算法的基本逻辑结构循环结构
1.1.2程序框图与算法的基本逻辑结构(循环结构)
变式训练(1): 编写程序求:12 +22 +32 +42 +……+1002的值.
开始
i=1 S=0
如何修改?
开始
i=1 S=0 i=i+1
否 i≤100?
S=S+i S=S+i 2
i=i+1
直到 型循 环结 构
i>100? 是
输出S
是
2 S=S+i S=S+i
否 输出S
结束
结束
当型循环 结构
变式训练(2): 1 1 1 1 编写程序求: 1 2 3 4 100 的值. 开始 如何修改? 开始
S=S*i 否 i≤6? 否 是
i=i+1 i>6?
是 输出S 结束
输出S
结束
变式训练(1): 编写程序求:12 +22 +32 +42 +……+1002的值. 变式训练(2): 1 1 1 1 编写程序求: 1 的值. 2 3 4 100 变式训练(3): 编写程序求:1+2+3+4+5+……+n的值. 变式训练(4): 编写程序求:n!=1×2×3×4×5×……×n的值. 变式训练(5): 编写程序求:1×3×5×7×……×101的值.
知识回顾
1、算法的概念
在数学上, “算法”通常是指可以用计算机来 解决的某一类问题的程序或步骤,这些程序或 步骤必须是明确和有效的,而且能够在有限步 之内完成.
2、算法最重要的特征: (1).有序性 (2).确定性 (3).有限性
3、程序框图的三种基本的逻辑结构
1.1.2程序框图与算法的基本逻辑结构(3)-循环结构
当型循环结构
开始
i=1
S=0
i=i+1 S=S+i i≤100?
2
3
4
… … N
0+1 0+1+2 0+1+2+3 … Y Y Y
是
否
输出S 结束
理解应用 以例6为依据,回答:
1) 设计算法:输出1,1+2,1+2+3,…,
1+2+…+100.(提示:改变“输出S”的位置) 2)设计算法解决课本P15“思考题”。
3)画出计算1 +22 + 32+……+992 +1002 的
程序框图
4)画出计算1*2*3*…*100的程序框图
限时训练
课时作业P7: 1-12题
初始化:S = 0, i = 1 终止条件:i > 100
计数变量i:依次取1, 2,…,100, i = i + 1, 其中i的初始值为1.
当型循环结构
第一步,令i=1,S=0. 第二步,如果i≤100成立, Y 则执行第三步, 否则,输出S,结束算法. 第三步,S=S+i. 第四步,i=i+1, 返回第二步. Y Y Y
1.1.2程序框图与算法的基本逻辑结
——循环结构
复习回顾
终端框 输入、输出 (起止框) 框
处理框 (执行框)
判断框
流程3;1
复习回顾
2. 条件结构
否 否
满足条件?
满足条件?
是
步骤A 步骤B
是
步骤A
(1)
(2)
学习目标
1、通过阅读课本P13掌握两种循环结构的概念
1.1.3算法的三种基本逻辑结构
介绍流程图
例题讲解
回答问题
让学生对课题有个初步认识
新
知
探
求
二
(2)此结构中包含一个判断框,根据给定的条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一。
(3)一个判断结构可以有多个判断框。
相应的程序框图如右:
3、循环结构的概念:
在一些算法中,经常出现从某一处开始,按照一定的条件反复执行某些步骤的情况,我们把这种结构称为循环结构。
被反复执行的步骤称为循环体。
总结
观察
思考
加深定理的
应用
课后巩固
课
后
作
业
教材第12页练习题
板
书
设
计
1、导入
2、新知识讲解
3、例题分析
4、课堂练习
教
学
反
思
课题
1.1.3算法的三种基本逻辑结构和框图表示
授课类型ห้องสมุดไป่ตู้
讲授课
授课人
富修驰
授课时间
40分钟
教学目标
知识
目标
能识别简单的程序框图所描述的算法
能力
目标
理解三种逻辑结构的画法
情感
目标
发展学生有条理的思考与表达能力,培养学生的逻辑思维能力。
教学
重难点
重点
三种逻辑结构做法与循环结构
难点
循环结构理解
教学方法
讲练结合
教学内容及过程
教学环节
教学内容及时间
教师
活动
学生
活动
设计意图
算法的三个基本控制结构
算法的三个基本控制结构算法的三个基本控制结构指的是顺序结构、选择结构和循环结构。
这三个基本控制结构是构成算法的基础,能够使程序按照预定的逻辑顺序执行,实现特定的功能。
一、顺序结构顺序结构是指程序按照代码的顺序一步一步地执行,没有任何的条件或判断。
在顺序结构中,每一条语句都会被依次执行,直到程序结束。
顺序结构是算法中最简单也是最基本的一种结构。
在实际编程中,我们经常会使用顺序结构来组织代码。
例如,在编写一个计算器程序时,我们首先需要获取用户的输入,然后对输入进行计算,最后将结果输出给用户。
这个过程就是一个典型的顺序结构。
二、选择结构选择结构是指程序根据条件的不同,决定执行不同的代码块。
在选择结构中,程序会根据条件的真假选择性地执行不同的分支。
常见的选择结构有if语句和switch语句。
if语句是最常用的选择结构,它根据条件的真假选择性地执行不同的代码块。
例如,在一个成绩查询程序中,我们可以使用if语句来判断学生的成绩是否及格,如果及格则输出"及格",否则输出"不及格"。
switch语句也是一种选择结构,它根据表达式的值选择性地执行不同的代码块。
switch语句适用于多个条件的情况,可以使代码更加简洁和易于理解。
选择结构在实际编程中经常被用到,可以根据不同的条件执行不同的操作。
例如,在一个游戏中,根据用户的输入选择不同的关卡或道具,就可以使用选择结构来实现。
三、循环结构循环结构是指程序可以重复执行某段代码,直到满足退出条件为止。
在循环结构中,程序会根据循环条件的真假来决定是否继续执行循环体中的代码。
常见的循环结构有for循环、while循环和do-while循环。
for循环是最常用的循环结构,它可以指定循环的次数。
for循环由初始化表达式、循环条件和循环变量的更新组成。
在每次循环迭代时,循环变量都会被更新,并根据循环条件的真假来决定是否继续循环。
while循环是另一种常用的循环结构,它适用于不知道循环次数的情况。
算法三大基本结构
算法三大基本结构算法是解决问题的明确步骤,不仅在计算机科学中广泛应用,在数学、工程和其他学科中也有重要的地位。
算法的设计需要考虑问题的规模、输入和输出要求,以及对时间和空间效率的要求。
在算法设计中,三大基本结构对于解决问题至关重要。
这三大基本结构分别是顺序结构、选择结构和循环结构。
顺序结构是算法设计中最简单和最常见的结构。
它按照程序的顺序执行各个步骤,每个步骤会影响紧接着的下一个步骤。
顺序结构是一种线性结构,它是算法中最基本的组成部分之一。
在顺序结构中,各个步骤按照顺序排列,按照既定的逻辑依次执行。
例如,计算两个数字的和可以使用顺序结构,在第一步输入两个数字,在第二步进行加法计算,在第三步输出结果。
选择结构是根据某个条件选择执行不同的步骤。
它允许程序根据某个条件的真假进行分支,从而选择不同的执行路径。
选择结构也称为分支结构,通常使用条件语句来实现。
条件语句根据条件的真假执行不同的代码段。
例如,判断一个数字是奇数还是偶数可以使用选择结构,在条件语句中判断数字是否能被2整除,如果能则是偶数,否则是奇数。
循环结构允许程序重复执行某个代码块,直到满足某个终止条件。
循环结构可以有效地处理需要重复执行的任务,从而提高算法的效率。
常见的循环结构有for循环、while循环和do-while循环。
for循环在执行前定义循环变量和循环终止条件,每次执行后更新循环变量。
while循环根据条件的真假来决定是否继续执行循环体,do-while循环先执行循环体,再根据条件判断是否继续执行。
例如,计算某个数字的阶乘可以使用循环结构,在循环中累乘每个数字,并在满足终止条件后退出循环。
三大基本结构在算法设计中相辅相成,可以实现复杂的算法逻辑。
它们的组合使用可以解决各种问题,提高算法的效率和可读性。
在实际的算法设计中,需要根据问题的特点选择适当的结构,合理地组织和设计算法,以实现问题的解决。
总结起来,顺序结构按照顺序执行步骤,选择结构根据条件选择执行路径,循环结构重复执行某个代码块。
3、三种基本逻辑结构和框图
P P
P P
(1)
(2) 图3
条件分支结构理解: (1)条件分支结构是根据判断结果进行不同的处理的一种算法结构. (2)条件分支结构中至少有一个判断框,判断框是条件分支结构中的一个主 要部件. (3)条件分支结构中根据对条件 P 的判断决定执行哪一分支,一定要执行 “是”或“否”中的一个分支,不能两个都执行,也不能两个都不执行. (4)一个判断框有两个出口,但是一个条件分支只有一个出口,注意区分. (5)条件分支结构的两个分支中,有一个可以是空的,如图 3(2) ,但是不 能两个都空. (6)当一个算法中有多个判断框时,称作“条件嵌套” ,可以画成如图 4.
否则执行 S3. S3 如果 b 0 , 则输出 “方 无实根” ; 否则输出 “方程的根 是全体实数”. (2)程序框图:如图 6
b0
输 出
x
输出“方程 无实根”
结束 图6 注:在本题中用到两个判断框,这就是“条件嵌套” ,根据实际情况也可以做更 多的嵌套. 循环结构: 根据指定条件决定是否重复执行一条或多条指令的控制结构称为 循环结构. 循环结构示意图:如图 7
i 10
是
S S i i i 1
i 11
是 输出 S 结束
S S i i i 1
(1)
(2) 图8
小结:
反 馈 练 习 教 学 后 记
课题
算法的三种基本逻辑结构和框图表示
课时 课型
1 新
教 学 目 标
知识与技能: 理解算法的程序框图的三种基本逻辑结构:顺序结构、条件分支结构、循环结 构,并能结合三种逻辑结构设计简单的程序框图。
过程方法与能力: 通过设计程序框图来体会解决问题的过程,培养学生的逻辑思维能力及语言表 达能力。 情感态度与价值观: 通过学生参与设计程序框图的过程,培养学生的合作意识,增进学生学习数学的 信心。
算法与程序框图(循环结构)
输出S 结束
程序框图:
开始
开始
i=1 S=0 S=S+i
i=i+1 直到 型循 环结 构 否
i>100?
i=1 S=0 i=i+1
S=S+i
i≤100?
是
是 输出S
结束
否 输出S
结束
当型循环 结构
开始
i=1 初始值 计数变量 S=0
i=i+1
循环体
S=S+i
循环条件
i≤100?
Y
N 输出S
结束
累计变量
循环体
开始 投票 有一城市过半票
淘汰得票最少者 否
是 选出该城市
结束
例1 设计一个计算1×2×3+……×100的值的算法,
算法分析:
并画出程序框图. 观察各步骤的共同点 第(i-1)步的结果×i=第i步的结果
第1步:1×2 =2;
S=1 第2步: 2×3 =6; S=S × 2 S=S × 3 第3步: 6×4 =24; S=S × i S=S × 4 第4步: 24×5 =120 … S=S × 100 i=i+1 …… 为了方便有效地表示上述过程,我们 引进一个变量S来表示每一步的计算 结果,从而把第i步表示为S=S×i
奥运会主办权投票过程的算法: S1 :投票;
S2 :计票. 如果有一个城市得票超过一半,
那么这个城市取得主办权,进入S3 ;
否则淘汰得票数最少的城市,转入S1;
S3 :宣布主办城市.
奥运会主办权投票表决流程图:
开始 投票 有一城市过半票 是 选出该城市 结束
淘汰得票最少者 否
循环结构
以上算法中, 出现从某处开始,按照一定条件, 反复执行某些步骤的情况.这就是循环结构.反复 执行的步骤称为循环体.
1.1.2算法的三种基本逻辑结构和框图表示
开始 输入k1, k2 k1k2=-1 是 输出l1,l2 垂直 结束
是
否 输出l1,l2 不垂直
开始 S=1
画出计算1+2+3+4+5
的程序框图:
S=S+2 S=S+3 S=S+4
S=S+5
输出S 结束
由上述所举的例子可知,程序框图就 是由一些规定的图形和流程线组成的,并 用来描述算法的图形,但需要注意的是, 这些规定的图形必须是大家“约定俗成” 的,而不能有任何创新之举,只有这样, 用程序框图描述的算法才能被学习和交流。
输出S
结束
例7 设计一个计算 1+2+3+…+100的值的算法, 并画出程序框图.
第1步,0+1=1. 第2步,1+2=3. 第3步,3+3=6. 第4步,6+4=10. …… 第100步,4950+100=5050.
算法2: 第一步,令i=1,S=0. 第二步,若i ≤100成立,则执 行第三步;否则,输出S,结束算法. 第三步,S=S+i. 第四步,i=i+1,返回第二步.
d | Ax0 By0 C | / A2 B 2
S2:计算:
d | Ax0 By0 C | / A2 B 2
d
结束
S3:输出 d ;
例4、已知一个三角形的三边分别为a、b、c,利用海伦公式设 计一个算法,求出它的面积,并画出算法的程序框图。
开始 输入a,b,c
p=
a+b+c 2
i≤100? 是 s =s+i i=i+1
否
s=s+i i=i+1 否 i>100? 是
算法的3种基本结构
算法的3种基本结构算法是指一系列有限指令的集合,它通过一定的顺序和逻辑关系来解决问题。
简单来说,算法就是一种解决问题的方法。
通常,算法可以分为三种基本结构:顺序结构、选择结构和循环结构。
下面将详细介绍这三种结构及其在算法中的应用。
1.顺序结构:顺序结构是指按照所给指令的先后顺序依次执行,一般没有条件判断和循环语句。
在顺序结构中,每个指令将依次执行,并且每个指令只执行一次。
这种结构常用于一些简单直接的操作,如输入输出、变量赋值等。
顺序结构的一个典型例子是求解两个数相加的过程。
2.选择结构:选择结构是指根据条件的不同选择不同的操作路径。
它通常使用条件判断语句,如if-else语句、switch语句等。
根据条件的真假,程序可以选择执行其中一部分代码,或者跳过其中一部分代码。
选择结构可以根据特定的条件来选择不同的执行路径,从而实现不同的功能。
这种结构常用于进行判断和决策的场景,如根据用户输入的选择进行不同的操作。
3.循环结构:循环结构是指重复执行其中一段操作,直到满足一些条件停止。
它通常使用循环语句,如while循环、for循环等。
循环结构可以重复执行一段代码多次,从而实现对数据的多次处理和操作。
循环结构的一个典型应用是遍历数组或链表,对其中的每个元素进行相同的操作。
循环结构可以大大减少代码的冗余,提高代码的复用性和可维护性。
这三种基本结构是算法设计中最基础、最常见的结构,它们在实际应用中经常与其他结构组合使用。
算法的实际应用中,往往需要根据问题的不同选择合适的结构来解决。
例如,对于一些复杂的问题,可能需要同时使用选择结构和循环结构来解决。
此外,通过合理使用这三种基本结构,可以提高算法的效率和可读性,从而更好地解决问题。
总结起来,算法的三种基本结构,顺序结构、选择结构和循环结构,分别表示了按顺序执行、根据条件选择和重复执行的不同操作方式。
通过合理运用这些结构,可以编写出高效、简洁、可读性强的算法,从而更好地解决各种实际问题。
1.1.3 算法的基本逻辑结构----循环结构
分析:
n
1
2 3
an
1 1 2 3 5 A B A=B
an+1 an+2
1 2 3 5 8 B C B=C 2 3 5 8 13 C 2= 1+1 3= 1+2 5= 2+3 8= 3+5 13=5+8 C=A+B 计数变量:3≤k≤n
4
5
概念应用
开始 初始值 条件 是 否
输入n A=1,B=1,k=3
1.1.3
算法的基本逻辑结 构----循环结构
创设情境
核裂变原理 问题1:
如果轰击64次铀核,如何求释放出的总能量? 次数 铀核 1 2 3 4 … 1 21 22 23 …
64
263
概念探究—温故
如何求1+2+4+……+263 的值?
思考:用我们已经学过的顺序结构和条件分支结构能 画出求解的流程图吗? 开始 顺序结构:
S=2 S=4
S=4,i=3 S=2,i=2
S=2,i=2 S=4,i=3
S=4,i=2 S=2,i=1
说明:“S=S+5” 的意思是将 S+5 后的值赋给 S
思考: “S=S+i ” 是什么意思? “i=i+1”呢?
概念探究—实践
例1 如何画出1+2+3+……+100的框图? 思考一:有没有改进措施? 思考二:框图正确吗?如何改?
S1=1; S2=S1+2; S3=S2+22; S4=S3+23; …… S64=S63+263
1次加法 1次加法 1次加法,2次乘法 1次加法,3次乘法 1次加法,63次乘法 S1=1 S2=S1+2 S3=S2+4 …… S64=S63+263 输出S64 结束
算法的基本逻辑结构-循环结构讲解
思考1:该算法中哪几个步骤可以用顺序 结构来表示?这个顺序结构的程序框图 如何?
f(x)=x2-2
输入精确度d 和初始值a,b
m ab 2
思考2:该算法中第四步是什么逻辑结构 ?这个步骤用程序框图如何表示?
赋值、计算
)
判断框
判断某一条件是否成立,成立时 在出口处标明“是”或“Y”,不 成立时标明“否”或“N”.
流程线
连接程序框
连结点
连接程序框图的两部分
6
开始
顺
输入n
序
i=2
结
构
求n除以i的余数
循
i的值增加1,仍用i表示
环
i>n-1或r=0?
否
结
构
是
r=0?
否
条
是
件
结
n不是质数
n是质数 构
结束
2、算法的三种基本逻辑结构 顺序结构、条件结构、循环结构。
第三步,判断所得的结果是否大于300. 若是,则输出该年的年份; 否则,返回第二步.
循环结构:
(1)循环体:设a为某年的年生产总值
,t为年生产总值的年增长量,n为年份 ,则t=0.05a,a=a+t,n=n+1.
(2)初始值:n=2005,a=200.
(3)设定循环控制条件:当“a>300” 时终止循环.
否 a=m
f(a)f(m)<0? 是
b=m
思考3:该算法中哪几个步骤构成循环结 构?这个循环结构用程序框图如何表示 ?
第三步
第四步
|a-b|<d或
算法的三种基本逻辑结构和框图
处输理出结S果 结束
iS 10 100 1+ …1 +100
1021 退退出 出
概念深化—循环 一起看一下如何进行循环的。
引例分析
例2 如何求1+2+4+……+263的值?
开始
开始
初始值
条件 否 是
累计变量 计数变量
处理结果 结束
初始S=值0怎,i=么1 取?
初始值
累计变量
SS==SS++22ii 循环累终计止变i<>条量6件43怎怎么么取取??
萨·班·达依尔。国王问他想要什么,他对国王说:“陛下,请 您在这张棋盘的第1个小格里赏给我一粒麦子,在第2个小格 里给2粒,第3个小格给4粒,以后每一小格都比前一小格加一 倍。请您把这样摆满棋盘上所有64格的麦粒,都赏给您的仆 人吧!” 设计程序求国王需要奖赏多少麦子。
谢谢指导
循环体
循环体
满足条件? 是
否 当型循环结构
满足条件?
否
是 直到型循环结构
差异:循环终止条件不同,检验条件是否成立的先后次序也不同. 当型循环结构:先判断后执行循环体. 直到型循环结构:先执行循环体后判断条件是否成立.
循环结构分为当型循环结构和直到型循环结构
循环体
循环体
满足条件? 是
否 当型循环结构
(2) S=S+i,i=i+1分别有何作用?
(3)能用直到型结构画出框图么?
曲径通幽
如果改为直到型结构如何修改?
开始
开始
初SS=始=00值,i,=i=11 i≤条1件00 否
是 累S计=变S+量i
计数i=i变+1量
算法的三种基本逻辑结构和框图表示
02
end for
03
end for
04
```
02
选择结构
定义
• 选择结构,也称为条件结构,是 算法中根据条件判断来决定执行 路径的一种逻辑结构。它包含一 个或多个条件语句,根据条件的 真假来选择执行相应的代码块。
特点
条件判断
选择结构的核心是根据某个条件 进行判断,根据判断结果选择执 行不同的代码块。
特点
重复执行
循环结构的主要特点是重复执行一段代码,直到满足 某个终止条件。
条件控制
循环的执行由一个或多个条件控制,当条件满足时, 循环终止。
嵌套
循环结构可以嵌套在其他逻辑结构中,以实现更复杂 的算法逻辑。
示例
• 以下是一个简单的当型循环结构的示例, 使用伪代码表示
示例
``` 当条件满足时
执行一段代码
for i from 0 to length(arr) - 1 do
```
01
03 02
示例
• if arr[ j] > arr[ j + 1] arr[ j]
02
arr[ j] = arr[ j + 1]
03
arr[ j + 1] = temp
示例
01
end if
示例
01
更新条件
02
结束循环
03
```
04
在具体实现中,可以根据需要选择不同的编程语言和工具来编写循环 结构的代码。
04
三种结构的框图表示
顺序结构的框图表示
顺序结构是一种简单的算法结构,其流程按照代 码的先后顺序执行,没有分支和循环。
顺序结构框图表示中,流程线是直线,从上到下 表示代码执行的顺序。
算法第二课时--程序框图与算法的基本逻辑结构
例3、设计一个求解一元二次方程
的算法,并画出程序框图表示。
ax bx c 0
2
算法步骤: 第一步:输入三个系数a,b,c 第二步:计算 b 2 4ac 第三步:判断 0 是否成立,若是,则计算
p b ,q 2a 2a
否则,输出“方程没有实数根”,结束
第四步:判断 0 是否成立,若是,则输出
x1 x2 p; 否则,计算 x1 p q, x2 p q
第五步:输出x1,x2
三、循环结构
1. 循环结构是指在算法中从某处开始,按 照一定的条件反复执行某些步骤的算法结 构.反复执行的步骤称为循环体。 2.框图表示
循环体 满足条件? 循环体
否
满足条件? 是
是 直到型循环结构
步骤n
步骤n+1
例1、已知一个三角形的三条边长分别为 a,b,c,利用海伦公式——秦九韶公式设计一 个计算三角形面积的算法,并画出程序
框图表示.
算法分析: 第一步:输入三角形三条边长a,b,c. 第二步:计算
p abc . 2
第三步:计算 S 第四步:输出S.
p( p a)( p b)( p c) .
3.程序框图有以下三种不同的逻辑结构:
否 求n除以i 的余数
r=0?
输入n i=2 是
n不是质数
i=i+1
n是质数
否 i≥n或r=0? 是
顺序结构
条件结构
循环结构
尽管不同的算法千差万别 , 但它们都是由 三种基本的逻辑结构构成的。
一、顺序结构 1、含义:顺序结构是由若干个依次执行的步骤 组成,是最简单的算法结构,框与框之间从上到 下进行。任何算法都离不开顺序结构。 2、框图表示
《程序框图与算法的基本逻辑结构》 讲义
《程序框图与算法的基本逻辑结构》讲义一、引言在当今数字化的时代,计算机程序已经深入到我们生活的方方面面。
从智能手机中的各种应用,到工业生产中的自动化控制,无一不是通过程序来实现的。
而程序的核心就是算法,算法的设计和表达则离不开程序框图。
程序框图是一种直观、清晰地展示算法流程的工具,它能够帮助我们更好地理解和设计算法。
在这篇讲义中,我们将深入探讨程序框图与算法的基本逻辑结构。
二、程序框图的基本概念程序框图,又称为流程图,是用一些规定的图形、流程线及文字说明来准确、直观地表示算法的图形。
它由一些图形符号和连接这些符号的流程线组成。
常见的图形符号包括:1、起止框:表示算法的开始和结束,通常是一个圆角矩形。
2、输入输出框:用于表示数据的输入或输出,一般是一个平行四边形。
3、处理框:用于表示对数据的处理操作,如计算、赋值等,是一个矩形。
4、判断框:用于根据条件决定程序的流向,是一个菱形。
5、流程线:用于连接各个图形符号,表示算法的执行顺序。
通过这些图形符号的组合和连接,我们可以清晰地展示算法的步骤和逻辑。
三、算法的基本逻辑结构算法的基本逻辑结构主要有三种:顺序结构、选择结构和循环结构。
1、顺序结构顺序结构是最简单的算法结构,也是最基本的结构。
在顺序结构中,算法的执行按照从上到下的顺序依次进行,每一个步骤都必须在前一个步骤完成后才能执行。
例如,要计算两个数的和,首先输入两个数 a 和 b,然后进行相加运算 c = a + b,最后输出结果 c。
这个过程就是按照顺序结构进行的。
2、选择结构选择结构也称为条件结构,是根据给定的条件进行判断,然后根据判断的结果决定执行不同的分支。
例如,判断一个数是否为正数,如果是正数则输出“该数为正数”,否则输出“该数为非正数”。
这里就用到了选择结构,通过判断条件来决定输出不同的结果。
3、循环结构循环结构是指在一定条件下,重复执行一段算法。
循环结构分为当型循环和直到型循环。
当型循环是在满足条件时执行循环体,直到条件不满足时退出循环。
算法基本逻辑结构——循环结构(教案)
理解循环结构的概念,并能准确区分两种循环结构,明确循环结构三要素.
教学难点
循环结构三要素的变化对循环过程及结果产生的影响.
教学情境设计
教学过程
师生活动
设计意图
一、问题情境
(设问一)请同学们看大屏幕,大家知道她是谁吗?
回顾比赛过程,了解计分情况.
(设问二)能否设计一个算法统计她前五轮的比赛总分?
授课题目
算法基本逻辑结构——循环结构
授课教师
哈师大附中张治宇
教材分析
《算法初步》是新课程改革中新增加的内容,是计算科学的重要基础.在算法的三种表示法中,程序框图既形象直观,又有利于与算法语句的衔接,更能简单明了地体现算法思想.所以,更应给予充分重视.
教学目标
通过对具体实例的分析和解决,使学生体验算法的思想在生活中的应用,并由此实例出发,使学生理解循环结构的概念,通过分析两种循环结构的结构差异,准确区分两种循环结构,并能运用两种循环结构框图解决具体数学问题,从中体会循环结构的三要素,即循环变量初始值,循环体和循环控制条件对循环结构起到的决定性作用.
通过总结概括,使学生认识更加深刻.
二、概念形成
三、深化概念
(设问三)能否用其它形式的框图来表示这一循环结构?
给出两种循环结构的定义和形式:
(设问四)请在下列四个程序框图中找出当型循环结构和直到型循环结构的框图
直到型:先循环,后测试
条件成立,退出循环
当型:先测试,后循环
条件成立,执行循环
四、实际应用
(设问五)设计一个算法计算1+2+3+
通过对具体问题的分析,得出相应算法,并根据算法画出相应的框图,通过对框图的分析,发现其中蕴含以往学过的逻辑结构——顺序结构及条件结构,并从中定义一种新的逻辑结构,即循环结构.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S=S+i
i=i+1 i
练习:(1)设计求1*2*3*4*…*50的算法,并画出 程序框图 (2)设计一个算法求1+2+4+7+11…的前20 项的和,并写出程序框图。
湖南省长沙市一中卫星远程学校
例4:某工厂2005年的年生产总值为200万元, 技术革新后预计以后每年的年生产总值都比上 一年增长5%. 设计一个程序框图,输出预计年 生产总值超过300万元的最早年份.
思考:用当型循环结构,上述算法的程序框
图如何表示?
湖南省长沙市一中卫星远程学校
思考6:用当型循环结构,上述算法的程 序框图如何表示? 开始
i=1 S=0 i=i+1 S=S+i
i≤100?
否 输出S 结束
是
思考:用直到型循环结构,上述算法的程序
框图如何表示?
湖南省长沙市一中卫星远程学校
思考5:用直到型循环结构,上述算法的 程序框图如何表示? 开始
我们用一个累加变量S表示每一步的计算结果, 即把S+i的结果仍记为S,从而把第i步表示为S=S+i, 其中S的初始值为0,i依次取1,2,…,100,通过重复操 作,上述问题的算法如何设计?
第一步,令i=1,S=0.
第二步,计算S+i,仍用S表示.
第三步,计算i+1,仍用i表示.
第四步,判断i>100是否成立.若是,则输 出S,结束算法;否则,返回第二步.
(2)初始值:n=2005,a=200. (3)控制条件:当“a>300”时终止循环.
开始
程序框图:
n=2005 a=200 t=0.05a a=a+t n=n+1 a>300? 否
是 输出n
结束
小
结
顺序结构的程序框图的基本特征:
小
结
顺序结构的程序框图的基本特征:
(1)必须有两个起止框,穿插输入、输出框和 处理框,没有判断框.
(1)程序框图中必须有两个起止框,穿插 输入、输出框和处理框,一定有判断框.
(2)条件结构的程序框图各有两种形式.
小
结
循环结构的程序框图的基本特征:
小
结
循环结构的程序框图的基本特征:
(1)循环结构中包含条件结构,条件结构 中不含循环结构.
否
是
在执行了一次循环 体后,对条件进行 判断,如果条件不 满足,就继续执行 循环体,直到条件 满足时终止循环.
这种循环结构称为直到型循环结构,你能 指出直到型循环结构的特征吗?
思考3:还有一些循环结构用程序框图可 以表示为:
循环体 满足条件?
是
否
在每次执行循环 体前,对条件进 行判断,如果条 件满足,就执行 循环体,否则终 止循环.
小
结
顺序结构的程序框图的基本特征:
(1)必须有两个起止框,穿插输入、输出框和 处理框,没有判断框.
(2)各程序框从上到下用流程线依次连接.
小
结
条件结构的程序框图的基本特征:
小
结
条件结构的程序框图的基本特征:
(1)程序框图中必须有两个起止框,穿插 输入、输出框和处理框,一定有判断框.
小
结
条件结构的程序框图的基本特征:
算法分析: 第一步, 输入2005年的年生产总值. 第二步,计算下一年的年生产总值.
第三步,判断所得的结果是否大于300. 若是,则 输出该年的年份;否则,返回第二步.
循环结构:
(1)循环体:设a为某年的年生产总值, t为年生产总值的年增长量,n为年份,则 t=0.05a,a=a+t,n=n+1.
这种循环结构称为当型循环结构,你能 指出当型循环结构的特征吗?
思考4:计算1+2+3+…+100的值可按如下过程 进行: 第1步,0+1=1. 第2步,1+2=3. 第3步,3+3=6. 第4步,6+4=10. …… 第100步,4950+100=5050.
思考4:计算1+2+3+…+100的值可按如下过程 进行: 第1步,0+1=1. 第2步,1+2=3. 第3步,3+3=6. 第4步,6+4=10. …… 第100步,4950+100=5050.
循环结构:在算法的程序框图中,按照一定的条件 反复执行的某些步骤组成的逻辑结构叫循环结构。 反复执行的步骤称为循环体。 循环结构可以用程序框图表示为:
循环体
循环体
满足条件?
否
满足条件?
是
是
否
直到型循环结构
当型循环结构
湖南省长沙市一中卫星远程学校
思考2:某些循环结构用程序框图可以表 示为:
循环体
满足条件?