第五章-杆件轴向拉伸与压缩

合集下载

轴向拉伸和压缩

轴向拉伸和压缩

六、强度计算
1.极限应力和许用应力
工作应力 FN
A
极限应力
塑性材料
u
(S

p 0.2
脆性材料
u
( bt

bc
u n —安全因数 — 许用应力
n
塑性材料的许用应力 脆性材料的许用应力
s
ns
bt
nb
p0.2
ns
bc
nb
轴向拉伸和压缩
2.强度计算
max
FN A
轴向拉伸和压缩
二、杆的内力计算
1.内力的概念
构件所承受的载荷及约束反力统称为外力。构件在外力作用下发生变形,产生构
件内部各部分之间的相互作用力,这种作用力称为内力。
2.截面法
(1)截开 (2)代替 (3)平衡
F5
F1
F2
F5
F1
F2
m F4
m
F3
F4
F3
轴向拉伸和压缩
3.轴力
轴向拉伸或压缩时杆横截面上 F
的内力与杆轴线重合,因此 称为轴力,
F
m F
m
FN
FN
F
Fx 0
FN F 0 FN F
轴向拉伸和压缩
4.轴力图
A
为了表明横截面上的轴力
沿轴线变化的情况,可 F1
按选定的比例尺,以与
杆件轴线平行的坐标轴 表示各横截面的位置,
F1
以垂直于该坐标轴的方 向表示相应的内力值,
F1
这样做出的图形称为轴
根据强度条件,可以解决三类强度计算问题
1、强度校核: 2、设计截面: 3、确定许可载荷:
max
FN A

工程力学B215魏媛第五章

工程力学B215魏媛第五章

© 2006.Wei Yuan. All rights reserved. 2008.Wei
§5.3 材料在轴向拉伸 压缩时的力学性质
实验条件: 常温、静载 实验设备: 万能实验机 标准试件:国标 材 塑性材料—断裂前发生较大的塑性 料 变形(如低碳钢) 分 脆性材料—断裂前发生较少的塑性 类 变形(如铸铁)
Fx 0 FN F
I
说 明
1、FN 为内力,因过轴线,称轴力
2、轴力FN 的符号规定: 拉为正、压为负
© 2006.Wei Yuan. All rights reserved. 2008.Wei
轴力图
当杆件受多个外力作用时,各段的内力将发 生变化,为了明显地表现出轴力的大小、正负, 引出内力图 轴力图的画法
F
FN
FN A
F

© 2006.Wei Yuan. All rights reserved. 2008.Wei
说明
1. 外力作用线必须与杆件轴线重合。 2. 若轴力沿轴线变化,先作轴力图,再求各面 上的应力。 3.若截面尺寸沿轴线缓慢变化,公式近似为 FN x x Ax
3 强化阶段
特点: 大部分为塑性变形

e bc a
卸载定律---直线规律 冷作硬化现象 特征点: 曲线上最高点e

b
e P
s
o

e
b 强度极限
Fb b A
© 2006.Wei Yuan. All rights reserved. 2008.Wei
4 颈缩阶段
特点: 大部分为塑性变形 局部颈缩
5
轴向拉伸 和压缩
© 2006.Wei Yuan. All rights reserved. 2008.Wei

杆件轴向拉伸与压缩_图文

杆件轴向拉伸与压缩_图文
极限应力(危险应力、失效应力):材料发生破坏或产生过大变形而 不能安全工作时的最小应力值,即材料丧失工作能力时的应力,以符号 σu表示,其值由实验确定。
许用应力:构件安全工作时的最大应力,即构件在工作时允许承受的
最大工作应力,以符号[σ]表示。计算公式为:
式中,n为安全系数,它是一个大于1的系数,一般来说,确定安全系数 时应考虑以下几个方面的因素。(1) 实际荷载与设计荷载的出入。(2) 材料 性质的不均匀性。(3) 计算结果的近似性。(4) 施工、制造和使用时的条件 影响。可见,确定安全系数的数值要涉及工程上的各个方面,不单纯是个 力学问题。通常,安全系数由国家制定的专门机构确定。
根据上述现象,对杆件内部的变形作如下假设:变形之前横截面为平 面,变形之后仍保持为平面,而且仍垂直于杆轴线,只是每个横截面沿 杆轴作相对平移。这就是平面假设。
ac
F
a' c'
F
b' d'
bd
11
建筑力学
推论:
1、等直拉(压)杆受力时没有发生剪切变形,因而横截 面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线段的伸长 (缩短)变形是均匀的。亦即横截面上各点处的正应力 都相等。
p t
s M
10
建筑力学
拉(压)杆横截面上的正应力
推导思路:实验→变形规律→应力的分布规律→应力的计算公式
简单实验如下。用弹性材料做一截面杆(如下图),在受拉力前,在截 面的外表皮上画ab和cd两个截面,在外力F的作用下,两个截面ab和cd的 周线分别平行移动到a`b`和c`d`。根据观察,周线仍为平面周线,并且截 面仍与杆件轴线正交。
一般来说,在采用截面法之前不要使用力的可传性原理, 6

05材料力学-轴向拉伸与压缩

05材料力学-轴向拉伸与压缩

§5.2 拉、压杆的强度计算
保证构件不发生强度破坏并有一定安全余量的条件准则。
N ( x) max max( ) A( x)
依强度准则可进行三种强度计算: ① 校核强度:

其中:[]—许用应力, max—危险点的最大工作应力。

max


P
② 设计截面尺寸: Amin N max
1


构件是各种工程结构组成单元的统称。机械中的轴、杆
件,建筑物中的梁、柱等均称为构件。当工程结构传递运动或
承受载荷时,各个构件都要受到力的作用。为了保证机械或建 筑物的正常工作,构件应满足以下要求: 强度要求 所谓强度,是指构件抵抗破坏的能力。 刚度要求 所谓刚度,是指构件抵抗变形的能力。
稳定性要求 所谓稳定性,是指构件保持其原有平衡形态的
22
均匀材料、均匀变形,内力当然均匀分布。 2. 拉伸应力:
P

N(x)
N ( x) A
轴力引起的正应力 —— : 在横截面上均布。
3. 危险截面及最大工作应力: 危险截面:内力最大的面,截面尺寸最小的面。 危险点:应力最大的点。
N ( x) max max( ) A( x)
23
能力。 构件的强度、刚度和稳定性问题与其所选用材料的力学性
质有关,而材料的力学性质必须通过实验来测定。
2
杆件在不同的外力作用下将产生不同形式的变形,主要有: 1.轴向拉伸和压缩 :其受力特点是:作用在杆件的力,大 小相等、方向相反,作用线与杆件的轴线重合,因此在这种外 力作用下,变形特点是:杆件的长度发生伸长或缩短。起吊重 物的钢索、桁架的杆件、液压油缸的活塞杆等的变形,都属于

05工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第5章_轴向拉伸与压缩

05工程力学(静力学和材料力学)第2版课后习题答案_范钦珊主编_第5章_轴向拉伸与压缩

eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第5章)范钦珊 唐静静2006-12-18第5章轴向拉伸与压缩5-1试用截面法计算图示杆件各段的轴力,并画轴力图。

解:(a)题(b)题(c)题(d)题习题5-1图F NxF N(kN)x-3F Nx A5-2 图示之等截面直杆由钢杆ABC 与铜杆CD 在C 处粘接而成。

直杆各部分的直径均为d =36 mm ,受力如图所示。

若不考虑杆的自重,试求AC 段和AD 段杆的轴向变形量AC l Δ和AD l Δ解:()()N N 22ssππ44BCAB BC AB ACF l F l l d dE E Δ=+33321501020001001030004294720010π36.××+××=×=××mm ()3N 232c100102500429475286mm π10510π364..CDCD AD AC F l l l d E ΔΔ×××=+=+=×××5-3 长度l =1.2 m 、横截面面积为1.10×l0-3 m 2的铝制圆筒放置在固定的刚性块上;-10F N x习题5-2图刚性板固定刚性板A E mkN习题5-4解图直径d =15.0mm 的钢杆BC 悬挂在铝筒顶端的刚性板上;铝制圆筒的轴线与钢杆的轴线重合。

若在钢杆的C 端施加轴向拉力F P ,且已知钢和铝的弹性模量分别为E s =200GPa ,E a =70GPa ;轴向载荷F P =60kN ,试求钢杆C 端向下移动的距离。

解: a a P A E l F u u ABB A −=−(其中u A = 0)∴ 935.0101010.11070102.1106063333=×××××××=−B u mm钢杆C 端的位移为33P 32s s601021100935450mm π20010154...BC C B F l u u E A ×××=+=+=×××5-4 螺旋压紧装置如图所示。

第五章 静定结构的内力分析

第五章 静定结构的内力分析
1 a) A 1 B
MB
2 2
MC
C
解:1.计算外力偶矩
M A 9549
m T 1592N· 637N· m
b) T c)
M B 9549
x
637N· m
x
2.求各段扭矩 AB段:T1= MA=1592N· m BC段:T2= MA- MB=1592-955=637N· m
30 955N m 300 20 M C 9549 637N m 300
压缩与弯曲的组合
弯曲与扭转的组合
在进行结构设计时,为保证结构安全正常工
作,要求各构件必须具有足够的强度和刚度。解
决构件的强度和刚度问题,首先需要确定危险截
面的内力,内力计算是结构设计的基础。
5—1 轴向拉压杆
沿杆件轴线作用一对相反的外力,杆件将发生沿轴线方向
的伸长或缩短,这种变形称为轴向拉伸或压缩。
建筑力学
第5章 静定结构的内力分析
杆件结构——由杆件组成的结构。
杆件——长度远大于其横截面的宽度和高度的构件。
几何特点:横截面是与杆件长度方向垂直的截面,而轴线 是各横截面形心的连线。细而长,即l>>h,l>>b。
杆件结构
杆又可分为直杆和曲杆。
受外力作用后,其几何形状和尺寸一般都要发生改 变,这种改变称为变形。作用在构件上的荷载是各种 各样的,因此,杆件的变形形式就呈现出多样性,并 且有时比较复杂,但分解来看,变形的基本形式却只 有四种:
3.求截面2-2的内力
Fy 0 : FAy F FQ 2 0, 5 1 得FQ 2 FAy F F F F 4 4 M 2 0 : 2Fl M 2 0,

《建筑力学》第五章轴向拉伸和压缩研究报告

《建筑力学》第五章轴向拉伸和压缩研究报告
断裂时 曲线最高点所对应的应力称为抗拉强度 b 。
材料压缩时的力学性质 材料压缩试验的试样通常采用圆截面(金属材料)或方截面(混凝土、石料等非金 属材料)的短柱体如图 5-19 所示.为避免压弯、试样的长度与直径 d 或截面边长 b 的 比值一般规定为 1—3 倍。
图 5-19
图 5-20
(1)低碳钢的压缩试验
○ 2 断面收缩率
设试样试验段的原面积为 A,断裂后断口的最小横截面的面积为 A1 ,则比值
A A1 100%
A
(5-8)
称为断面收缩率。低碳钢 Q235 的断面收缩串为 60% 。
2、其他塑性材料拉伸时的性质 如图 5-16 所示为几种塑性材料拉伸时的应力一应变因。它们的共同特点是断裂 时均具有较大的塑性变形,不同的是有些金属材料没有明显的屈服阶段。对于不存在 明显屈服阶段的塑性材料,工程规定其产生 0. 2%的塑性应变时所对应的应力作为屈
N2 3P 2P 0 N2 P (压力) N2 得负号,说明原先假设为拉力是不正确的,应为压力,同时又表明轴力是负的。
同理,取截面 3-3 如图 5-6(d),由平衡方程 x 0 得:
N3 P 3P 2P 0 N3 2P
如果研究截面 3-3 右边一段 [图 5-6(e)],由平衡方程 x 0 得:
• 第一,假想用一横截面将物体截为两部分,研究其 中一部分,弃去另一部分。
• 第二,用作用于截面上的内力代替弃去部分对研究 部分的作用。
• 第三,建立研究部分的平衡条件,确定未知的内力 。
A
2、应力
现在假定在受力杆件中沿任意截面 m—m 把杆件截开,取出左边部分进行分析(图
5-2),围绕截面上任意一点 M 划取一块微面积 A,如果作用在这一微面积上的内力为 p ,那么 p 对 A的比值,称为这块微面积上的平均应力,即

工程力学轴向拉伸压缩

工程力学轴向拉伸压缩
为双剪切。由平衡方程轻易求出
Q P 2
为插销横截面上旳剪应力
Q A
15 103 2 20 103
2
23.9 MPa
4
故插销满足剪切强度要求。
例3-2 如图3-8所示冲床,Pmax k40N0 ,冲头 400
MPa,冲剪钢板 b 36M0 Pa,设计冲头旳最小直径值
及钢板厚度最大值。
许用挤压应力 bs ,8M顺Pa纹许用剪切应力
,1M顺P纹a 许用拉应

。若t P1=0M4P0akN,作用于正方形形心,试设计b、a及 l。
解:1. 顺纹挤压强度条件为
bs
P ba
bs
ba
P
bs
4801(1006a3 ) 50 104m2
2. 顺纹剪切强度条件为
Q P
A bl
bl
P
4010160(3 b4)00 10 4m2
3. 顺纹拉伸强度条件为
4.
P
b
1 2
(
b
a
)
t
b2 ba
2P
t
2 40 103 10 106
80 10 4m2
联立(a)、(b)、(c)式,解得
3.
b 11.4 10 2m 114mm l 35.1 10 2m 351mm a 4.4 10 2m 44mm
1.截 在待求内力旳截面处,用一假想旳平面将
构件截为两部分。
2.脱 取其中一部分为脱离体,保存该部分上
旳外力,并在截面上用内力替代另一部 分对该部分旳作用。 (未知内力假设为正)
3.平 利用脱离体旳平衡方程,即可求出截面
上旳内力。
轴力及其求法——截面法

工程力学第五章轴向拉伸压缩

工程力学第五章轴向拉伸压缩

在轴向拉伸和压缩过程中,物体内部 的应力分布是不均匀的,主要集中在 物体的横截面上。
轴向拉伸与压缩的应变分析
应变分析是研究物体在各种外力和内力作用下 产生的应变分布规律的过程。
在轴向拉伸和压缩过程中,物体内部的应变分 布也是不均匀的,主要集中在物体的横截面上。
应变分析的主要任务是确定物体在轴向拉伸和 压缩过程中横截面上的正应变和剪切应变的大 小和方向,以及它们的变化规律。
03
数值模拟与优化设计
数值模拟技术可以更加准确地模拟和分析结构的受力情况,优化设计参
数,提高结构的性能和可靠性。未来将更多地应用数值模拟与优化设计
技术,以降低工程成本和提高工程质量。
谢谢
THANKS
03 轴向拉伸与压缩的变形与强度
CHAPTER
轴向拉伸与压缩的变形规律
轴向拉伸与压缩时,杆件会产 生伸长或缩短变形,其变形量 可用伸长量或缩短量来表示。
杆件在轴向力作用下,杆件横 截面保持为平面,但会发生绕 中性轴的转动。
杆件在轴向拉伸或压缩时,中 性轴是应力为零的截面,中性 轴以上部分受拉,中性轴以下 部分受压。
工程力学第五章轴向拉伸压缩ຫໍສະໝຸດ 目录CONTENTS
• 轴向拉伸与压缩的概念 • 轴向拉伸与压缩的力学分析 • 轴向拉伸与压缩的变形与强度 • 轴向拉伸与压缩的实验研究 • 轴向拉伸与压缩的实际应用
01 轴向拉伸与压缩的概念
CHAPTER
定义与特性
定义
轴向拉伸与压缩是指物体在力的作用 下沿轴线方向产生的拉伸或压缩变形 。
实验设备与方法
实验设备
万能材料试验机、游标卡尺、夹具、 试样等。
实验方法
选取适当规格的试样,安装夹具,将 试样一端固定在试验机上,另一端施 加拉伸或压缩载荷,记录试样的变形 量,并测量相应的应力、应变值。

第5章 杆件的轴向拉伸与压缩变形

第5章  杆件的轴向拉伸与压缩变形
使单用位规。范由于说轴明力 恒为常量,所以轴力图为恒平行于x轴的水平直线与
x轴所围成的区域。 (2)轴力的方向: FN正值画在x轴的上方,负值画在x轴的下方
,图形区域内部用垂直于x轴的均匀的竖线布满,并在图线区域内标 上(表示正)或-(表示负)符号。 (3)图线要对齐:轴力图一定要画在受力图的正下方,并且轴力 图线的突变位置要和外力作用点的位置对齐。分段时以相邻两个外力 的作用点分段。
加大到一定限度时,构件就会破坏,因而内力与构件的强度、刚度是
密切相关的。由此可知,内力是材料力学研究的重要内容。
第5章 杆件的轴向拉伸与压缩变形
使5用.2规.2范说截明面法
截面法是材料力学中求解内力的基本方法,是已知构件外力确定
内力的普遍方法。

如图5-2a所示,杆件在外力作用下处于平衡状态,若求截面 上
、吉帕(GPa)。
第5章 杆件的轴向拉伸与压缩变形
使5用.4规.2范说杆明件轴向拉压时横截面上的正应力

为了求得横截面上任意一点的应力,必须了解内力在截面上的分
布规律。

如图5-7所示,取一等截面直杆,在杆件上画上与杆轴线垂直且
等间距的横向线ab和cd,再画上与杆轴线平行且等间距的纵向线,
然后沿杆的轴线作用一拉力F,使杆件产生轴向拉伸变形。 观察杆件 变形前后的形状可知:横向线在变形前后均保持为直线,且都垂直于
时,杆件受压缩短,其轴力取负。

轴力的正负规定可简记为“背离所求截面取正;指向所求截面
取负”或“使杆件受拉取正;使杆件受压取负”。对于方向未知的轴
力,通常按正向假设,若计算结果为正,则实际方向与假设方向相同
;若计算结果为负,则实际方向与假设方向相反。

轴向拉伸和压缩—轴向拉(压)杆的变形(建筑力学)

轴向拉伸和压缩—轴向拉(压)杆的变形(建筑力学)
长度的纵向变形,即纵向线应变,简称应变。
纵向线应变
l
l
线应变--每单位长 度的变形,无量纲。
△l以杆件伸长时为正,缩短时为负; 的正负号与△l
一致,因此,拉应变为正,压应变为负。
FP
a1
a
FP
l l1
杆的横向变形为
∆a =a1-a
杆在轴向拉伸时的横向变形为负值,压缩时为正值。
同理,将杆件的横向变形 除以杆的原截面边长,得杆件单
轴向拉伸与压缩
对于长度相同,轴力相同的杆件,分母EA越大,杆的纵向 变形⊿ l 就越小。
可见EA反映了杆件抵抗拉(压)变形的能力,称为杆件的 抗拉(压)刚度。
胡克定律的另一表达形式 或 E
E
在弹性范围内,正应力与线应变成正比。
对于各段杆件截面面积不同或内力分段不同的拉压杆 ,在计算杆件变形量时,应分段计算,然后叠加,即:
位长度的横向变形
' a
a
ε′称为横向线应变。ε′的正负号与⊿a 相同,压缩时为正 值,拉伸时为负值;ε′也是一个无量纲的量。
'
泊松比μ是一个无量纲的量。它的值与材料有关,可由实 验测出。
由于杆的横向线应变ε′与纵向线应变ε总是正、负号相反, 所以
-
轴向拉伸与压缩
第四节 轴向拉(压)杆的变形
一、纵向变形和横向变形
FP
a1
a
FP
l l1
纵向变形 l l1 - l
长度量纲
将杆件的绝对伸长量△l 除以杆的原长l,得到杆件单位
FNl EA
轴向拉伸与压缩
例7-6 试求 例7-5中砖柱顶面位移。已知E=3GPa, lAB=3m, lBC=4m。
解 由于砖柱底端是固定端,所以 柱顶面位移等于全柱的总缩短变形。

第五章-杆件的内力分析

第五章-杆件的内力分析

2、只适用于离杆件受力区域稍远处的横截面。
例题:图示结构,试求杆件AB、CB的应力。已知 P=20kN;斜杆AB为直径20mm的圆截面杆,水平杆 CB为15×15的方截面杆。 解:1、计算各杆件的轴力。(设斜杆AB为1杆, 水平杆BC为2杆)用截面法取节点B为研究对象
A
Fx 0 Fy 0
依方程画出剪力图和弯矩图。
目录
42
3.
梁弯曲时的应力
概述 • 纯弯曲(Pure Bending):某段梁的内力只有弯矩没有剪力时,该段梁的变形称
为纯弯曲。
P a A
Q
P a B
x
x M
§7-2 平面弯曲时梁横截面上的正应力 一、 纯弯曲时梁横截面上的 正应力 中性轴 中性面 (一)变形几何规律:
1. 横截面上的正应力
2. 斜截面上的应力
(1)轴向拉压杆横截面上的正应力 研究方法:
实验观察 作出假设 理论分析 实验验证

N A
F
结论:横截面上应力为均匀分布,以表示。
F
F


正负号规定:拉应力为正,压应力为负。
FN A
的适用条件:
1、只适用于轴向拉伸与压缩杆件,即杆端处力的合 力作用线与杆件的轴线重合。
N 2 20 103 2 2 6 A2 15 10 89 106 P a 89MP a
45° B
C
N1
N2
45°
y
B
P
P
x

§4-1
概述
起重机大梁
1
目录
20

§4-1
概述
镗刀杆
目录
21

建筑力学_高职05

建筑力学_高职05
FN2 150 103 N 1.1 MPa 2 -6 2 ABC 370 10 m
∴ 最大正应力smax=1.1MPa(压),发生在柱子下 段各横截面上,这种应力较大的点称为危险点。
5.4 拉压杆的变形 杆件在轴向拉伸或压缩时,所产生的主要变 形是沿轴线方向的伸长或缩短,称为纵向变形; 伴随着纵向变形,垂直于杆轴方向的横向尺寸也 会缩小或增大,称为横向变形。
第五章 轴向拉伸及压缩
主要内容:杆件在轴向拉压时的内力、应力和 变形; 材料在拉压时的力学性能;轴向拉 压杆的强度计算; 连接件的强度计算。
5.1 工程实例与计算简图
轴向拉伸或压缩杆件的工程实例
(a) 桁架中的杆件
(b) 斜拉桥中的拉索
(c) 闸门启闭机中的螺杆
承受轴向拉伸或压缩的杆件称为拉 ( 压 ) 杆。实 际拉压杆的几何形状和外力作用方式各不相同,若 将它们加以简化,则都可抽象成以下的计算简图。 其受力特点是外力或外力合力的作用线与杆件的轴 线重合;变形特征是沿轴线方向的伸长或缩短,同 时横向尺寸也发生变化。
当杆的变形为弹性变形时,横向线应变´与纵 向线应变 的绝对值之比是一个常数。此比值称为 泊松比或横向变形系数,用ν 表示,即: ν 是一个量纲为1的量,其数值随材料而异,可 以通过试验测定。 弹性模量E 和泊松比ν 都是材料固有的弹性常数, 由于 ´ 与 正负号总是相反,可得横向线应变与纵 向线应变或正应力的关系表达式: s E
2)屈服阶段(BC段) 此阶段内应力-应变曲线上下波动,应力基本保持 不变而应变急剧增加 ,材料暂时失去了抵抗变形的能 力,这种现象称为屈服或 流动。在屈服阶段中,对 应于应力-应变曲线首次下 降后的最低点应力值称为 屈服下限。通常,屈服下 限值较稳定,一般将其作 为材料的屈服极限,用 s s 表示。如:Q235钢的屈服 极限ss =235MPa。

05轴向拉伸和压缩

05轴向拉伸和压缩
F
α
α
N α
σ α = pα cos α = σ cos 2 α
③切应力: 切应力:
α
σα α pα τα
τ α = pα sin α =
σ0
2
sin 2α
1) α=00时, σmax=σ ) 2)α=450时, τmax=σ/2 ) =
§5–4 拉压杆的变形 · 胡克定律
杆原长为l,直径为 。受一对轴向拉力F的作用 的作用, 杆原长为 ,直径为d。受一对轴向拉力 的作用, 发生变形。变形后杆长为l 直径为d 发生变形。变形后杆长为 1,直径为 1。 轴向(纵向 应变: 纵向)应变 ε 轴向 纵向 应变: =
材料均为Q235钢,E=210GPa。已知 钢 点的位移。 材料均为 。已知F=60kN,试计算 点的位移。 ,试计算B点的位移
A 1.8m ① C ② 2.4m F B
解:1、计算各杆上的轴力 、
∑FX = 0 : − FN1 cos − FN2 = 0 α FN1 sinα − F = 0 ∑FY = 0 : FN1 =1.67F ⇒ FN2 = −1.33F
P A
a
3P
a
3P x D
∆l AB
Pa =− EA
B
C
a
∆l BC = 0
∆lCD = − 3Pa EA
3P
FN图
P
+
+
∆l AB + ∆l BC + ∆lCD = −
4 Pa EA
D点的位移为: 点的位移为: 点的位移为 −
4 Pa EA
例六 图示结构中①杆是直径为 图示结构中①杆是直径为32mm的圆杆, ②杆为 ×No.5槽钢。 的圆杆, 杆为2× 槽钢。 的圆杆 槽钢

工程力学(杆件的轴向拉伸压缩问题)

工程力学(杆件的轴向拉伸压缩问题)

教学设计一杆件轴向拉伸压缩问题问题一,杆件简单受力问题的分析与描述在学习了材料力学的基本定理和假设后,接下来学习一下杆件的简单受力问题,即杆件的轴向拉伸与压缩问题。

轴向拉伸或压缩变形是杆件的基本变形之一,轴向拉力一般用P 表示,轴向压力一般用N表示。

【例1】如图1.1所示直杆受轴向的外力作用,杆件A端受拉力,D端受压力,B截面受拉力,C截面受拉力,对于杆件中1-1、2-2、3-3截面上的轴力大小是多少,它们的受力是压力还是拉力,我们该如何判断呢?在材料力学中我们通常采用受力分析图来描述杆件或是受力物体的受力问题,在杆件轴向拉伸压缩问题中,我们采用轴力图N来描述杆件的轴力变化和受力大小。

我们用大写字母N来表示轴力图,用一条直线表示杆件的中轴线,并代表杆件,我们以拉力为正,画在轴线上方,压力为负,画在轴线下侧,图形为矩形,矩形的高度代表受力的大小,并标注正负号,在图形上侧或下侧标注受力大小。

画出图示1.1的受力分析图例题分析讲解对杆件进行分段分析AB段,1-1截面N1=3kN(拉)BC段,2-2截面N2=5-3=2kN(压)CD段,3-3截面N3=4+2=6kN(压)杆件受力分析图N问题二,杆件简单受力问题的计算杆件截面应力计算问题,杆件上截面分为正截面和任意截面,我们把垂直与杆件轴线的截面成为杆件的正截面,其他截面成为任意截面。

杆件的正截面应力我们用字母σ表示,任意截面正应力我们用σα表示,截面剪应力用τα表示。

横截面正应力计算大小我们用轴力除以正截面面积,如公式1.1所示。

(公式1.1)任意斜截面上的正应力和剪应力计算,我们将轴力沿斜截面的垂直方向和水平方向分解,然后分别除以斜截面面积,得到斜截面正应力计算式1.2和剪应力1.3所示,其中α角为横截面与斜截面的夹角。

(公式1.2)(公式1.3)例题分析讲解【例2】图1.2所示,变截面杆件,已知P=25kN,横截面面积A1=2000mm2,A2=1000mm2,试作轴力图,并计算各截面上的正应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25
建筑力学
❖ 拉(杆)的横向变形
由实验可知,当杆件受拉(压)而沿轴向伸长(缩短)的同时,其横截面 的尺寸必伴随着缩小(增大)。
如右图所示,拉(压)杆前横向尺寸为d,拉(压)杆后为
d1,则横向变形为:
Ddd1d
d1 d
横向线变形与横向原始尺寸之比为横向线应变,以符号ε`表示,即:
Dd1 d
实验结果还表明,当杆件内的工作应力不超过弹性变形范围时,横向线 应变ε`与轴向线应变ε的比值的绝对值是一个常数,此比值称为泊松比或横 向变形系数,常用μ表示(量纲为1),即:
20
建筑力学
❖ 强度条件的应用
(1) 校核强度—已知杆件所受的荷载,杆件尺寸及材料的许用 应力,根据等截面的强度要求公式来校对杆件是否满足强度的 要求。这时工程中最常见的一种强度计算方法。
(2) 截面选择—已知杆件所受的荷载和材料的许用应力,确定 杆件所需的最小横截面面积。可用下式计算:
A
Fmax
N C P A 1 l1 A 2 l2 1 .9 2 kN8 (拉力)
17
轴力图如图。
(3)应力计算
B截面 C截面
sBN A 1 B13 .4 21 2 1 0 430 1 0 64.4 1MPa (拉应力) sCN A 2 C14 .9 2 1 8 1 0 430 1 0 63.8 6MPa (拉应力)
一般来说,在采用截面法之前不要使用力的可传性原理,以 免引起错误。
6
建筑力学
[例] 如图,以A点为分界点将杆分为两部分,用截面法求这两部分内力。
P
Ⅰ AⅡ
P
解: 截:
P
A P
代:
P
A FN
平:
Fx0 PFN0 PFN
内力 FN沿轴线方向,所以称为轴力。
7
建筑力学
❖ 轴力图 若用平行于杆轴线的坐标表示横截面的位置,用垂直于杆
建筑力学
第五章 轴向拉伸和压缩
➢ 轴向拉(压)杆横截面的内力及轴力图
➢ 应力和应力集中的概念
➢ 轴向拉(压)杆的强度计算
➢ 轴向拉(压)杆的变形计算
➢ 材料在拉伸、压缩时的力学性能
➢ 轴向拉(压)超静定问题
1
建筑力学
6.1 轴向拉(压)杆横截面的内力及轴力图
F
F
2
建筑力学
F F
3
建筑力学
轴向拉伸:在轴向力作用下,杆件产生伸长变形,也简称拉伸。 轴向压缩:在轴向力作用下,杆件产生缩短变形,也简称压缩。
(2)绘轴力图
x1 0 , x1 l1 , x2 l1 ,
x2l1l2 ,
NAP12kN(拉力)
N B P A 1 l 1 1 0 . 0 2 3 2 5 1 2 8 0 1 0 . 4 2 kN2 (拉力)
N B P A 1 l 1 A 2 ( l 1 l 1 ) 1 . 4 k2 N2 (拉力)
s (缩短)变形是均匀的。亦即横截面上各点处的正应力
都相等。
设某横截面面积为A,截面轴力为F,则横截面上的正应力为:
s FN A
正应力的正负号与轴力一致,拉应力为正,压应力为负。
12
建筑力学
❖ 拉(压)杆斜截面上的应力
F
k
F
左图为一杆件受轴向荷载F的作用。
现用一平面假想沿该杆的斜截面k-k截开,
根据上述现象,对杆件内部的变形作如下假设:变形之前横截面为平 面,变形之后仍保持为平面,而且仍垂直于杆轴线,只是每个横截面沿 杆轴作相对平移。这就是平面假设。
ac
F
a' c'
F
b' d'
bd
11
建筑力学
推论:
1、等直拉(压)杆受力时没有发生剪切变形,因而横截 面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线段的伸长
k
它与垂直面的夹角为a。取左段为脱离体,
F
k pa FN
可求出该截面的轴力FN,且FN=F。则斜截 面上的应力P a为
k
Pa
FN Aa
式中,A a为斜截面面积。设横截面面积为A,则有:
Aa
A
cosa
可得:
Pa
FN A
cosa
Pascoas
13
建筑力学
应力可分解为斜截面上的正应力和平行于截面的切应力(如 下图),它们分别为:
s as a a p aco 0 s c2 os
tapasian s0ca ossa ins20 sin2a
pa
ta
讨论: (1) a0
s s max 0
(横截面)
a90
sa 0
(纵截面)
(2) a45
tt s a m a0 x /2
tt s a45
a m in 0 /2
14
建筑力学
❖ 应力集中的概念 在实际工程中,由于结构和工艺上的要求,构件的截面尺寸
16
[例] 起吊钢索如图所示,截面积分别为A1=3cm2,
A2=4cm2,l1=l2=50m,P=12kN,材料单位体积重量 γ=0.028N/cm3,试考虑自重绘制轴力图,并求σmax。
解:(1)计算轴力
AB段:取1—1截面
N 1PA 1x1 0 x 1 l1
BC段:取2—2截面
N 2 P A 1 l 1 A 2 x 2 l 1l1 x 2 l1 l2
轴力FN =F =25kN
(2)计算应力
根据公式
smax
FN max A
可得,smax16M 2 Pa
(3)确定校核
s s m 1 ax M 6 2 P 1M a 70 Pa
22
建筑力学
6.4 轴向拉(压)杆的变形计算
❖ 线变形和线应变
如下图,设杆件原长为l,横截面面积为A,在轴向力P作 用下,长度由 l 变为l1。
变形程度可以用杆件单位长度的变形ε来表示,即: Dl
l 式中, ε表示杆件的相对形变,常称为线应变,它表示原 线段每单位长度内的线变形,又称为轴向应变,是一个量纲 为1的量,可表示为百分率。线应变ε的正负号与△l一致。所 以有:拉应变为正,压应变为负。
24
建筑力学
❖ 胡克定律
实验证明:大多数建筑材料在受力不超过弹性范围时,其横截面上正 应力和轴向线应变成正比。材料受力后其应力与应变之间的这种比例关 系,称为胡克定律,其表达式为:
应力的单位为帕斯卡(简称帕),符号Pa。常用的单位有千 帕(kPa)、兆帕(MPa)、或吉帕(GPa)。
p t
s M
10
建筑力学
❖ 拉(压)杆横截面上的正应力
推导思路:实验→变形规律→应力的分布规律→应力的计算公式
简单实验如下。用弹性材料做一截面杆(如下图),在受拉力前,在截 面的外表皮上画ab和cd两个截面,在外力F的作用下,两个截面ab和cd的 周线分别平行移动到a`b`和c`d`。根据观察,周线仍为平面周线,并且截面 仍与杆件轴线正交。
通常情况下我们认为,构件截面上的内力为拉力(拉力为 正值)。通过计算得到内力值为正值时,说明内力为拉力; 计算结果为负值,说明内力为压力。
5
建筑力学
❖ 截面法—求内力的一般方法 用截面法求内力可归纳为四个字: (1)截:求某一截面的内力,沿该截面将构件假想地截成两部分。 (2)取:取其中任意部分为研究对象,而除去另一部分。 (3)代:用作用于截面上的内代替除去部分对留下部分的作用力。 (4)平:对留下的部分建立平衡方程,由利用力确定未知的内力。
C DF
DA
pm
DF DA
当△A趋于零时, Pm的极限值 就是点C的应力,即:
pΔ lA i0m pmΔ lA i0m Δ ΔF Ad dF A
式中,p为点C 的应力, △F 为小面积△A上的合内力。
9
建筑力学
一点处的应力可以分解成两个应力分量:垂直于截面的分
量称为正应力,引起长度变化,用符号σ表示;与截面相切的 分量称为切应力,引起角度变化,用符号τ表示。如下图所示。
拉压受力特点:作用于杆件两端的外力大小相等,方向相反, 作用线与杆件轴线重合,即称轴向力。
拉压变形特点:杆件变形是沿轴向方向的伸长或缩短。
此类受轴向外力作用的等截面直杆称为拉杆或压杆。
F
FF
F
拉压计算简图
4
建筑力学
❖ 内力 内力:构件内部所产生的力。 外力:构件之外其他物体作用于构件上的力。
内力—由于物体受外力作用而引起的其内部各质点间相互作 用的力的改变量。因此可以说,内力是该构件内力系的合成。 需要注意的是:(1)内力是连续分布的;(2)内力与外力组成 平衡力系。杆件构件截面上内力变化随着外力的变化而改变。 ❖ 内力的正负号规则
在实际工程中,应力集中程度用孔和开口处最大应力σmax 与截面上平均应力的比值来表示,即:
K s max sm
式中,K称为理论应力集中系数。它反映了应力集中的程 度,是一个大于 1 的系数。应力系数的确定根据实际情况, 查阅相关的材料手册。
试验结果还表明 : 截面尺寸改变愈剧烈,应力集中系数就愈 大。因此,零件上应尽量避免带尖角的孔或槽,在阶梯杆截 面的突变处要用圆弧过渡。
19
建筑力学
❖ 强度条件
轴向拉压杆要满足强度的要求,就必须保证杆件的最大 工作应力不超过材料的许用应力,即:
sma ≤xs
对于等截面杆,上式可以写成:
smax
FN max A
≤[σ]
如果最大应力与许用应力相等,则从力学角度来说,就达 到了安全与经济的统一。如果最大应力远小于许用应力,则 造成材料的浪费。如果最大应力大于许用应力,说明强度不 够,安全强度没有达到规定的标准。一般情况下,超额幅度 在5%之内,课认为是安全的。
相关文档
最新文档