2020-2021成都市实验外国语学校高一数学上期末试卷(及答案)
2020-2021学年四川省成都市四川师范大学实验外国语学校(高中部)高一英语模拟试卷含解析
2020-2021学年四川省成都市四川师范大学实验外国语学校(高中部)高一英语模拟试卷含解析一、选择题1. It is believed that the Great Wall is worth ______.A. to be visitedB. visitingC. being visitedD. to visit参考答案:B2. Mr. White preferred ______at home with his children rather than ____ out for Christmas.A. to stay; to goB. stay; goC. to stay; goD. stay; to go参考答案:C3. The education of young hasbecome hot and serious topic in the present society.A.the;不填 B.a;the C. 不填;the D.the;a参考答案:D4. Our school_____ the 50th anniversary of the founding of CCFLS on October 5th, 2013.A. detectedB. activatedC. spottedD. celebrated参考答案:D5. ---How often do you eat out?--- ,but usually once a week.A.Have no idea B.It depends C.As usual D.Generally speaking参考答案:B6. You must have missed the first train yesterday, ________ you?A. weren’tB. didn’tC. mustn’tD. haven’t参考答案:B7. I don’t think the windows need __________ at this time of night.A. cleanedB. being cleanedC. to cleanD. cleaning参考答案:D8. Father bought me a bike as my birthday present, ______came as a surprise.A. itB. thatC. whichD. what参考答案:C9. Surprisingly, years back, when playing American Captain in Marvel’s movie universe became ______ possibility, Chris Evans nearly turned ______ role down.A. the; aB. the; theC. a; theD. /; the参考答案:C10. _______ you continue your efforts and achieve new and greater success!A. WouldB. WillC. MayD. Should参考答案:C11. ________ we have finished the course, we shall do more revision work.A. Now thatB. ForC. Ever sinceD. By now参考答案:A12. Listening to music or playing games on ______ mobile phone will make ______ journey less boring.A. /; theB. the; /C. the; theD. /; /参考答案:C13. Do you know he could have dealt with, if he had not passed the test?A. howB. whatC. whereD. why参考答案:B14. --Thanks for ____ me of the meeting this morning.--You’re welcome.A. advisingB. suggestingC. remindingD. telling参考答案:C解析:remind sb of sth意为“提醒某人某事”;thanks for doing sth意为“为某事感谢某人”。
四川省蓉城名校联盟2020-2021学年高一上学期期末联考数学试卷 (解析版)
2020-2021学年四川省成都市蓉城名校联盟高一(上)期末数学试卷一、选择题(共12小题).1.已知集合A={x|x2﹣4≤0},B={x|x>1},则A∩B=()A.(1,2]B.(1,2)C.[﹣2,1)D.(﹣2,1)2.sin570°+tan(﹣225°)的值为()A.B.﹣C.D.﹣3.已知a=0.80.8,b=log23,c=log30.2,则a,b,c的大小关系是()A.b>c>a B.c>b>a C.a>b>c D.b>a>c4.已知α是第三象限角且tanα=,则sinα的值为()A.B.﹣C.﹣D.5.若x0是方程lnx+x=2的解,则x0属于区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.下列函数的最小正周期为π且为奇函数的是()A.y=cos2x B.y=tan2xC.y=|sin x|D.y=cos(+2x)7.为得到函数y=sin2x的图象,只需将函数y=cos(2x+)的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度8.已知扇形的周长是8cm,当扇形面积最大时,扇形的圆心角的大小为()A.B.C.1D.29.将函数f(x)=sin(2x+φ),|φ|<的图象向左平移个单位后所得图象关于y轴对称,则函数f(x)的一个对称中心为()A.(﹣,0)B.(﹣,0)C.(,0)D.(,0)10.已知奇函数y=f(x)的图象关于直线x=1对称,当0≤x≤1时,f(x)=x,则f()的值为()A.1B.C.﹣D.﹣111.若关于x的不等9x﹣log a x≤在x∈(0,]上恒成立,则实数a的取值范围是()A.[,1)B.(0,]C.[,1)D.(0,] 12.已知函数f(x)=|2x﹣1|,若关于x的方程f2(x)+af(x)+a+2=0恰有3个不同的实数根,则实数a的取值范围为()A.(0,1)B.(﹣1,﹣]C.(﹣1,0)D.(﹣2,﹣]二、填空题:本题共4小题,每小题5分,共20分。
2024学年四川省成都外国语学校高一上学期期中考数学试题及答案
成都外国语学校2023-2024学年度上期半期考试高一数学试卷注意事项:1.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.本堂考试120分钟,满分150分;3.答题前,考生务必先将自己的姓名、学号填写在答题卡上,并使用2B 铅笔填涂.4.考试结束后,将答题卡交回.第Ⅰ卷 选择题部分,共60分一、单选题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}1,2,3,4,5,6U =,{}1,3,6A =,{}2,3,4B =,则A B = ( )A. 3 B. {}1,3 C. {}3 D. {}2,32. 命题“3x ∃≥,2230x x -+<”的否定是( )A. 3x ∀≥,2230x x -+< B. 3x ∀≥,2230x x -+≥C. 3x ∀<,2230x x -+≥ D. 3x ∃<,2230x x -+≥3. 函数()f x =)A [)1,+∞ B. ()1,+∞C. [)1,2 D. [)()1,22,⋃+∞4. “1k >-”是“函数3y kx =+在R 上为增函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5. 若,,R,0a b c c ∈>且0a b >>,下列不等式一定成立的是( )A ac bc < B.11a b < C. a c b c -<- D. 11b b a a +>+6. 函数()2605y x x x =-+≤≤的值域是( )A. []0,5B. []0,9C. []5,9D. [)0,∞+..7. 函数()21x f x x -=的大致图象为( )A. B.C. D.8. 若函数()f x 是定义在R 上的偶函数,在区间(],0-∞上是减函数,且()10f =,则不等式()10f x x+≥的解集为( )A. [)2,-+∞ B. [)()2,00,-⋃+∞ C. [)0,∞+ D. [)(]2,00,2-U 二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列数学符号使用正确的是( )A. 1N-Ï B. {}1Z ⊆C. 0∈∅ D. ∅ {}010. 下列各选项给出两个函数中,表示相同函数的有( )A. ()1f x x =+与()0g x x x=+B. ()f x x =与()g x =C. ()f x x =与()2x g x x=D. ()f t t =与()g x x =11. 设正实数m n 、满足2m n +=,则( )A.12m n +的最小值为B.最小值为2C.的最大值为1的的D. 22m n +的最小值为212. 已知定义在R 的函数()f x 满足以下条件:(1)对任意实数,x y 恒有()()()()()f x y f x f y f x f y +=++;(2)当0x >时,()f x 的值域是()0,∞+(3)()11f =则下列说法正确的是( )A. ()f x 值域为[)1,-+∞B. ()f x 单调递增C. ()8255f =D. ()()()31f x f f x f x -⎡⎤≥⎣⎦+的解集为[)1,+∞第Ⅱ卷 非选择题部分,共90分三、填空题:本题共4小题,每小题5分,共20分.13. 已知集合{}{}21,,A B a a ==,且A B A = ,则a 的值为_________.14. 设函数()4,0,2,0,3x x x f x x x x ⎧-<⎪⎪=⎨⎪≥⎪+⎩则()()1f f -=__________.15. 一元二次不等式23280x x -++≤的解集为________.16. 设函数()f x 的定义域为D ,若存在实数()0T T >,使得对于任意x D ∈,都有()()f x f x T <+,则称()f x 为“T -严格增函数”,对于“T -严格增函数”,有以下四个结论:①“T -严格增函数”()f x 一定在D 上严格增;②“T -严格增函数”()f x 一定是“nT -严格增函数”(其中*N n ∈,且2n ≥)③函数()[]f x x =是“T -严格增函数”(其中[]x 表示不大于x 的最大整数)④函数()[]f x x x =-不是“T -严格增函数”(其中[]x 表示不大于x 的最大整数)其中,所有正确的结论序号是______.四、解答题:本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 已知集合U =R ,集合{}23A x x =-≤≤,{1B x x =<-或}4x >(1)求A B ⋃;(2)求()U A B ∩ð18. 已知函数()b f x x x =+过点(1,2).(1)判断()f x 在区间(1,)+∞上的单调性,并用定义证明;(2)求函数()f x 在[]2,7上的最大值和最小值.19. (1)已知函数()212f x x =+,则()f x 的值域;(2)已知1)f x +=+,求()f x 的解析式;(3)已知函数()f x 对于任意的x 都有()2()32f x f x x +-=-,求()f x 的解析式.20. 已知关于x 的不等式230x bx c ++-<的解集为()1,2-.(1)当[]0,3x ∈时,求2x bx c x++的最小值;(2)当x ∈R 时,函数2y x bx c =++的图象恒在直线2y x m =+的上方,求实数m 的取值范围.21. 已知函数()21ax b f x x-=+是定义在[]1,1-上的奇函数,且()11f =-.(1)求函数()f x 的解析式;(2)判断()f x 在[]1,1-上单调性,并用单调性定义证明;(3)解不等式()()()210f t f t f -+>.22. 若函数()f x 在[],x a b ∈时,函数值y 的取值区间恰为11,b a⎡⎤⎢⎥⎣⎦,就称区间[],a b 为()f x 的一个“倒域区间”.已知定义在[]22-,上的奇函数()g x ,当[]0,2x ∈时,()22g x x x =-+.(1)求()g x 的解析式;(2)求函数()g x 在[]1,2内的“倒域区间”;(3)求函数()g x 在定义域内的所有“倒域区间”.的成都外国语学校2023-2024学年度上期半期考试高一数学试卷注意事项:1.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.本堂考试120分钟,满分150分;3.答题前,考生务必先将自己的姓名、学号填写在答题卡上,并使用2B 铅笔填涂.4.考试结束后,将答题卡交回.第Ⅰ卷 选择题部分,共60分一、单选题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}1,2,3,4,5,6U =,{}1,3,6A =,{}2,3,4B =,则A B = ( )A. 3B. {}1,3C. {}3D. {}2,3【答案】C【解析】【分析】利用交集的运算求解即可.【详解】由题知,{}3A B ⋂=.故选:C2. 命题“3x ∃≥,2230x x -+<”的否定是( )A. 3x ∀≥,2230x x -+< B. 3x ∀≥,2230x x -+≥C. 3x ∀<,2230x x -+≥ D. 3x ∃<,2230x x -+≥【答案】B【解析】【分析】利用含有一个量词的命题的否定规律“改量词,否结论”分析判断即可得解.【详解】解:因为命题“3x ∃≥,2230x x -+<”为存在量词命题,所以其否定为“3x ∀≥,2230x x -+≥”.故选:B .3. 函数()f x = )A. [)1,+∞ B. ()1,+∞C. [)1,2 D. [)()1,22,⋃+∞【答案】D【解析】【分析】根据开偶数次发根号里的数大于等于零,分母不等于零计算即可.【详解】由()f x =得1020x x -≥⎧⎨-≠⎩,解得1x >且2x ≠,所以函数()f x =[)()1,22,⋃+∞.故选:D.4. “1k >-”是“函数3y kx =+在R 上为增函数”的( )A 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】B【解析】【分析】根据一次函数的性质与必要不充分条件的判定即可得到答案.【详解】当12k =-时,满足1k >-,但是函数3y kx =+在R 上为减函数,则正推无法推出;反之,若函数3y kx =+在R 上为增函数,则01k >>-,则反向可以推出,则“1k >-”是“函数3y kx =+在R 上为增函数”的必要不充分条件,故选:B .5. 若,,R,0a b c c ∈>且0a b >>,下列不等式一定成立的是( )A. ac bc< B. 11a b < C. a c b c -<- D. 11b b a a +>+【答案】B【解析】【分析】ACD 举反例确定错误,B 作差法可判断..【详解】A ,2,1a c b ===时,2212⋅>⋅,A 错误;B ,11110,0,b a a b a b ab a b->>∴-=<∴< ,B 正确;C ,2,1a c b ===时,2212->-,C 错误;D ,2,1a c b ===时,111221+<+,D 错误.故选:B6. 函数()2605y x x x =-+≤≤的值域是( )A. []0,5 B. []0,9 C. []5,9 D. [)0,∞+【答案】B【解析】【分析】根据二次函数的性质即可求解.【详解】函数26y x x =-+的图象是一条开口向下的抛物线,对称轴为3x =,所以该函数在(0,3)上单调递增,在(3,5)上单调递减,所以max 39x y y ===,又050,5x x y y ====,所以min 0y =,即函数的值域为[0,9].故选:B.7. 函数()21x f x x -=的大致图象为( )A. B.C. D.【答案】D【解析】【详解】根据函数的奇偶性以及函数的解析式判断出正确答案.【分析】()21x f x x -=的定义域为{}|0x x ≠,()()()2211x x f x f x x x ----==-=--,所以()f x 是奇函数,图象关于原点对称,所以A 选项错误.当0x >时,()210x f x x -=≥,所以C 选项错误.当0x >时,令()210x f x x -==,解得1x =,所以B 选项错误.所以正确的是D.故选:D 8. 若函数()f x 是定义在R 上的偶函数,在区间(],0-∞上是减函数,且()10f =,则不等式()10f x x+≥的解集为( )A. [)2,-+∞ B. [)()2,00,-⋃+∞ C. [)0,∞+ D. [)(]2,00,2-U 【答案】B【解析】【分析】确定函数的单调性,考虑0x >和0x <两种情况,将问题转化为(1)0f x +≥或(1)0f x +≤,再根据函数值结合函数单调性得到答案.【详解】函数()f x 是定义在实数集R 上的偶函数,()f x 在区间(],0-∞上是严格减函数,故函数()f x 在()0,∞+上单调递增,且(1)(1)0f f -==,当0x >时,由(1)0f x x+≥,即(1)0f x +≥,得到11x +≥或11x +≤-(舍弃),所以0x >,当0x <时,由(1)0f x x +≥,即(1)0f x +≤,得到111x -≤+≤,所以20x -≤<,综上所述,20x -≤<或0x >,故选:B.二、多选题:本题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列数学符号使用正确的是( )A. 1N-Ï B. {}1Z ⊆C. 0∈∅D. ∅ {}0【答案】ABD【解析】【分析】根据集合与元素之间关系符号和集合与集合之间的关系符号来判断即可.【详解】对于A ,N 表示自然数集,1-不是自然数,故1N -Ï成立,则A 选项正确;对于B ,Z 表示整数集,1Z ∈,故{}1Z ⊆成立,则B 选项正确;对于C ,∅表示空集,没有任何一个元素,即0∉∅,故C 选项不正确;对于D ,空集是任何一个非空集合的真子集,故∅ {}0成立,则D 选项正确.故选:ABD.10. 下列各选项给出的两个函数中,表示相同函数的有( )A. ()1f x x =+与()0g x x x=+B. ()f x()g x =C. ()f x x =与()2x g x x=D. ()f t t =与()g x x =【答案】BD【解析】【分析】根据函数的“三要素”一一判断每个选项中的函数,看定义域和对应关系是否相同,即可得答案.【详解】对于A ,函数()1f x x =+的定义域为R ,()0g x x x =+的定义域为{|0}x x ≠,故二者不是相同函数,A 错误;对于B ,()f x x =的定义为域为R ,()||g x x ==的定义域为R ,二者对应关系也相同,值域都为[0,)+∞,故二者表示相同函数,B 正确;对于C ,()f x x =的定义域为R ,()2x g x x=的定义域为{|0}x x ≠,故二者不是相同函数,C 错误;对于D ,()f t t =与()g x x =的的定义域均为(,0]-∞,对应关系相同,的值域均为(,0]-∞,故二者表示相同函数,D 正确;故选:BD11. 设正实数m n 、满足2m n +=,则( )A.12m n +的最小值为B.的最小值为2C. 的最大值为1D. 22m n +的最小值为2【答案】CD【解析】【分析】由已知条件结合基本不等式及其相关变形,分别检验各个选项即可判断正误.【详解】对于选项A ,322121222m n n m m n m n m n ⎛⎫+=++⎛⎫=+ ⎪⎪⎭⎭+⎝⎝32≥+= ,当且仅当=m n 且2m n +=时,即2m =-,4n =-时取等号,则A 错误;对于选项B , 22m n =++=+24m n ≤++=,当且仅当1m n ==2+≤+的最大值为2,则B 错误;对于选项C ,m n +≥212m n mn +⎛⎫≤= ⎪⎝⎭,当且仅当1m n ==时,等号成立,则C 正确;对于选项D , ()222242m n m n mn mn +=+-=-24222m n +⎛⎫≥-= ⎪⎝⎭,当且仅当1m n ==时,等号成立,则D 正确,故选: CD .12. 已知定义在R 的函数()f x 满足以下条件:(1)对任意实数,x y 恒有()()()()()f x y f x f y f x f y +=++;(2)当0x >时,()f x 的值域是()0,∞+(3)()11f =则下列说法正确的是( )A. ()f x 值域为[)1,-+∞B. ()f x 单调递增C. ()8255f =D. ()()()31f x f f x f x -⎡⎤≥⎣⎦+的解集为[)1,+∞【答案】BCD 【解析】【分析】计算()00f =得到()()1111f x f x =-+>--+,A 错误,根据单调性的定义得到B 正确,计算()23f =,()415f =,()8255f =得到C 正确,题目转化为()()2f x f x f ⎡⎤+≥⎣⎦得到()2x f x +≥,根据函数的单调性得到D 正确,得到答案.【详解】对选项A :令1,0x y ==可得()()()()()11001f f f f f =++,故()00f =,令y x =-可得()()()()()0f f x f x f x f x =-++-,()1f x -≠-,()()()()1111f x f x f x f x --==-+-+-+,当0x <时,()0f x ->,则()()1111f x f x =-+>--+,综上所述:()()1,f x ∈-+∞,错误;对选项B :任取12,R x x ∈且12x x >,()120f x x ->,()21f x >-,则()()()()()()()12122212212f x f x f x x x f x f x x f x f x x -=-+-=-+-()()12210f x x f x ⎡⎤=-+>⎣⎦,所以函数()y f x =在R 上单调递增,正确;对选项C :取1x y ==得到()()()()()211113f f f f f =++=;取2x y ==得到()()()()()4222215f f f f f =++=;取4x y ==得到()()()()()84444255f f f f f =++=,正确;对选项D :()()()31f x f f x f x -⎡⎤≥⎣⎦+,()()()13f f x f x f x ⎡⎤⎡⎤+≥-⎣⎦⎣⎦,即()()()()()()2f f x f x f x f f x f x f x f ⎡⎤⎡⎤⎡⎤++=+≥⎣⎦⎣⎦⎣⎦,即()2x f x +≥,函数()()g x x f x =+单调递增,且()1112g =+=,故1x ≥,正确;故选:BCD【点睛】关键点睛:本题考查了抽象函数问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据题目信息转化得到()()2f x f x f ⎡⎤+≥⎣⎦,再利用函数的单调性解不等式是解题的关键.第Ⅱ卷 非选择题部分,共90分三、填空题:本题共4小题,每小题5分,共20分.13. 已知集合{}{}21,,A B a a ==,且A B A = ,则a 的值为_________.【答案】1-【解析】【分析】由A B A = 得A B ⊆,列式求解,然后检验元素的互异性.【详解】∵A B A = ,∴A B ⊆,又{}{}21,,A B a a ==,∴1a =或21a =,解得1a =或1a =-,当1a =不满足元素的互异性,舍去,所以1a =-.故答案为:1-.14. 设函数()4,0,2,0,3x x xf x x x x ⎧-<⎪⎪=⎨⎪≥⎪+⎩则()()1f f -=__________.【答案】1【解析】【分析】分段函数求值,根据自变量的取值范围代入相应的对应关系.【详解】当=1x -时,()f -=--=-41131,则()()231(3)133ff f ⋅-===+.故答案为:115. 一元二次不等式23280x x -++≤的解集为________.【答案】(][),47,-∞-+∞【解析】【分析】由一元二次不等式的解法进行求解即可.【详解】()()22328032804707x x x x x x x -++≤⇒--≥⇒+-≥⇒≥,或4x ≤-所以一元二次不等式23280x x -++≤的解集为(][),47,-∞-+∞ ,故答案为:(][),47,-∞-+∞ 16. 设函数()f x 的定义域为D ,若存在实数()0T T >,使得对于任意x D ∈,都有()()f x f x T <+,则称()f x 为“T -严格增函数”,对于“T -严格增函数”,有以下四个结论:①“T -严格增函数”()f x 一定在D 上严格增;②“T -严格增函数”()f x 一定是“nT -严格增函数”(其中*N n ∈,且2n ≥)③函数()[]f x x =是“T -严格增函数”(其中[]x 表示不大于x 的最大整数)④函数()[]f x x x =-不是“T -严格增函数”(其中[]x 表示不大于x 的最大整数)其中,所有正确的结论序号是______.【答案】②③④【解析】【分析】根据“T -严格增函数”的定义对四个结论逐一分析,从而确定正确答案.【详解】①,函数(),01,0x x f x x x <⎧=⎨-≥⎩,定义域为R ,存在2T =,对于任意x ∈R ,都有()()2f x f x <+,但()f x 在R 上不单调递增,所以①错误.②,()f x 是“T -严格增函数”,则存在0T >,使得对任意x D ∈,都有()()f x f x T <+,因为2,0n T ≥>,所以()()f x T f x nT +<+,故()()f x f x nT <+,即存在实数0nT >,使得对任意x D ∈,都有()()f x f x nT <+,所以()f x 是“nT -严格增函数”, ②正确.③,()[]f x x =,定义域为R ,当1T =时,对任意的x ∈R ,都有[][]1x x <+,即()()1f x f x <+,所以函数()[]f x x =是“T -严格增函数”.④,对于函数()[]f x x x =-,()[][][]()11111f x x x x x x x f x +=+-+=+--=-=,所以()f x 是周期为1的周期函数,11112222f ⎛⎫⎡⎤=-= ⎪⎢⎥⎝⎭⎣⎦,若1T =,则133********f f ⎛⎫⎡⎤⎛⎫+=-== ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭,不符合题意.当0T >且1T ≠时,若()()f x f x T <+,则[][]x x x T x T -<+-+,即[][]T x T x >+-(*),其中,若01T <<,则总存在,2n n ∈≥*N ,使得1nT >,当1T >时,若T 是正整数,则[][]x T x T +-=,(*)不成立,若T 不是正整数,[][]T x T x >+-不恒成立,所以函数()[]f x x x =-不是“T -严格增函数”.故答案为:②③④【点睛】本题主要考查新定义函数的理解,对于新定义函数的题,解题方法是通过转化法,将“新”转化为“旧”来解题,选择题中,可利用特殊值进行举反例来排除.四、解答题:本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 已知集合U =R ,集合{}23A x x =-≤≤,{1B x x =<-或}4x >(1)求A B ⋃;(2)求()U A B∩ð【答案】(1){3x x ≤或}4x > (2){}13x x -≤≤【解析】【分析】(1)根据并集概念进行计算;(2)先求出{}14U B x x =-≤≤ð,进而利用交集概念进行计算.【小问1详解】{}{|231A B x x x x ⋃=-≤≤⋃<-或}4x >{3x x =≤或}4x >;【小问2详解】{}14U B x x =-≤≤ð,(){}{}{}|231413U A B x x x x x x ⋂=-≤≤⋂-≤≤=-≤≤ð18. 已知函数()bf x x x=+过点(1,2).(1)判断()f x 在区间(1,)+∞上的单调性,并用定义证明;(2)求函数()f x 在[]2,7上的最大值和最小值.【答案】(1)()f x 在区间(1,)+∞上单调递增,证明见解析 (2)最大值507,最小值为52【解析】【分析】(1)求出函数的表达式,利用单调性定义即可判断函数的单调性;(2)根据单调性即可得出函数()f x 在[]2,7上最大值和最小值.【小问1详解】单调递增,由题意证明如下,由函数()b f x x x=+过点(1,2),有121b+=,解得1b =,所以()f x 的解析式为:1()f x x x=+.设12,(1,)x x ∀∈+∞,且12x x <,有()()()()121212121212111x x x x f x f x x x x x x x --⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭.由1212,(1,),x x x x ∈+∞<,得121210,0x x x x ->-<.则()()12121210x x x x x x --<,即()()12f x f x <.∴()f x 在区间(1,)+∞上单调递增.【小问2详解】由()f x 在(1,)+∞上是增函数,所以()f x 在区间[2,7]上的最小值为5(2)2f =,最大值为50(7)7f =.19. (1)已知函数()212f x x =+,则()f x 的值域;为的(2)已知1)f x +=+,求()f x 的解析式;(3)已知函数()f x 对于任意的x 都有()2()32f x f x x +-=-,求()f x 的解析式.【答案】(1)1|02y y ⎧⎫<≤⎨⎬⎩⎭;(2)2()1f x x =-,其中1x ≥;(3)2()33f x x =--【解析】【分析】(1)根据函数的性质即可得函数的值域;(2)配凑法或换元法求函数的解析式(3)列方程组法求函数的解析式【详解】(1)由于220,22x x ≥+≥,故211022x <≤+,故函数的值域为1|02y y ⎧⎫<≤⎨⎬⎩⎭(2))221)1111f =++-=+-,,故所求函数的解析式为2()1f x x =-,其中1x ≥.(3)∵对于任意的x 都有()2()32f x f x x +-=-,∴将x 替换为-x ,得()2()32f x f x x -+=--,联立方程组:()2()32()2()32f x f x x f x f x x +-=-⎧⎨-+=--⎩消去()f x -,可得2()33f x x =--.20. 已知关于x 的不等式230x bx c ++-<的解集为()1,2-.(1)当[]0,3x ∈时,求2x bx cx++的最小值;(2)当x ∈R 时,函数2y x bx c =++的图象恒在直线2y x m =+的上方,求实数m 的取值范围.【答案】(1)1 (2)5,4⎛⎫-∞-⎪⎝⎭【解析】【分析】(1)依题意可得,1-和2是方程230x bx c ++-=的两根,从而可求得b ,c 的值,再利用基本不等式即可求解;(2)依题意可得,已知条件等价于212x x x m -+>+在(),-∞+∞上恒成立,分离参数转化为最值问题即可求解.【小问1详解】因为关于x 的不等式230x bx c ++-<的解集为()1,2-,所以1-和2是方程230x bx c ++-=的两根,所以12123b c -+=-⎧⎨-⨯=-⎩,解得11b c =-⎧⎨=⎩,由2x bx c x++可知,0x ≠,所以当(]0,3x ∈时,2211111x bx c x x x x x x ++-+==+-≥-=,当且仅当1x =时,等号成立,所以2x bx c x ++的最小值为1.【小问2详解】结合(1)可得221y x bx c x x =++=-+,对于R x ∀∈,函数2y x bx c =++的图象恒在函数2y x m =+的图象的上方,等价于212x x x m -+>+在(),x ∈-∞+∞上恒成立,即231m x x <-+在(),x ∈-∞+∞上恒成立,则()2min31m x x <-+即可,因为2235531()244x x x -+=--≥-,所以54m <-,所以实数m 的取值范围为5,4⎛⎫-∞- ⎪⎝⎭.21. 已知函数()21ax bf x x -=+是定义在[]1,1-上的奇函数,且()11f =-.(1)求函数()f x 的解析式;(2)判断()f x 在[]1,1-上的单调性,并用单调性定义证明;(3)解不等式()()()210f t f t f -+>.【答案】21. ()221xf x x -=+,[]1,1x ∈- 22. 减函数;证明见解析;23. ⎡⎢⎣【解析】【分析】(1)根据奇函数的性质和()11f =求解即可.(2)利用函数单调性定义证明即可.(3)首先将题意转化为解不等式()()21f t f t >-,再结合()f x 的单调性求解即可.【小问1详解】函数()21ax bf x x-=+是定义在[]1,1-上的奇函数,()()f x f x -=-;2211ax b ax bx x---=-++,解得0b =,∴()21axf x x =+,而()11f =-,解得2a =-,∴()221xf x x-=+,[]1,1x ∈-.小问2详解】函数()221xf x x-=+在[]1,1-上为减函数;证明如下:任意[]12,1,1x x ∈-且12x x <,则()()()()()()121212122222121221221111x x x x x x f x f x x x x x ------=-=++++因为12x x <,所以120x x -<,又因为[]12,1,1x x ∈-,所以1210x x ->,所以()()120f x f x ->,即()()12f x f x >,所以函数()()12f x f x >在[]1,1-上为减函数.【小问3详解】由题意,()()()210f t f t f -+>,又()00f =,所以()()210f t f t -+>,即解不等式()()21f tf t >--,所以()()21f t f t >-,所以22111111t t t t⎧-≤≤⎪-≤-≤⎨⎪<-⎩,解得0t ≤<,所以该不等式的解集为⎡⎢⎣.22. 若函数()f x 在[],x a b ∈时,函数值y 的取值区间恰为11,b a⎡⎤⎢⎥⎣⎦,就称区间[],a b 为()f x 的一个“倒【域区间”.已知定义在[]22-,上的奇函数()g x ,当[]0,2x ∈时,()22g x x x =-+.(1)求()g x 的解析式;(2)求函数()g x 在[]1,2内的“倒域区间”;(3)求函数()g x 在定义域内的所有“倒域区间”.【答案】(1)()222,022,20x x x g x x x x ⎧-+≤≤=⎨+-≤<⎩(2)⎡⎢⎣(3)⎡⎢⎣和1⎤-⎥⎦【解析】【分析】(1)设[)2,0x ∈-,利用奇函数的定义可求得函数()g x 在[)2,0-上的解析式,由此可得出函数()g x 在[]22-,上的解析式;(2)设12a b ≤<≤,分析函数()g x 在[]1,2上的单调性,可出关于a 、b 的方程组,解之即可;(3)分析可知0a bab <⎧⎨>⎩,只需讨论02a b <<≤或20a b -≤<<,分析二次函数()g x 的单调性,根据题中定义可得出关于实数a 、b 的等式组,求出a 、b 的值,即可得出结果.【小问1详解】解:当[)2,0x ∈-时,则(]0,2x -∈,由奇函数的定义可得()()()()2222x g x g x x x x ⎡⎤=--=---=⎣⎦++-,所以,()222,022,20x x x g x x x x ⎧-+≤≤=⎨+-≤<⎩.【小问2详解】解:设12a b ≤<≤,因为函数()g x 在[]1,2上递减,且()g x 在[],a b 上的值域为11,b a⎡⎤⎢⎥⎣⎦,所以,()()22121212g b b b bg a a a a a b ⎧=-+=⎪⎪⎪=-+=⎨⎪≤<≤⎪⎪⎩,解得1a b =⎧⎪⎨=⎪⎩,所以,函数()g x 在[]1,2内的“倒域区间”为⎡⎢⎣.【小问3详解】解:()g x 在[],a b 时,函数值()g x 的取值区间恰为11,b a⎡⎤⎢⎥⎣⎦,其中a b ¹且0a ≠,0b ≠,所以,11a bb a<⎧⎪⎨<⎪⎩,则0a b ab <⎧⎨>⎩,只考虑02a b <<≤或20a b -≤<<,①当02a b <<≤时,因为函数()g x 在[]0,1上单调递增,在[]1,2上单调递减,故当[]0,2x ∈时,()()max 11g x g ==,则11a≤,所以,12a ≤<,所以,12a b ≤<≤,由(2)知()g x 在[]1,2内的“倒域区间”为⎡⎢⎣;②当20a b -≤<<时,()g x 在[]2,1--上单调递减,在[]1,0-上单调递增,故当[]2,0x ∈-时,()()min 11g x g =-=-,所以,11b≥-,所以,21b -<≤-.21a b ∴-≤<≤-,因为()g x 在[]2,1--上单调递减,则()()22121221g a a a ag b b b b a b ⎧=+=⎪⎪⎪=+=⎨⎪-≤<≤-⎪⎪⎩,解得1a b ⎧=⎪⎨⎪=-⎩,所以,()g x 在[]2,1--内的“倒域区间”为1⎤-⎥⎦.综上所述,函数()g x 在定义域内的“倒域区间”为⎡⎢⎣和1⎤-⎥⎦.【点睛】关键点点睛:本题考查函数的新定义,解题的关键在于分析函数的单调性,结合题意得出关于参数的方程,进行求解即可.。
2020-2021成都市实验外国语学校(西区)小学数学小升初第一次模拟试题(附答案)
2020-2021成都市实验外国语学校(西区)小学数学小升初第一次模拟试题(附答案)一、选择题1.如图:r=3dm,这个扇形的面积是()dm2.A. 28.26B. 9.42C. 7.065D. 4.71 2.在下面边长是10cm的正方形纸中,剪去一个长6cm、宽4cm的长方形,下列四种方法中,剩下的部分()的周长最长.A. B. C.D.3.分别用5个大小相同的小正方体搭成下面的三个立体模型,从()看这三个立体模型的形状是完全一样的。
A. 前面B. 上面C. 左面4.甲、乙两数的比是3:4,那么甲比乙少().A. B. C. D.5.如图,阴影部分的面积相当于甲圆面积的,相当于乙圆面积的,那么甲、乙两个圆的面积是().A. 6: 1B. 5: 1C. 5: 6D. 6: 5 6.用6个同样大小的正方体拼成一个立体图形,从上面、正面和左面看到的形状完全一样,这个立体图形是()。
A. B. C.D.7.当a表示所有的自然数0,1,2,3,…时,2a表示()。
A. 奇数B. 偶数C. 质数D. 合数8.钟面上,时针经过1小时旋转了()度。
A. 30B. 60C. 180D. 3609.下列描述正确的是()A. 在图上可以找到-5、20、3.5三个数对应的点。
B. 上图中,直线上的数不是正数就是负数。
C. 在0和3之间的数只有1和2.10.把正方体的表面展开,可能得到的展开图是()。
A. B. C. D.11.一个零件长4毫米,画在图上长12厘米。
这幅图的比例尺是()。
A. 1:30B. 1:3C. 30:1D. 3:1 12.在一个圆中剪掉一个圆心角是90°的扇形,其余部分占整个圆面积的()A. B. C. D.二、填空题13.一个直角三角形两个锐角度数的比是1:4,则这两个锐角分别是________度和________度。
14.如图中∠1是________°,按边分是一个________三角形,它有________条对称轴.15.汽车与轿车的速度之比为5:7,两车同时从甲乙两地出发,相向而行,两车的相遇地点距离中点16km。
四川省成都市实验外国语学校2013-2014学年高一数学12月月考试题
成都市实验外国语学校高2013级(高一上)12月月考数学试题(时间120分钟,总分150分)一、选择题:(本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、=2025sin ( B )A22 B -22 C 23 D -232、下列四个函数中,在(0,)+∞上是增函数的是( A ) (A)1()1f x x =-+ (B)2()3f x x x =- (C)()3f x x =- (D)()f x x =- 3、终边与坐标轴重合的角的集合是 ( D )(A ){}|2,k k Z θθπ=∈ (B ){}|,k k Z θθπ=∈ (C )|,2k k Z πθθπ⎧⎫=+∈⎨⎬⎩⎭ (D )1|,2k k Z θθπ⎧⎫=∈⎨⎬⎩⎭; 4、函数2014)2012(log 2013+-+=-x a y a x (0a >,且1a ≠)的图像过定点P ,则点P 的坐标为( C )(A))02013(, (B))0,2014( (C) )2015,2013( (D))2015,2014( 5、=--++)606sin(1866sin 170tan 10tan( D )A 3tan πB πcosC 2sin πDπsin 6、若函数()(01)x xf x ka aa a -=->≠且在(,)-∞+∞上既是奇函数又是增函数,则函数()log ()a g x x k =+的图像是( C )(A) (B) (C) (D)7、已知函数)(x f y =是(-∞,+∞)上的奇函数,且)(x f y =的图象关于x =1对称,当x ∈[0,1]时,12)(-=x x f ,则f (2013)+f (2014)的值为( D )A. -2B. -1C. 0D. 18、已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)22013(f 的值是( D ) A .22013 B .1 C .22015 D .09、已知函数3()s i n 4(,)f x a x b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( C ) A .5-B .1-C .3D .410、函数2122)(log )(21-+--=x x x x x f 。
2020-2021学年四川省成都外国语学校七年级(上)期中数学试卷
2020-2021学年四川省成都外国语学校七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)2020的相反数是()A.2020B.C.﹣2020D.﹣2.(3分)2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.2.15×106D.21.5×106 3.(3分)下面的几何体,是由A、B、C、D中的哪个图旋转一周形成的()A.B.C.D.4.(3分)下列各式中,不相等的是()A.(﹣2)2和22B.|﹣2|3和|﹣23|C.(﹣2)2和﹣22D.(﹣2)3和﹣23 5.(3分)下列代数式中,不是整式的是()A.B.3C.D.a+b6.(3分)已知2x n+1y3与x4y3是同类项,则n的值是()A.2B.3C.4D.57.(3分)下列计算正确的是()A.a+a=a2B.6x3﹣5x2=xC.3x2+2x3=5x5D.3a2b﹣4ba2=﹣a2b8.(3分)某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是()元.A.2a+10B.10﹣2a C.2a D.2a﹣109.(3分)下列说法正确的有()A.所有的有理数都能用数轴上的点表示B.任何数都有倒数C.有理数分为正数和负数D.两数相减,差一定小于被减数10.(3分)墨尔本与北京的时差是+3小时(即同一时刻墨尔本时间比北京时间早3小时),班机从墨尔本飞到北京需用12小时,若乘坐从墨尔本8:00(当地时间)起飞的航班,到达北京机场时,当地时间是()A.15:00B.17:00C.20:00D.23:00二、填空题(其余每题3分,其12分)11.(3分)(1)下列各图中,可以是一个正方体的平面展开图的是.(2)下列数字:﹣1,3,﹣2,1.75,|﹣|,0,﹣75%,其中整数:,是负分数.12.(3分)(1)比较:﹣7﹣9;(2)单项式的系数是,多项式2ab﹣a2b﹣2是次三项式.13.(3分)人在运动时的心跳速率通常和人的年龄有关.用a表示人的年龄,用b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).正常情况下,在运动时一个15岁的少年所能承受的每分钟心跳的最高次数是.14.(3分)小亮有6张卡片,上面分别写有﹣5,﹣3,﹣1,+2,+4,+6,他想从这6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为.三、解答题(共58分)15.(16分)计算(1)2+(﹣8);(2)(﹣32)﹣(﹣27);(3)8×(﹣)×;(4)16÷(﹣2)3﹣×(﹣4).16.(8分)合并同类项:(1)7a+3a2+2a﹣a2.(2)3x2﹣(2x2+5x﹣1).17.(12分)化简求值.(1)有理数a,b,c在数轴上的位置如图所示,化简:|b+a|﹣|b﹣c|.(2)求代数式﹣3x2y+5x﹣x2y﹣2的值,x=,y=7.(3)已知|m+n﹣2|+|mn+3|=0,求3[2(m+n)﹣mn]﹣2mn的值.18.(6分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.19.(6分)如图,一个窗户的上部是由4个扇形组成的半圆形,下部是由边长都为a的4个小正方形组成的正方形.(1)用a表示这个窗户的面积;(2)用a表示窗户外框的总长.20.(10分)唐代文学家韩愈曾赋诗:“天街小雨润如酥,草色遥看近却无”,当代印度诗人泰戈尔也写道:“世界上最遥远的距离,不是瞬间便无处寻觅;而是尚未相遇,便注定无法相聚”.距离是数学、天文学、物理学中的热门话题,唯有对宇宙距离进行测量,人类才能掌握世界尺度.已知点P,Q在数轴上分别表示有理数p,q,P,Q两点之间的距离表示为PQ=|p﹣q|.阅读以上材料,回答以下问题:(1)若数轴上表示x和﹣3的两点之间的距离是4,则x=;(2)当x的取值范围是多少时,代数式|x+2|+|x﹣3|有最小值,最小值是多少?(3)若未知数x,y满足(|x﹣1|+|x﹣3|)(|y﹣2|+|y+1|)=6.求代数式2x+y的最大值,最小值分别是多少?四.填空题(每小题4分,共20分)21.(4分)已知|a|=3,|b|=5,且a<b,则a﹣b的值为.22.(4分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.则(﹣2)*(6*3)=.23.(4分)若a2+a﹣1=0,则a3+2a2+2016=.24.(4分)小博表演扑克牌游戏,她将两幅牌分别交给观众A和观众B,然后背过脸去,请他们各自按照她的口令操作:a.在桌上摆3堆牌,每堆牌的张数要相等,且每堆都多于10张,但是不要告诉我;b.从第2堆拿出4张牌放到第1堆里;c.从第3堆牌中拿出8张牌放在第1堆里;d.数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e.从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A说5张,观众B说8张,小博猜两人最初每一堆里放的牌数分别为.25.(4分)下面是一种利用图形计算正整数乘法的方法,请根据图1~图4四个算图所示的规律,可知图5所表示的算式为.五.解答题(本大题共3题,共30分)26.(8分)已知:A+B=﹣3x2﹣5x﹣1,A﹣C=﹣2x+3x2﹣5.求:(1)B+C;(2)当x=﹣1时,求B+C的值?27.(10分)某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师若一次性购物400元,他实际付款元.若一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示两次购物王老师实际付款多少元?28.(12分)点A,B在数轴上表示的数分别为a和b,且a,b使多项式﹣ax2+2bxy+3x2﹣x ﹣12xy+y不含二次项.(1)a=,b=;(2)若有3只电子蚂蚁M、N、P分别在A、B、O处,同时开始运动,M以1个单位每秒的速度向右运动,N以2个单位每秒的速度向左运动,P以3个单位每秒的速度向左运动,运动时间为t秒.请问:MP﹣4NP是否随着时间t的变化而变化?若变化,请说明理由;若不变,请求出其值.(3)若在问题(2)中,当电子蚂蚁M、N相遇后,点M保持原速继续向右运动,点N 在相遇点停留3秒后按原速向右运动.求:从电子蚂蚁出发开始,在整个运动过程中,当M、N两只电子蚂蚁距离为1时,t的值.。
成都实验外国语学校2021~2022学年高一一阶考试数学试题及参考答案
成都市实验外国语2021~2022学年上期第一次阶段性考试高 一 数 学本试卷分为选择题和非选择题两部分。
满分150分,考试时间120分钟。
注意事项:1. 答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2. 答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3. 答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上4. 所有题目必须在答题卡上作答,在试题卷上答题无效。
5. 考试结束后,只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题(每小题只有一个正确答案,每小题5分,共60分)(2021 成都实外一阶考试 1)已知集合M 中的元素,,a b c 是ABC ∆的三边,则ABC ∆一定不是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形 【答案】D(2021 成都实外一阶考试 2)已知集合(){}(){},|2,,|4M x y x y N x y x y =+==-=,那么集合MN 为( )A. 3,1x y ==-B. (){}3,1-C. {}3,1-D. ()3,1-【答案】B(2021 成都实外一阶考试 3)已知{}{}2|1,|1M y y x P y y x ==-==-,则集合M 与P 的关系是( )A. M P =B. P R ∈C. M P ⊂≠D. P M ⊂≠ 【答案】A(2021 成都实外一阶考试 4)已知{}2|24,|11A x Z x B x x ⎧⎫=∈-<<=>⎨⎬-⎩⎭,则()RA B 的元素个数为( )A. 1B. 2C. 3D. 4【答案】D(2021 成都实外一阶考试 5)下列各组函数中,是同一函数的是( )①21,y x y =+=2,1x xy y x x-==-;③22321,312y x x u v v =++=++;④11,111x y y x x x -==++- A. ①②③ B. ①②③ C. ②④ D. ③ 【答案】D(2021 成都实外一阶考试 6)若函数()2212f x x x +=-,则()3f =( )A. 3B. 1-C. 0D. 4 【答案】B(2021 成都实外一阶考试 7)已知函数()f x 的定义域为(),2-∞,则函数()f x 的定义域为( )A. [)1,2-B. []1,1-C. ()2,2-D. [)2,2- 【答案】C(2021 成都实外一阶考试 8)函数42xy x-=+的值域是( ) A. R B. 11,,22⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭C. ()(),22,-∞--+∞D. ()(),11,-∞--+∞【答案】D(2021 成都实外一阶考试 9)水滴进玻璃容器,如图所示(设单位时间内进水量相同),那么水的高度是如何随时间变化的?下列匹配的图像与容器符合实际的有( )A. I----(2)B. II----(4)C. III----(3)D. V----(1) 【答案】A(2021 成都实外一阶考试 10)若函数()f x =在[)2,+∞上是减函数,则实数a的取值范围是( )A. (],4-∞B. (]4,4- C. [)4,4- D. (),4-∞【答案】B(2021 成都实外一阶考试 11)对于任意两个数()*,,x y x y N ∈,定义某种运算“*”如下:①当()*,,x y x y N ∈同为奇数或同为偶数时,*x y x y =+;②当()*,,x y x y N ∈一奇一偶时,*x y xy =,则集合(){},|*10A x y x y ==的子集个数是( )个 A. 142 B. 132 C. 112 D. 72 【答案】B(2021 成都实外一阶考试 12)函数()f x 对任意的实数,x y 都满足()()()222f x y f x f y +=+⎡⎤⎣⎦,()10f ≠,则()2021f 的值为( )A.20212B. 2021C. 12 D. 1【答案】A第II 卷(非选择题,共90分)二.填空题(每小题5分,共20分)(2021 成都实外一阶考试 13)用列举法表示集合{}*|,4________.x x N x ∈<= 【答案】{}1,2,3(2021 成都实外一阶考试 14)设函数()231f x x =-,则()()_______.f a f a --=【答案】0(2021 成都实外一阶考试 15)已知函数()10y a a x x=>+的图像如图所示,则实数a 的取值范围是_________.【答案】()1,+∞(2021 成都实外一阶考试 16)已知函数()()24,11f x x ax g x x x =-++=++-,若不等式()()f x g x ≥的解集包含[]1,1-,则实数a 点的取值范围是_______.x【答案】[]1,1-三.解答题(写出必要的证明、解答过程,共70分) (2021 成都实外一阶考试 17) (1)计算:10.532072720.139125π--⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭;(2)已知11223a a-+=,求22a a -+的值.【答案】(1)97;(2)47(2021 成都实外一阶考试 18)已知集合{}|37A x x =≤<,{}2|12200B x x x =-+<,{}|c x x a =<(1)(),RAB A B ;(2)若A C ≠∅,求a 的取值范围. 【答案】(1)()2,10AB =,()()[)2,37,10R A B =;(2)()2,+∞(2021 成都实外一阶考试 19)记函数()f x =定义域为集合A ,()g x =定义域为集合B(1)求集合A ;(2)若A B ⊆,求a 的取值范围. 【答案】(1)[)3,4;(2)[)4,+∞(2021 成都实外一阶考试 20)新学期开学季,成都某学校附近又新开了一家奶茶店,其中有一种名为“奶茶三兄弟”的饮品很受学生欢迎,老板费尽心思想在这种饮品上赚得第一桶金,其销售的价格在一学期不同周次有所变化. 设开始时每杯定价10元,从第一次周开始每周涨价2元,5周后开始保持20元的价格平稳销售,10周后,学生的新鲜感已过,平均每周削价2元,直到16周周末,老板为了让学生安心准备期末考试复习而不挂念“三兄弟”,该饮品暂停销售.(1)试求该饮品每杯价格p (元)与周次[](),1,16,t t t N ∈∈之间的函数关系式; (2)若此饮品每杯成本价q (元)与周次t 之间的关系是()[]21812,1,168q t t =--+∈,t N ∈,试问该饮品第几周每杯的销售利润最大,并求出最大值.【答案】(1)102,1520,510202,1016t t p t t t +≤≤⎧⎪=<≤⎨⎪-<≤⎩;(2)第五周,最大利润为73/8(2021 成都实外一阶考试 21)定义在()()1,00,1-上的函数()221f x x x=- (1)判断函数()f x 的奇偶性并证明; (2)解关于x 的不等式()()3151f x f x +>+.【答案】(1)偶函数,证明略;(2)2111,,5334⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭【解析】(2)031511x x <+<+<(2021 成都实外一阶考试 22)已知二次函数()f x 满足()()121f x f x x +-=+,()()f x f x -=,()01f =-(1)求()f x 的解析式;(2)求()f x 在[],2a a +上的最小值; (3)若对于任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,()()()2414x fm f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,求实数m 的取值范围.【答案】(1)()21f x x =-;(2)()2min243,21,201,0a a a f x a aa ⎧++≤-⎪=--<<⎨⎪-≥⎩;(3)3,,2⎛⎡⎫-∞-+∞ ⎪⎢ ⎪⎝⎦⎣⎭。
2020-2021学年四川省成都外国语学校八年级(上)期中数学试卷(解析版)
2020-2021学年四川省成都外国语学校八年级第一学期期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列各数中的无理数是()A.B.3.14C.D.π2.下列三条长度的线段不能组成直角三角形的是()A.,,B.12,5,13C.7,24,25D.9,40,41 3.函数y=中,自变量x的取值范围是()A.x>3B.x≤3C.x≠3D.x<34.下列说法中,正确的是()A.任意数的算术平方根都是正数B.只有正数才有算术平方根C.因为3的平方根是9,所以9的平方根是3D.﹣1是1的平方根5.下列计算正确的是()A.﹣=B.2×3=12C.=3D.4+3=14 6.若点P(m,2)与点Q(3,n)关于原点对称,则m,n的值分别为()A.﹣3,2B.3,﹣2C.﹣3,﹣2D.3,27.在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是()A.B.C.13D.58.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(2,0)C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1<y29.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.2.2米B.2.3米C.2.4米D.2.5米10.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直角形上,连接B、D和B,E,下列四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=30°④BE2=2(AD2+AB2)其中,正确的个数是()A.1B.2C.3D.4二、填空题(本大题共4小题,每小题4分,共16分)11.比较大小:6.12.已知直角三角形的两条直角边长分别为6cm和8cm,则这个直角三角形的外接圆的半径为cm.13.已知a、b分别是的整数部分和小数部分,那么2a﹣b的值为.14.已知A、B、C在数轴上的位置如图,AB=AC,A、B两点对应的实数分别是1和﹣,则点C对应的实数是.三、解答题(本大题共6小题,共54分)15.计算.(1).(2)(2﹣3)2﹣(4+3)(4﹣3).16.若实数y的立方根是2,且实数x、y、z满足+y+(x﹣z+4)2=8,(1)求x+y﹣2z的值;(2)若x、y、z是△ABC的三边长,试判断△ABC的形状.17.如图,△ABC在正方形网格中,若A(0,3),按要求回答下列问题(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出B和C的坐标;(3)计算△ABC的面积.18.为了普及“新冠病毒”的防疫知识,某市镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为800米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,并说明理由.(2)如果能听到,已知宣讲车的速度是每分钟300米,那么村庄总共能听到多长时间的宣传?19.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.20.如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A(4,4),过C点作∠ECF分别交线段AB、OB于E、F两点(1)若OF+BE=AB,求证:CF=CE.(2)如图(2),且∠ECF=45°,S△ECF=6,求S△BEF的值.四、填空题(本大题共5小题,每小题4分,共20分)21.已知y=+8x,则的算术平方根为.22.在平面直角坐标系中,点A(1,2a+3)到x轴的距离与到y轴的距离相等,则a =.23.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O 分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.24.如图,直线AB的解析式为y=﹣x+b分别与x,y轴交于A,B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.在x轴上方存在点D,使以点A,B,D为顶点的三角形与△ABC全等,则点D的坐标为.25.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB =90°,若点D是斜边AB的中点,则CD=AB,运用:如图2,△ABC中,∠BAC=90°,AB=2,AC=3,点D是BC的中点,将△ABD沿AD翻折得到△AED连接BE,CE,DE,则CE的长为.五、解答题(本大题共3小题,共30分)26.解决如下问题:(1)分母有理化:.(2)计算:.(3)若a=,求2a2﹣8a+1的值.27.如图1,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,∠ACE=45°.(1)求证:△AEF≌△CEB.(2)若G在BC的延长线上,连接GA,若GA=GB,求证:AC平分∠DAG.(3)如图2,在(2)的条件下,H为AG的中点,连接DH交AC于M,连接EM、ED,若S△EMC=4,∠BAD=15°,求AM的长.28.如图1,等腰直角△ABC中,∠ACB=90°,CB=CA,直线DE经过点C,过A作AD ⊥DE于点D,过B作BE⊥DE于点E,则△BEC≌△CDA,我们称这种全等模型为“K 型全等”.(不需要证明)[模型应用]若一次函数y=kx+4(h≠0)的图象与x轴、y轴分别交于A、B两点.(1)如图2,当k=﹣1时,若B到经过原点的直线l的距离BE的长为3,求A到直线l的距离AD的长.(2)如图3,当k=﹣时,点M在第一象限内,若△ABM是等腰直角三角形,求点M 的坐标.(3)当k的取值变化时,点A随之在x轴上运动,将线段BA绕点B逆时针旋转90°得到BQ,当Q在第一象限落在直线y=0.5x+1上时,在x轴上求一点H,使HQ+HB的值最小,请求出H的坐标.参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.下列各数中的无理数是()A.B.3.14C.D.π【分析】根据无限不循环小数叫无理数,可得答案.解:A.,是整数,属于有理数;B.3.14是有限小数,属于有理数;C.是分数,属于有理数;D.π是无理数.故选:D.2.下列三条长度的线段不能组成直角三角形的是()A.,,B.12,5,13C.7,24,25D.9,40,41【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.解:A、()2+()2≠()2,故选项A中的三条线段不能构成直角三角形;B、52+122=132,故选项B中的三条线段能构成直角三角形;C、72+242=252,故选项C中的三条线段能构成直角三角形;D、92+402=412,故选项D中的三条线段能构成直角三角形;故选:A.3.函数y=中,自变量x的取值范围是()A.x>3B.x≤3C.x≠3D.x<3【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.解:由题意得:3﹣x>0,解得:x<3,故选:D.4.下列说法中,正确的是()A.任意数的算术平方根都是正数B.只有正数才有算术平方根C.因为3的平方根是9,所以9的平方根是3D.﹣1是1的平方根【分析】根据算术平方根以及平方根的定义对各选项分析判断后利用排除法.解:A、正数的算术平方根是正数,0的算术平方根是0,故A选项错误;B、0也有算术平方根,是0,故B选项错误;C、应为3是9的平方根,所以9的平方根是±3,故C选项错误;D、﹣1是1的平方根,故D选项正确.故选:D.5.下列计算正确的是()A.﹣=B.2×3=12C.=3D.4+3=14【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.解:∵不能合并,故选项A错误;∵=12,故选项B正确;∵=,故选项C错误;∵4+3=7,故选项D错误;故选:B.6.若点P(m,2)与点Q(3,n)关于原点对称,则m,n的值分别为()A.﹣3,2B.3,﹣2C.﹣3,﹣2D.3,2【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.解:点P(m,2)与点Q(3,n)关于原点对称,得m=﹣3,n=﹣2,故选:C.7.在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是()A.B.C.13D.5【分析】先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.解:∵A(2,0)和B(0,3),∴OA=2,OB=3,∴AB=.故选:A.8.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(2,0)C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1<y2【分析】根据一次函数的性质,以及函数图象与坐标轴的交点的求法即可判断.解:A、函数经过一、二、四象限,不经过第三象限,故A选项正确.B、当y=0时,x=2,则函数图象与x轴交点坐标是(2,0),故B选项正确;C、函数的图象向下平移4个单位长度得y=﹣2x+4﹣4=﹣2x,故C选项正确;D、一次项系数小于0,则函数值随自变量的增大而减小,∵1<3,∴y1>y2,故D选项错误;故选:D.9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.2.2米B.2.3米C.2.4米D.2.5米【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:A.10.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直角形上,连接B、D和B,E,下列四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=30°④BE2=2(AD2+AB2)其中,正确的个数是()A.1B.2C.3D.4【分析】①由条件证明△ABD≌△ACE,就可以得到结论;②由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°,由∠DBC+∠ACE=90°,就可以得出结论;④△BDE为直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2≠BD2就可以得出结论.解:①∵∠BAC=∠DAE,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,∵,∴△ABD≌△ACE(SAS),∴BD=CE.故①正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACE+∠ACB=90°,∴∠BDC=180°﹣90°=90°.∴BD⊥CE;故②正确;③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,故③错误;④∵BD⊥CE,∴BE2=BD2+DE2.∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2.∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2).故④错误,故选:B.二、填空题(本大题共4小题,每小题4分,共16分)11.比较大小:<6.【分析】先运用二次根式的性质把根号外的移到根号内,然后只需根据条件分析被开方数即可.解:∵6=,∴<,即<6.故答案为:<.12.已知直角三角形的两条直角边长分别为6cm和8cm,则这个直角三角形的外接圆的半径为5cm.【分析】首先根据勾股定理,得斜边是10cm,再根据其外接圆的半径是斜边的一半,得出其外接圆的半径.解:∵直角边长分别为6cm和8cm,∴斜边是10cm,∴这个直角三角形的外接圆的半径为5cm.13.已知a、b分别是的整数部分和小数部分,那么2a﹣b的值为.【分析】先估算的取值范围,进而可求6﹣的取值范围,从而可求a,进而求b,最后把a、b的值代入计算即可.解:∵<<,∴3<<4,∴2<6﹣<3,∴a=2,∴b=6﹣﹣2=4﹣,∴2a﹣b=2×2﹣(4﹣)=.故答案是.14.已知A、B、C在数轴上的位置如图,AB=AC,A、B两点对应的实数分别是1和﹣,则点C对应的实数是2+.【分析】设出点C所表示的数为x,根据点B、C到点A的距离相等列出方程,即可求出x的值.解:设点C所表示的数为x,∵点B与点C到点A的距离相等,∴AC=AB,即x﹣1=1+,解得:x=2+.故答案为:2+.三、解答题(本大题共6小题,共54分)15.计算.(1).(2)(2﹣3)2﹣(4+3)(4﹣3).【分析】(1)先去绝对值,再把二次根式化为最简二次根式,然后合并即可;(2)利用完全平分公式和平方差公式计算.解:(1)原式=2﹣+2﹣=2;(2)原式=20﹣12+27﹣(16﹣18)=47﹣12+2=49﹣12.16.若实数y的立方根是2,且实数x、y、z满足+y+(x﹣z+4)2=8,(1)求x+y﹣2z的值;(2)若x、y、z是△ABC的三边长,试判断△ABC的形状.【分析】(1)根据非负性进行解答;(2)根据勾股定理的逆定理解答即可.解:(1)∵实数y的立方根是2,∴y=8∵+y+(x﹣z+4)2=8,∴x=6,z=10∴x+y﹣2z=6+8﹣20=﹣6(2)∵x2+y2=36+64=100,z2=100∴x2+y2=z2.∴△ABC是直角三角形.17.如图,△ABC在正方形网格中,若A(0,3),按要求回答下列问题(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出B和C的坐标;(3)计算△ABC的面积.【分析】(1)根据点A的坐标为(0,4),进而得出原点的位置,进而建立正确的平面直角坐标系;(2)根据坐标系直接得出点B和点C的坐标;(3)△ABC的面积等于长为4,宽为4的正方形的面积减去直角边长为4,2的直角三角形的面积,减去直角边长为3,4的直角三角形面积,减去直角边长为1,2的直角三角形的面积.解:(1)如图所示:建立平面直角坐标系;(2)根据坐标系可得出:B(﹣3,﹣1)C(1,1);(3)S△ABC=4×4﹣4×2﹣×3×4﹣×1×2=5.18.为了普及“新冠病毒”的防疫知识,某市镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为800米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,并说明理由.(2)如果能听到,已知宣讲车的速度是每分钟300米,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为800米<1000米,于是得到结论;(2)根据勾股定理得到BP=BQ==600米,求得PQ=1200米,于是得到结论.解:(1)村庄能听到宣传,理由:∵村庄A到公路MN的距离为800米<1000米,∴村庄能听到宣传;(2)如图:假设当宣讲车行驶到P点开始影响村庄,行驶QD点结束对村庄的影响,则AP=AQ=1000米,AB=800米,∴BP=BQ==600米,∴PQ=1200米,∴影响村庄的时间为:1200÷300=4分钟,∴村庄总共能听到4分钟的宣传.19.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【分析】(1)利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;(2)利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.20.如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A(4,4),过C点作∠ECF分别交线段AB、OB于E、F两点(1)若OF+BE=AB,求证:CF=CE.(2)如图(2),且∠ECF=45°,S△ECF=6,求S△BEF的值.【分析】(1)以SAS判定△COF≌△CAE,即可得结论;(2)将△ACE绕点C顺时针旋转90°,再证明△GCF≌△ECF(SAS),从而S△BEF=S﹣S△ECF﹣S△ECA﹣S△OCF,将相关三角形和正方形的面积代入即可求得答案四边形OBAC解:(1)证明:∵AB⊥x轴,AC⊥y轴∴∠ABO=∠ACO=90°∵∠BOC=90°∴∠A=360°﹣∠ABO﹣∠ACO﹣∠BOC=90°∴∠A=∠BOC∵C(0,4),A(4,4)∴OC=AC=AB=4∵OF+BE=AB,AB=AE+BE∴OF=AE在△COF和△CAE中∴△COF≌△CAE(SAS)∴CF=CE.(2)将△ACE绕点C顺时针旋转90°,则FG=AE+OF,CG=CE,∠ACE=∠GCO∵∠ECF=45°,∴∠ACE+∠FCO=∠ACO﹣∠ECF=90°﹣45°=45°∴∠GCF=∠GCO+∠FCO=∠ACE+∠FCO=45°∴∠GCF=∠ECF在△GCF和△ECF中∴△GCF≌△ECF(SAS)∵S△ECF=6∴S△GCF=6∴S△ECA+S△OCF=6∵由(1)知四边形OBAC为边长为4的正方形∴S四边形OBAC=4×4=16∴S△BEF=S四边形OBAC﹣S△ECF﹣S△ECA﹣S△OCF=16﹣6﹣6=4∴S△BEF的值为4.四、填空题(本大题共5小题,每小题4分,共20分)21.已知y=+8x,则的算术平方根为2.【分析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后代入代数式求出的值,再根据算术平方根的定义解答.解:由题意得,2x﹣1≥0且1﹣2x≥0,解得x≥且x≤,∴x=,∴y=+8x=0+0+8×=4,∴==4,∴的算术平方根是2.故答案为:2.22.在平面直角坐标系中,点A(1,2a+3)到x轴的距离与到y轴的距离相等,则a=﹣1或﹣2.【分析】根据点A到x轴的距离与到y轴的距离相等可得2a+3=1或2a+3=﹣1,据此解出a的值.解:∵A到x轴的距离与到y轴的距离相等,∴2a+3=1或2a+3=﹣1,解得a=﹣1或a=﹣2.故答案为:﹣1或﹣2.23.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O 分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为(6048,2).【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…,即可得每偶数之间的B相差6个单位长度,根据这个规律可以求得B2016的坐标.解:∵AO=,BO=2,∴AB==,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048.∴点B2016的纵坐标为:2.∴点B2016的坐标为:(6048,2).故答案为:(6048,2).24.如图,直线AB的解析式为y=﹣x+b分别与x,y轴交于A,B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.在x轴上方存在点D,使以点A,B,D为顶点的三角形与△ABC全等,则点D的坐标为(4,3)或(3,4).【分析】求出B(0,3)、点C(﹣1,0),分当BD平行x轴、BD不平行x轴两种情况,分别求解即可.解:将点A的坐标代入函数表达式得:0=﹣3+b,解得:b=3,故直线AB的表达式为:y=﹣x+3,则点B(0,3),OB:OC=3:1,则OC=1,即点C(﹣1,0);①如图,当BD平行x轴时,点A,B,D为顶点的三角形与△ABC全等,则四边形BDAC为平行四边形,则BD=AC=1+3=4,则点D(4,3),②当BD不平行x轴时,则S△ABD=S△ABD′,则点D、D′到AB的距离相等,则直线DD′∥AB,设:直线DD′的表达式为:y=﹣x+n,将点D的坐标代入上式并解得:n=7,直线DD′的表达式为:y=﹣x+7,设点D′(n,7﹣n),A,B,D为顶点的三角形与△ABC全等,则BD′=BC==,解得:n=3,故点D′(3,4);故答案为:(4,3)或(3,4).25.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB =90°,若点D是斜边AB的中点,则CD=AB,运用:如图2,△ABC中,∠BAC=90°,AB=2,AC=3,点D是BC的中点,将△ABD沿AD翻折得到△AED连接BE,CE,DE,则CE的长为.【分析】根据•BC•AH=•AB•AC,可得AH=,根据垂直平分线的性质可得AD•BO=BD•AH,得OB=,再根据BE=2OB=,运用勾股定理可得EC===.解:如图,连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∠BAC=90°,AB=2,AC=3,由勾股定理得BC=,由题可得AD=DC=DB=,∵•BC•AH=•AB•AC,∴×=∴AH=,∵AE=AB,DE=DB,∴点A在BE的垂直平分线上,点D在BE的垂直平分线上,∴AD垂直平分线段BE,∵AD•BO=BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===.故答案为.五、解答题(本大题共3小题,共30分)26.解决如下问题:(1)分母有理化:.(2)计算:.(3)若a=,求2a2﹣8a+1的值.【分析】(1)根据分母有理化计算;(2)根据(1)中结论计算即可;(3)根据分母有理化把a化简,根据完全平方公式把原式变形,把a的值代入计算即可.解:(1)==﹣1;(2)原式=﹣1+﹣+﹣+…+﹣=﹣1=45﹣1=44;(3)a===+2,则2a2﹣8a+1=2(a2﹣4a+4)﹣7=2(a﹣2)2﹣7=2(+2﹣2)2﹣7=10﹣7=3.27.如图1,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,∠ACE=45°.(1)求证:△AEF≌△CEB.(2)若G在BC的延长线上,连接GA,若GA=GB,求证:AC平分∠DAG.(3)如图2,在(2)的条件下,H为AG的中点,连接DH交AC于M,连接EM、ED,若S△EMC=4,∠BAD=15°,求AM的长.【分析】(1)先判断出AE=CE,再利用等角的余角相等判断出∠EAF=∠ECB,进而判断出△AEF≌△CEB,即可得出结论;(2)先利用三角形外角的性质得出∠AEF=45°+∠CAD,进而得出∠B=45°+∠CAD,而∠B=∠BAG,得出∠BAG=45°+∠CAD,而∠BAG=45°+∠CAG,即可得出结论;(3)先判断出△ADH是等边三角形,进而利用含30度角的直角三角形的性质判断出AM =3CM,进而求出△ACM的面积,即可求出AE,进而求出AC,即可得出结论.【解答】(1)证明:∵CE⊥AB,∴∠AEC=∠BEC=90°,∵∠ACE=45°,∴∠CAE=45°=∠ACE,∴AE=CE,∵AD⊥BC,∴∠ADC=90°,∴∠ECB+∠CFD=90°,∵∠CFD=∠AFE,∴∠ECB+∠AFE=90°,∵∠EAF+∠AFE=90°,∴∠EAF=∠ECB,在△AEF和△CEB中,,∴△AEF≌△CEB(ASA);(2)证明;∵△AEF≌△CEB,∴∠AFE=∠B,∵∠AFE=∠ACE+∠CAD=45°+∠CAD,∴∠B=45°+∠CAD,∵AG=BG,∴∠B=∠BAG,∴∠BAG=45°+∠CAD,∵∠BAG=∠CAE+∠CAG=45°+∠CAG,∴∠CAD=∠CAG,∴AC平分∠DAG;(3)解:∵∠BAD=15°,∠CAE=45°,∴∠CAD=∠CAE﹣∠BAD=30°,∵∠CAD=∠CAG,∴∠DAG=2∠CAD=60°,在Rt△ADG中,点H是AG的中点,∴DH=AH,∴△ADH是等边三角形,∴∠ADH=60°,AD=AH,∵∠CAD=∠CAG,∴AC⊥DH,即:∠AMD=∠DMC=90°∵∠ADC=90°,∴∠CDM=30°,在Rt△DMC中,DM=CM,在Rt△AMD中,AM=DM=×CM=3CM,∴S△AEM=3S△CEM=3×4=12,∴S△ACE=S△CEM+S△AEM=16,∵∠AEC=90°,AE=CE,∴S△ACE=AE2=16,∴AE=4,∴AC=AE=8,∴AM+CM=8,∵AM=3CM,∴3CM+CM=8,∴CM=2,∴AM=3CM=6.28.如图1,等腰直角△ABC中,∠ACB=90°,CB=CA,直线DE经过点C,过A作AD ⊥DE于点D,过B作BE⊥DE于点E,则△BEC≌△CDA,我们称这种全等模型为“K 型全等”.(不需要证明)[模型应用]若一次函数y=kx+4(h≠0)的图象与x轴、y轴分别交于A、B两点.(1)如图2,当k=﹣1时,若B到经过原点的直线l的距离BE的长为3,求A到直线l的距离AD的长.(2)如图3,当k=﹣时,点M在第一象限内,若△ABM是等腰直角三角形,求点M 的坐标.(3)当k的取值变化时,点A随之在x轴上运动,将线段BA绕点B逆时针旋转90°得到BQ,当Q在第一象限落在直线y=0.5x+1上时,在x轴上求一点H,使HQ+HB的值最小,请求出H的坐标.【分析】(1)由题意可知△BEO≌△AOD(K型全等),OE=AD,B(0,4),OE=,AD=;(2)k=﹣时,A(3,0),分三种情况讨论,①当BM⊥AB,且BM=AB时,过点M 作MN⊥y轴,由“AAS”可证△BMN≌△ABO,所以MN=OB,BN=OA;②当AB⊥AM,且AM=AB时,过点M作x轴垂线MK,可知△ABO≌△AMK(AAS),所以OB=AK,OA=MK;③当AM⊥BM,且AM=BM时,过点M作MH⊥x轴,MG⊥y轴,由“AAS”可证△BMG ≌△AHM,所以BG=AH,GM=MH,GM=MH,则有4﹣MH=MH﹣3;(3)由“AAS”可证△MAB≌△NBQ,可得BN=AM=4,NQ=MB=|﹣|=||,可求点Q坐标,作点Q关于x轴的对称点Q'(4,﹣3),连接BQ',交x轴于H,此时HB+HQ 最小,求出BQ'的解析式,联立方程组,可求解.解:(1)由题意可知:△BEO≌△AOD(K型全等),∴OE=AD,∵k=﹣1,∴y=﹣x+4,∴B(0,4),∴OB=4,∵BE=3,∴OE=,∴AD=;(2)k=﹣时,y=﹣x+4,∴A(3,0),①当BM⊥AB,且BM=AB时,如图3﹣1,过点M作MN⊥y轴,∴∠MNB=∠AOB=∠ABM=90°,∵∠ABO+∠MBN=90°=∠ABO+∠BAO,∴∠BAO=∠MBN,又∵AB=BM,∴△BMN≌△ABO(AAS),∴MN=OB,BN=OA,∴MN=4,BN=3,∴M(4,7);②如图3﹣2,当AB⊥AM,且AM=AB时,过点M作x轴垂线MK,同理可证:△ABO≌△AMK(AAS),∴OB=AK,OA=MK,∴AK=4,MK=3,∴M(7,3);③当AM⊥BM,且AM=BM时,如图3﹣3,过点M作MH⊥x轴,MG⊥y轴,同理可证:△BMG≌△AHM(AAS),∴BG=AH,GM=MH,∴GM=MH,∴4﹣MH=MH﹣3,∴MH=,∴M(,);综上所述:M(7,3)或M(4,7)或M(,);(3)设AB的解析式为y=kx+4,∴点A(﹣,0),点B(0,4),如图4,过点B作MN∥AO,过点A作AM⊥MN于M,过点Q作QN⊥MN于N,∵将线段BA绕点B逆时针旋转90°得到BQ,∴AB=BQ,∠ABQ=90°,∴∠ABM+∠MAB=90°,∠MBA+∠NBQ=90°,∴∠MAB=∠NBQ,在△MAB与△NBQ中,,∴△MAB≌△NBQ(AAS),∴BN=AM=4,NQ=MB=|﹣|=||,∴点Q(4,||),∴||=0.5×4+1,∴点Q(4,3),作点Q关于x轴的对称点Q'(4,﹣3),连接BQ',交x轴于H,此时HB+HQ最小,设直线BQ'解析式为y=mx+n,由题意可得:,解得:,∴直线BQ'解析式为y=﹣x+4,当y=0时,﹣x+4=0,∴x=,∴点H坐标为(,0).。
四川省成都外国语学校2020-2021学年高一上学期期中考试数学试题 Word版含答案
成都外国语学校2020一2021学年度上期期中考试高一数学试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.本堂考试时间120分钟,满分150分.3.答题前,考生务必先将自己的姓名、学号填写在答题卡上,并使用2B 铅笔填涂.4.考试结束后,将答题卡交回.第Ⅰ卷 (选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C ⋃⋂=( )A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}2.下列各组函数中,表示同一个函数的是( )A.112--=x x y 与1+=x y B.x y =与)1,0(log ≠>=a a a y xaC.12-=x y 与1-=x y D.x y lg =与2lg 21x y =3.设全集U R =,集合1284x A x⎧⎫=<<⎨⎬⎩⎭,{}05B x x =<<,则韦恩图中阴影部分表示的集合是( )A.{}25x x -<<B.{}20x x -<≤C.{}35x x -<<D.{}35x x ≤<4.已知函数=⎩⎨⎧≥-<-=)2(,0)5(0)(log )(3f x x f x x x f 则( ) A .-1 B .1 C .0 D .2 5.已知函数)(54)12(R x x x f ∈+=-,若13)(=a f ,则实数a 的值为( )A.5B.4C.3D.2 6.已知5log 3=a ,23log 2b =,2.05-=c ,则c b a ,,的大小关系为( )A.a c b >>B. a b c >>C.c b a >>D.c a b >>7.函数2121xy =+-的部分图象大致为( ) A .B .C .D .8.已知函数0(1,1,3)(>⎩⎨⎧≥<+-=a x a x a x x f x且)1≠a 在R 上是减函数,则a 的范围为( ) A.)1,0( B.]21,0( C.)1,21[ D.),21[+∞9.已知)(x f y =是定义在R 上的函数,且)()4(x f x f -=+,如果当(]4,0∈x 时,x x f 3)(-=,则=)985(f ( ) A .9B .-9C .3D .-310.若函数)2(log 2+-=ax x y a 在区间(]1,∞-上为减函数,则a 的取值范围是( ) A .()1,0 B .[)3,2 C .[)+∞,2 D .)3,1(11.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]2.13-=-, []3.13=,已知函数()121123x x f x +=-+,则函数[()]y f x =的值域是( )A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-12.已知函数⎩⎨⎧>+-≤<=3,430,log )(3x x x x x f ,若函数m y x f y ==与)(有三个不同的交点,其横坐标依次为,21,x x 3x ,且321x x x <<,则()3211x x x m-+的取值范围是( )A .)1,3(--B .)2,0(C .)3,1(-D .)0,3(第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.已知集合},1{2a A =,}1,{-=a B ,若}1,,1{a B A -= ,则=a .14.函数)10(2)(2020≠>+=-a a a x f x 且的图象必经过定点 .15.已知函数)(x f 是奇函数,当0>x 时,)6()(x x x f +=,则当0<x 时=)(x f .16.定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2 1.5,0,10.5,1,2x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩,若[)4,2x ∈--时,()142t f x t≥-恒成立,则实数t 的取值范围是 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数A x x x f 的定义域为集合)2lg()(2++-=,}2|{+≤≤=m x m x B . (Ⅰ)当2-=m 时,求B A ;(Ⅱ)若B B A = ,求实数m 的取值范围.18.(本小题满分12分)化简求值:(Ⅰ)2log 432302155327log 25.0)32()1613(+-+---π; (Ⅱ)已知52121=+-xx ,求54122-+++--x x x x 的值.19.(本小题满分12分)已知函数)10(≠>=a a a y x 且在[1,2]上的最大值与最小值之和为20,记2)(+=x xa a x f .(Ⅰ)求a 的值;(Ⅱ)求)20212020(......)20213()20212()20211(f f f f +++的值. 20.(本小题满分12分)某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为)(x R 万美元,且⎪⎩⎪⎨⎧>-≤<-=404000074004006400)(2x x xx x x R(Ⅰ)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(Ⅱ)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.21.(本小题满分12分)已知()21,f x log a a R x ⎛⎫⎪⎝⎭=+∈. (Ⅰ)当1a =时,解不等式()1f x >;(Ⅱ)设0a >,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求a 的取值范围.22.(本小题满分12分)已知函数()()9log 91xf x kx =++,()k R ∈是偶函数.(Ⅰ)求k 的值;(Ⅱ)若()102b x x f ⎛⎫-+>⎪⎝⎭对于任意x 恒成立,求b 的取值范围; (Ⅲ)若函数[]8log ,0,1329)(921)(∈+⋅+=+x m x h x xx f ,是否存在实数m 使得)(x h 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.成都外国语学校2020-2021学年度上期期中考试高一数学参考答案一、选择题二、填空题13.0 14.(2020,3) 15.)6(x x - 16.(](]1,02, -∞- 三、解答题17.(Ⅰ)}{21<<-=x x A ,}{22<≤-=x x B A 5分 (Ⅱ)01<<-m 10分 18.(Ⅰ)11(Ⅱ)211-各6分 19.(Ⅰ)4 5分 (Ⅱ)1010 12分 20.(1)利用利润等于收入减去成本,可得当040x <时,2()(1640)638440W xR x x x x =-+=-+-;当40x >时,40000()(1640)167360W xR x x x x=-+=--+ ∴W ={−6x 2+384x −40,0<x ⩽40−40000x−16x +7360,x >40; 6分(2)当040x <时,226384406(32)6104W x x x =-+-=--+,32x ∴=时,(32)6104max W W ==;当40x >时,400004000016736027360W x x x=--+-, 当且仅当4000016x x=,即50x =时,(50)5760max W W == 61045760>32x ∴=时,W 的最大值为6104万美元. 12分21.(Ⅰ)当1a =时,()22111f x log a log x x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝=+=⎭+ ()211112101111log x x x x f x ⎛⎫>++>∴>∴∴ ⎪⎝>⎭<∴<不等式解集为(0,1). 5分(Ⅱ)因为()f x 在(0,)+∞上单调递减,所以函数()f x 在区间[],1t t +上的最大值与最小值的差为()(1)t f f t -+,因此2211()(1)log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪⎪+⎝⎭⎝⎭即2(1)10at a t ++-≥对任意1,12t ⎡⎤∈⎢⎥⎣⎦恒成立,因为0a >,所以2(1)1y at a t =++-在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递增,所以21131(1)1(1)1=4242y at a t a a a =++-≥⨯++⨯-- 因此3120423a a -≥∴≥ 12分 22.(Ⅰ)函数()()9log 91xf x kx =++,()k R ∈是偶函数则满足()()f x f x =-所以()()99log 91log 91x xkx kx -++=-++即()()99919912log log log 991991x x x xx x kx x --++====-++ 所以21k =- 解得12k =-3分 (Ⅱ)由(1)可知,()()91log 912x f x x =-++,()102b x x f ⎛⎫-+> ⎪⎝⎭对于任意x 恒成立 代入可得()9log 910x x b +-->所以()9log 91xb x <+-对于任意x 恒成立令()()()999log 91log 91log 9xxxg x x =+-=+-99911log log 199x x x +⎛⎫==+ ⎪⎝⎭因为1119x +>所以由对数的图像与性质可得91log 109x ⎛⎫+> ⎪⎝⎭所以0b ≤ 7分 (Ⅲ)()()129231f x xxh x m +=+⋅+,[]90,log 8x ∈,且()()91log 912xf x x =-++代入化简可得()9232xxh x m =+⋅+令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222,p t t mt t m m t ⎡=++=++-∈⎣①当1m -≤,即1m ≥-时,()p t在⎡⎣上为增函数,所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去 ②当1m <-<即1m -<-时,()p t 在[]1,m -上为减函数,()p t在m ⎡-⎣上为增函数,所以()()2min 20p t p m m =-=-=,解得m =,所以m =③当m ≤-,即m ≤-, ()p t 在⎡⎣上为减函数,所以()(min 100p t p ==+=解得m =不合题意,舍去,综上可知,m = 12分。
2020-2021成都市实验外国语学校(西区)小学三年级数学上期中模拟试卷(及答案)
2020-2021成都市实验外国语学校(西区)小学三年级数学上期中模拟试卷(及答案)一、选择题1.小芳家、小洋家和学校在同一条直线的路上,小芳家离学校980米,小洋家离学校350米,小芳家和小洋家不可能相距()米。
A. 630B. 280C. 13302.下面两个数相加得1000的是()。
A. 536和361B. 649和341C. 792和2083.280比()少210.A. 78B. 470C. 374D. 490 4.400米+600米=()千米.A. 1B. 100C. 10005.小亮骑自行车,每小时大约行12()。
A. 厘米B. 分米C. 米D. 千米6.操场跑道一圈是400米,跑了2圈后,还差()米是1千米。
A. 800B. 600C. 2007.估算498+201-396的结果是()。
A. 500B. 300C. 4008.下面四个都是“两位数加两位数”算式,这四个算式都有一个数字看不清了,估计得数比80大的是()。
A. 51+2☆B. 49+2☆C. 75+1☆D. 60+1☆9.600+900=()A. 1500B. 1400C. 1600D. 1800 10.秒针从数字5走到数字6,经过了()。
A. 1秒B. 2秒C. 5秒11.分针走1大格,秒针走了()小格。
A. 60B. 120C. 300D. 360 12.刘强、张浩、赵雪做同一道题,刘强用了56秒,张浩用了48秒,赵雪用了1分30秒。
()做得最快。
A. 刘强B. 张浩C. 赵雪二、填空题13.一捆铁丝长1000米,第一次用了105米,第二次用的比第一次少35米,第二次用了________米,两次一共用了________米.14.如图,图书馆到学校550米,少年宫到学校450米,图书馆到少年宫________米,也就是________千米。
明明家到学校大约400米,丽丽家到学校大约________米。
15.4米=________分米 6000千克=________吨1分40秒=________秒 1800米+3200米=________千米16.电影院有441个座位,三年级来了219人,四年级来了215人,估计一下,两个年级的同学一起看电影________坐下(填“能”或“不能”).我是这样估算的:________,这样两个年级一共有________人,比441________,所以________坐下17.小明昨天写了29个大字,今天写了47个大字,两天一共写了________个大字。
2020-2021成都市实验外国语学校九年级数学上期末试卷(及答案)
2020-2021成都市实验外国语学校九年级数学上期末试卷(及答案)一、选择题1.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( ) A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠32.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( ) A .0<m <1B .1<m ≤2C .2<m <4D .0<m <43.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2 B .4<x <5C .x <-1或x >5D .x <-1或x >44.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形B .矩形C .正八边形D .正六边形5.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-6.关于下列二次函数图象之间的变换,叙述错误的是( ) A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象 B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象 C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象 7.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ②20a b +=;③9a-3b+c=0;④若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A .①③B .②④C .②③D .③④8.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .459.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根 D .没有实数根10.若20a ab -=(b ≠0),则aa b+=( ) A .0B .12 C .0或12D .1或 211.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36°B .54°C .72°D .108°12.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+12x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2二、填空题13.有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了__人.14.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________. 15.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____. 16.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为 .17.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.18.如图,抛物线2y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点,若点P 的坐标为(4,0),则点Q 的坐标为__________.19.对于实数,a b ,定义运算“◎”如下:a ◎b 22()()a b a b =+--.若()2m +◎()3m -24=,则m =_____.20.一元二次方程22x 20-=的解是______.三、解答题21.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m68111136345546701落在“铅笔”的频率m n(结果保留小数点后两位)0.680.740.680.690.680.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.22.如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是Rt∆ABC和Rt∆BED的边长,已知2=AE c,这时我们把关于x的形如220++=ax cx b二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”220+=ax cx b,必有实数根;(3)若x=-1是“勾系一元二次方程” 220++=ax cx b的一个根,且四边形ACDE的周长是2,求∆ABC的面积.23.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?24.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.25.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为 .(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据二次项系数非零及根的判别式列出关于m的一元一次不等式组,然后方程组即可.【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩解得:m>1且m ≠3. 故答案为D. 【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.2.C解析:C 【解析】 【分析】根据二次函数图象上点的坐标特征即可求得. 【详解】解:当a >0时,抛物线开口向上,则点(0,1)的对称点为(x 0,1), ∴x 0>4,∴对称轴为x=m 中2<m <4, 故选C . 【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.3.D解析:D 【解析】 【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x <4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围. 【详解】∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.4.C解析:C【解析】因为正八边形的每个内角为135 ,不能整除360度,故选C.5.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,2{34A AB BD ∠=∠=∠=∠, ∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD=2602123602π⨯-⨯=23π故选B .6.D解析:D 【解析】 【分析】根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解. 【详解】A 选项,将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象,故A 选项不符合题意;B 选项,将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x +2)2的图象,故B 选项不符合题意;C 选项,将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象,故C 选项不符合题意;D 选项,将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x +1)2+1的图象,故D 选项符合题意. 故选D . 【点睛】本题主要考查了二次函数图象与几何变换,熟练掌握平移变换只改变图形的位置不改变图形的形状与大小的关键.7.D解析:D 【解析】 【分析】①根据抛物线开口方向、对称轴、与y 轴的交点即可判断; ②根据抛物线的对称轴方程即可判断;③根据抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1可得抛物线与x 轴的另一个交点坐标为(﹣3,0),即可判断;④根据m >n >0,得出m ﹣1和n ﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断. 【详解】解:①观察图象可知: a <0,b <0,c >0,∴abc >0, 所以①错误;②∵对称轴为直线x =﹣1,即﹣2ba=﹣1,解得b =2a ,即2a ﹣b =0, 所以②错误;③∵抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1, ∴抛物线与x 轴的另一个交点为(﹣3,0), 当a =﹣3时,y =0,即9a ﹣3b +c =0, 所以③正确; ∵m >n >0, ∴m ﹣1>n ﹣1>﹣1,由x >﹣1时,y 随x 的增大而减小知x =m ﹣1时的函数值小于x =n ﹣1时的函数值,故④正确; 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征.8.C解析:C 【解析】 【分析】 【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3355÷= 故选C9.A解析:A 【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x 2+x ﹣3=0有两个不相等的实数根. 【详解】∵a=1,b=1,c=﹣3,∴△=b 2﹣4ac=12﹣4×(1)×(﹣3)=13>0, ∴方程x 2+x ﹣3=0有两个不相等的实数根, 故选A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.C解析:C 【解析】 【分析】 【详解】解:∵20a ab -= ()0b ≠, ∴a(a-b)=0, ∴a=0,b=a . 当a=0时,原式=0; 当b=a 时,原式=12, 故选C11.C解析:C 【解析】正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度, 故选C .12.D解析:D 【解析】 【分析】抛物线的形状只是与a 有关,a 相等,形状就相同. 【详解】y =2(x ﹣1)2+3中,a =2. 故选D . 【点睛】本题考查了抛物线的形状与a 的关系,比较简单.二、填空题13.12【解析】【分析】【详解】解:设平均一人传染了x 人x +1+(x +1)x =169x =12或x =-14(舍去)平均一人传染12人故答案为12解析:12 【解析】 【分析】 【详解】解:设平均一人传染了x人,x+1+(x+1)x=169x=12或x=-14(舍去).平均一人传染12人.故答案为12.14.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情解析:1 5【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为15.故答案为15.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比. 15.12【解析】【分析】首先利用因式分解法解方程再利用三角形三边关系得出各边长进而得出答案【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0解得:x1=2x2=5故等腰三角形的腰长只能为55底边长解析:12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 16.【解析】试题分析:根据圆的确定先做出过ABC三点的外接圆从而得出答案如图分别作ABBC的中垂线两直线的交点为O以O为圆心OA为半径作圆则⊙O即为过ABC三点的外接圆由图可知⊙O还经过点DEFGH这5解析:【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O 为圆心、OA 为半径作圆,则⊙O 即为过A ,B ,C 三点的外接圆,由图可知,⊙O 还经过点D 、E 、F 、G 、H 这5个格点,故答案为5.考点:圆的有关性质.17.-3<x <1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y >0时x 的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(1解析:-3<x <1【解析】试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y >0时,x 的范围.解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y >0时,x 的取值范围是﹣3<x <1.故答案为﹣3<x <1.考点:二次函数的图象.18.(0)【解析】∵抛物线的对称轴为点P 点Q 是抛物线与x 轴的两个交点∴点P 和点Q 关于直线对称又∵点P 的坐标为(40)∴点Q 的坐标为(-20)故答案为(-20)解析:(2-,0)【解析】∵抛物线2y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点, ∴点P 和点Q 关于直线1x =对称,又∵点P 的坐标为(4,0),∴点Q 的坐标为(-2,0).故答案为(-2,0). 19.-3或4【解析】【分析】利用新定义得到整理得到然后利用因式分解法解方程【详解】根据题意得或所以故答案为:或【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法这解析:-3或4【解析】【分析】利用新定义得到22[(2)(3)][(2)(3)]24m m m m ++--+--=,整理得到2(21)490m --=,然后利用因式分解法解方程.【详解】根据题意得,22[(2)(3)][(2)(3)]24m m m m ++--+--=, 2(21)490m --=,(2 m-1+7)(2 m-1-7)=0,2 m-1+7=0或2 m-1-7=0,所以123,4m m =-=. 故答案为:3-或4.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法. 20.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.三、解答题21.(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36【解析】【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1-360n )=3000,然后解方程即可. 【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7;故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000, 所以该商场每天大致需要支出的奖品费用为5000元;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1﹣360n )=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度.故答案为36.【点睛】 本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.22.(1)2340x ++=(答案不唯一)(2)见解析(3)1.【解析】【分析】(1)直接找一组勾股数代入方程即可;(2)根据根的判别式即可求解;(3)根据方程的解代入求出a,b,c 的关系,再根据完全平方公式的变形进行求解.【详解】(1)当a=3,b=4,c=5时,勾系一元二次方程为2340x ++=;(2)依题意得△=)2-4ab=2c 2-4ab,∵a 2+b 2=c 2,∴2c 2-4ab=2(a 2+b 2)-4ab=2(a-b )2≥0,即△≥0,故方程必有实数根;(3)把x=-1代入得c∵四边形 ACDE 的周长是,即,故得到c=2,∴a 2+b 2=4,∵(a+b)2= a 2+b 2+2ab∴ab=2,故∆ABC 的面积为12ab=1. 【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知勾股定理、根的判别式及完全平方公式的应用.23.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.24.(1)60,10;(2)96°;(3)1020;(4)23 【解析】【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案;(4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒,故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为:1020; (4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种, ∴恰好抽到1名男生和1名女生的概率为82123=. 【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.25.(1)13(2)13 【解析】【分析】(1)直接利用概率公式可得;(2)记这三个项目分别为A 、B 、C ,画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)小智被分配到A“全程马拉松”项目组的概率为13, 故答案为:13. (2)画树状图为:共有9种等可能的结果数,其中小智和小慧被分配到同一个项目组的结果数为3, 所以小智和小慧被分到同一个项目组进行志愿服务的概率为31=93.【点睛】本题主要考察概率,熟练掌握概率公式是解题关键.。
2020-2021学年四川省成都实验外国语学校西区八年级(上)入学数学试卷
2020-2021学年四川省成都实验外国语学校西区八年级(上)入学数学试卷一、选抨题(每小题3分、共30分)1.(3分)下列计算正确的是()A.a2+a3=a5B.a6÷a3=a2C.5x﹣3x=2D.(﹣2a2b)3=﹣8a6b32.(3分)2015年4月,生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为()A.4.3×106米B.4.3×10﹣5米C.4.3×10﹣6米D.43×107米3.(3分)随着生活水平的不断提高,汽车越来越普及,在下面的汽车标志图中,不属于轴对称的图形是()A.B.C.D.4.(3分)计算结果为a2﹣5a﹣6的是()A.(a﹣6)(a+1)B.(a﹣2)(a+3)C.(a+6)(a﹣1)D.(a+2)(a﹣3)5.(3分)已知三角形的三边长分别为4,5,x,则x不可能是()A.3B.5C.7D.96.(3分)如图,在下列条件中,能判断AB∥CD的是()A.∠DAC=∠ACB B.∠DCB+∠ADC=180°C.∠ABD=∠BDC D.∠BAC=∠ADC7.(3分)下列算式不能用平方差公式计算的是()A.(2x+y)(2y﹣x)B.(3x﹣y)(3x+y)C.(x+1)(﹣x+1)D.(x﹣y)(y+x)8.(3分)如图,已知∠BAC=∠DAC,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.AB=AD C.∠BCA=∠DCA D.∠B=∠D9.(3分)某学习小组做“用频率估计概率的试验时,统计了某一结果出现的频率,绘制了如图所示折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚正六面体的骰子,出现1点朝上B.任意写一个整数,它能被2整除C.不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球D.先后两次掷一枚质地均匀的硬币,两次都出现反面10.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DM,△ADM和△AED的面积分别为58和40,则△EDF的面积为()A.11B.10C.9D.8二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)已知5a=2,5b=3,则52a+b=.12.(4分)若(2a﹣1)2=4a2+ma+1,则m的值是.13.(4分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧,再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连接AD、CD,若∠B=56°,则∠ADC的大小为度.14.(4分)如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差km/h.三、解答题(共54分)15.(15分)化简或计算(1)|﹣2|+(﹣)﹣1﹣(π﹣3)0+(﹣1)2020;(2)(﹣2xy2)3•3x2y÷(xy)5;(3)2ab+2a(3a﹣b)﹣(a﹣b)(a+b).16.(7分)先化简,再求值:(2x+1)(2x﹣1)﹣(x+2)2,其中x=﹣.四、解答题17.(6分)如图,方格子的边长为1,△ABC的顶点在格点上.(1)画出△ABC关于直线l对称的△A1B1C1;(2)求△ABC的面积.18.(8分)如图,在△ABC中,CA=CB,D为边AB的中点,E,F分别为边CA,CB上的一点,且∠CED =∠CFD.(1)△AED与△BFD全等吗?请说明理由.(2)当∠C=110°,BD=BF时,求∠EDF的度数.19.(8分)“六一”儿童节小明上班开展娱乐活动,在不透明的盒子中装有除颜色外完全相同的小球若干个,其中红球2个,绿球3个,黑球5个.(1)混合均匀后从盒子中随机摸出一个小球,恰好摸到红色小球的概率为多少?(2)若小明又放入若干个黑球(除颜色外与盒中其他小球完全相同),与原来的小球均匀混合在一起,使从盒中随机摸出一个黑色小球的概率是,求后来小明又放入多少个黑色小球?20.(10分)已知:在四边形ABCD中,AC,BD相交于点E,且点E是AC的中点,AC⊥BD,过点B作BF⊥CD,垂足为点F,BF与AC交于点G.(1)如图1,求证:∠BGE=∠ADE;(2)如图2,若∠ABC=90°;①求证:DE=EG;②若AC=8,△BCG的面积为4,求四边形ABCD的面积.一、填空题(本大题共5个小题,每小题4分,共20分)B卷(共50分)21.(4分)若关于x的二次三项式9x2+2(a﹣4)x+16是一个完全平方式,则a的值为.22.(4分)若多项式x2+2mx﹣1与x2﹣2x+n的乘积中不含x2和x3项,则m2﹣mn+n2=.23.(4分)有7张正面分别标有数字1,0,﹣1,﹣2,﹣3,﹣4,﹣5的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为m,则使(m+4)m+1=1成立的概率是.24.(4分)如图,∠ABC=30°,点D是∠ABC内的一点,且DB=9,若点E,F分别是射线BA,BC上异于点B的动点,则△DEF的周长的最小值是.25.(4分)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为厘米/秒时,能够使△BPE与以C、P、Q三点所构成的三角形全等.二.解答题(本大题共3个小题,共30分)26.(8分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)图2所表示的数学等式为;(2)利用(1)得到的结论,解决问题:若a+b+c=12,a2+b2+c2=60,求ab+ac+bc的值;(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,D三点在同一直线上,连接AE,EG,若两正方形的边长满足a+b=15,ab=35,求阴影部分面积.27.(10分)某公司开发出一款新的节能产品,成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,销售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成如图的图象,图中的折线ODE表示日销售量y(件)与销售时间第x(天)之间的函数关系,已知线段DE表示的关系中,时间每增加1天,日销售量减少5件.(1)第20天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式;(3)日销售利润不低于640元的天数共有多少天?28.(12分)已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE 和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°(1)如图1,若∠ABE=63°,∠BAC=45°,求∠F AC的度数;(2)如图1,请探究线段EF和线段AD有何数量关系?并证明你的结论;(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G为线段EF的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.参考答案一、选抨题(每小题3分、共30分)1.D;2.C;3.D;4.A;5.D;6.C;7.A;8.A;9.C;10.C;二、填空题(本大题共4个小题,每小题4分,共16分)11.12;12.﹣4;13.56;14.;三、解答题(共54分)15.(1)﹣1;(2)﹣24y2;(3)5a2+b2.;16.;四、解答题17.;18.;19.;20.(1)证明过程请看解答;(2)①证明过程请看解答;②24.;一、填空题(本大题共5个小题,每小题4分,共20分)B卷(共50分)21.16或﹣8;22.;23.;24.9;25.3或;二.解答题(本大题共3个小题,共30分)26.(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;27.350;700。
2020-2021学年四川省遂宁市高一(上)期末数学试卷(附答案详解)
2020-2021学年四川省遂宁市高一(上)期末数学试卷一、单选题(本大题共12小题,共60.0分)1.已知集合A={x∈Z|−2≤x<1},B={−1,0,1,2,3},求A∩B=()A. {−1,2}B. {−1,0}C. {0,1}D. {1,2}2.下面各组函数中表示同一函数的是()A. f(x)=x,g(x)=(√x)2B. f(x)=2log2x,g(x)=log2x2C. f(x)=|x|,g(x)=√x2D. f(x)=|x|x ,g(x)={1,x≥0−1,x<03.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数为()A. y=cosxB. y=−log2xC. y=2xD. y=x−24.四个物体同时从某一点出发向前运动,其路程f i(x)(i=1,2,3,4)关于时间x(x>1)的函数关系是f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=2x,如果它们一直运动下去,最终在最前面的物体具有的函数关系是()A. f1(x)=x2B. f2(x)=2xC. f3(x)=log2xD. f4(x)=2x5.若函数f(x)=x3+x2−2x−2的一个正数零点附近的函数值用二分法计算,其参考数据如表:那么方程x3+x2−2x−2=0的一个近似根(精确到0.01)可以是()A. 1.25B. 1.39C. 1.41D. 1.56.已知3a=4b=12,c=log a b,则a,b,c的大小关系为()A. a<b<cB. c<b<aC. b<a<cD. c<a<b7.若sin(π−θ)−sin(π2−θ)=√72,且θ∈(34π,π),则sin(π−θ)−cos(π−θ)=()A. −12B. ±12C. 12D. −438.函数f(x)=x3+sinxe x+e−x(e≈2.718281828459)的部分图象大致是()A.B.C.D.9. 若幂函数f(x)=qx −p2+2p+3(q ∈R,p ∈Z)在(0,+∞)上是增函数,且在定义域上是偶函数,则p +q =( )A. 0B. 1C. 2D. 310. 设函数f(x)=3sin(ωx +φ)+1(ω>0,|φ|<π2)的最小正周期为π,其图象关于直线x =π3对称,则下列说法正确是( )A. f(x)的图象过点(0,32) B. f(x)在[π12,2π3]上单调递减 C. f(x)的一个对称中心是(7π12,0)D. 将f(x)的图象向左平移12|φ|个单位长度得到函数y =3sin2x +1的图象11. 若函数f(x)={a x ,x ≥1(5−a)x +1,x <1,满足对任意不相等的实数x 1,x 2都有(x 2−x 1)(f(x 1)−f(x 2))<0成立,则a 的取值范围是( )A. (3,+∞)B. (5,+∞)C. [3,5)D. (3,5)12. 设函数f(x)=Asin(ωx +φ)(A,ω,φ是常数,A >0,ω>0).若f(x)在区间[π3,π2]上具有单调性,且f(π2)=−f(π3),f(π2)=f(2π3),则ω=( )A. 6B. 3C. 2D. 1二、单空题(本大题共4小题,共20.0分)13. 设函数f(x)={16x −1,x ≤1x 2+x −2,x >1,则f(1f(2))= ______ .14. 计算:(2.25)−12+(−9.6)0−(827)13+log 2512⋅log 45= ______ .15. 高斯被誉为历史上最伟大的数学家之一,与阿基米德、牛顿、欧拉同享盛名,高斯函数f(x)=[x]也应用于生活、生产的各个领域.高斯函数也叫取整函数,其符号[x]表示不超过x 的最大整数,如:[3.14]=3,[−1.6]=−2,定义函数:f(x)=sin([x]π2),则f(x)值域的子集的个数为______ .16. 已知方程4x −k ⋅2x+1−3⋅2x +4=0(x >0)有两个不相等实根,则k 的取值范围为______ .三、解答题(本大题共6小题,共70.0分)17. 在平面直角坐标系中,以x 轴的非负半轴为角的始边,如果角α终边与单位圆交于点A(−35,45),角β的终边落在射线y =x(x >0)上. (1)求sinα⋅tanβ的值; (2)求sin(π2−α)sin(3π+α)+sin 2(3π2−β)sin 2β+3sinβcosβ的值.18. 已知集合A ={x|log 2(x +2)<2},B ={x|3a −2<x <2a +1}.(1)当a =1时,求A ∩B ;(2)若A ,B 满足:①若A ∩B =⌀,②A ∪B =A ,从①②中任选一个作为条件,求a 的取值范围.19. 遂宁市为打造最佳的宜居城市,践行绿水青山就是金山银山的理念,大力开展植树造林.假设西山森林公园原来的面积为m 亩,计划每年种植一些树苗,且西山森林公园面积的年增长率相同,当面积是原来的2倍时,所用时间是10年. (1)求西山森林公园面积的年增长率;(2)到今年为止,西山森林公园面积为原来的√2倍,则该地已经植树造林多少年?(3)为使西山森林公园面积至少达到6m亩,至少需要植树造林多少年?(参考数据:lg2=0.3010,lg3=0.4771)20.定义在R上的函数f(x),对任意x1、x2∈R,满足下列条件:①f(x1+x2)=f(x1)+f(x2)−2;②f(2)=4.(1)是否存在一次函数f(x)满足条件①②,若存在,求出f(x)的解析式;若不存在,说明理由.(2)证明:g(x)=f(x)−2为奇函数.21.如图是函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的部分图象.(1)求φ的值及f(x)单调递增区间.(2)若f(x)的图象横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移π个单位,最后向上平移1个单位,得到函数g(x)的图3象,若g(x)在[0,b](b>0)上恰有10个零点,求b的取值范围.22.已知函数f(x)=1−b为定义在R上的奇函数.2x+a(1)求a,b的值;(2)判断f(x)=1−2的单调性,并用定义证明你的结论;2x+1(3)若f(lnm)+f(lnm−1)≤1−2lnm,求f(x)的取值范围.答案和解析1.【答案】B【解析】解:∵A ={−2,−1,0},B ={−1,0,1,2,3}, ∴A ∩B ={−1,0}. 故选:B .可求出集合A ,然后进行交集的运算即可.本题考查了描述法和列举法的定义,交集及其运算,考查了计算能力,属于基础题.2.【答案】C【解析】解:A.y =x 的定义域是R ,y =(√x)2=x 的定义域为[0,+∞),两个函数的定义域不相同,不是同一函数,B .f(x)的定义域为(0,+∞),g(x)的定义域为{x|x ≠0},两个函数的定义域不相同,不是同一函数,C .g(x)=|x|,两个函数的定义域都是R ,对应法则相同,是同一函数,D .f(x)={1,x >0−1,x <0,定义域为{x|x ≠0},g(x)的定义域是R ,两个函数的定义域不相同,不是同一函数, 故选:C .分别判断两个函数的定义域和对应法则是否相同即可.本题主要考查同一函数的判断,结合两个函数的定义域和对应法则是否相同是解决本题的关键,是基础题.3.【答案】D【解析】解:y =cosx 在(0,+∞)上没有单调性;y =−log 2x 和y =2x 都是非奇非偶函数;y =x −2是偶函数,且在(0,+∞)上是减函数. 故选:D .可看出选项A 的函数在(0,+∞)上没有单调性,选项B ,C 的函数都是非奇非偶函数,从而只能选D .本题考查了偶函数和减函数的定义及判断,偶函数图象的对称性,考查了计算能力,属4.【答案】D【解析】解:路程f i(x)(i=1,2,3,4)关于时间x(x>1)的函数关系是:f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=2x,它们相应的函数模型分别是幂函数,一次函数,对数函数和指数函数模型.根据四种函数的变化特点,指数函数是一个变化最快的函数,当运动的时间足够长,最前面的物体一定是按照指数函数运动的物体,即一定是第四种物体,故选:D.指数函数是一个变化最快的函数,当运动的时间足够长,最前面的动物一定是按照指数函数运动的物体,即一定是第四种物体.本题考查几种基本初等函数的变化趋势,只要注意到对数函数、指数函数与幂函数的增长差异,属于基础题.5.【答案】C【解析】解:由表中数据可得f(1.40625)⋅f(1.4375)<0,根据零点的存在性定理可知,零点在区间(1.40625,1.4375)内,观察四个选项,方程x3+x2−2x−2=0的一个近似根为1.41.故选:C.利用表中的数据,得到f(1.40625)⋅f(1.4375)<0,由零点的存在性定理分析求解即可.本题考查了函数与方程关系的应用,涉及了函数零点的存在性定理的应用,属于基础题.6.【答案】B【解析】解:因为3a=4b=12,所以a=log312,b=log412,所以2=log39<a=log312<log327=3,1<log44<b=log412<log416=2,即2<a<3,1<b<2,所以c=log a b<log a a=1,所以c<b<a.通过指数对数互逆表示出a 、b ,然后判断a 、b 的范围,从而可确定c 的范围,即可得到它们的大小关系.本题主要考查了对数的大小关系,涉及指数与对数的互化,同时考查了学生的转化能力,属于基础题.7.【答案】A【解析】解:因为sin(π−θ)−sin(π2−θ)=√72,可得sinθ−cosθ=√72,两边平方可得1−2sinθcosθ=74,可得2sinθcosθ=−34<0,因为θ∈(34π,π),可得sinθ>0,cosθ<0,sinθ+cosθ<0,则sin(π−θ)−cos(π−θ)=sinθ+cosθ=−√(sinθ+cosθ)2=−√1+2sinθcosθ=−√1+(−34)=−12.故选:A .利用诱导公式化简已知等式,两边平方,利用同角三角函数基本关系式可求2sinθcosθ=−34<0,进而根据诱导公式,同角三角函数基本关系式化简所求即可得解.本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.8.【答案】A【解析】解:f(−x)=−x 3−sinx e −x +e x=−f(x),则函数为奇函数,图象关于原点对称,排除BD ,当x =π时,f(x)>0,排除D , 故选:A .根据函数的奇偶性和对称性,利用排除法进行判断即可.本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性的关系,结合排除法是解决本题的关键,是基础题.【解析】解:∵幂函数f(x)=qx−p2+2p+3(q∈R,p∈Z)在(0,+∞)上是增函数,且在定义域上是偶函数,∴q=1,且−p2+2p+3为正的偶数,∴p=1.∴p+q=2,故选:C.由题意利用幂函数的定义和性质,求出p、q的值,可得结论.本题主要考查幂函数的定义和性质,属于基础题.10.【答案】D【解析】解:函数f(x)=3sin(ωx+φ)+1(ω>0,|φ|<π2)的最小正周期为π,故ω=2,其图象关于直线x=π3对称,所以2π3+φ=kπ+π2(k∈Z),由于|ϕ|<π2,故φ=−π6,所以f(x)=3sin(2x−π6)+1.对于A:当x=0时,f(0)=3sin(−π6)+1=−32+1=−12,故A错误;对于B:由于x∈[π12,2π3],所以2x−π6∈[0,7π6],故B错误,对于C:当x=7π12时,f(7π12)=3sinπ+1=1,故C错误;对于D:将f(x)的图象向左平移12|φ|=π12个单位长度得到函数y=3sin2x+1的图象,故D正确.故选:D.首先利用函数的性质求出函数的关系式,进一步判定A、B、C、D的结论.本题考查的知识要点:三角函数关系的变换,函数的关系式的求法,正弦型函数的性质的应用,函数的图象的平移变换和伸缩变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题.11.【答案】C【解析】解:对任意不相等的实数x 1,x 2都有(x 2−x 1)(f(x 1)−f(x 2))<0成立, 可得函数f(x)={a x ,x ≥1(5−a)x +1,x <1是R 上的增函数,∴{a >15−a >05−a +1≤a ,即3≤a <5. ∴a 的取值范围是[3,5). 故选:C .由题意可得,函数f(x)={a x ,x ≥1(5−a)x +1,x <1是R 上的增函数,进一步得到关于a 的不等式组求解.本题考查分段函数的单调性及其应用,考查化归与转化思想,考查运算求解能力,是基础题.12.【答案】B【解析】解:∵f(x)在区间[π3,π2]上具有单调性,且f(π2)=−f(π3),f(π2)=f(2π3), ∴由f(π2)=−f(π3),得函数关于(π2+π32,0)对称,即关于(5π12,0)对称, 由f(π2)=f(2π3),得函数关于x =π2+2π32=7π12对称,则T4=7π12−5π12=2π12,得T =2π3,即2πω=2π3,得ω=3,故选:B .结合条件得到函数关于(5π12,0)对称,关于关于x =7π12对称,根据对称性求出函数的周期即可取出ω的值.本题主要考查三角函数的图象和性质,根据条件求出函数的对称性,结合对称性求出函数的周期是解决本题的关键,是中档题.13.【答案】1【解析】解:因为f(x)={16x −1,x ≤1x 2+x −2,x >1,所以f(2)=22+2−2=4, 所以f(1f(2))=f(14)=1614−1=24×14−1=1.故答案为:1.先利用x >1的解析式求出f(2),再利用x ≤1的解析式求解f(1f(2))即可.本题考查的是函数的求值问题,主要考查的是分段函数求值,解题的关键是弄清该使用哪一段解析式求解,属于基础题.14.【答案】34【解析】解:(2.25)−12+(−9.6)0−(827)13+log 2512⋅log 45=11.5+1−23+lg 12lg25⋅lg5lg4 =23+1−23+(−14) =34.故答案为:34.利用指数、对数的性质、运算法则直接求解.本题考查指数式、对数式化简求值,考查指数、对数的性质、运算法则等基础知识,考查运算求解能力,是基础题.15.【答案】8【解析】解:由[x]的定义知,当x ≥0时,[x]=0,1,2,3,…… 则f(x)=0,f(x)=sin π2=1,f(x)=sinπ=0,f(x)=sin 3π2=−1,f(x)=sin2π=0,……,则f(x)的值域为{0,1,−1},所以子集的个数为23=8个, 故答案为:8.根据[x]的定义,结合三角函数定义进行计算即可.本题主要考查真子集的计算,结合[x]的定义计算出函数的值域是解决本题的关键,是基础题.16.【答案】(12,1)【解析】解:方程4x −k ⋅2x+1−3⋅2x +4=0(x >0), 即(2x )2−(2k +3)2x +4=0(x >0), 令2x =t ,则t >1, 则有t 2−(2k +3)t +4=0,若方程4x −k ⋅2x+1−3⋅2x +4=0(x >0)有两个不相等实根, 即t 2−(2k +3)t +4=0(t >1)有两个不相等实根,则{2k+32>1△=[−(2k +3)]2−4×4>0f(1)=1−(2k +3)+4>0,解得:12<k <1,故答案为:(12,1).令2x =t ,问题转化为t 2−(2k +3)t +4=0(t >1)有两个不相等实根,根据二次函数的性质求出k 的范围即可.本题考查了二次函数,二次方程与二次不等式问题,考查转化思想,是中档题.17.【答案】解:(1)由题意可得A 点到原点O 的距离√(45)2+(−35)2=1, 由三角函数的定义知sinα=45,设角β的终边落在射线y =x(x >0)上任意一点B(m,m),m >0, 则tanβ=1, 所以sinα⋅tanβ=45.(2)由(1)及三角函数的定义知tanα=45−35=−43,原式=−cosαsinα+cos 2βsin 2β+3sinβcosβ=−1tanα+1tan 2β+3tanβ=−1−43+11+3=1.【解析】(1)由题意利用任意角的三角函数的定义可求sinα,设角β的终边落在射线y =x(x >0)上任意一点B(m,m),m >0,可求tanβ=1,即可计算得解.(2)由(1)及三角函数的定义可求tanα的值,利用诱导公式,同角三角函数基本关系式化简求解即可得解.本题考查了任意角的三角函数的定义,考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.18.【答案】解:(1)集合A ={x|log 2(x +2)<2}={x|−2<x <2},当a =1时,B ={x|1<x <3}, ∴A ∩B ={x|1<x <2}. (2)当选①∵A ∩B =⌀,∴当B =⌀时,3a −2≥2a +1,解得a ≥3,符合题意; 当B ≠⌀时,{3a −2<2a +13a −2≥2或{3a −2<2a +12a +1≤−2解得43≤a <3或a ≤−32,综上,a 的取值范围为(−∞,−32]∪[43,+∞). 当选②∵A ∪B =A ,∴B ⊆A∴当B =⌀时,3a −2≥2a +1,即a ≥3,符合题意; 当B ≠⌀时,{a <3−2≤3a −22≥2a +1,解得0≤a ≤12,综上,a 的取值范围为[0,12]∪[3,+∞).【解析】(1)可以求出A ={x|−2<x <2},a =1时,求出集合B ,然后进行交集的运算即可;(2)若选①根据A ∩B =⌀,可讨论B 是否为空集:B =⌀时,3a −2≥2a +1;B ≠⌀时,根据集合关系列出不等式组,解出a 的范围即可.若选②由A ∪B =A ,得到B ⊆A ,由此能求出实数a 的取值范围.本题考查对数不等式的解法,考查交集运算、集合之间的关系,子集的定义等基础知识,考查运算求解能力,属于基础题.19.【答案】解:(1)设增长率为x ,依题意得:m(1+x)10=2m ,所以(1+x)10=2,从而[(1+x)10]110=2110, 即1+x =2110,解得x =2110−1, 故年增长率为2110−1;(2)设已经植树造林n年,则m(1+2110−1)n=√2m,即2110n=212,解得n=5,故已经植树造林5年;(3)设已经植树造林n年,则m(1+2110−1)n=√2m,即2110k≥6,即110k≥log26=log22+log23,解得k≥10+10lg3lg2≈25.8,故至少还需要26年.【解析】(1)设增长率为x,依题意得:m(1+x)10=2m,然后解方程即可;(2)设已经植树造林n年,则m(1+2110−1)n=√2m,解方程即可求解;(3)设已经植树造林n年,则m(1+2110−1)n=√2m,解不等式即可.本题考查了根据实际问题建立函数模型的问题,涉及到解指数式方程以及对数式方程,考查了学生的运算能力,属于中档题.20.【答案】(1)解:假设存在一次函数f(x),设f(x)=kx+b(k≠0),则f(x1+x2)=k(x1+x2)+b,f(x1)+f(x2)−2=k(x1+x2)+2b−2,所有b=2b−2,b=2,f(2)=2k+b=4,k=1,故满足条件的一次函数为:f(x)=x+2;(2)证明:定义在R上的函数f(x)对任意的x1、x2∈R,都有f(x1+x2)=f(x1)+f(x2)−2成立,令x1=x2=0,则f(0+0)=f(0)+f(0)−2,∴f(0)=2,令x1=x,x2=−x,则f(x−x)=f(x)+f(−x)−2,∴[f(x)−2]+[f(−x)−2]=0,即g(x)+g(−x)=0,于是g(−x)=−g(x),∴g(x)=f(x)−2为奇函数.【解析】(1)假设存在一次函数f(x),设出解析式,然后结合题目条件建立等式,解之即可求出所求;(2)令x1=x2=0,求出f(0),再令x1=x,x2=−x,变形可得g(−x)=−g(x),根据奇函数的定义可得结论.本题主要考查了抽象函数及其应用,及其赋值法的应用和奇函数的判定,同时考查了学生的转化能力,属于中档题.21.【答案】解:(1)由图易知T2=2π3−π6=π2,则T=π,ω=2πT=2,由题意结合图象知,2×π6+φ=kπ,k∈Z,又0<φ<π,故φ=2π3,则f(x)=sin(2x+2π3).令:2kπ−π2 ≤2x+2π3≤2kπ+π2,k∈Z,整理得kπ−7π12≤x≤kπ−π12,k∈Z,所以函数f(x)的单调增区间是[kπ−7π12,kπ−π12](k∈Z).(2)若f(x)的图象横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移π3个单位,最后向上平移1个单位,得到函数g(x)=2sin2x+1.令g(x)=0,得x=kπ+7π12或x=kπ+11π12 (k∈Z).所以在[0,π]上恰好有两个零点,若g(x)在[0,b]上恰有10个零点,则b不小于第10个零点的横坐标,小于第11个零点的横坐标即可,即b的范围为:b≥4π+11π12 =59π12.且b<4π+11π12+π−11π12+7π12 =67π12即59π12≤b<67π12.【解析】(1)直接利用函数的图象求出函数的关系式,进一步求出函数的单调区间;(2)利用函数的图象的平移变换和伸缩变换,根据图象和零点的关系求出参数的取值范围.本题考查的知识要点:函数的额关系式的求法和应用,函数的图象的平移变换和伸缩变换,函数的图象和零点的关系,主要考查学生的运算能力和转换能力及思维能力,属于基础题.22.【答案】解:(1)根据题意,函数f(x)=1−b2x+a为定义在R上的奇函数.所以f(x)+f(−x)=1−b2x+a +1−b2−x+a=0在R上恒成立,变形可得:(b −2a)(2x +2−x )+2ab −2a 2−2=0恒成立, 所以{b =2a ab =1+a2,解得:{a =1b =2或{a =−1b =−2, 当{a =1b =2时,f(x)=1−22x +1=2x −12x +1,是定义域为R 的奇函数,符合题意,当{a =−1b =−2时,f(x)=1+22x −1,其定义域为{x|x ≠0},不符合题意, 故a =1,b =2;(2)函数f(x)为R 上的单调增函数;证明:设x 1,x 2是R 上的任意两个值,且x 1<x 2,则f(x 1)−f(x 2)=1−22x 1+1−(1−22x 2+1)=22x 2+1−22x 1+1=2(2x 1−2x 2)(2x 1+1)(2x 2+1) 因为x 1<x 2,又y =2x 为R 上的单调增函数,所以0<2x 1<2x 2,则有f(x 1)−f(x 2)<0,即f(x 1)<f(x 2), 所以函数f(x)为R 上的单调增函数;(3)因为f(lnm)+f(lnm −1)≤1−2lnm ,即f(lnm)+lnm ≤−f(lnm −1)+1−lnm 而函数f(x)为R 上的奇函数,则有f(lnm)+lnm ≤f(1−lnm)+1−lnm , 令ℎ(x)=f(x)+x ,设x 1,x 2是R 上的任意两个值,且x 1<x 2,因为x 1−x 2<0, 由(2)知f(x 1)−f(x 2)<0,所以ℎ(x 1)−ℎ(x 2)=f(x 1)+x 1−(f(x 2)+x 2)=f(x 1)−f(x 2)+(x 1−x 2)<0, 即ℎ(x 1)<ℎ(x 2),所以ℎ(x)为R 上的单调增函数.因为f(lnm)+lnm ≤f(1−lnm)+1−lnm ,所以ℎ(lnm)≤ℎ(1−lnm) 所以lnm ≤1−lnm ,即lnm ≤12,解可得:0<m ≤√e ,所以m 的范围是(0,√e].【解析】(1)根据题意,由奇函数的定义可得f(x)+f(−x)=0,结合函数的解析式分析可得a 、b 的值,验证函数的定义域可得答案, (2)根据题意,由作差法分析可得结论,(3)根据题意,原不等式变形可得f(lnm)+lnm ≤f(1−lnm)+1−lnm ,令ℎ(x)=f(x)+x ,由作差法可得ℎ(x)是R 上的单调增函数,则原不等式可以转化为lnm ≤1−lnm ,即lnm ≤12,解可得m 的取值范围,即可得答案.本题考查函数奇偶性、单调性的综合应用,涉及对数不等式的解法,属于中档题.。
2020-2021学年四川省成都市蓉城名校联盟高一上学期期中数学试卷(含解析)
2020-2021学年四川省成都市蓉城名校联盟高一上学期期中数学试卷一、单选题(本大题共12小题,共60.0分)1.已知集合M={x∈R|y=lg(4−x2)},则M∩N∗=()A. (−1,1]B. {1}C. (0,2)D. {0,1}2.函数的定义域为,若对任意的,当时,都有,则称函数在上为非减函数.设函数在上为非减函数,且满足以下三个条件:①;②;③.则()A. B. C. D.3.函数的单调递减区间为()A. (−∞,−3)B. (−∞,−1)C. (1,+∞)D. (−3,−1)4.已知a=log20.3,b=0.31.3,c=21.3,则a,b,c的大小关系是()A. a<b<cB. c<a<bC. b<c<aD. b<a<c5.已知函数f(x)=1−√2−3x,g(x)=2lnx,对任意x1∈(−∞,23],都存在x2∈(0,+∞),使得f(x1)−g(x2)=14,则x1−x2的最大值为()A. −2548B. −2348C. −13−ln2 D. −12−ln36.函数的定义域为()A. [π4,+∞) B. [π4,5π4]C. D.7.若关于x不等式kx2−kx+1>0的解集为R,则实数k的取值范围是()A. (0,4)B. [0,+∞)C. (0,+∞)D. [0,4)8.定义区间,,,的长度均为,多个区间并集的长度为各区间长度之和,例如,的长度.用表示不超过的最大整数,记,其中.设,,若用分别表示不等式,方程,不等式解集区间的长度,则当时,有( )A. B. C.D.9.函数f(x)=log 12(−x 2−2x +3)的单调减区间为( ) A. (−∞,−1] B. (−3,−1] C. [−1,1) D. [−1,+∞)10. 已知f(x)是定义在R 上的奇函数,若对于x ≥0,都有f(x +2)=f(x),且当x ∈[0,2]时,f(x)=e x −1,则f(2 013)+f(−2 014)=( ).A. 1−eB. e −1C. −1−eD. e +111. 已知函数f (x )=则函数f (x )的零点个数为( )A. 1B. 2C. 3D. 412. 已知函数f(x)(x ∈R)满足f(1)=1,且f′(x)<12,则f(x)<x2+12的解集为( )A. {x|−1<x <1}B. {x|x >−1}C. {x|x <−1或x >1}D. {x|x >1}二、单空题(本大题共4小题,共20.0分)13. 下列关系式中,正确的关系式有______个①√2∈Q ②0∉N ③2∈{1,2} ④⌀={0} ⑤{a}⊆{a}.14. 光线通过一块玻璃板时,其强度要损失原来的10%,把几块这样的玻璃板重叠起来,设光线原来的强度为a ,则通过3块玻璃板后的强度变为______ . 15. 已知f(x)=(x+1)2x 2+1+sinx ,若f(m)=2,则f(−m)的值是______ .16. 函数f(x)=|x −2|−lnx 的零点个数为______. 三、解答题(本大题共6小题,共70.0分) 17. 化简下列式子:(1)sin(α−5π2)⋅cos(3π2−α)⋅tan(π+α)⋅cos(π2−α)sin(2π−α)⋅tan(α−π)⋅sin(−α−π)(2)2lg3+log 0.114cos0+12lg0.36(3)已知tana=23,求1sinαcosα.18.已知全集U=R,集合A={x|−1<x<1},B={x|1≤4x≤8},C={x|−4<x≤2a−7}.(1)A∩(∁U B);(2)若A∩C=A,求实数a的取值范围.19.已知关于x的二次函数f(x)=ax2−4bx+1,(1)设集合P={−1,1,2,3,4,5}和Q={−2,−1,1,2,3,4},分别从集合P和集合Q中任取一个数作为a和b的值,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)若a是从区间[1,3]任取的一个数,b是从区间[1,3]任取的一个数,求函数f(x)在区间[1,+∞)上是增函数的概率.20.飞机每飞行1小时的费用由两部分组成,固定部分为4900元,变动部分P(元)与飞机飞行速度v(千米∕小时)的函数关系式是P=0.01v2,已知甲乙两地的距离为a(千米).(1)试写出飞机从甲地飞到乙地的总费用y(元)关于速度v(千米∕小时)的函数关系式;(2)当飞机飞行速度为多少时,所需费用最少?21.已知函数f(x)是定义在(−4,4)上的奇函数,且f(2)=1,当−4<x≤0时,有f(x)=ax+bx+4.(1)求实数a,b的值;(2)求函数f(x)在区间(0,4)上的表达式,并利用定义判断其在该区间上的单调性.22.(本小题满分8分)已知函数(1)若函数的图象经过点,求的值;(2)判断并证明函数的奇偶性;(3)比较与的大小,并写出必要的理由.【答案与解析】1.答案:B解析:解:集合M={x∈R|y=lg(4−x2)}={x|4−x2>0}={x|−2<x<2},M∩N∗={1}.故选:B.化简集合M,根据交集的定义写出M∩N∗.本题考查了集合的化简与运算问题,是基础题目.2.答案:D解析:试题分析:由,得,,由得,,,,故,选D.考点:抽象函数.3.答案:A解析:本题考查求复合函数单调区间,解答时需注意定义域,属于中档题.解:由x2+2x−3>0,得x<−3或x>1,的定义域为(−∞,−3)∪(1,+∞).可看作由和u=x2+2x−3复合而成的,u=x2+2x−3=(x+1)2−4在(−∞,−3)上递减,在(1,+∞)上递增,又在定义域内单调递增,在(−∞,−3)上递减,在(1,+∞)上递增,所以的单调递减区间是(−∞,−3),故选A.4.答案:A解析:解:∵log20.3<log21=0,0<0.31.3<0.30=1,21.3>2,∴a<b<c.故选:A.由log 20.3<0,0<0.31.3<1,21.3>2,即可得出a ,b ,c 的大小关系.本题考查了对数函数和指数函数的单调性,增函数和减函数的定义,考查了计算能力,属于基础题.5.答案:A解析:解:函数f(x)=1−√2−3x,g(x)=2lnx ,对任意x 1∈(−∞,23],都存在x 2∈(0,+∞),使得f(x 1)−g(x 2)=14, 可得1−√2−3x 1−2lnx 2=14,即34−√2−3x 1=2lnx 2, 可令34−√2−3x 1=2lnx 2=t(t ≤34), 即有x 1=2−(t−34)23,x 2=e t2,x 1−x 2=−13t 2+12t +2348−e t 2,t ≤34,令ℎ(t)=−13t 2+12t +2348−e t2,t ≤34,ℎ′(t)=−23t +12−12e t 2,t ≤34, ℎ″(t)=−23−14e t2<0,t ≤34, ℎ′(t)递减,可得ℎ′(t)≥ℎ′(34), ℎ′(34)<0,ℎ′(0)=0,即t =0为极值点,且为最值点, 当0<t <34时,ℎ(t)递减; 当t <0时,ℎ(t)递增, 可得t =0为最大值点, 求得ℎ(0)=−2548. 故选:A .由题意即34−√2−3x 1=2lnx 2,可令34−√2−3x 1=2lnx 2=t(t ≤34),解得x 1,x 2,令ℎ(t)=−13t 2+12t +2348−e t 2,t ≤34,求得导数和单调性、可得极值和最值,即可得到所求最大值.本题考查函数的最值的求法,注意转化思想和构造函数法,考查导数的运用:求单调性和极值,属于难题.6.答案:C解析:解:由题意得:sin(x−π4)≥0,解得2kπ+π4≤x≤2kπ+5π4,,故选C.根据二次根式以及三角函数的性质求出函数的定义域即可.本题考查了求函数的定义域问题,考查三角函数以及二次根式的性质,属于基础题.7.答案:D解析:解:当k=0,有1>0恒成立;当k≠0,令y=kx2−kx+1,∵y>0恒成立,>∴抛物线y=kx2−kx−1开口向上,且与x轴没公共点,∴k>0,且△=k2−4k<0,解得0<k<4;综上所述,k的取值范围为[0,4).故选:D.先分类讨论:当k=0,有1>0恒成立;当k≠0,利用二次函数的性质求解,令y=kx2−kx+1,要y>0恒成立,则开口向上,抛物线与x轴没公共点,即k>0,且△<0,解不等式即可得到k的取值范围;最后取两者之并即可.本题考查了函数恒成立问题,着重考查二次函数的图象与性质,同时考查了分类讨论思想的运用和转化思想,易错点在于忽略当k=0的情形,属于中档题.8.答案:B解析:,,当时,,则上式为,所以;当时,,则上式为,所以;当时,,则上式为,所以;所以在上的解集为,故;当时,,则上式为,所以;当时,,则上式为,所以;当时,,则上式为,所以;所以在上的解集为,故;当时,,则上式为,所以;当时,,则上式为,所以;当时,,则上式为,所以;所以在上的解集为,故;故答案选.考点:1.抽象函数及其应用;2.推理证明.9.答案:B解析:解:由−x2−2x+3>0,解得−3<x<1,(−x2−2x+3)的定义域为(−3,1),∴函数f(x)=log12t为单调递减函数,令t=−x2−2x+3,则g(t)=log12由复合函数的单调性可知,f(x)的单调递减区间为t=−x2−2x+3在(−3,1)上的单调增区间.t=−x2−2x+3=−(x+1)2+4,对称轴为x=−1,开口向下,∴t=−x2−2x+3的单调增区间为(−3,−1].故选:B.(−x2−2x+3)的单调减区间为t=−x2−2x+3在定义域根据复合函数的单调性可知,f(x)=log12上的单调增区间,再根据一元二次函数的单调性求单调增区间即可.本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.10.答案:B解析:由f(x+2)=f(x)可知函数的周期是2,所以f(2013)=f(1)=e−1,f(−2014)=−f(2014)=−f(0)=0,所以f(2013)+f(−2014)=e−1.11.答案:C解析:解决的关键是对于分段函数的各段的零点分别讨论求解得到结论,属于基础题。
2020-2021学年四川省成都实验外国语学校九年级(上)第一次月考物理试卷
2020-2021学年四川省成都实验外国语学校九年级(上)第一次月考物理试卷一、单项选择题(每题2分,共30分)1.(2分)如图所示将两个表面光滑的铅块相互挤压粘在一起,与该实验原理相同的是以下哪个现象()A.等体积酒精与水混合后总体积小于两者原体积之和B.毛皮摩擦过的橡胶棒和丝绸摩擦过的玻璃棒相互吸引C.带电体能吸引轻小物体D.荷叶上两个水珠靠近时,可以合成大水珠2.(2分)下列过程中,属于利用内能做功的例子是()A.冬天,人们晒太阳B.点燃爆竹,爆竹腾空而起C.用打气筒给轮胎打气D.冬天在户外时两手相搓一会儿就暖和3.(2分)我们在用电流表测量电流时,通过“试触”不能达到目的是()A.判断电路是否开路B.判断电路是否短路C.判断被测量的电流是否超过量程D.判断电流表的正负接线柱是否正确4.(2分)下列说法正确的是()A.容易燃烧的燃料,热值一定大B.煤的热值比木柴的大,燃烧煤放出的热量比燃烧木柴放出的热量一定多C.由q=公式说明热值与燃料完全燃烧放出的热量成正比D.即使煤炭没有完全燃烧,其热值也不会改变5.(2分)关于内能、温度和热量的下列说法中,正确的是()A.物体的温度不变,内能一定不变B.高温物体具有的内能一定比低温物体多C.质量相同,温度降低一样的两个物体放出的热量一定是相同的D.在内能转移的过程中,一定有热传递发生6.(2分)请你想象一下,假如“水的比热容变为原来的一半”,则可能会出现()(c水=4.2×103J/(kg•℃),c砂石=0.92×103J/(kg•℃))A.同体积的水质量会减半B.沿海地区的夏季比内陆地区更凉爽C.沿海地区的昼夜温差会变大D.以上说法都不对7.(2分)下列对物体的内能的有关认识正确的是()A.物体的机械能增大时,内能也增大B.晶体凝固时温度不变,内能要改变C.内能是物质内部所有分子做无规则运动的动能的总和D.静止的物体没有动能但可能有内能8.(2分)下列措施中,不能防止静电危害的是()A.油罐车装有一条拖在地上的铁链B.在地毯中夹杂不锈钢丝导电纤维C.在印染厂车间里,使空气保持适当的湿度D.用绝缘性能极好的塑料制作的塑料桶储存汽油9.(2分)下列现象中,改变物体内能的方式跟其他几个不同的是()A.用手来回弯折铁丝,弯折处铁丝温度升高B.自行车轮胎放气时,气门嘴处温度降低C.在汽油机的压缩冲程中,气缸内气体的温度升高D.用火加热一壶水10.(2分)物理老师在讲授“摩擦起电”一节时,请同学们用塑料直尺在头发上摩擦几下后试试能否吸引碎纸片,结果塑料直尺能够吸引碎纸片。
2020-2021学年新教材高一数学上学期期末复习练习(四)
2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.集合{|14}A x N x =∈≤<的真子集的个数是( )A .16B .8C .7D .42.已知:p :A ={x |x 2﹣2x ﹣3≤0},q :B ={x |x 2﹣2mx +m 2﹣4≤0},若p 是¬q 成立的充分不必要条件,求m 的取值范围是( )A .(﹣∞,﹣3)∪(5,+∞)B .(﹣3,5)C .[﹣3,5]D .(﹣∞,﹣3]∪[5,+∞)3.已知a b >,0ab ≠,则下列不等式正确的是( )A .22a b >B .22a b >C .|a |>|b|D .11a b < 4.已知lg 20.3010=,由此可以推断20142是( )位整数.A .605B .606C .607D .6085.设f (x )=12(1),1x x x <<-≥⎪⎩,若f (a )=12,则a =( ) A .14 B .54 C .14或54 D .26.正实数x ,y 满足lg lg 100y x x y =,则xy 的取值范围是( )A .1[,100]100B .1(0,][100,)100⋃+∞ 117.已知扇形的圆心角为23π,面积为24 c m 3π,则扇形的半径为( ) A .12cm B .1cmC .2cmD .4cm 8.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元(参考数据:1.02254=1.093,1,02255=1.170,1.04015=1.217)A .176B .104.5C .77D .88二、多选题9.已知集合{}2A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .2- D .2 10.设正实数a ,b 满足a +b =1,则( )A .11a b +有最小值4B 12C D .a 2+b 2有最小值12 11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则( )A .()4()f x f x +=B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的奇函数D .函数()y f x =为R 上的偶函数12.将函数()sin2f x x =向右平移4π个单位后得到函数()g x ,则()g x 具有性质( ) A .在0,4π⎛⎫ ⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=对称 C .在3,88ππ⎛⎫- ⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.已知p :2106x x >--,则“非p ”对应的x 值的集合是___. 14.若对数ln (x 2﹣5x +6)存在,则x 的取值范围为___.15.若()log 3a y ax =+(0a >且1a ≠)在区间(-1,+∞)上是增函数,则a 的取值范围是________.四、双空题16.已知函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩. 若函数()()g x f x m =-有3个零点,则实数m 的取值范围是________;若()f x m =有2个零点,则m =________.17.已知集合{}12A x x =-≤≤,{}2B x a x a =≤≤+.(1)若1a =,求A B ;(2)在①R R A B ⊆,②A B A ⋃=,③A B B =中任选一个作为已知,求实数a 的取值范围.18.已知函数()222y ax a x =-++,a R ∈ (1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.19.计算下列各式的值:(1)lg2+lg50;(2)39log 4log 8; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭.20.已知函数f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0.(1)求a ,b 的值;(2)()()f x g x x =,求函数1(|21|),,22x y g x ⎡⎤=-∈⎢⎥⎣⎦的最小值与最大值及取得最小值与最大值时对应的x 值.21.设函数()cos(),0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且16f π⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间;(3)将函数()y f x =的图象向左平移3π个单位长度,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在2,63ππ⎡⎤-⎢⎥⎣⎦上的值域.22.销售甲种商品所得利润为P 万元,它与投入资金t 万元的函数关系为1at P t =+;销售乙种商品所得利润为Q 万元,它与投入资金t 万元的函数关系为Q bt =,其中a ,b 为常数.现将5万元资金全部投入甲、乙两种商品的销售:若全部投入甲种商品,所得利润为52万元;若全部投入乙种商品,所得利润为53万元.若将5万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为()f x 万元. (1)求函数()f x 的解析式;(2)求()f x 的最大值.2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册参考答案1.C【分析】先用列举法写出集合A ,再写出其真子集即可.【详解】解:∵141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个. 故选:C .2.A【分析】求出集合A ,B ,由题可得[1,3]- ()(),22,m m -∞-⋃+∞,即可求出.【详解】解:由2230x x --≤,解得:13x -≤≤.{}2:230[1,3]p A x x x ∴=--≤=-∣.由22240x mx m -+-≤,解得:22m x m -≤≤+.∴q :B ={x |x 2﹣2mx +m 2﹣4≤0}=[m ﹣2,m +2], {}22:240[2,2]q B x x mx m m m ∴=-+-≤=-+∣.∵p 是¬q 成立的充分不必要条件,[1,3]∴- ()(),22,m m -∞-⋃+∞,32m ∴<-或21m +<-,解得5m >或3m <-.∴m 的取值范围是(,3)(5,)-∞-+∞. 故选:A.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 3.B【分析】利用不等式性质和指数函数的单调性,以及举反例,逐项判定,即可求解.【详解】对于A 中,令1,2a b ==-,此时满足a b >,0ab ≠,但22a b <,所以不正确; 对于B 中,由函数2x y =为R 上的单调递增函数,因为a b >,所以22a b >,所以正确; 对于C 中,令1,2a b ==-,此时满足a b >,0ab ≠,但|a ||b |<,所以不正确; 对于D 中,令1,2a b ==-,此时满足a b >,0ab ≠,但11a b>,所以不正确. 故选:B.4.C【分析】令20142t =,两边取对数后求得lg t ,由此可得20142的整数位.【详解】解:∵lg 20.3010=,令20142t =,∴2014lg 2lg t ⨯=,则lg 20140.3010606.214t =⨯=,∴20142是607位整数.故选:C.5.C【分析】根据解析式分段讨论可求出.【详解】解:∵()12(1),1x f x x x <<=-≥⎪⎩,1()2f a =,∴由题意知,0112a <<⎧=或()11212a a ≥⎧⎪⎨-=⎪⎩, 解得14a =或54a =. 故选:C .6.B【分析】两边取对数可得lg lg 1x y =,利用基本不等式即可求出xy 的取值范围.【详解】正实数x ,y 满足lg lg 100y x x y =,两边取对数可得2lg lg 2x y =,所以lg lg 1x y =, 所以22lg lg lg()1lg lg 22x y xy x y +⎛⎫⎡⎤=≤= ⎪⎢⎥⎝⎭⎣⎦,即2lg ()4xy ≥, 所以lg()2xy ≥或lg()2xy ≤-,解得100xy ≥或10100xy <≤, 所以xy 的取值范围是1(0,][100,)100⋃+∞. 故选:B【点睛】 关键点点睛:本题的求解关键是两边取对数得到lg lg x y 积为定值. 7.C【分析】利用扇形的面积公式即可求解.【详解】设扇形的半径为R ,则扇形的面积2211242233S R R ππα==⨯⨯=, 解得:2R =,故选:C8.B【分析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案.【详解】将1000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为51000 1.04011217⨯=,故而共得利息1217–1000=217元.将1000元存入银行,不选择复利的计算方法,则存满5年后的利息为1000×0.0225×5=112.5,故可以多获利息217–112.5=104.5.故选:B .【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.ABC【分析】由B A ⊆可得出关于实数a 的不等式组,解出实数a 的取值范围,进而可得出实数a 的可能取值.【详解】{}2A x ax =≤,{B =且B A ⊆,所以,222a ≤≤⎪⎩,解得1a ≤. 因此,ABC 选项合乎题意.故选:ABC.10.ABCD由正实数a ,b 满足1a b +=,可得2a b ab +,则104ab <,根据1114a b ab +=判断A ;104ab <开平方判断B =判断C ;利用222222()a b a a b b +++判断D .【详解】正实数a ,b 满足1a b +=,即有2a b ab +,可得104ab <, 即有1114a b a b ab ab ++==,即有12a b ==时,11a b+取得最小值4,无最大值,A 正确;由104ab <可得102<,可得12a b ==有最大值12,B 正确;1122=+⨯,可得12a b ==,C 正确; 由222a b ab +可得2222222()()1a a b a b a b b ++=++=,则2212a b +,当12a b ==时,22a b +取得最小值12,D 正确. 故选:ABCD .【点睛】 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).【分析】由()()2f x f x +=-,可得推得()()4f x f x +=,得到A 是正确的;由奇函数的性质和图象的变换,可得判定B 是正确的;由(1)(1)f x f x --=--+,可得推得函数()f x 是偶函数,得到D 正确,C 不正确.【详解】对于A 中,函数()y f x =满足()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以A 是正确的;对于B 中,()1y f x =-是奇函数,则(1)f x -的图象关于原点对称,又由函数()f x 的图象是由()1y f x =-向左平移1个单位长度得到,故函数()f x 的图象关于点(1,0)-对称,所以B 是正确的;对于C 、D ,由B 可得:对于任意的x ∈R ,都有(1)(1)f x f x --=--+,即(1)(1)0f x f x --+-+=,可变形得(2)()0f x f x --+=,则由(2)()(2)f x f x f x --=-=+对于任意的x ∈R 都成立,令2t x =+,则()()f t f t -=,即函数()f x 是偶函数,所以D 正确,C 不正确.故选:ABD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.12.ABD【分析】化简得到()cos 2g x x =-,分别计算函数的奇偶性,最值,周期,轴对称和中心对称,单调区间得到答案.【详解】()sin 2sin 2cos 242g x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭ 因为0,4x π⎛⎫∈ ⎪⎝⎭,则20,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 2g x x =-单调递增,且为偶函数,A 正确,C 错误; 最大值为1,当32x π=时,23x π=,所以32x π=为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确;故选:ABD【点睛】本题考查了三角函数的平移,最值,周期,单调性 ,奇偶性,对称性,意在考查学生对于三角函数知识的综合应用.13.{}23x x -≤≤【分析】先求出命题p ,再按照非命题的定义求解即可.【详解】p :2106x x >--, 则260x x -->,解得2x <-或3x >,所以“非p ”对应的x 值的集合是{}23x x -≤≤. 故答案为:{}23x x -≤≤.14.()(),23,-∞+∞ 【分析】若对数存在,则真数大于0,解不等式即可.【详解】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得: x <2或 x >3,即x 的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).15.(]1,3【分析】先利用0a >判断30u ax =+>是增函数,进而得到log a y u =是增函数,列关系计算即得结果.【详解】因为()log 3a y ax =+,(0a >且1a ≠)在区间(-1,+∞)上是增函数,知3u ax =+在区间(-1,+∞)上是增函数,且0>u ,故log a y u =是增函数,所以30101a a a a ⎧⎪-+≥⎪⎪>⎨⎪>⎪≠⎪⎩,解得13a .故a 的取值范围是(]1,3.故答案为:(]1,3.16.(0,1) 0或1【分析】把函数()()g x f x m =-有3个零点,转化为()y f x =和y m =的交点有3个,作出函数()f x 的图象,结合图象,即可求解.【详解】由题意,函数()()g x f x m =-有3个零点,转化为()0f x m -=的根有3个,转化为()y f x =和y m =的交点有3个,画出函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩的图象,如图所示,则直线y m =与其有3个公共点, 又抛物线的顶点为(1,1)-,由图可知实数m 的取值范围是(0,1).若()f x m =有2个零点,则0m =或(1)1m f =-=.故答案为:(0,1);0或1.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数的图象的交点个数,结合图象求解是解答的关键,着重考查数形结合思想,以及推理与运算能力. 17.(1){}13A B x x ⋃=-≤≤;(2)选①/②/③,10a -≤≤.【分析】(1)应用集合并运算求A B 即可;(2)根据所选条件有B A ⊆,即可求a 的取值范围.【详解】(1)当1a =时,{}13B x x =≤≤,则{}13A B x x ⋃=-≤≤.(2)选条件①②③,都有B A ⊆, ∴1,22,a a ≥-⎧⎨+≤⎩解得10a -≤≤, ∴实数a 的取值范围为10a -≤≤.【点睛】本题考查了集合的基本运算,利用并运算求并集,由条件得到集合的包含关系求参数范围,属于简单题.18.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞-- 【分析】(1)先整理,再讨论0a =和0a ≠,列出恒成立的条件,求出a 的范围;(2)先因式分解,对两根大小作讨论,求出解集; (3)先令11t m m =++,由0m >,则可得3t ≥,再将()21221ax a x m m-++=++有四个不同的实根,转化为2(2)20ax a x t -++-=有两个不同正根,根据根与系数的关系,求出a 的取值范围.【详解】(1)由题有()22232ax a x x -++<-恒成立,即210ax ax -+-<恒成立, 当0a =时,10-<恒成立,符合题意;当0a ≠时,则2040a a a <⎧⎨∆=+<⎩,得040a a <⎧⎨-<<⎩,得40a , 综合可得40a .(2)由题2(2)20,ax a x -++≥ 即 (2)(1)0ax x --≥,由0,a >则2()(1)0x x a --=,且221a a a--= ①当02a <<时,21>a,不等式的解集为 {1x x ≤∣或2}x a ≥; ②当2a =时,不等式的解集为R③当2a >时,21a <,不等式的解集为 {2x x a≤∣或1}x ≥;综上可得:当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥; (3)当 0m > 时,令1113t m m =++≥=, 当且仅当1m =时取等号,则关于x 的方程(||)f x t = 可化为2||(2)||20a x a x t -++-=,关于x 的方程 2||(2)||20a x a x t -++-= 有四个不等实根, 即2(2)20ax a x t -++-=有两个不同正根, 则 2(2)4(2)0(1)20(2)20(3)a a t a a t a ⎧⎪∆=+-->⎪+⎪>⎨⎪-⎪>⎪⎩由(3)得0a <,再结合(2)得2a <-,由 (1) 知,存在 [3,)t ∈+∞ 使不等式24(2)80at a a ++->成立,故243(2)80a a a ⨯++->,即 2840,a a ++>解得4a <--或4a >-+综合可得4a <--故实数a的取值范围是(,4-∞--.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解;19.(1)2;(2)43;(3)2. 【分析】(1)根据对数的加法运算法则,即可求得答案;(2)利用换底公式,结合对数的运算性质,即可求得答案;(3)根据对数的运算性质及减法法则,即可求得答案.【详解】(1)2lg 2lg50lg100lg102+===; (2)39lg 4log 42lg 22lg 324lg 32lg8log 8lg 33lg 233lg 9==⨯=⨯=; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭=013lg1011)1111244++-+=+-+= 20.(1)a =1,b =0;(2)当x =2时,g (|2x ﹣1|)max =43,x =1时,g (|2x ﹣1|)min =0. 【分析】(1)利用二次函数的性质求出a ,b 的值;(2)求出函数(|21|)x y g =-的解析式,利用换元法对勾函数的性质,得出最值以及取得最值时的x 值.【详解】(1)f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0, 即1a =1,f (1)=a +b ﹣1=0,解得a =1,b =0; (2)由(1)知f (x )=(x ﹣1)2,()()12f x g x x x x==+-,g (|2x ﹣1|)=121221x x -+--,令t =|2x ﹣1|,∵1,22x ⎡∈⎤⎢⎥⎣⎦,则1,3t ⎤∈⎦, 由对勾函数的性质可得()min ()10g t g ==,此时t =1即|2x ﹣1|=1,解得x =1;又)1122g =-=,())14332133g g =+-=>, 当t =3时,解得x =2时,所以当x =2时,g (|2x ﹣1|)max =43,当x =1时,g (|2x ﹣1|)min =021.(1)()cos(2)3f x x π=-;(2)[,],36k k k Z ππππ-+∈;(3)[-. 【分析】(1)由函数()f x 的最小正周期为π,求得2w =,再由16f π⎛⎫=⎪⎝⎭,求得ϕ的值,即可求得函数()f x 的解析式;(2)由(1)知()cos(2)3f x x π=-,根据余弦型函数的性质,即可求得函数的递增区间;(3)根据三角函数的图象变换,求得()cos()3g x x π=+,结合三角函数的性质,即可求解. 【详解】 (1)由题意,函数()cos()f x x =+ωϕ的最小正周期为π, 所以2wππ=,可得2w =,所以()cos(2)f x x ϕ=+, 又由16f π⎛⎫= ⎪⎝⎭,可得()cos(2)cos()1663f πππϕϕ=⨯+=+=, 可得2,3k k Z πϕπ+=∈,即2,3k k Z πϕπ=-∈, 因为02πϕ-<<,所以3πϕ=-, 所以函数()f x 的解析式为()cos(2)3f x x π=-.(2)由(1)知()cos(2)3f x x π=-, 令222,3k x k k Z ππππ-≤-≤∈,解得,36k x k k Z ππππ-≤≤+∈, 所以函数()cos(2)3f x x π=-的单调递增区间为[,],36k k k Z ππππ-+∈. (3)将函数()y f x =的图象向左平移3π个单位长度, 得到函数cos[2()]cos(2)333y x x πππ=+-=+, 再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()cos()3y g x x π==+,因为2[,]63x ππ∈-,可得[,]36x πππ+∈,所以()1g x -≤≤,所以函数()g x 的值域为[-. 【点睛】 解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.22.(1)()3513x x f x x -=++,[]0,5x ∈;(2)3万元. 【分析】(1)对甲种商品投资x 万元,则对乙种商品投资为5x -万元,当5t =时,求得3a =,13b =,代入()(5)1ax f x b x x =+-+即可. (2)转化成一个基本不等式的形式,最后结合基本不等式的最值求法得最大值,从而解决问题.【详解】(1)因为1at P t =+,Q bt = 所以当5t =时,55512a P ==+,553Q b ==,解得3a =,13b =. 所以31t P t =+,13=Q t ,从而()3513x x f x x -=++,[]0,5x ∈ (2)由(1)可得()()()313613531+553131313x x x x x f x x x x +--+-+⎛⎫=+==-+≤-= ⎪+++⎝⎭当且仅当3113x x +=+,即2x =时等号成立.故()f x 的最大值为3. 答:当分别投入2万元、3万元销售甲、乙两种商品时总利润最大,为3万元.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.。
成都市外国语学校2020-2021年初三化学上册期末化学试题(含答案)
成都市外国语学校2020-2021年上册期末化学试题(含答案)一、九年级化学上册选择题1.A、B、C三种物质各15g,在一定条件下充分反应后生成新物质D30g;若增加10gA,反应停止后,只有物质C剩余。
根据上述条件推断下列说法中正确的是A.第一次反应停止后,B 剩余9gB.反应中所消耗的A 和B的质量比是3:2C.第二次反应停止后,D 的质量为50gD.反应中所消耗的A 和C的质量比是5:32.在一定条件下,在一个密闭容器内发生某反应,测得反应过程中各物质的质量如下表所示,下列说法错误的是A.该反应是化合反应,d可能是催化剂B.a、b两种物质中元素种类一定与c物质中元素种类相同C.b物质可能是单质D.反应后a物质的质量为3g3.下表列出了除去物质中少量杂质的方法,其中错误的是A.A B.B C.C D.D4.电解水时为了增强水的导电性可加入少量氢氧化钠溶液(氢氧化钠栄参与反应),电解一定质量氢氧化钠稀溶液的过程中,下列说法正确的是A.生成氢气和氧气的质量比为2:1 B.溶液中钠元素质量变大C.溶液中氢、氧元素质量比不变 D.溶液中氢元素质量分数减小5.科学实验是人类获取科学知识,验证科学理论的重要手段,其中,对实验现象的正确描述很重要,以下实验现象描述正确的是A.红磷在空气中燃烧,产生大量白色的烟雾B.CO还原氧化铁,可观察到红棕色粉末逐渐变黑C.铁与硫酸铜溶液反应,可观察到浅绿色溶液变成蓝色D.向滴有植物油的水中加入洗洁精,振荡后得到澄清透明的溶液6.下列图像对应的关系正确的是A.表示水通电分解产生的气体质量m与反应时间t的关系B.表示两份完全相同的双氧水在有无MnO2的情况下,产生O2的质量m与反应时间t的关系C.表示硫在密闭容器内燃烧,容器内物质的总质量m与反应时间t的关系D.表示加热一定质量的氯酸钾和二氧化锰混合物,产生氧气的质量m与时间t的关系7.下列一些事实用微观粒子的知识解释错误的是()选项事实解释A墙内开花墙外可闻到花香分子在不断运动B水结冰后体积变大水分子体积变大C金刚石和石墨的物理性质不同碳原子的排列方式不同D CO和CO2的化学性质不同两种物质的分子结构不同A.A B.B C.C D.D8.氢能是最绿色的能源,下图是制取与贮存氢气的一种方法。
2020-2021成都市实验外国语学校(西区)小学六年级数学上期末第一次模拟试题(附答案)
2020-2021成都市实验外国语学校(西区)小学六年级数学上期末第一次模拟试题(附答案)一、选择题1.某校为表示学生体育锻炼达标情况,选用()可以清楚地表示出“优”“良”“合格”各等次人数占全校总人数的百分比。
A. 条形统计图B. 折线统计图C. 扇形统计图2.下面的百分率中,可以超过100%的是()。
A. 增长率B. 成活率C. 合格率D. 出勤率3.在含盐30%的盐水中,加入6g盐和14g水,这时盐水含盐的百分比()。
A. 等于30%B. 小于30%C. 大于30%D. 无法计算4.一个圆的半径由4厘米增加到9厘米,面积增加了()平方厘米.A. 25πB. 16πC. 65πD. 169π5.长方形、正方形、圆的周长都相等,则面积最大的是()。
A. 长方形B. 正方形C. 圆D. 无法比较6.某工厂甲车间人数是乙车间人数的5倍,甲车间男工人数是女工人数的倍,乙车间男工人数是女工人数的,全长工人中男工人数和女工人数的比是()。
A. 3:4B. 7:9C. 4:37.水结成冰,体积增加;冰化成水,体积减少( )。
A. B. C.8.观察下图的位置关系,其中说法错误的是()。
A. 学校在公园北偏西 40°方向400m处B. 公园在少年宫东偏北 70°方向300m处C. 公园在学校东偏南 40°方向400m处[D. 少年宫在公园北偏东 20°方向300m处9.如图,设大长方形的面积为“1”,阴影部分的面积=()。
A. 3×B. ×C. ×D. 4×二、填空题10.六(1)班学生今天的缺席人数与出勤人数比是1:24,那么六(1)班同学今天的出勤率是________。
11.一个半圆的半径是3厘米,如果把它的半径延长1厘米,那么面积增加________.12.从1984年许海峰在第23届奥运会上获得第一枚奥运金牌开始,到2004年第28届奥运会为止,中国代表团共获得112枚奥运金牌.各个运动项目获得金牌的情况如下.历届奥运会中国代表团获得金牌情况统计图(1984~2004)(1)射击在历届奥运会上共获得________金牌?(2)截止到2004年,中国代表团在跳水、乓乒球、羽毛球、举重、体操、射击等6个项目上获得的金牌总数占历届奥运会获得金牌总数的________13.一个三角形三个内角的度数比是2:5:3,这个三角形是________三角形。
2020-2021成都市实验外国语学校(西区)小学六年级数学上期中第一次模拟试题(附答案)
2020-2021成都市实验外国语学校(西区)小学六年级数学上期中第一次模拟试题(附答案)一、选择题1.甲有图书130本,乙有图书70本,乙给甲()后,甲与乙的本书比是4:1. A. 40本 B. 30本 C. 20本 D. 25本2.水结成冰,体积增加;冰化成水,体积减少( )。
A. B. C.3.以小红家为观测点。
小明家在南偏东50°方向上,则以小明家为观测点,小红家在()方向上。
A. 东偏南50°B. 北偏西50°C. 北偏西40°D. 西偏北50”4.小方每天上学先向北偏东40°方向走200米,再向正东方向走300米到学校,他每天放学先向正西方向走300米,再向()方向走200米到家。
A. 北偏东40°B. 南偏西40°C. 西偏南40°5.早晨,小亮从家沿西偏南方向走1000米到学校,晚上放学原路返回应沿方向走1000米到家.A. 西偏南B. 西偏南C. 东偏北D. 东偏北6.同一根2米长的绳子,小明剪去了,李东剪去了米,两人剪的相比较,()。
A. 小明剪的多 B. 李东剪的多 C. 一样多 D. 无法比较7.下面哪个问题可以用算式120×(1- )来解决()A. 六1班采集植物标本120件,采集的昆虫标本比植物标本多,昆虫标本有多少件?B. 淘气班级聚会,准备包120个饺子,已经包了其中,已经包了多少个?C. 四年级有120人,六年级比四年级少,六年级有多少人?D. 以上都可以8.修同一段路,甲队需要8天,乙队需要10天,甲乙两队的工效比是()。
A. 4:5B. 1:1C. 5:49.一个数(0除外)除以,这个数就()。
A. 增加6倍B. 扩大6倍C. 缩小到原数的10.如图,设大长方形的面积为“1”,阴影部分的面积=()。
A. 3×B. ×C. ×D. 4×11.一个比的比值是,如果它的前项乘4,要使比值不变,后项应该()A. 加4B. 减4C. 乘4D. 除以412.小华体重的与小红体重的相等,那么()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021成都市实验外国语学校高一数学上期末试卷(及答案)一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称3.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12B .2C .22D .24.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>5.若函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,则((0))f f =( ) A .0B .-1C .13D .16.函数()2sin f x x x =的图象大致为( )A .B .C .D .7.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃8.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x9.已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .110.已知3log 2a =,0.12b =,sin 789c =,则a ,b ,c 的大小关系是 A .a b c << B .a c b <<C .c a b <<D .b c a <<11.函数()()212ln 12f x x x =-+的图象大致是( ) A .B .C .D .12.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值二、填空题13.已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x +++≤的解集为______.14.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________. 15.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________. 16.已知函数12()log f x x a =+,2()2g x x x =-,对任意的11[,2]4x ∈,总存在2[1,2]x ∈-,使得12()()f x g x =,则实数a 的取值范围是______________.17.函数()()25sin f x xg x x =--=,,若1202n x x x π⎡⎤∈⎢⎥⎣⎦,,……,,,使得()()12f x f x ++…()()()()()()1121n n n n f x g x g x g x g x f x --++=++++…,则正整数n 的最大值为___________.18.已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()af x x =为奇函数,且在()0,∞+上递减,则a的取值集合为______.19.已知函数()232,11,1x x f x x ax x ⎧+<=⎨-+≥⎩,若()()02f f a =,则实数a =________________.20.定义在R 上的奇函数()f x ,满足0x >时,()()1f x x x =-,则当0x ≤时,()f x =______. 三、解答题21.已知函数()221f x x ax =-+满足()()2f x f x =-.(1)求a 的值; (2)若不等式()24x xf m ≥对任意的[)1,x ∈+∞恒成立,求实数m 的取值范围;(3)若函数()()()22log log 1g x f x k x =--有4个零点,求实数k 的取值范围.22.已知函数2()()21xx a f x a R -=∈+是奇函数.(1)求实数a 的值;(2)用定义法证明函数()f x 在R 上是减函数;(3)若对于任意实数t ,不等式()2(1)0f t kt f t -+-≤恒成立,求实数k 的取值范围. 23.已知全集U =R,函数()lg(10)f x x =-的定义域为集合A ,集合{}|57B x x =≤<(1)求集合A ; (2)求()U C B A ⋂.24.已知集合{}24A x x =-≤≤,函数()()2log 31xf x =-的定义域为集合B .(1)求A B ;(2)若集合{}21C x m x m =-≤≤+,且()C A B ⊆⋂,求实数m 的取值范围.25.已知函数31()31x x f x m -=⋅+是定义域为R 的奇函数.(1)求证:函数()f x 在R 上是增函数; (2)不等式()21cos sin 32f x a x --<对任意的x ∈R 恒成立,求实数a 的取值范围. 26.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4(尾/立方米)时,v 的值为2(千克/年);当420x ≤≤时,v 是x 的一次函数;当x 达到20(尾/立方米)时,因缺氧等原因,v 的值为0(千克/年).(1)当020x <≤时,求函数()v x 的表达式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大,并求出最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.C解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性.点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.4.A解析:A 【解析】 【分析】利用指数函数、对数函数的单调性直接比较. 【详解】解:0.1x 1.1 1.11=>=, 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.5.B解析:B 【解析】 【分析】根据分段函数的解析式代入自变量即可求出函数值. 【详解】因为0N *∉,所以0(0)3=1f =,((0))(1)f f f =,因为1N *∈,所以(1)=1f -,故((0))1f f =-,故选B. 【点睛】本题主要考查了分段函数,属于中档题.6.C解析:C 【解析】 【分析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ;又函数过点(),0π,可以排除A ,所以只有C 符合. 故选:C . 【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.7.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 8.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.9.B解析:B 【解析】121242242f ⎛⎫=+=+= ⎪⎝⎭,则()1214log 422f f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,故选B. 10.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知343333log 2log 342a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以3c ∈, 所以a c b <<,故选B.11.A解析:A 【解析】函数有意义,则:10,1x x +>∴>-,由函数的解析式可得:()()21002ln 0102f =⨯-+=,则选项BD 错误; 且211111112ln 1ln ln 402222848f ⎛⎫⎛⎫⎛⎫-=⨯--⨯-+=-=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则选项C 错误; 本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.12.D解析:D 【解析】 【分析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值 故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.二、填空题13.【解析】当时解得;当时恒成立解得:合并解集为故填:解析:3{|}2x x ≤【解析】当20x +≥时,()()()22525x x f x x x +++≤⇔++≤,解得 322x -≤≤;当20x +<时,()()()22525x x f x x x +++≤⇔-+≤,恒成立,解得:2x <-,合并解集为32x x ⎧⎫≤⎨⎬⎩⎭ ,故填:32x x ⎧⎫≤⎨⎬⎩⎭. 14.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有 解析:(1,2)【解析】作出函数()f x 的图象,如图所示,当4x ≥时,4()1f x x =+单调递减,且4112x<+≤,当04x <<时,2()log f x x =单调递增,且2()log 2f x x =<,所以函数()f x 的图象与直线y k =有两个交点时,有12k <<.15.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的 解析:(,1]-∞【解析】 【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解()ag x x x=+的值域,结合已知条件推出a 的范围即可. 【详解】由题意,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则()f x 与()g x 的值域的并集为R ,又()2,1112,112,1x f x x x x x x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩,结合分段函数的性质可得,()f x 的值域为[]22-,, 当0a ≥时,可知()ag x x x=+的值域为(),22,a a ⎡-∞-+∞⎣,所以,此时有22a ≤,解得01a ≤≤,当0a <时,()ag x x x=+的值域为R ,满足题意, 综上所述,实数a 的范围为(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.16.【解析】分析:对于多元变量任意存在的问题可转化为求值域问题首先求函数的值域然后利用函数的值域是函数值域的子集列出不等式求得结果详解:由条件可知函数的值域是函数值域的子集当时当时所以解得故填:点睛:本 解析:[0,1]【解析】分析:对于多元变量任意存在的问题,可转化为求值域问题,首先求函数()(),f x g x 的值域,然后利用函数()f x 的值域是函数()g x 值域的子集,列出不等式,求得结果. 详解:由条件可知函数()f x 的值域是函数()g x 值域的子集,当11,24x ⎡⎤∈⎢⎥⎣⎦时,()[]1,2f x a a ∈-++,当[]21,2x ∈-时,()[]1,3g x ∈- ,所以1123a a -+≥-⎧⎨+≤⎩,解得01a ≤≤,故填:[]0,1. 点睛:本题考查函数中多元变量任意存在的问题,一般来说都转化为子集问题,若是任意1x D ∈,存在2x E ∈,满足()()12f x g x >,即转化为()()min min f x g x >,若是任意1x D ∈,任意2x E ∈,满足()()12f x g x >,即转化为()()min max f x g x >,本题意在考查转化与化归的能力.17.6【解析】【分析】由题意可得由正弦函数和一次函数的单调性可得的范围是将已知等式整理变形结合不等式的性质可得所求最大值【详解】解:函数可得由可得递增则的范围是即为即即由可得即而可得的最大值为6故答案为解析:6 【解析】 【分析】由题意可得()()sin 52g x f x x x -=++,由正弦函数和一次函数的单调性可得()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦,将已知等式整理变形,结合不等式的性质,可得所求最大值n .【详解】解:函数()25=--f x x ,()sin g x x =,可得()()sin 52g x f x x x -=++,由0,2x π⎡⎤∈⎢⎥⎣⎦,可得sin ,5y x y x ==递增, 则()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦, ()()()()()()()()121121n n n n f x f x f x g x g x g x g x f x --++++=++++……,即为()()()()(()()()112211)n n n n g x f x g x f x g x f x g x f x --⎡⎤⎡⎤⎡⎤-+-+⋯+-=-⎣⎦⎣⎦⎣⎦, 即()()()112211sin 5sin 5sin 52(1)sin 52n n n n x x x x x x n x x --++++⋯+++-=++, 即()()(112211sin 5sin 5sin 5)2(2)sin 5n n n n x x x x x x n x x --++++⋯+++-=+, 由5sin 50,12n n x x π⎡⎤+∈+⎢⎥⎣⎦,可得52(2)12n π-≤+,即5524n π≤+,而55(6,7)24π+∈, 可得n 的最大值为6. 故答案为:6. 【点睛】本题考查函数的单调性和应用,考查转化思想和运算能力、推理能力,属于中档题.18.【解析】【分析】由幂函数为奇函数且在上递减得到是奇数且由此能求出的值【详解】因为幂函数为奇函数且在上递减是奇数且故答案为:【点睛】本题主要考查幂函数的性质等基础知识考查运算求解能力考查函数与方程思想 解析:{}1-【解析】 【分析】由幂函数()af x x =为奇函数,且在(0,)+∞上递减,得到a 是奇数,且0a <,由此能求出a 的值. 【详解】因为11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,幂函数为奇()af x x =函数,且在(0,)+∞上递减,a ∴是奇数,且0a <, 1a ∴=-.故答案为:1-. 【点睛】本题主要考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.19.2【解析】【分析】利用分段函数分段定义域的解析式直接代入即可求出实数的值【详解】由题意得:所以由解得故答案为:2【点睛】本题考查了由分段函数解析式求复合函数值得问题属于一般难度的题解析:2 【解析】 【分析】利用分段函数分段定义域的解析式,直接代入即可求出实数a 的值. 【详解】由题意得:()00323f =+=,()23331103f a a =-+=-,所以由()()01032ff a a =-=, 解得2a =.故答案为:2. 【点睛】本题考查了由分段函数解析式求复合函数值得问题,属于一般难度的题.20.【解析】【分析】由奇函数的性质得设则由函数的奇偶性和解析式可得综合2种情况即可得答案【详解】解:根据题意为定义在R 上的奇函数则设则则又由函数为奇函数则综合可得:当时;故答案为【点睛】本题考查函数的奇 解析:()1x x +【解析】 【分析】由奇函数的性质得()00f =,设0x <,则0x ->,由函数的奇偶性和解析式可得()()()1f x f x x x =--=+,综合2种情况即可得答案.【详解】解:根据题意,()f x 为定义在R 上的奇函数,则()00f =, 设0x <,则0x ->,则()()()1f x x x -=-+, 又由函数为奇函数,则()()()1f x f x x x =--=+, 综合可得:当0x ≤时,()()1f x x x =+; 故答案为()1x x + 【点睛】本题考查函数的奇偶性以及应用,注意()00f =,属于基础题.三、解答题21.(1)1;(2)1,4⎛⎤-∞ ⎥⎝⎦;(3)1k >-.【解析】 【分析】(1)由题得()f x 的图像关于1x =对称,所以1a =;(2)令2x t =,则原不等式可化为()2112m t t ⎛⎫≤-≥ ⎪⎝⎭恒成立,再求函数的最值得解;(3)令2log (0)t x t =≥,可得11t =或21t k =+,分析即得解.【详解】(1)∵()()2f x f x =-,∴()f x 的图像关于1x =对称,∴1a =.(2)令2(2)xt t =≥,则原不等式可化为()2112m t t ⎛⎫≤-≥ ⎪⎝⎭恒成立.∴2min 1114m t ⎛⎫≤-= ⎪⎝⎭,∴m 的取值范围是1,4⎛⎤-∞ ⎥⎝⎦.(3)令2log (0)t x t =≥,则()y g x =可化为()()()22111y t k t k t t k =-+++=---,由()()110t t k ---=可得11t =或21t k =+,∵()y g x =有4个零点,121=|log |t x =有两个解, ∴221=|log |t k x =+有两个零点,∴10,1k k +>∴>-. 【点睛】本题主要考查二次函数的对称性的应用,考查不等式的恒成立问题和对数函数的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力. 22.(1) 1a =;(2)证明见解析;(3) 13k k ≥≤-或 【解析】 【分析】(1)根据函数是奇函数,由(0)0f =,可得a 的值; (2)用定义法进行证明,可得函数()f x 在R 上是减函数;(3)根据函数的单调性与奇偶性的性质,将不等式()2(1)0f t kt f t -+-≤进行化简求值,可得k 的范围. 【详解】解:(1)由函数2()()21xx a f x a R -=∈+是奇函数,可得:(0)0f =,即:1(0)02a f -==,1a =; (2)由(1)得:12()21xx f x -=+,任取12x x R ∈,且12x x <,则122112121212122(22)()()=2121(21)(21)xx x x x x x x f x f x -----=++++,12x x <,∴21220x x ->,即:2112122(22)()()=(21)(201)x x x x f x f x --++>, 12()()f x f x >,即()f x 在R 上是减函数;(3)()f x 是奇函数,∴不等式()2(1)0f t kt f t -+-≤恒成立等价为()2(1)(1)f t kt f t f t -≤--=-恒成立,()f x 在R 上是减函数,∴21t kt t -≥-,2(1)10t k t -++≥恒成立,设2()(1)1g t t k t =-++,可得当0∆≤时,()0g t ≥恒成立, 可得2(1)40k +-≥,解得13k k ≥≤-或, 故k 的取值范围为:13k k ≥≤-或. 【点睛】本题主要考查函数单调性的判断与证明及函数恒成立问题,体现了等价转化的数学思想,属于中档题.23.(1) {}|310A x x =≤< (2) {}()|35710U C B A x x x ⋂=≤<≤<或 【解析】试题分析:(1)根据真数大于零以及偶次根式被开方数非负列不等式,解得集合A (2)先根据数轴求U C B ,再根据数轴求交集 试题解析:(1)由题意可得:30100x x -≥⎧⎨->⎩,则{|310}A x x =≤<(2){|57}U C B x x x =<≥或(){|35710}U C B A x x x ⋂=≤<≤<或24.(1){}2x x ≥-;(2)(]2,3 【解析】 【分析】(1)由对数函数指数函数的性质求出集合B ,然后由并集定义计算; (2)在(1)基础上求出A B ,根据子集的定义,列出m 的不等关系得结论.【详解】(1)由310x ->,解得0x >, 所以{}0B x x =>. 故{}2A B x x ⋃=≥-. (2)由{}04A B x x ⋂=<≤. 因为()C A B ⊆⋂,所以20,1 4.m m ->⎧⎨+≤⎩所以23m <≤,即m 的取值范围是(]2,3. 【点睛】本题考查对数型复合函数的定义域,考查集合的交并集运算,考查集合的包含关系.正确求出函数的定义域是本题的难点. 25.(1)证明见解析(2)44a -≤≤ 【解析】 【分析】(1)先由函数()f x 为奇函数,可得1m =,再利用定义法证明函数的单调性即可; (2)结合函数的性质可将问题转化为2sin sin 30x a x ++≥在R 上恒成立,再利用二次不等式恒成立问题求解即可. 【详解】解:(1)∵函数31()31x xf x m -=⋅+是定义域为R 的奇函数, ()()f x f x ∴-=-31313131x x x x m m ----∴=-⋅+⋅+3131331x x x xm m --∴=+⋅+,()(1)310x a ∴--=,等式()(1)310xm --=对于任意的x ∈R 均恒成立,得1m =,则31()31x x f x -=+,即2()131xf x =-+, 设12,x x 为任意两个实数,且12x x <,()()()()()121212122332231313131x x x x x x f x f x -⎛⎫-=---= ⎪++++⎝⎭, 因为12x x <,则1233x x ≤,所以()()120f x f x -<,即()()12f x f x <, 因此函数()f x 在R 上是增函数; (2)由不等式()21cos sin 32f x a x --≤对任意的x ∈R 恒成立, 则()2cos sin 3(1)f x a x f --≤.由(1)知,函数()f x 在R 上是增函数,则2cos sin 31x a x --≤,即2sin sin 30x a x ++≥在R 上恒成立.令sin x t =,[1,1]t ∈-,则222()33024a a g t t at t ⎛⎫=++=++-≥ ⎪⎝⎭在[1,1]-上恒成立.①当12a->时,即2a <-,可知min ()(1)40g t g a ==+≥,即4a ≥-,所以42a -≤<-;②当112a -≤-≤时,即22a -≤≤,可知2min ()3024a a g t g ⎛⎫=-=-≥ ⎪⎝⎭. 即2323a -≤≤,所以22a -≤≤; ③当12a-<-时,即2a >,可知min ()(1)40g t g a =-=-≥,即4a ≤, 所以24a <≤,综上,当44a -≤≤时,不等式()21cos sin 32f x a x --≤对任意的x ∈R 恒成立. 【点睛】本题考查了利用函数奇偶性求函数解析式及定义法证明函数的单调性,重点考查了含参二次不等式恒成立问题,属中档题. 26.(1)=**2,04,{15,420,82x x N x x x N<≤∈-+≤≤∈(2)当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值约为12.5千克/立方米. 【解析】 【分析】 【详解】(1)由题意:当04x <≤时,()2v x =; 当420x <≤时,设,显然在[4,20]是减函数,由已知得200{42a b a b +=+=,解得18{52a b =-=故函数=**2,04,{15,420,82x x N x x x N <≤∈-+≤≤∈(2)依题意并由(1)可得*2*2,04,{15,420,.82x x x N x x x x N <≤∈-+≤≤∈ 当04x ≤≤时,为增函数,故()max (4)f x f ==428⨯=;当420x ≤≤时,()22221511100(20)(10)82888f x x x x x x =-+=--=--+,()max (10)12.5f x f ==.所以,当020x <≤时,的最大值为12.5.当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值约为12.5千克/立方米.。