初中七年级数学上期末综合素质测评

合集下载

2022-2023学年人教版初中数学七年级上册期末综合能力测试卷(附参考答案)

2022-2023学年人教版初中数学七年级上册期末综合能力测试卷(附参考答案)

2022-2023学年人教版初中数学七年级上册期末综合能力测试卷一、选择题(共12小题)1.(2022秋•长沙县校级期中)若|x ﹣1|+x =1,则x 一定满足( ) A .x <1B .x >1C .x ≤1D .x ≥12.(2022秋•雁塔区校级期中)已知|a |=1,b 是﹣2的倒数,则a +b 的值为( ) A .32或−12B .−32C .12D .−32或123.(2022秋•溧水区期中)如图所示,数轴上点A 、B 对应的数分别为a 、b ,下列说法正确的是( )A .a +2b >0B .|a |﹣2|b |<0C .a ﹣2|b |>0D .a +2|b |<04.(2022秋•丹江口市期中)某商品原价为a 元,先提高20%,然后连续两次降价,每次降价10%.则该商品的价格是( ) A .a 元B .0.972a 元C .0.968a 元D .0.96a 元5.(2022秋•东台市期中)根据如图所示的程序计算,若输入的x 值为5时,输出的值为﹣3,则输入值为﹣1时,输出值为( )A .﹣1B .1C .3D .46.(2021秋•石狮市期末)若(2x ﹣1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 6﹣a 5+a 4﹣a 3+a 2﹣a 1的值为( ) A .0B .1C .728D .7297.(2022秋•楚雄市期中)某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元. A .160B .140C .120D .1008.(2022秋•怀柔区校级月考)有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m +10=43m ﹣1;②n+1040=n+143;③n−1040=n−143;④40m +10=43m +1.其中正确的是( ) A .①②B .②④C .①③D .③④9.(2022春•商水县月考)我们定义一种运算:|abc d|=ad ﹣bc 例如,|2345|=2×5﹣3×4=﹣2,|x213|=3x ﹣2,按照这种定义的运算,当|x2−12x2|=|x −1−4121|时,x =( ) A .−32B .−12C .32D .1210.(2022秋•尤溪县期中)现有一个长方形,长和宽分别为3cm 和2cm ,绕它的一条边所在的直线旋转一周,得到的几何体的体积为( )A .12πB .27πC .12π或18πD .12π或27π11.(2021秋•青岛期末)如图,C 为线段AB 上一点,点D 为BC 的中点,且AB =30cm ,AC =4CD ,则AC 的长为( )cm .A .18B .18.5C .20D .20.512.(2022秋•海淀区校级期中)如图,在△ABC 中,根据尺规作图痕迹,下列说法不一定正确的是( )A .AF =BFB .∠AFD +∠FBC =90° C .DF ⊥ABD .∠BAF =∠CAF二、填空题(共6小题)13.(2022秋•沈北新区期中)若﹣1<a<0,则a、a2、1的大小关系是.(用“<”a连接)14.(2022秋•义乌市校级期中)如图在一条可以折叠的数轴上,点A,B表示的数分别是﹣8,3,若以点C为折点,将此数轴向右对折,若点A落在点B右边,且A、B 两点相距1单位长,则点C表示的数是.15.(2022秋•宿城区期中)如果多项式x2+5ab+b2+kab﹣1不含ab项,则k的值为.16.(2021秋•孝南区期末)单项式x m﹣1y3与4xy n的和是单项式,则n m的值是.17.(2022秋•南皮县校级月考)定义新运算“※”如下:当a≥b时,a※b=ab+b;当a<b时,a※b=ab﹣a.(1)﹣3※2=;若5※b=12,则b=;(2)若(2x﹣1)※(x+2)=0,则x=.18.(2022秋•鼓楼区校级月考)一束光线经过三块平面镜反射,光路如图所示,当∠β是∠α的一半时,∠α=°.三、解答题(共7小题)19.(2022秋•璧山区校级期中)计算题:);(1)(−12)×(−4)−10×(−32(2)﹣42×(﹣2)+[(﹣2)3﹣(﹣4)].20.(2022秋•宜兴市期中)解方程 (1)5x ﹣3=2(x ﹣12); (2)1−2x−16=2x+13.21.(2022秋•陇县期中)先化简,再求值:(1)3a 2b +2(ab −32a 2b )﹣(2ab 2﹣3ab 2+ab ),其中a =2,b =−12;(2)2(xy 2+5x 2y )﹣3(3xy 2﹣x 2y )﹣xy 2,其中x =﹣1,y =−12.22.(2022秋•张店区期中)【阅读学习】阅读下面的解题过程: 已知:xx 2+1=13,求x 2x 4+1的值. 解:由xx 2+1=13知x ≠0,所以x 2+1x=3,即x +1x =3,所以x 4+1x 2=x 2+1x 2=(x +1x)2−2=32﹣2=7,故x 2x 4+1的值为17.【类比探究】(1)上题的解叫做“倒数法”,请你利用“倒数法”解决下面的题目:已知xx 2−3x+1=−2,求x 2x 4+5x 2+1的值.【拓展延伸】(2)已知1a +1b =12,1b +1c =13,1a +1c =15,求abcab+bc+ac 的值.23.(2022秋•鄂州期中)某电器商店销售一种洗衣机和电磁炉,洗衣机每台定价800元,电磁炉每台定价200元.“十一”假期商店决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台洗衣机送一台电磁炉;方案二:洗衣机和电磁炉都按定价的90%付款.现某客户要在该商店购买洗衣机10台,电磁炉x台(x>10).(1)若该客户按方案一、方案二购买,分别需付款多少元?(用含x的式子表示)(2)若x=35,通过计算说明此时按哪种方案购买较为合算?(3)当x=35时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元.24.(2022秋•泉州期中)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣12,点B表示8,点C表示16,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.25.(2022秋•香坊区校级期中)为美化城市环境,现将广场某一区域进行景观设计规划,如图所示,区域的四角放置底座均直径为10米的圆形雕塑,紧贴四角的雕像底座安装一圈封闭围栏,在区域中央建立半径为10米的圆形喷水池,其余部分种植花卉.(π取3)(1)四个雕塑的占地面积之和是多少平方米?(2)安装一圈封闭围栏的长度是多少米?(3)在种植花卉的区域种植小雏菊、兰花、牵牛花三种花卉,其中兰花的种植面积比小雏菊多25%,小雏菊的种植面积是兰花和牵牛花种植面积之和的4,小雏菊每平13,兰花每平方米的价格方米50元,兰花每平方米的价格比小雏菊每平方米的价格少15与牵牛花每平方米的价格的比为4:3,围栏每米20元,修建喷水池和所有雕塑共需32000元,完成这项工程共需多少元?参考答案一、选择题(共12小题)1.C;2.D;3.D;4.B;5.C;6.C;7.C;8.D;9.A;10.C;11.C;12.D;二、填空题(共6小题)13.1a<a<a214.215.﹣516.917.﹣3;2;﹣1或1218.84;三、解答题(共7小题)19.解:(1)原式=48+15=63;(2)原式=﹣16×(﹣2)+(﹣8+4)=32﹣8+4=28.20.解:(1)5x﹣3=2(x﹣12),去括号,得5x﹣3=2x﹣24,移项,得5x﹣2x=3﹣24,合并同类项,得3x=﹣21,系数化为1,得x=﹣7;(2)1−2x−16=2x+13,去分母,得6﹣(2x﹣1)=2(2x+1),去括号,得6﹣2x+1=4x+2,移项,得﹣2x﹣4x=2﹣6﹣1,合并同类项,得﹣6x=﹣5,系数化为1,得x=56.21.解:(1)原式=3a2b+2ab﹣3a2b﹣2ab2+6ab2﹣ab=ab +4ab 2, 当a =2,b =−12时, 原式=﹣1+2=1;(2)原式=2xy 2+10x 2y ﹣9xy 2+3x 2y ﹣xy 2 =﹣8xy 2+13x 2y , 当x =﹣1,y =−12时, 原式=2−132=−92.22.(1)由 xx 2−3x+1=−2知x ≠0,所以x 2−3x+1x=−12,即:x +1x −3=−12. ∴x +1x =52. ∴x 4+5x 2+1x 2=x 2+1x 2+5 =(x +1x )2﹣2+5 =(52)2﹣2+5 =374.故x 2x 4+5x 2+1的值为437.(2)∵1a +1b =12,1b +1c =13,1a +1c =15, ∴2(1a +1b +1c )=12+13+15=3130, ∴1a+1b+1c=3160.∵ab+bc+acabc =1c +1a +1b ,∴abcab+bc+ac =3160.23.解:(1)800×10+200(x ﹣10)=200x +6000(元), (800×10+200x )×90%=180x +7200(元);(2)当x =35时,方案一:200×35+6000=13000(元),方案二:180×35+7200=13500(元),∵13000<13500,所以,按方案一购买较合算.(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买2,5台电磁炉,这样更为省钱,共付款:10×800+200×25×90%=12500(元).24.解:(1)点P从点A运动至C点需要的时间为:t=6÷1+8÷0.5+(16﹣8)÷1=30(秒).答:点P从点A运动至C点需要的时间是30秒;(2)由题可知,P,Q两点相遇在线段OB上于M处,设OM=x,则6÷1+x÷0.5=8÷2+(8﹣x)÷4.解得x=0.∴OM=0表示P,Q两点相遇在线段OB上于O处,即相遇点M所对应的数是0.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有2种可能:①动点P在AO上,动点Q在CB上,则:6﹣t=8﹣2t.解得:t=2.②动点P在AO上,动点Q在BO上,则:6﹣t=4(t﹣4).解得:t=4.4.答:t为2s或者4.4s时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.25.解:(1)3×(10)2×4=300(平方米),2∴四个雕塑的占地面积之和是300平方米.(2)10×3+50×4=230(米),∴围栏的长度是230米.(3)种花的面积:50×50+50×5×4+3×52=3×102﹣300=2975(平方米),=700(平方米),兰花700×(1+258)=875(平方米),牵牛花:小雏菊:2975×413+42975﹣700﹣875=1400(平方米),∵兰花50×(1−1)=40(元/平方米),牵牛花:40÷4×3=30 (元/平方米),5∴700×50+875×40+1400×30+230×20+32000=148600(元),答:完成这项工程共需148600元.。

2024--2025学年人教版七年级数学上册期末素养评估试卷

2024--2025学年人教版七年级数学上册期末素养评估试卷

2024--2025学年人教版七年级数学上册期末素养评估试卷一、单选题1.12024-的绝对值是()A .12024B .12024-C .2024-D .20242.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为()A .71410⨯B .81.410⨯C .90.1410⨯D .91.410⨯3.如图AB CD =,则AC 与BD 的大小关系是()A .AC BD >B .AC BD <C .AC BD =D .无法确定4.点A 、B 、C 是同一直线上的三个点,若AB 8cm =,BC 3cm =,则AC (=)A .11cmB .5cmC .11cm 或5cmD .11cm 或3cm5.已知-x 2m-3+1=7是关于x 的一元一次方程,则m 的值是()A .-1B .1C .-2D .26.下列结论正确的个数是()①2-不是单项式②多项式3527x y xy --是三次三项式③232π3a b c 的系数是23,次数是6④233m n -的次数为4A .0个B .1个C .2个D .3个7.已知平面上A ,B ,C 三点,过每两点画一条直线,那么直线的条数有()A .3条B .1条C .1条或3条D .0条8.如果13a +1与273a -互为相反数,那么a 的值为()A .43B .10C .-43D .-109.如图所示,正方体的展开图为()A .B .C .D .10.有一个商店把某件商品按进价加价20%作为定价,可是总卖不出去;后来商店按定价降价20%以96元出售,很快就卖掉了.则这次生意的盈亏情况为()A .亏4元B .亏24元C .赚6元D .不亏不赚二、填空题11.若22m x y 与42n x y 是同类项,则m n -=.12.如图,点C 在线段AB 上,点D 是AC 的中点,135AB BC ==,,则BD =.13.当k =时,多项式22(1515)320x k xy y y +---不含xy 项.14.A ∠的补角为12512︒',则它的余角为.15.某车间有22名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母20个或螺栓12个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则可列方程为.16.如图,120AOB ∠=︒,13AOC BOC ∠=∠,OD 平分BOC ∠,则BOD ∠的度数为.17.如图,有理数a 、b 、c 在数轴上的位置如图,则化简a b b c a c --+-+=.18.观察下列一组数:2,4-,8,16-,32,64-,…,顺次写下去,写到第2024个数是.三、解答题19.计算:(1)202314(3)(24)-+⨯-÷-;(2)()171124212⎛⎫-+⨯- ⎝⎭.20.(1)合并同类项:22254(35)(47)x y x y xy --+--;(2)先化简,再求值:2211(2421)2(2)44xy xy xy xy ----+,其中2x =,1y =-.21.解下列方程:(1)3x ﹣12=6(x ﹣5);(2)1534x x +--=2.22.如图,C 是线段AB 上一点,M 是线段AC 的中点,N 是线段BC 的中点.(1)若6cm,8cm BC AC ==,求MN 的长;(2)若15cm AB =,求MN 的长;(3)若=6cm MN ,求AB 的长;(4)指出AB 与MN 之间的大小关系.23.如图,点A ,O ,E 在同一直线上,40AOB ∠=︒,25EOD ∠=︒,OD 平分COE ∠.(1)写出图中所有互补的角并证明.(2)求COB ∠的度数.24.如图所示的窗框,上半部分为半圆,下半部分为6个大小一样的长方形,长方形的长和宽的比为3:2,(1)设长方形的长为x 米,用x 表示所需材料的长度(重合部分忽略不计);(2)分别求出当长方形的长为0.4米时,所需材料的长度.(精确到0.1米,取π≈3.14)25.某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物时,所有商品均可享受九折优惠;优惠二:交纳200元会费成为该超市的会员,所有商品可享受八折优惠.(1)若用x 表示商品价格,请你用含x 的式子分别表示两种购物方式优惠后所花的钱数.(2)当商品价格是多少元时,用两种方式购物后所花钱数相同?(3)若某人计划在该超市购买一台价格为2700元的电脑,请分析选择哪种优惠方式更省钱.26.如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a b 、满足22(3)0a b a +++=.(1)求出点A 与点B 之间的距离;(2)若在数轴上存在一点C ,且点A 到点C 的距离是点B 到点C 的距离的2倍,求点C 所表示的数;(3)现有动点P 从点B 以2个单位长度/秒的速度沿数轴向左运动;当点P 运动到点O 时,点Q 从点A 以1个单位长度/秒的速度沿数轴向左运动.设点P 运动的时间为t 秒,当t 为何值时,点P 与点Q 相距1个单位长度?。

七年级数学期末综合评价

七年级数学期末综合评价

七年级上学期期末数学综合评价题试卷满分 100分 考试时间 90分钟一.选择题(3分×12=36分)试试你的判断能力!慧眼识金!1、有理数100467保留三个有效数字后的近似数是 A 100 B 1.00×105C 100000D 1.0046×1052、单项式-3224c ab 的系数与次数分别是A -2, 6B 2, 7C -32, 6 D3、如图是某一个多面体的平面展开图,那么这个多面体是A 四棱柱 B四棱锥 C 三棱柱 D 4、已知a 是一个两位数,b 是一个一位数,若把b 置于a 三位数,则这个三位数可表示成A baB 10b+a C 100b +a D 100b+10a5、若y=1是方程2-31(m - y )= 2y 的解,则 m= A -11 B 13 C 1 D -16、已知|a |=-a ,且a ﹤a1,若数轴上的,四点M,N,P,Q 中 的一个能表示数a ,(如图), 则这个点是A MB NC PD Q7、已知应用题“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则差2个。

求苹果有多少个?”,解答时设共有x 个苹果分给小朋友,列出的方程可以是A 3x +4=4x -2 B31+x =42-x C 31-x =42+x D 32+x =41-x8、将图中的直角三角形绕最长的边旋转一周可以得到的一个几何体,从正面看这个几何体所得到的平面图形是ABA C9、钟表上2时25分时,时针与分针所成的角是。

A 77.5 °B 77 °5′C 75°D 以上答案都不对10、如图将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使得点C 落在长方形内部点E 处,若FH 平分∠BFE , 则关于∠GFH 的度数α说法正确的是( ) A 90°﹤α﹤180° B 0°﹤α﹤90°C α= 90°D α随折痕GF 位置的变化而变化 11、已知线段AB=10cm ,点C 是直线..AB ..上一点,BC=4cm , 若M 是AC 的中点,N 是BC 的中点,则线段MNA 7cmB 3cmC 7cm 或12、如图是可以沿线折叠成一个带数字的正方体的展开图,每三个带数字的面交于正方体的一个顶点,则相交于同一个顶点的三个面上的三数字 之和的最小值是( ) A 6 B 7 C 9 D 11第一大题答题纸二.填空题(3分×4=12分)题目很简单,要用心,很容易出错的,一锤定音!13、如图,平面内有公共端点的六条射线OA ,OB , OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….根 据规律将射线OD 上的第n 个数字(从O 向D 数)用含正整数n 的式子表示为14、一项工程甲单独做要20小时,乙单独做要12小时。

2022-2023学年新人教版初中七年级数学上册期末综合素养评价测试卷(附参考答案)

2022-2023学年新人教版初中七年级数学上册期末综合素养评价测试卷(附参考答案)

2022-2023学年新人教版初中七年级数学上册期末综合素养评价测试卷一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022•大冶市模拟)a与﹣2互为倒数,则a为()A.﹣2B.2C.12D.−122.(3分)(2022秋•桂平市期中)据猫眼实时数据显示,截止2022年10月16日,电影《万里归途》的累计票房正式突破13亿元,数据13亿用科学记数法表示为()A.1.3×108B.0.13×108C.1.3×109D.1.3×10103.(3分)(2022秋•宿迁期中)下列方程中,是一元一次方程的是()A.x﹣2y+1=0B.2+1x=1C.2x﹣1=0D.xy=44.(3分)(2022秋•如东县期中)下列说法错误的是()A.32ab2c的次数是4次B.多项式2x2﹣3x﹣1是二次三项式C.多项式3x2﹣2x3y+1的次数是6次D.2πr的系数是2π5.(3分)(2022秋•宿城区期中)某商品价格为a元,根据销量的变化,该商品先降价10%,一段时间后又提价10%,提价后这种商品的价格与原价格a相比()A.降低了0.01a B.降低了0.1aC.增加了0.01a D.不变6.(3分)(2022秋•黄浦区期中)分数457介于两个相邻的整数之间,这两个整数是()A.3和4B.4和5C.5和6D.6和77.(3分)(2022秋•扬州期中)下列结论不正确的是()A.单项式﹣ab2的次数是3B.单项式abc的系数是1C.多项式x2y2﹣2x2+1是四次三项式D.−3xy2不是整式8.(3分)(2022秋•丹江口市期中)已知m =n ,则下列变形中正确的个数为( ) ①m +2=n +2;②am =an ;③m n =1;④m a 2+1=na 2+1A .1个B .2个C .3个D .4个 9.(3分)(2022秋•宿城区期中)已知等式a =b ,则下列等式中不一定成立的是( )A .a +1=b +1B .2a ﹣2b =0C .a c =b cD .ac =bc10.(3分)(2022秋•天山区校级期中)如图,点C 是线段AB 上的点,点D 是线段BC 的中点,AB =10,AC =6,则线段BD 的长是( )A .6B .2C .8D .411.(3分)(2022秋•福田区校级期中)下列正方体的展开图中,“勤”的对面是“戴”的展开图是( )A .B .C .D .12.(3分)(2022秋•天山区校级期中)如果线段AB =10cm ,MA +MB =13cm ,那么下面说法中正确的是( )A .M 点在线段AB 上B .M 点在直线AB 上C .M 点可能在直线AB 上也可能在AB 外D .M 点在直线AB 外二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•黄石期中)若|m 2﹣5m ﹣2|=1,则2m 2﹣10m +2022的值为 .14.(3分)(2021秋•兴庆区校级期末)若12a +1与2a−73互为相反数,则a 的值为 .15.(3分)(2022秋•莱西市期中)下列几何体属于棱柱的是 (填序号)16.(3分)(2022春•碑林区校级月考)如图,∠AOC =∠DOE =90°,如果∠AOE =65°,那么∠COD 的度数是 .17.(3分)(2022秋•城阳区期中)如图,一块长为为acm ,宽为bcm 的矩形硬纸板,在其四个角各剪去1个边长为2cm 的正方形,然后将四周的部分折起,可制成一个无盖长方体盒子,则所得长方体盒子的侧面积为 (用含a ,b 代数式表示).18.(3分)(2022秋•城阳区期中)如图,将图沿虚线折起来,得到一个正方体,那么“我“的对面是 (填汉字).三、解答题(共7小题,满分66分)19.(9分)(2022秋•宜兴市期中)解方程(1)5x ﹣3=2(x ﹣12);(2)1−2x−16=2x+13.20.(9分)(2022秋•黔东南州期中)先化简,再求值:(1)(2a 2﹣b )﹣(a 2﹣4b )﹣(b +c ),其中:a =13,b =12,c =1;(2)3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1),其中x 、y 满足:x 是2的相反数,y 是−23的绝对值.21.(9分)(2022秋•陇县期中)计算:(1)﹣21+(﹣14)﹣(﹣18)﹣15;(2)−3.5÷78×|−34|−(−2)÷(−13)×(−3);(3)(−2)3+[−42×(−34)2+3]÷(−35)−|−1−2|.22.(9分)(2021秋•肥东县期末)已知:如图,∠AOB =20°,OB 平分∠AOC .(1)以射线OD 为一边,在∠AOD 的外部作∠DOE ,使∠DOE =COD ;(用直尺和圆规作图,保留作图痕迹,不要求写作法)(2)若∠AOE =105°10′,求∠AOD 的大小.23.(10分)(2022秋•郫都区校级期中)整体代换是数学的一种思想方法,在求代数式的值中,整体代换思想非常常用,例如x 2+x =1,求x 2+x +2022的值,我们将x 2+x 作为一个整体代入,则原式=1+2022=2023.仿照上面的解题方法,完成下面的问题:(1)若x 2+2x ﹣1=0,则x 2+2x ﹣2022= .(2)若a 2+2ab =﹣5,b 2+2ab =3,求2a 2﹣3b 2﹣2ab 的值.24.(10分)(2022秋•顺德区校级月考)如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f ) 顶点数(v ) 棱数(e ) 图17 14 图28 12 图3 7 10(2)请写出f 、v 、e 三个数量间的关系式.25.(10分)(2022秋•前郭县期中)如图,点A,B是数轴上两点,点A表示的数为﹣16,A,B两点之间的距离为20,动点P、Q分别从A、B出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;(2)求数轴上点P,Q表示的数(用含t的式子表示);(3)若点P,Q同时出发,t为何值时,这两点相遇?(4)若点P,Q同时出发,t为何值时,点P和点Q刚好相距5个单位长度?参考答案一、选择题(共12小题,满分36分,每小题3分)1.D ; 2.C ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.C ; 9.C ; 10.B ; 11.D ;12.C ;二、填空题(共6小题,满分18分,每小题3分)13.2024或202814.8715.①②⑥16.115°17.(4a+4b ﹣32)cm 218.大;三、解答题(共7小题,满分66分)19.解:(1)5x ﹣3=2(x ﹣12),去括号,得5x ﹣3=2x ﹣24,移项,得5x ﹣2x =3﹣24,合并同类项,得3x =﹣21,系数化为1,得x =﹣7;(2)1−2x−16=2x+13,去分母,得6﹣(2x ﹣1)=2(2x +1),去括号,得6﹣2x +1=4x +2,移项,得﹣2x ﹣4x =2﹣6﹣1,合并同类项,得﹣6x =﹣5,系数化为1,得x =56. 20.解:(1)原式=2a 2﹣b ﹣a 2+4b ﹣b ﹣c=a 2+2b ﹣c ,当a =13,b =12,c =1时,原式=19+1﹣1=19;(2)原式=3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1)=6x 2﹣9xy ﹣15x ﹣3﹣6x 2+6xy ﹣6=﹣3xy ﹣15x ﹣9,∵x 是2的相反数,y 是−23的绝对值,∴x =﹣2,y =23,∴原式=﹣3×(﹣2)×23−15×(﹣2)﹣9=25.21.解:(1)﹣21+(﹣14)﹣(﹣18)﹣15=﹣21﹣14+18﹣15=﹣35+18﹣15=﹣17﹣15=﹣32;(2)−3.5÷78×|−34|−(−2)÷(−13)×(−3) =−72×87×34−(﹣2)×(﹣3)×(﹣3)=﹣3+18=15;(3)(−2)3+[−42×(−34)2+3]÷(−35)−|−1−2|=﹣8+(﹣16×916+3)×(−53)﹣3=﹣8+(﹣9+3)×(−53)﹣3=﹣8+(﹣6)×(−53)﹣3=﹣8+10﹣3=2﹣3=﹣1.22.解:(1)作图如下:(2)∵∠AOB=20°,OB平分∠AOC.∴∠AOC=2∠AOB=40°,∵∠AOE=105°10′,∴∠COE=∠AOE﹣∠AOC=65°10′,∵∠DOE=∠COD,∠COE=32°35′,∴∠COD=12∴∠AOD=∠AOC+∠COD=72°35′.23.解:(1)∵x2+2x﹣1=0,∴x2+2x=1,∴原式=(x2+2x)﹣2022=1﹣2022=﹣2021,故答案为:﹣2021;(2)∵a2+2ab=﹣5,b2+2ab=3,∴a2﹣b2=﹣5﹣3=﹣8,∴原式=2a2﹣2b2﹣b2﹣2ab=2(a2﹣b2)﹣(b2+2ab)=2×(﹣8)﹣3=﹣16﹣3=﹣19.24.解:(1)图1,面数f=7,顶点数v=9,棱数e=14,图2,面数f=6,顶点数v=8,棱数e=12,图3,面数f=7,顶点数v=10,棱数e=15,故答案为:9,6,15.(2)f+v﹣e=2.25.解:(1)∵A,B两点之间的距离为20,点A表示的数为﹣16,且点B在点A的右侧,∴数轴上点B表示的数是﹣16+20=4.故答案为:4.(2)当运动时间为t(t>0)时,数轴上点P表示的数为(2t﹣16),点Q表示的数为(4﹣t).(3)根据题意得:2t﹣16=4﹣t,解得:t=20.3时,这两点相遇.答:若点P,Q同时出发,t为203(4)根据题意得:|2t﹣16﹣(4﹣t)|=5,即20﹣3t=5或3t﹣20=5,.解得:t=5或t=253时,点P和点Q刚好相距5个单位长度.答:若点P,Q同时出发,t为5或253。

湘教版七年级数学上册期末素养综合测试卷(二)课件

湘教版七年级数学上册期末素养综合测试卷(二)课件

C. 段③
D. 段④
解析
因为x,y互为倒数,所以xy=1,所以2x2+xy-2(xy+x2)+1 =2x2+xy-2xy-2x2+ 1
3
3
=-xy+ 1 =-1+ 1 =- 2 .
3 33
因为-1<- 2 <- 1 ,所以表示- 2 的点落在段①.
32
3
10. (情境题 数学文化)(2024湖南长沙开福期末,9,★★☆)“幻方”最早记载 于春秋时期的《大戴礼》中,现将1、2、3、4、5、7、8、9这8个数字填入如图 ①所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方 形四个顶点上的数字之和相等.现有如图②所示的“幻方”,则(x-y)m-n的值是
(B )
第3题图
A. ①②
B. ②③
C. ①③
D. ①②③
解析 ①a>0,b<0,则ab<0,故①不正确;②0<a<1,b<-1,则a+b<0,故②正确;
③0<a<1,b<-1,则a-1<0,b-1<0,所以(a-1)(b-1)>0,故③正确.综上,②③正确,故选B.
4. (2023湖南常德澧县期末,4,★☆☆)下列关于多项式a2-ab+ba-1的说法,不正确
则π×
10 2
×280=π×
420×h2 ,解得h=5,故答案为5
cm.
16. (2024湖南怀化洪江期末,16,★★☆)如图所示,某乡镇A、B、C、D、E五个 村庄位于同一条笔直的公路边,相邻两个村庄的距离分别为AB=1千米,BC=3千 米,CD=2千米,DE=1.5千米.乡村扶贫改造期间,该乡镇打算在其中一个村庄新建 一个便民服务点M,若要使得五个村庄到便民服务点的距离之和最小,则这个最 小值为 12.5 千米.

人教版七年级数学上册期末综合素质水平测试卷【含答案】

人教版七年级数学上册期末综合素质水平测试卷【含答案】

人教版七年级数学上册期末综合素质水平测试卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( )A .-3℃B .8℃C .-8℃D .11℃2.有理数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a |>|b |B .|ac |=acC .b <dD .c +d >03.下列方程是一元一次方程的是( )A .x -y =6B .x -2=xC .x 2+3x =1D .1+x =34.截至2月底,我国口罩日产量已超过7 000万只.7 000万用科学记数法表示为( )A .7×106B .0.7×108C .7×108D .7×1075.下列运算正确的是( )A .3x 2-x 2=3B .3a 2+2a 3=5a 5C .3+x =3xD .-0.25ab +ba =0146.如图是一个正方体的平面展开图,则原正方体中与“你”字所在对的字是( )A .遇B .见C .未D .来7.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元8.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是( )A .∠1=∠3B .∠1=180°-∠3C .∠1=90°+∠3D .以上都不对9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =∠AOB ,则射线OC 是∠AOB 的平分线;12④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题(本题共6小题,每小题4分,共24分)11.-的相反数是________,-的倒数的绝对值是________.1512.若-xy 3与2x m -2y n +5是同类项,则n m =________.1313.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.如图,OA 的方向是北偏东15°,OC 的方向是北偏西40°,若∠AOC =∠AOB ,则OB 的方向是__________.15.已知点O 在直线AB 上,且线段OA 的长为4 cm ,线段OB 的长为6 cm ,点E ,F 分别是OA ,OB 的中点,则线段EF 的长为______________.16.观察如图摆放的三角形,则第四个图中的三角形有________个,第n 个图中的三角形有__________个.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:-3×(-4)+(-2)3÷(-2)2-(-1)2 022.18.(8分)解方程:-1=-.x -22x +13x +8619.(8分)先化简,再求值:(2x 2-2y 2)-3(x 2y 2+x 2)+3(x 2y 2+y 2),其中x =-1,y =2.20.(8分)如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图:(1)画射线AB ;(2)连接BC ,并延长CB 至D ,使得BD =BC ;(3)在直线l 上确定点E ,使得AE +CE 最小.21.(8分)如图①是一些小正方体所搭立体图形从上面看到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面和左面看到的图形.22.(10分)如图,直线AB,CD相交于O点,OM平分∠AOB.(1)若∠1=∠2,求∠NOD的度数;(2)若∠BOC=4∠1,求∠AOC与∠MOD的度数.23.(10分)阅读下面材料:数学课上,老师给出了如下问题:如图①,∠AOB=80°,OC平分∠AOB.若∠BOD=20°,请你补全图形,并求出∠COD的度数.以下是小红的解答过程:解:如图②,因为OC 平分∠AOB ,∠AOB =80°,所以∠BOC =∠AOB =__________°.12因为∠BOD =20°,所以∠COD =∠__________+∠__________=________°.小李说:“我觉得这个题有两种情况,小红考虑的是OD 在∠AOB 外部的情况,事实上,OD 还可能在∠AOB 的内部”.请完成以下问题:(1)请你将小红的解答过程补充完整;(2)根据小李的想法,请你在图③中画出另一种情况对应的图形,并求出此时∠COD 的度数.(要求写出解答过程)24.(12分)在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如下表所示的数据:功率使用寿命价格普通白炽灯100瓦(即0.1千瓦) 2 000小时3元/盏优质节能灯20瓦(即0.02千瓦) 4 000小时35元/盏已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.(注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)请你解决以下问题:(1)如果选用一盏普通白炽灯照明1 000小时,那么它的费用是多少?(2)在白炽灯的使用寿命内,设照明时间为x 小时,请用含x 的式子分别表示用一盏白炽灯的费用和用一盏节能灯的费用;(3)照明多少小时时,使用这两种灯的费用相等?(4)如果计划照明4 000小时,购买哪一种灯更省钱?请你通过计算说明理由.25.(14分)如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数;(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于电子蚂蚁P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变.请判断哪个结论正确,并求出正确结论的值.答案1.D1.D2.B3.D4.D 5.D 6.D 7.C 8.C 9.C 10.C二、11.;5 2312.-8 13.-5 14.北偏东70° 15.1 cm 或5 cm16.14;(3n +2)三、17.解:原式=12+(-8)÷4-1=12-2-1=9.18.解:去分母,得3(x -2)-6=2(x +1)-(x +8).去括号,得3x -6-6=2x +2-x -8.移项、合并同类项,得2x =6.系数化为1,得x =3.19.解:原式=2x 2-2y 2-3x 2y 2-3x 2+3x 2y 2+3y 2=-x 2+y 2.当x =-1,y =2时,原式=-(-1)2+22=3.20.解:(1)如图,射线AB 即为所求作的射线.(2)如图,BD =BC .(3)连接AC ,交直线l 于点E ,根据两点之间,线段最短,可得此时AE +CE 最小.21.解:如图所示.22.解:(1)因为OM 平分∠AOB ,所以∠1+∠AOC =90°.因为∠1=∠2,所以∠2+∠AOC =90°,所以∠NOD =180°-90°=90°.(2)因为∠BOC =4∠1,所以90°+∠1=4∠1,所以∠1=30°,所以∠AOC =90°-30°=60°,∠MOD =180°-30°=150°.23.解:(1)40;BOC ;BOD ;60(2)如图即为另一种情况对应的图形.因为 OC 平分∠AOB ,∠AOB =80°,所以∠BOC =∠AOB =40°.12因为∠BOD =20°,所以∠COD =∠BOC -∠BOD =40°-20°=20°.24.解:(1)根据题意得1 000×0.1×0.5+3=53(元),则选用一盏普通白炽灯照明1 000小时,它的费用是53元.(2)用一盏白炽灯的费用为0.1x ×0.5+3=0.05x +3(元),用一盏节能灯的费用为0.02x ×0.5+35=0.01x +35(元).(3)根据题意得0.05x +3=0.01x +35,解得x =800.则照明800小时时,使用这两种灯的费用相等.(4)用节能灯更省钱,理由:当x =4 000时,用白炽灯的费用为2 000×0.1×0.5×2+3×2=206(元);用节能灯的费用为4 000×0.02×0.5+35=75(元),因为75<206,所以用节能灯更省钱.25.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25;若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50.故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130,解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)②正确,即ON -AQ 的值不变.设运动时间为m s ,则PO =100+8m ,AQ =4m .由题意知N 为PO 的中点,得ON =PO =50+4m ,12所以ON +AQ =50+4m +4m =50+8m ,ON -AQ =50+4m -4m =50.故ON -AQ 的值不变,这个值为50.。

期末综合素质评价(含答案)人教版(2024)数学七年级上册

期末综合素质评价(含答案)人教版(2024)数学七年级上册

期末综合素质评价七年级数学 上(R 版) 时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.2 024的相反数是( )A .-2 024B .2 024C .12 024D .-12 0242.[教材P56习题T3变式 情境题 科技创新]从提出北斗建设工程开始,北斗导航卫星研制团队攻坚克难,突破重重关键技术,建成独立自主、开放兼容的全球卫星导航系统,成为世界上第三个独立拥有全球卫星导航系统的国家,现在每分钟200多个国家和地区的用户访问北斗卫星导航系统超70 000 000次.其中70 000 000用科学记数法表示为( )A .7×103B .7×105C .7×106D .7×1073.下列计算正确的是( )A .7x +x =7x 2B .5y -3y =2C .4x +3y =7xyD .3x 2y -2x 2y =x 2y4.[教材P153例1变式 2023沈阳]如图是由5个相同的小立方块搭成的几何体,这个几何体从正面看到的图形是( )A BC D5.[情境题 地域特色 2023 咸阳秦汉中学模拟]乾州四宝是陕西省乾县的著名传统小吃,分别为锅盔、挂面、馇酥、豆腐脑,被评为“中华名小吃”及“陕西名小吃”.如图是一个正方体的表面展开图,把它折成正方体后,与“挂”字相对的面上所写的字是( )A .锅B .盔C .馇D .酥6.已知x =1是关于x 的一元一次方程2x +a =0的解,则a 的值是( )A .2B .-2C .12D .-127.[情境题生活应用]某地区居民生活用水收费标准:每月用水量不超过20立方米,每立方米a元;超过部分每立方米(a+2)元.该地区某家庭上月用水量为25立方米,则应缴水费( )A.25a元B.(25a+10)元C.(25a+50) 元D.(20a+10) 元8.[2024哈尔滨第四十七中月考]下列说法正确的是( )A.若x+1=0,则x=1B.若|a|>1,则a>1C.2x2y与-xy2不能进行合并D.若AM=BM,则点M为线段AB的中点9.有理数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a>-2B.ab>0C.-a<b D.|a|>|b|10.[新考向数学文化]我国明朝数学家程大位所著的《算法统宗》中介绍了一种计算乘法的方法,被称为“铺地锦”.例如,如图①所示,计算31×47,首先把乘数31和47分别写在方格的上面和右面,然后以31的每位数字分别乘以47的每位数字,将结果计入对应的格子中(如3×4=12中的12写在3下面的方格里,十位上的1写在斜线的上面,个位上的2写在斜线的下面),再把同一斜线上的数相加,结果写在斜线左下端对应的方格旁,最后把得数依次写下来是1457,即31×47=1 457.如图②,用“铺地锦”的方法表示两个两位数相乘,则a的值是( )(第10题)A.5B.4C.3D.2二、填空题(每题4分,共24分)11.已知∠A与∠B互余,∠A=56°15',则∠B= .12.[ 2024福州仓山区期末]如图,一艘货轮从O点出发沿北偏西25°方向航行经过点A,一艘客轮从O点出发沿南偏东60°方向航行经过点B,则∠AOB的度数为 .(第12题)13.[新考法 整体代入法 2023 聊城东昌府区期末]已知a +3b -2=0,则多项式2a +6b +1的值为 .14.如图,已知点C 是线段AB 的中点,点D 是线段AB 上的一点,若AD =1, CD =2, 则AB 的长度为 .(第14题)15.[2024北京十三中期末]若多项式2(x 2-xy -3y 2)-(3x 2-axy +y 2)中不含xy 项,则a = .16.[新考法 分类讨论法 2023 太原]如图,将直角三角板的直角顶点O 放在直线AB 上,射线OE 平分∠BOC ,∠AOC =α,将三角板绕点O 旋转(旋转过程中∠AOC 与∠BOC 均大于0°且小于180°)一周,∠DOE 的度数为 (用含α的代数式表示).(第16题)三、解答题(共66分)17.(6分)计算:(1)20-11+(-10)-(-12);(2)-14-18÷(-3)2×(-2)3.18.(6分)解下列方程:(1)3(x -1)+16(2x -3)=-16;(2)2x +13-x -56=1.19.(6分)如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图(不写作法和结论).(1)画射线AB ;(2)连接BC 并延长BC 至D ,使得CD =BC ;(3)在直线l 上确定点E ,使得AE +CE 最小,理由: .20.(8分)[2024郑州中原区期末]为响应河南省“2024全民阅读”系列活动,某校开展“书香校园”文学阅读与知识竞赛活动.知识竞赛为百分制,共设20道选择题,各题分值相同,每题必答.A,B,C三位参赛者得分情况如下表所示,求参赛者C答对的题数.参赛者答对题数答错题数得分A200100B19194C58 21.(10分)[2023福州长乐区期末]如图,线段AB=10,点C,E,F在线段AB上.(1)当点E,F分别是线段AC和线段BC的中点时,求线段EF的长;(2)当点E,F分别是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.22.(10分)[2024长春期末]如图,∠AOB=120°,点C为∠AOB内部一点,OD平分∠BOC,OE平分∠AOD.(1)如果∠AOC=30°,依题意补全图形;(2)在(1)的条件下,写出求∠EOC的度数的思路(不必写出完整的推理过程);(3)如果∠AOC=α(0°<α<120°),直接用含α的代数式表示∠EOC的度数.23.(10分) [新考法分类讨论法]对于数轴上的两点P,Q,我们把点P与点Q之间的距离记作d[PQ].例如,在数轴上点P表示的数是5,点Q表示的数是2,则点P与点Q之间的距离d[PQ]=3.如图,已知点O为数轴原点,点A表示的数为-1,点B表示的数为5.(1)d[OA]= ;d[AB]= .d[BC]时,求x的值.(2)点C表示的数为x,且点C在点A左侧,当满足d[AC]=12(3)若点E表示的数为m,点F表示的数为m+2,且d[AF]=3d[BE],求m的值.24.(10分) [情境题方案设计题]一套某种精密仪器由一个A部件和两个B部件制成,用1 m3钢材可以做40个A部件或240个B部件,现在要用4 m3钢材制作这种仪器.(1)请问用多少钢材做A部件,多少钢材做B部件,可以恰好制成整套的仪器?(2)可以制成仪器 套.(3)现在某公司要租赁这批仪器a套,每天的付费方案有两种选择:方案一:当a不超过50时,每套支付租金100元;当a超过50时,超过的套数每套支付租金打八折.方案二:不论租赁多少套,每套支付租金90元.当a>50时,请回答下列问题:①若按照方案一租赁,公司每天需支付租金 元;若按照方案二租赁,公司每天需支付租金 元.(用含a的式子表示)②假如你是公司负责人,请你谋划一下,选择哪种租赁方案更合算?参考答案一、1. A 2. D 3. D 4. A 5. D 6. B 7. B 8. C 9. D10. A 点拨:由题易得a +a -2+1=a +4,解得a =5.二、11.33°45' 12.145° 13.5 14.6 15.216.12α或180°-12α 点拨:当OC 在AB 上方时,如图①.因为∠AOC =α,所以∠BOC =180°-α.因为OE 平分∠BOC ,所以∠COE =12∠BOC =90°-12α.因为∠COD =90°,所以∠DOE =90°-∠COE =90°-(90°-12α)=12α;①②当OC 在AB 下方时,如图②.同理可得∠COE =90°-12α.因为∠COD =90°,所以∠DOE =90°+∠COE =90°+90°-12α=180°-12α.三、17.(1)11 (2)1518.(1)x =1 (2)x =-1319.解:(1)(2)如图所示.(3)如图.两点之间线段最短20.解:由参赛者A 可得,答对一题得100÷20=5(分),结合参赛者B 可得,答错一题扣19×5-94=1(分).设参赛者C 答对的题数为x .根据题意,得5x -(20-x )×1=58,解得x =13.答:参赛者C 答对的题数为13.21.解:(1)因为点E ,F 分别是线段AC 和线段BC 的中点,所以CE =12AC ,CF =12CB .所以EF =CE +CF =12AC +12CB =12(AC +CB )=12AB .又因为AB =10,所以EF =12AB =5.(2)EF =12AC .理由如下:如图,因为点E ,F 分别是线段AB 和线段BC 的中点,所以EB =12AB ,FB =12CB .所以EF =EB -FB =12AB -12CB =12(AB -CB )=12AC .22.解:(1)补全图形如图.(2)解题思路如下:① 由∠AOB =120°,∠AOC =30°,得∠COB =90°;② 由OD 平分∠BOC ,得∠DOB =∠DOC =45°;③ 由∠AOB =120°,∠DOB =45°,得∠DOA =75°;④ 由OE 平分∠AOD ,得∠DOE =∠AOE =37.5°;⑤ 所以∠EOC =∠DOC -∠DOE =45°-37.5°=7.5°.(3)∠EOC =|34α-30°|.23.解:(1)1;6(2)因为点C 在点A 左侧,点C 表示的数为x ,所以d [AC ]=-1-x ,d [BC ]=5-x .因为d [AC ]=12d [BC ],所以-1-x =12(5-x ).所以 x =-7.(3)①当点E 在点A 左侧时,d [AF ]<d [BE ],不合题意,舍去,②当点E 在A ,B 两点之间时,d [AF ]=m +2-(-1)=m +3,d [BE ] =5-m .因为d [AF ]=3d [BE ],所以m +3=3(5-m ).所以m=3;③当点E在点B右侧时,d[AF]=m+2-(-1)=m+3,d[BE]=m-5.因为d[AF]=3d[BE],所以m+3=3(m-5),解得m=9.综上所述,m=3或9.24.解:(1)设用x m3钢材做A部件,则用(4-x)m3钢材做B部件.由题意得2×40x=240(4-x),解得x=3.则4-x=1.答:用3 m3钢材做A部件,1 m3钢材做B部件,可以恰好制成整套的仪器.(2)120(3)①(80a+1 000);90a②当两种方案的租金相同时,80a+1 000=90a,解得a=100.故当50<a<100时,选择方案二更合算;当a=100时,两种方案一样合算;当a>100时,选择方案一更合算.。

人教版七年级上数学期末综合能力测试题(含答案).doc

人教版七年级上数学期末综合能力测试题(含答案).doc

人教版七年级上学期数学期末综合能力测试题(一)一、填空题1、俯视图为圆的立体图形可能是______________ 。

2、观察下列图形和所给表样中的数据后回答问题。

当图形的周长为80时,梯形的个数为____________ 。

3、近似数3.1 x 105精确到 _______ ,有__________ 有效数字。

4、为了了解某地初中二年级男生的身高情况,从其中的一个学校测量了60名男生的身高,分组情况如下:(单位:cm)请问:a= ________ , b= _________ ,c= _______ ,m= _______ ,n= _________ .5、一家商店将某种微波炉按原价提高40%t标价,又以8折优惠卖出,结果每台微波炉比原价多赚了180元,这种微波炉原价是______________ 。

&已知x是整数,且3< |x| V 5,贝U x= ___________ 。

7、方程2y —6=y+7变形为2y —y=7+6,这种变形叫 _________________ ,根据是8 9 10 118有公共顶点的两条射线分别表示南偏西15°与北偏东25°,则这两条射线组成的角的度数为 _______________________ .11111 19从和式................. 中,去掉两个数,使余下的数之和为1,这两个数2 4 6 8 10 12是___ 。

10一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,,,,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是___________ 个单位.112、 一个角的余角比它的补角的-还少20°,则这个角的度数是。

313、 某市2004年接待境外游客人数和旅游直接创汇名列全省前茅, 实现旅游直接创 汇29092700美元,这个数用科学计数法表示是 _______________ 元(保留三个有 效数字)11 乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A 、B 两站之间需 要安排不同的车票 __________ 种。

苏科版七年级数学上册末综合素质评价附答案

苏科版七年级数学上册末综合素质评价附答案

苏科版七年级数学上册期末综合素质评价一、选择题(每题3分,共24分)1.在-6,3,0,4这4个数中,负数有()A.1个B.2个C.3个D.4个2.【2021·江阴市期中】下列式子中,符合代数式的书写格式的是()A.(a-b)×7 B.3a÷5b C.112ab D.ba3.下列关于单项式-5xy32的说法中,正确的是()A.系数是-52,次数是4 B.系数是-52,次数是3C.系数是-5,次数是4 D.系数是-5,次数是34.下列几何体中,其侧面展开图为扇形的是()5.【2020·常州一模】预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为()A.5×108B.5×109C.5×1010D.50×108 6.【2021·吴中区月考】甲队有工人272人,乙队有工人196人,要求乙队的人数是甲队人数的2倍,应从甲队调多少人到乙队?如果设应从甲队调x人到乙队,则可列方程为()A.272-x=2(196+x) B.2(272+x)=196-xC.2(272-x)=196+x D.2×272-x=196+x7.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.318. 【2021·鼓楼区期中】在数轴上点A,B表示的数分别是a,b,点A在表示-3和-2的两点之间(不包括这两点)移动,点B在表示-1和0的两点(不包括这两点)之间移动,则以下四个代数式的值可能比2 021大的是()A.1a+b B.1b-aC.1a-1b D.1b-1a二、填空题(每题3分,共30分)9.某年一月份,甲市的平均气温约为-20 ℃,乙市的平均气温约为-23 ℃,则两地的温差为__________℃.10.【2021·泗洪县期中】若关于x的一元一次方程2x-k+4=0的解是x=3,则k=________.11.如图,点A,B,C在直线l上,PB⊥l,P A=6 cm,PB=5 cm,PC=7 cm,则点P到直线l的距离是________cm.12.如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走________个小立方块.13.已知∠α=60°32′,则∠α的余角是________.14.如图,直线AB,CD相交于点O,若∠BOC=140°,OA平分∠COE,则∠DOE=________.15.如图,已知AB=8 cm,BD=3 cm,C为AB的中点,则线段CD的长为________cm.16.【2020·无锡期末】《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步.译文为:今有若干人乘车,若每3人共乘一车,最终剩余2辆空车;若每2人共乘一车,最终剩余9人无车可乘.在这个问题中,共有________人乘车.17.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三名同学相同数量的扑克牌(假定发到每名同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出2张扑克牌给B同学;第二步,C同学拿出3张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为________.18.已知关于x的一元一次方程12 023x+34=2x+b的解为x=2,那么关于y的一元一次方程12 023(y+1)+34=2y+b+2的解为y=________.三、解答题(19~20题每题6分,21~23题每题8分,24~26题每题10分,共66分)19.解方程:(1)-2(x-1)=8;(2)x+24-x-15=1.20.【2021·梁溪区期中】求(ab-3a2)-2b2+5ab-2(a2-2ab)的值,其中a=2 5,b=-3.21.(1)利用图①中的网格,过点P画直线AB的平行线CD和垂线PQ;(2)平移图②网格中的三条线段,使三条线段AB,CD,EF首尾顺次相接组成一个三角形;(3)如果每个方格的边长均是1个单位长度,那么图②中组成的三角形的面积为多少?22.如图是一个运算程序:(1)若x=-2,y=3,求m的值;(2)若x=4,输出结果m的值与输入y的值相同,求y的值.23.【2021·邗江区期末】若新规定这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3.(1)试求(-2)※3的值;(2)若4※x=-x-2,求x的值.24.喜迎2022年4月16日神舟十三号返回地球,某学校举办了一次航天文化宣传活动,要求准备普通口罩、医用口罩、专业口罩三种口罩共1 000个(每种口罩都要有),其中医用口罩的单价比普通口罩的单价贵0.2元,买5个医用口罩和8个普通口罩共需要6.2元.(1)问医用口罩和普通口罩的单价分别是多少元.(2)若专业口罩市场上有三个级别,学校只能从中选择一个级别.价格如下表:现在学校用3 480元去购买这三种口罩,且普通口罩和专业口罩的数量是相同的,应该选择哪种级别的专业口罩?购买方案是什么?25.已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)如图①,若∠AOB=120°,∠AOC=30°,求∠EOF的度数;(2)如图②,若∠AOB=α,求∠EOF的度数;(用含α的式子表示)(3)若将题中的“平分”的条件改为“∠EOB=13∠COB,∠COF=23∠COA,且∠AOB=α,求∠EOF的度数.(用含α的式子表示)26.同学们,我们知道图形是由点、线、面组成的,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:【概念认识】已知点P和图形M,点B是图形M上任意一点,我们把线段PB长度的最小值叫做点P与图形M之间的距离.例如,以点M为圆心,1 cm为半径画圆如图①,那么点M到该圆的距离等于1 cm;若点N是圆上一点,那么点N到该圆的距离等于0 cm;连接MN,若点Q为线段MN的中点,那么点Q到该圆的距离等于0.5 cm,反过来,若点P到已知点M的距离等于1 cm,那么满足条件的所有点P就构成了以点M为圆心,1 cm为半径的圆.【初步运用】(1)如图②,若点P到已知直线m的距离等于1 cm,请画出满足条件的所有点P.【深入探究】(2)如图③,若点P到已知线段AB的距离等于1 cm,请画出满足条件的所有点P.(3)如图④,若点P到已知正方形的距离等于1 cm,请画出满足条件的所有点P.答案一、1.A 2.D 3.A 4.C 5.B 6.C7.C提示:所有线段之和=AC+AD+AB+CD+CB+BD.因为CD=3,所以所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB-CD)=12+3(AB-3)=3AB+3=3(AB+1).因为AB的长度是正整数,所以所有线段之和是3的倍数.8.C提示:因为-3<a<-2,-1<b<0,所以-12<1a<-13,1b<-1,-1b>1.所以A.-12<1a+b<-14,故本选项不符合题意;B.13<1b-a<1,故本选项不符合题意;C.因为-12<1a<-13,-1b>1,所以1a-1b>12,可能比2 021大,故本选项符合题意;D.因为13<-1a<12,1b<-1,所以1b-1a<-12,故本选项不符合题意.二、9.310.1011.512.16 13.29°28′14.100°15.116.39提示:设共有x人乘车,根据题意得x3+2=x-9 2,去分母得2x+12=3x-27,解得x=39,则共有39人乘车.17.7提示:设每人有扑克牌x张,B同学从A同学那里拿来2张扑克牌,又从C同学那里拿来3张扑克牌后,则B同学有(x+2+3)张扑克牌,A同学有(x-2)张扑克牌,最后给A同学后B同学手中剩余的扑克牌的张数为x+2+3-(x-2)=x+5-x+2=7.18.1提示:因为关于x的一元一次方程12 023x+34=2x+b的解为x=2,所以关于y的一元一次方程12 023(y+1)+34=2y+b+2,即12 023(y +1)+34=2(y +1)+b 中y +1=2, 解得y =1.三、19.解:(1)-2(x -1)=8,x -1=-4,x =-3. (2)x +24-x -15=1, 5(x +2)-4(x -1)=20. 5x +10-4x +4=20. 5x -4x =20-10-4, x =6.20.解:原式=ab -3a 2-2b 2+5ab -2a 2+4ab =10ab -5a 2-2b 2.当a =25,b =-3时,原式=10×25×(-3)-5×425-2×9=-12-45-18=-3045.21.解:(1)如图①所示.(2)答案不唯一,如图②所示.(3)图②中组成的三角形的面积=3×3-12×1×2-12×2×3-12×1×3=9-1-3-32=3.5.22.解:(1)因为x =-2,y =3,-2<3,所以x <y ,所以m =|-2|-3×3=-7.(2)因为x =4,输出结果m 的值与输入y 的值相同, 所以y =m .①当4>y 时,|4|+3m =m , 解得m =-2,符合题意.②当4≤y时,|4|-3m=m,解得m=1,不符合题意,所以y=-2.23.解:(1)根据题中新定义得(-2)※3=(-2)2+2×(-2)×3=4+(-12)=-8;(2)根据题意,得42+2×4×x=-x-2,整理得16+8x=-x-2,解得x=-2.24.解:(1)设普通口罩的单价为x元,则医用口罩的单价为(x+0.2)元.由题意得5(x+0.2)+8x=6.2,解得x=0.4,所以x+0.2=0.6.答:普通口罩的单价为0.4元,医用口罩的单价为0.6元;(2)设购买普通口罩y个,专业口罩y个,则医用口罩(1 000-2y)个.①当选择Ⅰ级口罩购买时,则0.4y+0.6(1 000-2y)+2y=3 480,解得y=2 400>1 000,不合题意;②当选择Ⅱ级口罩购买时,则0.4y+0.6(1 000-2y)+5y=3 480,解得:y=4 8007,不合题意;③当选择Ⅲ级口罩购买时,则0.4y+0.6(1 000-2y)+8y=3 480,解得y=400,则1 000-2y=1000-800=200,符合题意.所以购买普通口罩和专业口罩各400个,医用口罩200个.25.解:(1)因为OF平分∠AOC,所以∠COF=12∠AOC=12×30°=15°.因为∠BOC=∠AOB-∠AOC=120°-30°=90°,OE平分∠BOC,所以∠EOC=12∠BOC=45°,所以∠EOF=∠COF+∠EOC=60°;(2)因为OF平分∠AOC,所以∠COF=12∠AOC,同理,∠EOC=12∠BOC,所以∠EOF=∠COF+∠EOC=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB=12α;(3)因为∠EOB=13∠COB,所以∠EOC=23∠COB,所以∠EOF=∠EOC+∠COF=23∠COB+23∠COA=23∠AOB=2 3α.26.解:(1)因为点P到已知直线m的距离等于1 cm,所以点P的轨迹是平行于直线m且到直线m的距离为1 cm的两条直线,如图①所示.(2)因为点P到已知线段AB的距离等于1 cm,所以点P的轨迹是平行于线段AB且到线段AB的距离为1 cm的两条线段和以点A、点B为圆心,1 cm为半径的两个半圆,如图②所示.(3)因为点P到已知正方形的距离等于1 cm,所以点P的轨迹是平行于正方形其中一条边且到这边的距离为1 cm 的4条线段和以正方形的四个顶点为圆心,1 cm为半径的四个四分之一圆,如图③所示.。

浙教版(2024)数学七年级上册期末综合素质评价(含答案)

浙教版(2024)数学七年级上册期末综合素质评价(含答案)

期末综合素质评价一、选择题(本题有10小题,每小题3分,共30分)1.若a与1互为相反数,则a的值为( )A.-1B.0C.2D.12.下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③无理数在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点.其中正确的是( )A.①②③④B.②③C.③④D.④3.据浙江省统计局统计,2023年上半年全省生产总值为3871700000 000元.数3871700000000用科学记数法表示为( ) A.0.38717×1013B.3.8717×1012 C.3.8717×1011D.38.717×1011a2b2+3y是同类项,则x和y 4.[2024·桐庐校级月考]已知2a7x-5b17与-13的值分别为( )A.5,1B.1,5C.-1,5D.-5,1 5.[2024·杭州拱墅区校级月考]已知关于x的方程(k-2)x|k|-1+6=3k是一元一次方程,则k=( )A.±2B.2C.-2D.±16.同一平面内有A,B,C三点,经过任意两点画直线,共可画( )A.1条B.3条C.1条或3条D.不能确定7.下列说法中正确的有( )①过两点有且只有一条直线;②连结两点的线段叫两点间的距离;③有公共端点的两条射线组成的图形叫作角;④若AB=BC,则点B是AC 的中点.A.1个B.2个C.3个D.4个8.如图,1时30分的时候,钟表的时针与分针所组成的小于平角的角的度数是( )A .120°B .125°C .135°D .150°9.一艘船在静水中的速度为20 km /h ,水流速度为4 km /h ,从甲码头顺流航行到乙码头,再返回到甲码头共用5 h .若设甲、乙两码头的距离为x km ,则下列方程正确的是( )A .(20+4)x +(20-4)x =5B .20x +4x =5C . x 20+x 4=5D . x 20+4+x20-4=510.[新视角 新定义题]定义:对于一个有理数x ,我们把[x ]称作x 的伴随数:若x ≥0,则[x ]=x -1;若x <0,则[x ]=x +1.例如:[1]=1-1=0,[-2]=-2+1=-1.现有以下判断:(1)[0]=-1;(2)已知有理数x >0,y <0,且满足[x ]=[y ]+1,则x -y =3;(3)对任意有理数x ,有[x ]-[x +1]=-1或1;(4)方程[3x ]+[x +5]=3的解只有x =0.其中正确的是( )A .(1)(3)B .(1)(2)(3)C .(1)(2)(4)D .(1)(2)(3)(4)二、填空题(本题有6小题,每小题4分,共24分)11.建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是: .12.[2024·丽水校级二模]将实数-π,0,-5和2由小到大用“<”连接起来为 .13.[2024·绍兴越城区期末]如图,在同一平面内,三角尺的直角顶点C 正好在直线DE 上.如果∠BCE =25°,那么∠ACD 的度数为 °.14.[2024·衢州期末]如果x -2y +1=0,那么代数式2 024-2x +4y3= .15.如图是一组有规律的图案,它由若干个大小相同的圆片组成,第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…,依此规律,第n 个图案中有 个白色圆片(用含n 的代数式表示).16.如图,已知数轴上点A 对应的数为8,B 是数轴上一点,且AB =14.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t s (t >0).当t = 时,PB =4.三、解答题(本题有8小题,共66分)17.(6分)计算:(1)(-3)-|-8|-2×(-4);(2)-14-12×[3-(-3)2].18.(6分)解方程:(1)2(x +4)=3x -8;(2)2x +13-x -56=1.19.(6分)先化简,再求值:23(6a -3ab )+(ab -2a )-2(ab +b ),其中a -b =9,ab =-6.20.(8分)如图,已知在平面上有三个点A ,B ,C ,请用尺规按下列要求作图:(1)作直线AB ;(2)作射线AC ;(3)在射线AC 上作线段AD ,使AD =2AB.21.(8分)已知一个正数的平方根分别是a -2和7-2a ,3b +1的立方根是-2,c 是39的整数部分.(1)求a ,b ,c 的值;(2)求5a +2b -c 的平方根.22.(10分)[2023·衢州衢江区期末]如图,直线AB ,CD 相交于点O ,OE 是∠BOC 内一条射线,OC 平分∠AOE .(1)若∠BOE =80°,求∠AOC 的度数;(2)若∠BOE 比∠BOD 大30°,求∠BOD 的度数.23.(10分)[情境题 生活应用]某地天然气收费方案如下:阶梯年用气量价格补充说明第一阶梯0~400 m 3(含400)的部分3元/m 3第二阶梯400~800 m 3(含800)的部分4元/m 3第三阶梯800 m 3以上的部分5元当家庭人口超过3人时,每增加1人,第一、二阶梯年用气量上限将分别增加100 m 3,150 m 3,同时,第二、三阶梯年用气量下限随之调整,每一阶梯的价格保持不变5/m 3(1)某家庭当年用气量为500 m 3.若该家庭人口为3人,则需缴纳燃气费用 元;若该家庭人口为4人,则需缴纳燃气费用 元.(2)甲户家庭人口为3人,乙户家庭人口为4人.某年甲、乙两户年用气量之和为1 000 m 3,甲户年用气量大于乙户年用气量.已知甲、乙两户一共缴纳燃气费用3 200元,求甲、乙两户年用气量分别是多少.(3)某公司共有22名员工,员工宿舍有3人间和4人间两种类型的房间可供选择,且员工所选择的房间必须住满.结算天然气费用时,将每间宿舍视作一户家庭,按上表的收费标准进行收费.假定每名员工的年用气量为250 m 3,要使该公司员工宿舍当年缴纳总天然气费用最低,则3人间的房间数为 .24.(12分)[新视角 动态探究题]如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示-12,点B 表示10,点C 表示20,我们称点A 和点C 在“折线数轴”上相距32个单位长度.动点P 从点A 出发,以2个单位长度/秒的速度沿“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1个单位长度/秒的速度沿“折线数轴”的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t 秒,回答下列问题:(1)动点P 从点A 运动至点C 需要多久?(2)若P ,Q 两点在点M 处相遇,则点M 在“折线数轴”上表示的数是多少?(3)当t 为何值时,P ,O 两点在“折线数轴”上相距的长度与Q ,B 两点在“折线数轴”上相距的长度相等?7参考答案一、1. A 2. D 3. B 4. B 5. C 6. C 7. B 8. C 9. D 10. B二、11.两点确定一条直线 12.-π<-5<0<213.115 14.2 026 15.(2+2n ) 16.2或3.6三、17.【解】(1)原式=-3-8+8=-3.(2)原式=-1-12×(3-9)=-1+3=2.18.【解】(1)2(x +4)=3x -8,2x +8=3x -8,2x -3x =-8-8,-x =-16,x =16.(2)2x +13-x -56=1,2(2x +1)-(x -5)=6,4x +2-x +5=6,4x -x =6-2-5,3x =-1,x =-13.19.【解】原式=4a -2ab +ab -2a -2ab -2b=2a -3ab -2b =2(a -b )-3ab .因为a -b =9,ab =-6,所以原式=2×9-3×(-6)=36.20.【解】(1)如图,连结AB ,并延长AB ,BA ,得到直线AB .(2)如图,连结AC ,并延长AC ,得到射线AC .(3)如图,以点A 为圆心,线段AB 长为半径画弧,交射线AC 于点E,再以点E为圆心,线段AB长为半径画弧,交射线AC于点D,线段AD即为所求.21.【解】(1)因为一个正数的平方根分别是a-2和7-2a,所以a-2+7-2a=0,解得a=5.因为3b+1的立方根是-2,所以3b+1=-8,解得b=-3.因为36<39<49,所以6<39<7,39的整数部分是6,所以c=6,所以a的值为5,b的值为-3,c的值为6.(2)因为a的值为5,b的值为-3,c的值为6,所以5a+2b-c=5×5+2×(-3)-6=13,所以5a+2b-c的平方根为±13.22.【解】(1)因为∠BOE=80°,∠BOE+∠AOE=180°,所以∠AOE=180°-∠BOE=100°.因为OC平分∠AOE,所以∠AOC=1∠AOE=50°.2(2)设∠BOD=x,则∠AOC=x.因为OC平分∠AOE,所以∠AOE=2∠AOC=2x.因为∠BOE比∠BOD大30°,所以∠BOE=x+30°.因为∠AOE+∠BOE=180°,所以2x+x+30°=180°,解得x=50°,即∠BOD=50°.23.【解】(1)1600;1500(2)设甲户的年用气量为x m3,则乙户的年用气量为(1000-x)m3.因为甲户年用气量大于乙户年用气量,所以x>1000-x,所以x>500,所以1000-x<500.当500<x≤800时,3×400+4(x-400)+3(1000-x)=3200.解得x=600.当800<x<1000时,3×400+4×(800-400)+5(x-800)+3(1000-x)=3200.解得x=700(不合题意,舍去).所以x=600,所以1000-x=400.答:甲、乙两户年用气量分别是600m3,400m3.(3)624.【解】(1)动点P从点A运动至点C需要的时间为[0-(-12)]÷2+(20-10)÷2+(10-0)÷1=6+5+10=21(秒).(2)由题意可得P,Q两点在OB上相遇,所以(t-6)+2(t-10)=10,解得t=12.所以点M在“折线数轴”上所表示的数是6.(3)当点P在AO上,点Q在CB上时,OP=12-2t,BQ=10-t,因为OP=BQ,所以12-2t=10-t,解得t=2;当点P在OB上,点Q在CB上时,OP=t-6,BQ=10-t,因为OP=BQ,所以t-6=10-t,解得t=8;当点P在OB上,点Q在OB上时,OP=t-6,BQ=2(t-10),因为OP=BQ,所以t-6=2(t-10),解得t=14;当点P在BC上,点Q在OA上时,OP=10+2(t-16),BQ=10+(t-15),因为OP=BQ,所以10+2(t-16)=10+(t-15),解得t=17.综上所述:当t=2或8或14或17时,P,O两点在“折线数轴”上相距的长度与Q,B两点在“折线数轴”上相距的长度相等.9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上数学期末综合素质测评
(本卷满分:120分,考试时间:120分钟)
一、选择题(本大题共10个小题,每题只有一个正确的选项,每小题3分,满分30分)
1、某市2012年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( ) A.-10℃ B.-6℃ C.6℃ D.10℃
2、-6的绝对值的倒数等于 ( )
A.6 B.1
6
C.
1
6
-
D.6
3、未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.8500亿元用科学记数法表示为 ( ) A.4
0.8510
⨯亿元 B.3
8.510
⨯亿元 C.4
8.510
⨯亿元 D.2
8510
⨯亿元
4、当x=3,y=2时,代数式
3
2y
x-
的值是()
A、
3
4
B、2
C、0
D、3
5、()
[]c
b
a-
-去括号应为()
A、-a+b+c
B、-a+b-c
C、-a-b-c
D、-a-b+c
6、如图1所示,圆柱的俯视图是()
7、如图,从A到B最短的路线是().
A. A—G—E—B
B. A—C—E—B
C. A—D—G—E—B
D. A—F—E—B
8、下列事件,你认为是必然事件的是()
A.打开电视机,正在播广告.B.今天二月,明天一定是三月.
C.今年的正月初一,天气一定是晴天.D.一个袋子里装有红球1个、白球3个,任意摸出二个球一定有白球.
9、小明做了以下4道计算题:
①2010
(1)2010
-=②011
--=-
()③111
236
-+=-④
11
1
22
÷-=-
()
请你帮他检查一下,他一共做对了()
A.1题B.2题C.3题D.4题
G
F E
D
C
B
10、2=x 是 下列( )方程的接 (A ) 6)1(2=-x (B )
21012x x =+ (C ) x x =+12 (D ) x x -=+13
12 二、填空题(每小题3分,满分30分)
11、某商店上月收入为a 元,本月的收入比上月的2倍还多10元,本月的收入是 元. 12、1.45° 等于 秒.
13、如图,∠AOC 和∠DOB 都是直角,如果∠DOC =28°,那么∠AOB =
14、若2
3b a m

n ab 32是同类项,则 1
2
m n - = . 15、初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性 (填“大”或“小”). 16、观察下面一列数,按某种规律在横线上填上适当的数:
1,43,95,16
7
, , ,…… 则第n 个数为 .
17、化简3π-= . 18、甲数x 的
23与乙数y 的1
4
差可以表示为_________ 19、定义a ※b =2
a b -,则(1※2)※3=_________
20、若点C 是线段AB 的中点,且AB=10cm,则AC = cm . 三、解答题(21~26每题10分,共60分) 21、解方程
(1)23(21)16(1)x x x +-=-+ (2)
2151
168
x x -+-=
22、化简求值 2222332232x y xy xy x y xy xy ⎡⎤⎛⎫
---++ ⎪⎢⎥⎝⎭⎣⎦
,其中x =3,13y =-
B
23、某学校组织学生参加全市七年级数学竞赛,22名同学获市一等奖和市二等奖,为鼓励这些同学,学校准备拿出2000元资金给这些获奖学生买奖品,一等奖每人200元,二奖等奖每人50元,求得到一等奖和二等奖的学生分别是多少人?
24、如图。

已知∠BOC = 2∠AOB ,OD 平分∠AOC ,∠BOD = 14°,求∠AOB 的度数.
25、 (本小题6分)如图,是由5个正方体组成的图案,请在方格纸中分别画出它的主视图、左视图、俯视图.
26、(本小题9分)中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:
(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中); (2)请画出反映此调查结果的扇形统计图; (3)从统计图中你能得出什么结论?说说你的理由。

O D C
B A
主视图
左视图
俯视图
七年级上数学期末综合素质测评
参考答案
一、选择题(每小题3分,共30分)
二、填空题(每小题3分,满分30分)
11、 2a +10 12、5220 13、152° 14、0 15、大 16、
925 1136 2
21
n n
- 17、3π- 18、2134x y - 19、.-2 20、 5 三、解答题(21~24每题10分,23题7分,24题8分,共30分) 21. (1) 解:263161x x x +-=-- 2分
(2) 解:4(21)3(51)24x x --+= ·· 2分
918x = ··· 2分
8415324x x ---= ·· 1分
2x = ···· 1分 731x -= ·· 1分
31
7
x =-
· 1分 22.解:原式22223(223)3x y xy xy x y xy xy =--+++ ··············· 1分
22223233x y xy x x y xy =-+-+ ·················· 1分 2xy xy =+ ·························· 1分
将x = 3,13y =-代入上式,原式2112
3()3()333
=⨯-+⨯-=- ···· 2分[来源
23. 解:设获一等奖的有X 人,则获二等奖有为(22-X )人,依题意得,……1分
200X+50(22-X)=2000……5分 解得X=6, ……7分
当X=6时,22-X =22-6=16……9分
所以获一等奖的有6人,二等奖的有16人。

……10分
24. .解:设AOB x ∠=︒,则(2)BOC x ∠=︒ -------1分 (3)AOC AOB BOC x ∠=∠+∠=︒ -------2分
∵ AOD AOB BOD ∠-∠=∠ -------3分 ∴
3
142
x x -= -------4分 ∴ 28x =
即 28AOB ∠=︒. -------5分 25.略
26.(本小题9分)
解:(1)(每空0.5分,共2分)
(2)(每项目的圆心角度数0.5分,画图2分,共4分)
.。

相关文档
最新文档