设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【典例6】(2019·天津高考真题(理))已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.【答案】4π. 【解析】2=,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为12,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,故圆柱的体积为21124ππ⎛⎫⨯⨯= ⎪⎝⎭. 【规律方法】几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R ,①若球为正方体的外接球,则2R =3a ;②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1.【典例7】(2019·全国高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( ) A .86π B .46πC .26πD 6π【答案】D 【解析】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点, //EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,22226R =++= 364466633R V R =∴=π==ππ,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=又90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=,22121222x x x ∴+=∴==,PA PB PC ∴======2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,344338V R ∴=π=π⨯=,故选D.【典例8】(2019·四川高三月考(理))学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为在圆锥底部挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为,高为10cm .打印所用部料密度为30.9g/cm .不考虑打印损耗.制作该模型所需原料的质量为________g .(π取3.14)【答案】358.5 【解析】设被挖去的正方体的棱长为xcm ,圆锥底面半径为r ,取过正方体上下底面面对角线的轴截面,由相似三角形得则10210x xh x x r h --=⇒=,解得5x =.模型的体积为(223311500105125333V r h x πππ=-=⨯⨯-=-, 因此,制作该模型所需材料质量约为5000.91251500.9125358.5g 3ππ⎛⎫⨯-=-⨯≈⎪⎝⎭. 故答案为:358.5. 【总结提升】1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【典例9】(2018届河南省林州市第一中学高三8月调研)如图,已知矩形ABCD中,,现沿AC折起,使得平面ABC⊥平面ADC,连接BD,得到三棱锥-,则其外接球的体积为()B ACD【答案】D【解析】结合几何体的特征可得,外接球的球心为AC的中点,则外接球半径:本题选择D选项.【总结提升】解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:【变式探究】1.(2018届河南省洛阳市高三期中)在三棱锥S ABC -中,底面ABC ∆是直角三角形,其斜边4AB =, SC ⊥平面ABC ,且3SC =,则三棱锥的外接球的表面积为( ) A. 25π B. 20π C. 16π D. 13π 【答案】A【解析】根据已知,可将三棱锥补成一个长方体,如下图:则三棱锥的外接球就是这个长方体的外接球,由于43AB SC ==,,且ABC ∆是直角三角形, SC ⊥平面ABC , ∴长方体的对角线长为∴三棱锥的外接球的半径 ∴三A.2.(2018·天津高考真题(文))如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为__________.【答案】13【解析】如图所示,连结11A C ,交11B D 于点O ,很明显11A C ⊥平面11BDD B ,则1A O 是四棱锥的高,且111122A O A C ===,1111BDD B S BD DD =⨯==四边形,结合四棱锥体积公式可得其体积为1113323V Sh ===,故答案为13.3.(2018届河北省衡水市武邑中学高三上第三次调研)在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao).已知在鳖臑M ABC-中, MA⊥平面ABC, 2MA AB BC===,则该鳖臑的外接球与内切球的表面积之和为____.【解析】由题意,MC为球O的直径,O∴球O的表面积为4π•3=12π,内切球的半径设为r,【典例10】(2017课标1,理16)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】【解析】【规律方法】有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【变式探究】(2018届河南省林州市第一中学高三8月调研)如图,已知矩形中,,现沿折起,使得平面平面,连接,得到三棱锥,则其外接球的体积为( )ABCD AC ABC ⊥ADC BD B ACD -【答案】D【解析】结合几何体的特征可得,外接球的球心为AC的中点,则外接球半径:本题选择D选项.【典例11】(2018·江苏高考真题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】43【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正,所以该多面体的体积为21421.33⨯⨯⨯=【变式探究】(2020·山东省滨州市三模)已知P,A,B,C是球O的球面上的四个点,平面,则球O的表面积为__________.PA⊥,26,ABC PA BC==AB AC⊥【答案】 【解析】由于平面,所以,而,故可将补形为长方体,如图所示,长方体的外接球,也即三棱锥的外接球,也即球. 由于,设,则,所以长方体的对角设球的半径为,则所以球的表面积为. 故答案为:【典例12】(2020·山东省泰安市6月三模)已知球O是正三棱锥的外接球,,E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是_______. 【答案】45πPA ⊥ABC ,PA AB PA AC ⊥⊥AB AC ⊥P ABC -P ABC -O 26,3PA BC BC ===,AB a AC b ==2229a b BC +===O R 2R =O 2445R ππ=45πP ABC -3AB =PA =94π【解析】如图,设三棱锥的外接球半径为R ,正三角形的外接圆圆心为,因为,三角形是正三角形,为正三角形的外接圆圆心, 所以因为所以,解得,,因为过作球的截面,当截面与垂直时,截面圆的半径最小,所以当截面与垂直时,截面圆的面积有最小值,在中,故,截面面积, 故答案为:. 【总结提升】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【变式探究】1.(2020·安徽马鞍山�高三三模(文))已知正方体1111ABCD A B C D -,直线1AC ⊥平面α,平面α截此正方体所得截面中,正确的说法是( )ABC D 3AB =ABC D ABC DA =PA =3PD =()223R R +-=2R =1OD =E O OE OE Rt EDO ∆OE ==32r ==294S r ππ==94πA .截面形状可能为四边形B .截面形状可能为五边形C .截面面积最大值为D 【答案】D【解析】如图在正方体中1AC ⊥平面1A BD ,所以平面α与平面1A BD 平行平面α与正方体的截面可以是三角形、六边形但不会是五边形和四边形 当截面为正六边形EFNMGH 时,截面面积有最大,由题可知:21sin 45==NM ,则133611sin 6022=⨯⨯⨯⨯=EFNMGH S 故选:D2.(2020·江苏苏州�高一期末)已知在球O 的内接长方体1111ABCD A B C D -中,12AB AA ==,3AD =,则球O 的表面积为________,若P 为线段AD 的中点,则过点P 的平面截球O 所得截面面积的最小值为______.【答案】17π9π4【解析】如图,因为球O 的内接长方体1111ABCD A B C D -中,12AB AA ==,3AD =,所以12=DB R = 所以球的表面积2=417S R ππ=, 当OP ⊥球的截面,即P 为截面圆圆心时,球心到截面圆的距离d OP =时最大, 此时截面圆的半径22d R r -=最小,此时截面圆的面积最小,而OP ===所以32r ==, 所以截面圆面积294S r ππ==. 故答案为:17π;94π。
高中数学第八章立体几何初步8.1.圆柱圆锥圆台球简单组合体的结构特征素养检测含解析第二册
课时素养检测二十圆柱、圆锥、圆台、球、简单组合体的结构特征(30分钟60分)一、选择题(每小题5分,共30分,多选题全部选对得5分,选对但不全对的得3分,有选错的得0分)1.(多选题)下列几何体中是旋转体的是()【解析】选ABC。
由旋转体的概念可知,选项ABC是旋转体.2.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖去一个圆柱C。
一个圆柱D。
一个球体中间挖去一个长方体【解析】选B.圆面绕着直径所在的轴,旋转而形成球,矩形绕着轴旋转而形成圆柱.3.如图(1)所示的几何体是由下图中的哪个平面图形旋转后得到的?()【解析】选A。
因为简单组合体为一个圆台和一个圆锥所组成的,因此平面图形应为一个直角三角形和一个直角梯形构成,可排除B、D,再由圆台上、下底的大小比例关系可排除C,故选A.4.(多选题)用一个平面去截一个几何体,得到的截面是三角形,这个几何体不可能是()A。
圆柱B。
圆台 C.球体D。
棱台【解析】选ABC。
圆柱、圆台和球体无论怎样截,截面可能是曲面,也可能是矩形(圆柱),不可能截出三角形.只有棱台可以截出三角形。
5.下列说法正确的个数是()①长方形绕一条直线旋转一周所形成的几何体是圆柱;②过圆锥侧面上一点有无数条母线;③圆锥的母线互相平行。
A。
0 B。
1 C.2 D。
3【解析】选A.①长方形绕对角线所在直线旋转一周所形成的几何体不是圆柱;②过圆锥侧面上一点(顶点除外)有一条母线;③圆锥的母线交于一点.6。
如图所示的几何体是长征五号运载火箭的顶端部分,则该几何体的构成是()A。
一个棱锥,一个圆柱B.一个圆锥,一个圆柱C.一个圆锥,一个圆台D。
两个圆台【解析】选B.由题图可知,该几何体上面是一个圆锥,下面是一个圆柱.二、填空题(每小题5分,共10分)7。
一个与球心距离为1的平面截球所得的圆面面积为π,则截面圆的半径为______,球的直径为______.【解析】设球心到平面的距离为d,截面圆的半径为r,则πr2=π,所以r=1。
1[1].1.3圆柱、圆锥、圆台和球
3.球的表示方法:用表示球心的字母表 示,如球O . 4.球的截面性质: O
R
d
(1)球的截面是圆面, ß
r
(2)球心和截面圆心的连线垂直于截面;
(3)r R2 d 2 (其中r为截面圆半径, R为球的半径,d为球心O到截面圆的距离, 即O到截面圆心O1的距离;
(4)大圆与小圆:球面被经过球心的平面截
练习: 1、圆柱的轴截面是正方形,它的面 积为9 ,求圆柱的高与底面的周长。 (h=3, c=2πr=3π) 2、圆锥的轴截面是正三角形,它的 面积是 3 ,求圆锥的高与母线的长。 (h= 3 ,l=2) 3、圆台的轴截面中,上、下底面边长 分别为2cm,10cm,高为3cm,求圆台母线 的长。 2 2
二.球及相关概念: 1.定义:以半圆的直径所在的直线为旋转 轴,旋转一周形成的曲面叫球面,球面围 成的几何体叫做球。另外将圆面绕直径旋 转180°得到的几何体也是球。
球面也可看作空间中到一定点的距离等于定长的 点的集合
2.相关概念: (1)球心:形成球的半圆的圆心叫做 球心; (2)半径:连接球面上一点和球心的线段 叫球的半径; (3)直径:连接球面上的两点且通过球心 的线段叫球的直径;
3.表示方法:用表示它的轴的字母表示, 如圆柱OO’ .
4.有关性质: (1)用平行于底面的平面去截,截面都 是圆。 (2)圆柱、圆锥、圆台的轴截面分别是 全等的矩形、全等的等腰三角形、全等的 等腰梯形;
5.侧面展开图:
(1)圆柱的侧面展开图是矩形。
(2)圆锥的侧面展开图是扇形. (3)圆台的侧面展开图是扇环.
圆锥的轴 侧面 母线 底面
三、概念形成
如何从圆锥变成圆台?
想 一 想 ?
1.3圆柱、圆锥、圆台和球
球的形成过程
点击这里进行演示
三、概念形成
相关概念 形成球的半圆的圆心叫做球心。球心O 连接球面上一点和球心的线段叫做球的半径。OA 连接球面上两点且过球心 的线段叫做球的直径。AB 球:记作球O 问题3.球的轴截面是 什么平面图形?
球心O
A
O
B
球的半径
三、概念形成
相关概念 问题5.类比圆的定义,想一想能否用集合的语言 来定义球? 在空间,到一定点的距离等于定长的点的集合叫 做球。
普通高中课程标准数学2(必修)
第一章 立体几何初步
1.1.3 圆柱、圆锥、圆台和球 (约2课时)
良乡中学数学组 制作:任宝泉
2014年1月5日
一、复习引入
前面我们学习了几个常见的多面体,棱柱、棱 锥和棱台。明确了它们的定义及相关概念。
棱柱、棱锥和棱台的特征,三者之间有什么联系? 棱柱、棱锥和棱台的特征,三者有什么特征?
良乡中学数学组 任宝泉
怀 天 天才就是百分之一的灵感,百分之九十九的汗水! 什 才 在 于 勤 奋,努 力 书 山 有 下 学问为 求人 真 海 无,学 苦成 做 !!! 人 勤劳的孩子展望未来, 什 徒 才 能 但懒惰的孩子享受现在!!! 天 小 不 不 , 的径,学 知 伤 悲不 到 功! 成功=艰苦的劳动+正确的方法+少谈空话 少 么 也 路 勤习,老 来 么 也 崖 学 作 舟
三、概念形成
类比棱柱、棱锥、棱台的生成规律,想一想圆柱、 圆锥、圆台之间的关系? 圆柱的一个底面收缩为一个点时,可得到圆锥。 圆锥被一个平行于底面的平面截后,截面和底面 之间的部分就是圆台。 圆柱、圆锥、圆台的侧面展开图
点击这里进行演示
三、概念形成
概念3.球的概念 半圆绕它的直径所在的直线旋转一周而形成的几何 体叫做球,半圆弧旋转而成的曲面叫做球面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.3圆柱,圆锥,圆台和球
链接高考
1.(2016广东佛山一中月考,★☆☆)设A、B、C、D是球面上的四点,AB、AC、
AD两两互相垂直,且AB=5,AC=4,AD=,则球的半径为()
A.2
B.4
C.10
D.12
2.(2015山西大同一中期中,★★☆)已知矩形ABCD的顶点在半径为13的球O 的球面上,且AB=8,BC=6,则棱锥O-ABCD的高为()
A.12
B.13
C.14
D.5
3.(2015广西桂林第十八中学月考,★★☆)已知各顶点都在一个球面上的正方
体的体积为8,则这个球的半径是()
A.1
B.
C.3
D.2
4.(2015山西康杰中学期中,★★☆)如图,在三棱锥P-ABC中,三条侧棱
PA,PB,PC两两互相垂直,且△PAB,△PAC,△PBC的面积依次为1,1,2,则三棱锥
P-ABC的外接球的半径为()
A. B.3 C.4 D.2
5.(2014陕西,5改编,★☆☆)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的半径为________.
6.(2014大纲全国,8改编,★☆☆)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的半径为________.
7.(2016四川雅安中学月考,★★☆)已知三棱锥P-ABC中,PA=PB=PC=4 cm,且PA、PB、PC两两垂直,若此三棱锥的四个顶点都在球面上,则这个球的半径为
________cm.
8.(2015浙江杭州西湖高中月考,★★☆)已知一圆柱内接于球O,且圆柱的底面直径与母线长均为2,则球O的半径为________.
三年模拟
1.(2016吉林一中月考,★☆☆)如图所示的四个几何体,其中判断正确的是
()
A.(1)不是棱柱
B.(2)是棱柱
C.(3)是圆台
D.(4)是棱锥
2.(2016辽宁师大附中月考,★☆☆)一个直角三角形绕斜边旋转360°形成的空间几何体为()
A.一个圆锥
B.一个圆锥和一个圆柱
C.两个圆锥
D.一个圆锥和一个圆台
3.(2016辽宁抚顺一中一模,★★☆)已知直三棱柱ABC-A1B1C1的六个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()
A. B.2 C. D.3
4.(2014辽宁大连教育学院期末,★☆☆)圆柱底面圆的半径和圆柱的高都为2,则圆柱侧面展开图的面积为()
A.4π
B.4π
C.8π
D.8π
5.(2016辽宁实验中学月考,★★☆)用一个半径为10厘米的半圆纸片卷成一个最大的无底圆锥,放在水平桌面上,被一阵风吹倒,如图,则它的最高点到桌面的距离为________.
6.(2016辽宁师大附中月考,★★★)已知正△ABC的三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段BC的中点,过点E作球O的截面,则截面面积的最小值是________.
7.(2015江西吉安一中期中,★★☆)中心角为135°,面积为B的扇形围成一个圆锥,若圆锥的全面积为A,则A∶B=________.。