人教版九年级数学下册教学PPT课件27.3 位似 课时1
合集下载
人教版九年级下册数学 27.3 位似(第1课时) (共29张PPT)
(这时的位似比也是相似比)
明 对应点的连线相交于一点 确 位 似 交点与对应点所连线段成比例
相似图形
位似图形
生活中你见到哪些位似?举例说说
如果虚线图形与实线图形是位似图形,求它们的 相似比并找出位似中心.
解:位似中心为点P,位似比分别为1:2、1:2、2:7.
动手操作
例1 把四边形ABCD缩小为原来 1 .
请同学们拿出两张形状相同的三角形纸片?摆一摆,你有什么发现?
(1)本节课你学习了哪些知识?
如果两个图形的对应点连线交于同一点,并且这一点与对应点所连线段成比例。
用以下方法可以近似地 把一个不规则图形放大:
例1 把四边形ABCD缩小为原来 .
交点与对应点所连线段成比例
两个图形上对应点在位似中心两侧,称为内位似。
作法二:
如果在四边形外任选一点O,分别在OA,OB,OC,
OD 的反向延长线上取点A‘, B’,C‘, D’,使得
OOAA'=
OOBB'=
OOCC'=
OODD'=
1 2
呢?点O取在四边形内
部呢?分别画出所得的四边形。
A D
B
C
C'
O
D' B' A'
A A' D' D
B B' O C'
C
归纳小结
位似图形的画法 用以下方法可以近似地 把一个不规则图形放大:
C′
O
B′
A′
C
D
D
C D′ C′
O B′
A′
A 外位似B
外位似
D C
C′ D′
外位似A (A′)
B′
B
实践结论
一、位似中心可选任意位置,可在形外、形内、形上
明 对应点的连线相交于一点 确 位 似 交点与对应点所连线段成比例
相似图形
位似图形
生活中你见到哪些位似?举例说说
如果虚线图形与实线图形是位似图形,求它们的 相似比并找出位似中心.
解:位似中心为点P,位似比分别为1:2、1:2、2:7.
动手操作
例1 把四边形ABCD缩小为原来 1 .
请同学们拿出两张形状相同的三角形纸片?摆一摆,你有什么发现?
(1)本节课你学习了哪些知识?
如果两个图形的对应点连线交于同一点,并且这一点与对应点所连线段成比例。
用以下方法可以近似地 把一个不规则图形放大:
例1 把四边形ABCD缩小为原来 .
交点与对应点所连线段成比例
两个图形上对应点在位似中心两侧,称为内位似。
作法二:
如果在四边形外任选一点O,分别在OA,OB,OC,
OD 的反向延长线上取点A‘, B’,C‘, D’,使得
OOAA'=
OOBB'=
OOCC'=
OODD'=
1 2
呢?点O取在四边形内
部呢?分别画出所得的四边形。
A D
B
C
C'
O
D' B' A'
A A' D' D
B B' O C'
C
归纳小结
位似图形的画法 用以下方法可以近似地 把一个不规则图形放大:
C′
O
B′
A′
C
D
D
C D′ C′
O B′
A′
A 外位似B
外位似
D C
C′ D′
外位似A (A′)
B′
B
实践结论
一、位似中心可选任意位置,可在形外、形内、形上
最新人教版九年级数学下册《27.3 位似(1)》课件
画法:①作射线OA 、OB 、 OC
②分别在OA、OB 、OC 上取点A' 、B' 、C' 使得
OA OB OC 1
B'
OA' OB ' OC ' 2
A'
③顺次连结A' 、B' 、C'
B
就是所要求图形
A C'
C
O
课堂检测 1. 选出下面不同于其他三组的图形 ( B )
A
B
C
D
2. 如图,正五边形 FGHMN 与正五边形 ABCDE 是位似图形,
2.掌握位似图形的画法,能够利用作位似图 形的方法将一个图形放大或缩小。
3.培养学生分类讨论问题的能力。
探究新知
新知一 位似的定义
下列图形中有相似多边形吗?如果有,那 么这种相似有什么特征?
【讨论】什么样的图形叫做位似图形?什么叫做位似中心? 如何判断两个图形是否位似图形?
两个相似多边形,如果它们对应顶点的连线相交于一点, 我们就把这样的两个图形叫做位似图形,这个交点叫做位似 中心.
(2) 以点 C 为位似中心.
A
A′
●
B
●
B′
● C ( C′ )
5.如图,F 在 BD 上,BC、AD 相交于点 E,且 AB∥CD∥EF,
(1) 图中有哪几对位似三角形? 选其中一对加以证明;
答案:△DFE 与 △DBA,△BFE 与 △BDC, △AEB 与 △DEC 都是位似图形;证明略.
巩固练习
3. 如图,四边形木框 ABCD 在灯泡发出的光照射下形成
的影子是四边形 A′B′C′D′,若 OB : OB′=1 : 2,则四边形
人教版九年级数学下册课件:27.3 位 似 课件1
D',所得四边形 A'B'C'D'就是所
要求的图形.
A
B
D
A'
B' D' C
C'
O
探究新知
作法二:
如果在四边形外任选一点O,分别在OA,OB,OC,
OD 的反向延长线上取点A‘, B’,C‘, D’,使得
OOAA'=
OOBB'=
OOCC'=
OODD'=
1 2
呢?如果点
O
取在四
边形 ABCD 内部呢?分C
C'
O
D' B' A'
• 三、练习巩固 • 课本48页练习第1、2题
归纳小结
本节课你学习了哪些知识?
1. 位似图形概念:如果两个图形不仅相似,而且对应顶 点的连线相交于一点,那么这样的两个图形叫做位似图 形,这个点叫做位似中心.这时的相似比又叫位似比.
2. 位似图形具有相似图形的一切性质.位似图形是一种 特殊的相似图形,它又具有特殊的性质,位似图形上任 意一对对应点到位似中心的距离比等于位似比(相似比 ).
探究新知
利用位似,可以将一个图形放大或缩小. 例如,要把四边形 ABCD 缩小到原来的 1 .
2
探究新知
作法一:1.在四边形外任选一点 O .
2.分别在线段 OA,OB,OC,OD 上取点 A',
B',C',D',使得
OOAA'=
OOBB'=
OOCC'=
OODD'=
1 2
.
3.顺次连接点 A',B',C',
3. 两个位似图形的主要特征是:(1)相似;(2)对 应顶点的连线相交于一点。
布置作业
1、课本51页练习第1、2、3题 2、《新学案》27.3(1)“巩固训练”
情境引入
人教版九年级下册数学 第二十七章 27.3位似 课时1 位似图形及性质 教学PPT课件
新课讲解
(2) 以点 C 为位似中心.
A
A′
●
B
●
B′
● C ( C′ )
新课讲解
归纳
◑画位似图形的一般步骤: ① 确定位似中心; ② 分别连接并延长位似中心和能代表原图的关键点; ③ 根据相似比,确定能代表所作的位似图形的关键点; ④ 顺次连接上述各点,得到放大或缩小的图形.
课堂小结
位 似 的 概 念 及 画 法
课后作业
课后作业
课后作业
课后作业
缩小到原来的
1 2
.
(1) 在四边形外任选一点 O (如图);
A
(2) 分别在线段 OA、OB、OC、OD 上取
B A'
D
点 A' 、B' 、C' 、D' ,使 得 OA' OB' OC' OD' ;1
OA OB OC OD 2
B' D' C
O
C'
(3) 顺次连接点 A' 、B' 、C' 、D' ,所得四边形
新课讲解
练一练
如图,四边形木框 ABCD 在灯泡O发出的光照射下形成的影子是四
边形 A′B′C′D′,若 OB : O′B′=1 : 2,则四边形 ABCD 的面积与四边
形A′B′C′D′的面积比为
(D )
A.4∶1
B. 2 ∶1 C.1∶ 2 D.1∶4
O
新课讲解
知识点3 画位似图形
把四边形
ABCD
D A
C
新课讲解
知识点2 位似图形的性质
从左图中我们可以看到,△OAB∽△OA′B′,
人教版第二学期数学九年级下 27.3 位似第1课时 位似图形的概念及画法课件(共20张PPT)
E′
D′
D
E
O
A
A′
B
C′
A
C
B′
C′
O
B
C
B′
A′
归纳:
1. 位似图形的对应角相等,对应边成比例,周长比
等于相似比,面积比等于相似比的平方;
2. 位似图形的对应点的连线相交于一点,即经过位似中心;
3. 位似图形的对应边互相平行或在同一条直线上;
4. 位似图形上任意一对对应点到位似中心的距离之比等
于相似比.
例2 如图所示,四边形ABCD 和四边形A′ B′ C′ D′位似,相似比1 = 2,四边
形A′ B′ C′D′和四边形A″ B″ C″D″位似,相似比2 = 1. 则四边形A″ B″ C″ D″
和四边形ABCD 是位似图形吗?如果是,请说明理由并求出相似比.
解:∵ 四边形ABCD 和四边形A′ B′ C′ D′位似,
E
OD;在射线OA、OB、OC、
H
A
OD上分别取点D、E、F,使
D
O
B
C
OE = 2OA , OF = 2OB , OG =
2OC , OH = 2OD;顺次连结E、
F、G、H,使正方形ABCD与
F
G
5.如图所示,四边形ABCD的一个位似图形是四边形A′ B′ C′ D′ ,
且A,B,C,D的对应点分别是A′ ,B′ ,C′ ,D′. 图中给出了AB的对应
似中心的位似图形,且
′
=
=
′
′
=
′
;五边形ABCDE 与五
边形A′ B′ C′ D′ E′是以点O 为位似中心的位似图形,且′ = ′ =
人教版初中数学九年级下册27.3位似3 课件
(4)等边三角形ABC与等边三角形A′B′C′
是
是
练一练:判断下列各对图形哪些是位似图形,哪些不是.
(6)扇形ABC与扇形A′B′C′, (B、A 、B′在一条直线上,C、A 、C′在一条直线上)
是
是
练一练:判断下列各对图形哪些是位似图形,哪些不是.
(7)△ABC与△ADE(①DE∥BC; ②∠AED=∠B)
2
4
6
8
2
4
6
8
-2
-4
-6
-8
-2
-4
-6
-8
A
B
C
D
A'
B'
C'
D'
- 3
3
- 4
1
-2
0
-1
2
依次连接点A'B'C'D'就是要求的四边形ABCD的位似图形.
就这一个结果吗?
练习 1. 如图表示△AOB和把它缩小后得到的△COD,求它们的相似比.
2
4
6
8
2
4
6
8
-2
-4
-6
-8
-2
-4
-6
-8
4
- 4
- 10
8
-4
10
A" ( , ),B" ( , ),C" ( , ),
4
- 4
- 8
10
-10
4
A'
B '
C '
A"
B"
C"
至此,我们已经学习了四种变换:平移、轴对称、旋转和位似,你能说出它们之间的异同吗?在图所示的图案中,你能找到这些变换吗
是
是
练一练:判断下列各对图形哪些是位似图形,哪些不是.
(6)扇形ABC与扇形A′B′C′, (B、A 、B′在一条直线上,C、A 、C′在一条直线上)
是
是
练一练:判断下列各对图形哪些是位似图形,哪些不是.
(7)△ABC与△ADE(①DE∥BC; ②∠AED=∠B)
2
4
6
8
2
4
6
8
-2
-4
-6
-8
-2
-4
-6
-8
A
B
C
D
A'
B'
C'
D'
- 3
3
- 4
1
-2
0
-1
2
依次连接点A'B'C'D'就是要求的四边形ABCD的位似图形.
就这一个结果吗?
练习 1. 如图表示△AOB和把它缩小后得到的△COD,求它们的相似比.
2
4
6
8
2
4
6
8
-2
-4
-6
-8
-2
-4
-6
-8
4
- 4
- 10
8
-4
10
A" ( , ),B" ( , ),C" ( , ),
4
- 4
- 8
10
-10
4
A'
B '
C '
A"
B"
C"
至此,我们已经学习了四种变换:平移、轴对称、旋转和位似,你能说出它们之间的异同吗?在图所示的图案中,你能找到这些变换吗
人教版九年级下册 27.3 第1课时 位似图形的概念及画法26张PPT
第二十七章
相
似
27.3 位 似
第1课时 位似图形的概念及画法
学习目标
1. 掌握位似图形的概念、性质和画法. (重点)
2. 掌握位似与相似的联系与区别. (难点)
检查预习
1.位似图形的定义
2.相似图形与位似图形有什么相同点与不同点? 3.位似图形有什么性质? 4.如何画位似图形?
导入新课
图片引入 如图,是幻灯机放映图片的示意图,在幻灯机 放映图片的过程中,这些图片之间有什么关系? 连接图片上对应的点,你有什么发现?
A
A. 2 DE = 3 MN C. 3∠A = 2∠F
B. 3 DE = 2 MN D. 2∠A = 3∠F
3. 下列说法: ①位似图形一定是相似图形;②相似图形一定是位 似图形;③两个位似图形若全等,则位似中心在两 个图形之间;④若五边形ABCDE与五边形A′B′C′D′E′ 位似,则其中 △ABC 与 △A′B′C′ 也是位似的,且位 似比相等. 其中正确的有 ①④ .
练一练1:判断下列各对图形哪些是位似图形,哪些不是. (3)正五边形ABCDE与正五边形A′B′C′D′E′;五边 形ABCDE与五边形A′B′C′D′E′;
(2)在平行四边形ABCD中,△ABO与△CDO
2.判断下面的正方形是不是位似图形?
A D
不是
E (1) B C F G
显然,位似图形是相似图形的特殊情形.相似图形不 一定是位似图形,可位似图形一定是相似图形
想一想
• 3.你能作出下列位似图形的位似中心吗?:
O
O
二Hale Waihona Puke 位似图形的性质思考 如图,D,E分别是△ABC的边AB,AC上的点, (1)如果DE ∥ BC则△ADE与△ABC是位似图形吗?
相
似
27.3 位 似
第1课时 位似图形的概念及画法
学习目标
1. 掌握位似图形的概念、性质和画法. (重点)
2. 掌握位似与相似的联系与区别. (难点)
检查预习
1.位似图形的定义
2.相似图形与位似图形有什么相同点与不同点? 3.位似图形有什么性质? 4.如何画位似图形?
导入新课
图片引入 如图,是幻灯机放映图片的示意图,在幻灯机 放映图片的过程中,这些图片之间有什么关系? 连接图片上对应的点,你有什么发现?
A
A. 2 DE = 3 MN C. 3∠A = 2∠F
B. 3 DE = 2 MN D. 2∠A = 3∠F
3. 下列说法: ①位似图形一定是相似图形;②相似图形一定是位 似图形;③两个位似图形若全等,则位似中心在两 个图形之间;④若五边形ABCDE与五边形A′B′C′D′E′ 位似,则其中 △ABC 与 △A′B′C′ 也是位似的,且位 似比相等. 其中正确的有 ①④ .
练一练1:判断下列各对图形哪些是位似图形,哪些不是. (3)正五边形ABCDE与正五边形A′B′C′D′E′;五边 形ABCDE与五边形A′B′C′D′E′;
(2)在平行四边形ABCD中,△ABO与△CDO
2.判断下面的正方形是不是位似图形?
A D
不是
E (1) B C F G
显然,位似图形是相似图形的特殊情形.相似图形不 一定是位似图形,可位似图形一定是相似图形
想一想
• 3.你能作出下列位似图形的位似中心吗?:
O
O
二Hale Waihona Puke 位似图形的性质思考 如图,D,E分别是△ABC的边AB,AC上的点, (1)如果DE ∥ BC则△ADE与△ABC是位似图形吗?
人教版九年级下册 数学 课件 27.3:位似1 (共24张PPT)
类似地,可以确定其他顶点的坐标.
,即(-3,3).
(1)五边形ABCDE与五边形A′B′C′D′E′;
(3)正方形ABCD与正方形A′B′C′D′.
③顺次连结A' 、B' 、C' 就是所要求图形
图中每幅图中的两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,
已知四边形ABCD,如图所示,画一个四边形A‘B’C‘D’,
形放大为原来的2倍.
-2 A
C
-4 A'
C'
-6
B
-8
解: A'( 4 ,- 4 ),B ' (
B' 8 , - 10 ),C ' ( 10 ,-4 ),
A" (- 4 , 4 ),B" (- 8 , 10 ),C" (-10 ,4 ),
至此,我们已经学习了四种变换:平移、轴对称、旋转和位似,你能 说出它们之间的异同吗?在图所示的图案中,你能找到这些变换吗?
C
A'
B'
C'
已知四边形ABCD,如图所示,画一个四边形A‘B’C‘D’,
使四边形A‘B’C‘D’与原图形相似比为2.5.
AD
B
C
A'
A
D
B
C
B'
D'
(A ) A' D
D'
B
C
C' B'
C'
练习
3.如图,△OAB和△OCD是位似图形,AB与CD平行吗?
为什么?
C
AB∥CD
A
∵△OAB与△ODC是位似图形
,即(-3,3).
(1)五边形ABCDE与五边形A′B′C′D′E′;
(3)正方形ABCD与正方形A′B′C′D′.
③顺次连结A' 、B' 、C' 就是所要求图形
图中每幅图中的两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,
已知四边形ABCD,如图所示,画一个四边形A‘B’C‘D’,
形放大为原来的2倍.
-2 A
C
-4 A'
C'
-6
B
-8
解: A'( 4 ,- 4 ),B ' (
B' 8 , - 10 ),C ' ( 10 ,-4 ),
A" (- 4 , 4 ),B" (- 8 , 10 ),C" (-10 ,4 ),
至此,我们已经学习了四种变换:平移、轴对称、旋转和位似,你能 说出它们之间的异同吗?在图所示的图案中,你能找到这些变换吗?
C
A'
B'
C'
已知四边形ABCD,如图所示,画一个四边形A‘B’C‘D’,
使四边形A‘B’C‘D’与原图形相似比为2.5.
AD
B
C
A'
A
D
B
C
B'
D'
(A ) A' D
D'
B
C
C' B'
C'
练习
3.如图,△OAB和△OCD是位似图形,AB与CD平行吗?
为什么?
C
AB∥CD
A
∵△OAB与△ODC是位似图形
人教版九年级数学下册27.3位似图形概念课件(共16张PPT)
3.相似图形一定位似。 4.位似图形不一定相似。
作△ABC与的位似图形△DEF
且位似比为1/2
即将△ABC的三边缩小为原来的1/2:
如图,任取一点O,连接AO,BO,CO,并取它们的中
点D,E,F;
△DEF就是所求
B E●
O
●
F
C
●
D
A
做一做:
任意画一个三角形,用上面的方法 亲自试一试.
课堂小结
这时两个相似图形的相似比又叫做它们的位似比. 3.相似图形一定位似。
AF AP AE EP FP 对应线段AB和A/B/是否平行?其它边呢?有哪些相似三角形?
对应边互相平行, 且位似比为1/2
= = = = 你发现每个图中的两个四边形各对应点的连线有什么特征? AD AC AB BC DC (5)△ABC与△A′B′C′
2.位似图形的性质 位似图形的对应点和位似中心在同一条直 线上,它们到位似中心的距离之比等于相 似比.(位似比)
1. 位似图形的概念
如果两个相似图形的每组对应点所在的直
线都交于一点,对应边互相平行,那么这样
(1)五边形ABCDE与五边形A′B′C′D′E′;
的两个图形叫做位似图形, 这个交点叫做位 显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比.
2.不是位似图形必定不相似。 2.位似图形上任意一对对应点到位似中心的距离之比等于位似比.
2.位似图形上任意一对对应点到位似中心的距离之比等于位似比.
(二)位似图形的性质
A A/ C
位似图形有以下性质:
1.位似图形的对应点和位似中心在同一条直线上
2.位似图形上任意一对对应点到位似中心的 距离之比等于位似比.
作△ABC与的位似图形△DEF
且位似比为1/2
即将△ABC的三边缩小为原来的1/2:
如图,任取一点O,连接AO,BO,CO,并取它们的中
点D,E,F;
△DEF就是所求
B E●
O
●
F
C
●
D
A
做一做:
任意画一个三角形,用上面的方法 亲自试一试.
课堂小结
这时两个相似图形的相似比又叫做它们的位似比. 3.相似图形一定位似。
AF AP AE EP FP 对应线段AB和A/B/是否平行?其它边呢?有哪些相似三角形?
对应边互相平行, 且位似比为1/2
= = = = 你发现每个图中的两个四边形各对应点的连线有什么特征? AD AC AB BC DC (5)△ABC与△A′B′C′
2.位似图形的性质 位似图形的对应点和位似中心在同一条直 线上,它们到位似中心的距离之比等于相 似比.(位似比)
1. 位似图形的概念
如果两个相似图形的每组对应点所在的直
线都交于一点,对应边互相平行,那么这样
(1)五边形ABCDE与五边形A′B′C′D′E′;
的两个图形叫做位似图形, 这个交点叫做位 显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比.
2.不是位似图形必定不相似。 2.位似图形上任意一对对应点到位似中心的距离之比等于位似比.
2.位似图形上任意一对对应点到位似中心的距离之比等于位似比.
(二)位似图形的性质
A A/ C
位似图形有以下性质:
1.位似图形的对应点和位似中心在同一条直线上
2.位似图形上任意一对对应点到位似中心的 距离之比等于位似比.