第四章轴向拉伸与压缩
轴向拉伸和压缩
六、强度计算
1.极限应力和许用应力
工作应力 FN
A
极限应力
塑性材料
u
(S
)
p 0.2
脆性材料
u
( bt
)
bc
u n —安全因数 — 许用应力
n
塑性材料的许用应力 脆性材料的许用应力
s
ns
bt
nb
p0.2
ns
bc
nb
轴向拉伸和压缩
2.强度计算
max
FN A
轴向拉伸和压缩
二、杆的内力计算
1.内力的概念
构件所承受的载荷及约束反力统称为外力。构件在外力作用下发生变形,产生构
件内部各部分之间的相互作用力,这种作用力称为内力。
2.截面法
(1)截开 (2)代替 (3)平衡
F5
F1
F2
F5
F1
F2
m F4
m
F3
F4
F3
轴向拉伸和压缩
3.轴力
轴向拉伸或压缩时杆横截面上 F
的内力与杆轴线重合,因此 称为轴力,
F
m F
m
FN
FN
F
Fx 0
FN F 0 FN F
轴向拉伸和压缩
4.轴力图
A
为了表明横截面上的轴力
沿轴线变化的情况,可 F1
按选定的比例尺,以与
杆件轴线平行的坐标轴 表示各横截面的位置,
F1
以垂直于该坐标轴的方 向表示相应的内力值,
F1
这样做出的图形称为轴
根据强度条件,可以解决三类强度计算问题
1、强度校核: 2、设计截面: 3、确定许可载荷:
max
FN A
轴向拉伸和压缩及连接件的强度计算PPT课件
轴向拉伸和压缩时,杆件只承受 轴向力,不受其他外力作用,杆 件横截面保持为平面,无剪切和 扭转。
轴向拉伸和压缩的应用场景
01
02
03
机械制造
轴、螺栓、螺母等连接件 的设计和强度计算。
建筑行业
钢结构的稳定性分析和设 计,如钢梁、钢柱等。
石油化工
管道、压力容器等承受内 压的元件设计和安全评估。
轴向拉伸和压缩的基本原理
准确性。
材料性能研究
深入研究材料的力学性能,特别是 其非线性行为,为强度计算提供更 准确的基础数据。
设计优化与验证
结合实际应用案例,不断优化设计, 并通过实验验证来确保设计的有效 性。
05 轴向拉伸和压缩及连接件 的未来发展与展望
当前研究的热点与难点
材料性能的极限挑战
随着对高性能材料需求的增加,如何准确预测材料在轴向 拉伸和压缩下的行为以及连接件的强度成为当前研究的热 点。
但是,在实际应用中,由于材料的不 均匀性、表面粗糙度等因素的影响, 拉伸强度和压缩强度可能会有所差异 。
强度计算中的注意事项
01
材料的不均匀性
在计算强度时,需要考虑材料的不均匀性。即使是同一种材料,不同部
位的力学性能也可能存在差异。
02 03
温度的影响
温度对材料的力学性能有很大影响。在高温下,材料的屈服强度和抗拉 强度都会降低。因此,在高温环境下工作的零件,需要考虑温度对强度 的影响。
复杂应力状态
轴向拉伸和压缩及连接件在实际应用中可能面临复杂的应力状态, 如弯曲、剪切等,增加了强度计算的难度。
连接件设计
连接件的设计对整体结构的强度和稳定性至关重要,设计不当可能 导致失效或安全事故。
应用案例分析
第4章 拉伸、压缩1234
σbc
σbc >>σbt
目 录
三、其它常用材料力学性能简介
(一)其它金属材料力学性能简介
σ
高强钢 低合金钢 低碳钢
σ0.2
02% .
铝合金 黄铜
条件屈服极限: 条件屈服极限 σ0.2
ε
第六节 轴向拉伸和压缩时杆件的强度计算
一、极限应力 许用应力 安全因数 失效-构件不能正常工作。如发生断裂、塑性变形、弹性 构件不能正常工作。如发生断裂、塑性变形、 构件不能正常工作 大变形过大或稳定性不足等, 大变形过大或稳定性不足等,都将导致构件失效。 构件失效时的最小应力, 构件失效时的最小应力,称为极限应力 σ0
F
F
m
F
一截为二, 一截为二, 去一留一, 去一留一,
m
FN =F FN =F
平衡求力。 平衡求力。
F
三、轴力和轴力图
轴向拉( 轴向拉(压)时,其内力与杆轴线重合,称为轴力, 其内力与杆轴线重合,称为轴力, 用FN表示。 表示。 轴力符号规则:与截面外法线方向一致时为正; 轴力符号规则:与截面外法线方向一致时为正;否则为 负。 正的轴力表示拉伸,负的轴力表示压缩。 正的轴力表示拉伸,负的轴力表示压缩。 表示压缩
第二节 拉伸与压缩时横截面上的内力
一、内力的概念 物体内部各部分因相对位置改变而引起的 相互作用力。 相互作用力。 由于是载荷作用引起的内力称为附加内力,简称内力。 由于是载荷作用引起的内力称为附加内力,简称内力。 附加内力 内力 内力引起变形,起着传递外力的作用, 内力引起变形,起着传递外力的作用,随着 外力而改变,并与外力平衡。 外力而改变,并与外力平衡。 二、计算内力的截面法 (1)截面法
10
x
轴向拉伸与压缩教学教案
轴向拉伸与压缩教学教案第一章:轴向拉伸与压缩概念介绍教学目标:1. 让学生理解轴向拉伸与压缩的基本概念。
2. 让学生了解轴向拉伸与压缩的物理现象及其在实际中的应用。
教学内容:1. 轴向拉伸与压缩的定义。
2. 轴向拉伸与压缩的物理现象。
3. 轴向拉伸与压缩的应用实例。
教学方法:1. 采用讲授法,讲解轴向拉伸与压缩的基本概念及其物理现象。
2. 通过实物展示或图片,使学生更直观地了解轴向拉伸与压缩的应用实例。
教学评估:1. 通过课堂提问,检查学生对轴向拉伸与压缩概念的理解程度。
2. 通过布置课后作业,让学生巩固所学内容。
第二章:轴向拉伸与压缩的基本理论教学目标:1. 让学生掌握轴向拉伸与压缩的基本理论。
2. 让学生了解轴向拉伸与压缩的计算方法。
教学内容:1. 轴向拉伸与压缩的基本力学原理。
2. 轴向拉伸与压缩的计算方法。
教学方法:1. 采用讲授法,讲解轴向拉伸与压缩的基本力学原理。
2. 通过示例,让学生了解轴向拉伸与压缩的计算方法。
教学评估:1. 通过课堂提问,检查学生对轴向拉伸与压缩基本理论的理解程度。
2. 通过布置课后作业,让学生巩固所学内容。
第三章:轴向拉伸与压缩的实验研究教学目标:1. 让学生了解轴向拉伸与压缩实验的原理。
2. 培养学生进行实验操作和数据处理的能力。
教学内容:1. 轴向拉伸与压缩实验的原理。
2. 轴向拉伸与压缩实验的操作步骤。
3. 实验数据的处理方法。
教学方法:1. 采用实验教学法,让学生亲身体验轴向拉伸与压缩实验。
2. 通过实验操作和数据处理,使学生更好地理解轴向拉伸与压缩的物理现象。
教学评估:1. 通过实验报告,评估学生对轴向拉伸与压缩实验原理的理解程度。
2. 通过实验操作和数据处理的评价,培养学生进行实验的能力。
第四章:轴向拉伸与压缩在工程中的应用教学目标:1. 让学生了解轴向拉伸与压缩在工程中的应用。
2. 培养学生解决实际问题的能力。
教学内容:1. 轴向拉伸与压缩在工程中的应用实例。
轴向拉伸与压缩
第五章 轴向拉伸与压缩一、轴向拉伸与压缩承受拉伸或压缩杆件的外力(或外力的合力)作用线与杆轴线重合,杆件沿杆轴线方向伸长或缩短,这种变形形式称为轴向拉伸或轴向压缩。
这种杆件称为拉压杆。
二、轴力及轴力图杆件在外力作用下将发生变形,同时杆件内部各部分之间产生相互作用力,此相互作用力称为内力。
对于轴向拉压杆,其内力作用线与轴线重合,此内力称为轴力。
轴力拉为正,压为负。
为了表现轴向拉压杆各横截面上轴力的变化情况,工程上常以轴力图表示杆件轴力沿杆长的变化。
三、横截面上的应力根据圣文南原理,在离杆端一定距离之外,横截面上各点的变形是均匀的,各点的应力也应是均匀的,并垂直于横截面,此即为正应力。
设杆的横截面面积为A,则有AF N =σ 工程计算中设定拉应力为正,压应力为负。
四、强度条件工程中为各种材料规定了设计构件时工作应力的最高限度,称为许用应力,用[σ]表示。
轴向拉伸(压缩)强度条件为[]σσ≤=AF N用强度条件可解决工程中三个方面的强度计算问题,即:(1)强度校核;(2)设计截面;(3)确定许可载荷。
五、斜截面上的应力与横截面成θ角的任一斜截面上,通常有正应力和切应力存在,它们与横截面正应力σ的关系为:⎪⎪⎩⎪⎪⎨⎧=+=θστθσσθθ2sin 2)2cos 1(2 由上式可知,当θ=0°时,正应力最大,即横截面上的正应力是所有截面上正应力中的最大值。
当θ=±45°时,切应力达到极值。
六、拉压变形与胡克定律等值杆受轴向拉力F作用,杆的原长为l ,横截面积为A,变形后杆长由l 变为l +△l ,则杆的轴向伸长为EAFl l =∆ 用内力表示为EAl F l N =∆ 上式为杆件拉伸(压缩)时的胡克定律。
式中的E称为材料的拉伸(压缩)弹性摸量,EA称为抗拉(压)刚度。
用应力与应变表示的胡克定律为σ=Eε在弹性范围内,杆件的横向应变ε‘和轴向应变ε有如下的关系:μεε-='式中的μ称为泊松比。
轴向拉伸和压缩
§2 轴向拉压时横截面上 的内力和应力
一.轴力及轴力图 1.轴力的概念
(1)举例
F F
N
F
N
F
用截面法将杆件分成左右两部分,利用 方向的平衡可得 :
x轴
X 0 N F 0 N F
结论
因F力的作用线与杆件的轴线重合,故,由杆 件处于平衡状态可知,内力合力的作用线也必然 与杆件的轴线相重合。
二、应力
1、平面假设
① 实验:受轴向拉伸的等截面直杆,在外力施加之前, 先画上两条互相平行的横向线ab、cd,然后观察该两 横向线在杆件受力后的变化情况。
a
F
a b
c
c d
F
b
② 实验现象
d
变形前,我们在横向所作的两条平行线ab、cd, 在变形后,仍然保持为直线,且仍然垂直于轴线,只 是分别移至a’b’、c’d’位置。
③ 实验结论 变形前为平面的横截面,变形后仍保持为平面。 ——平面假设
F
N
N
F
平面假设
拉杆所有纵向纤维的伸长相等 材料的均匀性 各纵向纤维的性质相同
横截面上 内力是均 匀分布的
N A
(1)
A——横截面面积
拓展
——横截面上的应力
对于等直杆, 当有多段轴力时,最大轴力所对应的截 面——危险截面。危险截面上的正应力——最大工作应力, 其计算公式应为:
2)木材
各向异性材料。 3)玻璃钢:玻璃纤维与热固性树脂粘合而成的复合材料 各向异性材料。优点是:重量轻,强度高,工艺简单,耐 腐蚀。
思考题 1、强度极限b是否是材料在拉伸过程中所承受 的最大应力? 2、低碳钢的同一圆截面试样上,若同时画有两种 标距,试问所得伸长率10 和5 哪一个大?
工程力学 第四章 轴向拉伸与压缩讲诉
拉压杆的强度条件:杆件的最大工作应力不能超过材料的许用应力。即
FN max [ ]
max
A
式中: max ——横截面上的最大工作应力;
FN max ——产生最大工作应力界面的轴力,这个截面称为危险截面;
A——危险截面的横截面积;
[σ]——材料的许用应力。
对于等直杆,轴力最大的截面为危险截面;对于变截面直杆,若轴力不变, 横截面积最小的截面为危险截面;若杆件为变截面杆,且轴力也是变化的, [FN/A]max 所在的截面为危险截面。
第 9 页 共 17 页
二、胡克定律
杆件受轴向力作用时,沿杆件轴线方向会伸长或缩短,同时杆件的横向尺 寸将缩小或增大。我们把杆件沿轴线方向伸长或缩短称为纵向变形;横截面方 向尺寸的改变量称为横向变形。
F
F
l l1
杆件在拉伸或压缩时长度发生改变,其改变量称为绝对变形,用 L 表示。 设杆件变形前的长度为 L ,变形后的长度为 L1 ,则其绝对变形
结合书 P83-84 例 3-5、例 3-6 对强度计算进行详细讲解。
2、例题
例 1:一直径 d=14mm 的圆杆,许用应力[σ]=170MPa,受轴向拉力 P=2.5kN 作用,试校核此杆是否满足强度条件。
解:
max
N max A
2.5 103 142 106
162MPa <留段 A 的 m — m 截面
轴向拉伸的内力计算
上,各处作用着内力,设这些内力的合力为 N ,它是弃去部分 B 对保留部分 A
的作用力。
(3)由于整个杆件原来处于平衡状态,所以截开后的任意一部分仍应保
第 2 页 共 17 页
持平衡,故可对保留部分 A 建立平衡方程。
第四章轴向拉伸与压缩
4.1 轴向拉伸和压缩的概念
当作用在等截面直杆上的外力(或者外力合力)的 作用线和杆轴重合时,杆件的主要变形是轴向拉伸 或者压缩。
经历轴向拉伸(压缩)的等截面直杆称为拉(压) 杆。
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。
轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向
O
B
C
4F 3F
D 2F
2A
2A
A
FN 3F
+ A
2F
B
+
+
–
C
D
F
4.3 拉(压)杆的应力
1. 应力的概念:
F
F
(1)问题提出:
F
F
1. 两杆的轴力都为F. 2. 但是经验告诉我们,细杆更容易被拉断。同样材料,
同等内力条件下,横截面积较大的拉杆能承受的 轴向拉力较大。
3. 内力大小不能衡量构件强度的大小。 4. 根据连续性假设,内力是连续分布于整个横截面上的, 一般而言,截面上不同点处分布的内力大小和方向都不 同。
横截面积 A 成反比。即
l Fl A
引入比例常数E,可有
l Fl F
EA
EA
这一关系称为胡克定律。
E 称为杨氏模量,也叫弹性模量。它是材料本身的性质,表征 材料抵抗变形的能力,需要用实验来测定。单位为Pa。
在拉压杆中,有
F FN
l Fl FN l FN
EA EA
EA
※ “EA”称为杆的拉伸(压缩)刚度。对于长度相等,受力也 相等的拉压杆,拉伸(压缩)刚度越大,变形越小。
d
向缩短。若拉杆为圆截面,原始
直径为d,变形后直径为d1,
直杆轴向拉伸与压缩时的变形与应力分析和拉伸与压缩时材料的力学性能——教案
直杆轴向拉伸与压缩时的变形与应力分析和拉伸与压缩时材料的力学性能——教案第一章:直杆轴向拉伸与压缩的基本概念1.1 学习目标1. 了解直杆轴向拉伸与压缩的基本概念;2. 掌握直杆轴向拉伸与压缩的变形与应力分析方法。
1.2 教学内容1. 直杆轴向拉伸与压缩的定义;2. 直杆轴向拉伸与压缩的变形与应力分析方法。
1.3 教学活动1. 讲解直杆轴向拉伸与压缩的基本概念;2. 分析直杆轴向拉伸与压缩的变形与应力分析方法。
第二章:直杆轴向拉伸与压缩的变形分析2.1 学习目标1. 了解直杆轴向拉伸与压缩的变形规律;2. 掌握直杆轴向拉伸与压缩的变形分析方法。
2.2 教学内容1. 直杆轴向拉伸与压缩的变形规律;2. 直杆轴向拉伸与压缩的变形分析方法。
2.3 教学活动1. 讲解直杆轴向拉伸与压缩的变形规律;2. 分析直杆轴向拉伸与压缩的变形分析方法。
3.1 学习目标1. 了解直杆轴向拉伸与压缩的应力分布;2. 掌握直杆轴向拉伸与压缩的应力分析方法。
3.2 教学内容1. 直杆轴向拉伸与压缩的应力分布;2. 直杆轴向拉伸与压缩的应力分析方法。
3.3 教学活动1. 讲解直杆轴向拉伸与压缩的应力分布;2. 分析直杆轴向拉伸与压缩的应力分析方法。
第四章:拉伸与压缩时材料的力学性能4.1 学习目标1. 了解拉伸与压缩时材料的力学性能指标;2. 掌握拉伸与压缩时材料的力学性能分析方法。
4.2 教学内容1. 拉伸与压缩时材料的力学性能指标;2. 拉伸与压缩时材料的力学性能分析方法。
4.3 教学活动1. 讲解拉伸与压缩时材料的力学性能指标;2. 分析拉伸与压缩时材料的力学性能分析方法。
第五章:实例分析与应用5.1 学习目标2. 能够应用所学知识解决实际问题。
5.2 教学内容1. 直杆轴向拉伸与压缩的实例分析;2. 应用所学知识解决实际问题。
5.3 教学活动1. 分析直杆轴向拉伸与压缩的实例;2. 解决实际问题,巩固所学知识。
第六章:弹性模量的概念与应用6.1 学习目标1. 理解弹性模量的定义及其物理意义;2. 掌握弹性模量在材料力学中的应用。
《轴向拉伸与压缩》课件
轴向拉伸的应用范围
建筑工程
轴向拉伸在钢筋混凝土结构中的应用,增加结构的承载能力。
材料制备
轴向拉伸用于制备高强度材料、纤维材料、复合材料等。
模具设计
轴向拉伸在模具设计中的应用,增强产品的形状和结构。
轴向拉伸的原理与方法
1
应力-应变关系
介绍轴向拉伸应力和应变之间的关系。
2
材料性能分析
通过实验和测试,评估材料的拉伸性能和变形行为。念 轴向拉伸的应用范围 轴向拉伸的原理与方法 轴向压缩的概念 轴向压缩的应用范围 轴向压缩的原理与方法
背景介绍
轴向拉伸和压缩是一种重要的力学变形方式,在工程应用中起着至关重要的作用。本节将介绍轴向拉伸 和压缩的背景和意义。
轴向拉伸的概念
轴向拉伸是指在材料中施加一个沿着轴向方向的拉力,使材料沿轴向伸长的 力学变形方式。
3
工程应用案例
展示轴向拉伸在工程实践中的应用案例。
轴向压缩的概念
轴向压缩是指沿着轴向方向对材料施加的压缩力,使材料沿轴向缩短的力学 变形方式。
轴向压缩的应用范围
桥梁建设
砖瓦制造
汽车制造
轴向压缩在桥梁建设中的应用, 提升桥梁的稳定性和承载能力。
轴向压缩用于砖瓦制造过程中, 提高瓦片的密度和强度。
汽车制造中的轴向压缩应用, 改善车身结构和安全性能。
轴向压缩的原理与方法
1 应变率分析
2 压缩强度测试
分析材料在轴向压缩中 的变形速率和应变过程。
通过实验和测试,评估 材料在轴向压缩条件下 的强度和稳定性。
3 工程实践案例
展示轴向压缩在工程实 践中的应用案例和成果。
chap04轴向拉伸和压缩
50kN N
I
I 50kN
+
II 150kN
100kN
II
100kN
|N|max=100kN
50kN
I NI
I
NI=50kN
II NII
100kN
II NII= 100kN
4-3 轴向拉(压)杆应力
1、应力的概念
为了描写内力的分布规律,我们将单位面积的内力称为应力。
第4章 轴向拉伸和压缩(1)
§4-1 §4-2 §4-3 §4-4
材料力学相关问题 轴向拉(压)杆内力和轴力图 轴向拉(压)杆应力 轴向拉(压)变形计算
4-1 材料力学相关问题
a 材料力学的任务
在生产实际中,各种机械和工程 结构得到广泛应用。组成机械的零 件和结构的元件,统称为构件。
EA 称为抗拉刚度
为了说明变形的程度,令 l l Dl
ll
称为纵向线应变,显然,伸长为正号,缩 短为负号
Dl Nl
EA
l l Dl
ll
)定律
N 1
EA E
E
也称为胡克定律
2、横向变形
P
hP
Dh h h
则斜截面面积为:A
A
cos
由杆左段的平衡方程 X 0
p A P 0
p
P A
P cos
A
cos
这是斜截面上与 轴线平行的应力
n
P
pα
τα
t 下面我们将该斜截面上的应力分解为正应力和剪应力
第4章轴向拉伸与压缩
第4章轴向拉伸与压缩4.1 轴向拉伸与压缩的概念在建筑物和机械等工程结构中,经常使用受拉伸或压缩的构件。
例如图4.1所示液压传动中的活塞杆,工作时以拉伸和压缩变形为主。
图4.2所示拧紧的螺栓,螺栓杆以拉伸变形为主。
图4.1 图4.2图4.3所示拔桩机在工作时,油缸顶起吊臂将桩从地下拔起,油缸杆受压缩变形,桩在拔起时受拉伸变形,钢丝绳受拉伸变形。
图4.4所示桥墩承受桥面传来的载荷,以压缩变形为主。
图4.3 图4.4图4.5所示钢木组合桁架中的钢拉杆,以拉伸变形为主。
图4.6所示厂房用的混凝土立柱以压缩变形为主。
图4.5 图4.6 在工程中以拉伸或压缩为主要变形的构件,称为拉、压杆,若杆件所承受的外力或外力合力作用线与杆轴线重合,称为轴向拉伸或轴向压缩。
4.2 轴向拉(压)杆的内力与轴力图4.2.1 拉压杆的内力在轴向外力F 作用下的等直杆,如图4.7(a )所示,利用截面法,可以确定n m -横截面上的唯一内力分量为轴力N F ,其作用线垂直于横截面并通过形心,如图4.7(b )所示。
图4.7利用平衡方程 0=∑x F得 F F =N通常规定:轴力N F 使杆件受拉为正,受压为负。
4.2.2 轴力图为了表明轴力沿杆轴线变化的情况,用平行于轴线的坐标表示横截面的位置,垂直于杆轴线的坐标表示横截面上轴力的数值,以此表示轴力与横截面位置关系的几何图形,称为轴力图。
作轴力图时应注意以下几点:1、轴力图的位置应和杆件的位置相对应。
轴力的大小,按比例画在坐标上,并在图上标出代表点数值。
2、习惯上将正值(拉力)的轴力图画在坐标的正向;负值(压力)的轴力图画在坐标的负向。
例题4.1 一等直杆及受力情况如图(a )所示,试作杆的轴力图。
如何调整外力,使杆上轴力分布得比较合理。
例题4.1图解:(1)、求AB 段轴力用假设截面在1–1处截开,设轴力F N 为拉力,其指向背离横截面,由平衡方程得kN 5N1 F (图b )(2)、同理,求BC 段轴力kN 15kN 10kN 5N2=+=F (图c )(3)、求CD 段轴力,为简化计算,取右段为分离体kN 30N3=F (图d )(4)、按作轴力图的规则,作出轴力图,如图(e )所示。
轴向拉伸与压缩的名词解释
轴向拉伸与压缩的名词解释引言:轴向拉伸与压缩是物理学领域中常见的概念,用于描述物体在力的作用下的变形情况。
本文将对轴向拉伸与压缩进行详细的解释与探讨。
一、轴向拉伸轴向拉伸是指物体在受到拉力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝外拉伸时,物体会在轴向上发生拉伸。
拉伸的大小可以通过物体的伸长率来衡量,伸长率定义为单位长度的伸长与初始长度之比。
轴向拉伸现象广泛应用于工程领域,例如建筑中的钢筋,拉伸试验中的拉力传感器等。
钢筋在混凝土中起到增强材料的作用,能够抵抗建筑物的拉力。
而拉力传感器则是一种能够测量外力大小的传感器,利用了材料的拉伸特性。
二、轴向压缩轴向压缩是指物体在受到压力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝内压缩时,物体会在轴向上发生压缩。
压缩的大小可以通过物体的压缩率来衡量,压缩率定义为单位长度的压缩与初始长度之比。
轴向压缩现象同样广泛应用于工程领域。
例如,桥梁中的墩柱、压缩试验中的压力传感器等。
墩柱是承受桥梁重力和交通荷载的重要结构部件,压缩试验中的压力传感器则是能够测量外力大小的传感器,利用了材料的压缩特性。
三、轴向拉伸与压缩的应用轴向拉伸与压缩的应用十分丰富,不仅在工程领域中有广泛应用,在其他领域中也有其独特的应用价值。
1. 材料科学:轴向拉伸与压缩是材料性能研究的重要手段。
通过对材料在拉伸和压缩条件下的变形进行测试,可以获得材料的各种力学性能参数,例如抗拉强度、抗压强度等。
这对材料的设计和应用具有重要的指导意义。
2. 生物医学:轴向拉伸与压缩在生物医学研究中具有重要的作用。
例如,在骨骼生物力学研究中,可以通过对骨骼的拉伸和压缩测试,了解骨骼力学特性并分析疾病的发生机制。
3. 电子工程:轴向拉伸与压缩的特性也可以应用于电子工程领域。
例如,电子产品中常使用弹性材料来保护内部电路。
这些材料可以在外力作用下发生轴向拉伸或压缩,起到减缓冲击力的作用。
第四章 轴向拉伸和压缩
a
F a P pa a a pa sin a cos a sin a sin 2a a a 2 n 反映:通过构件上一点不同截面上应力变化情况。 当a = 0°时, ( a ) max (横截面上存在最大正应力)
a pa cosa cos a
2
n
联立求解得 FNAB=40(KN) FNBC=-40(KN)
2)求各杆正应力。 AB杆:截面面积AAB=254.34(mm2) σ AB=157. 3MPa(拉) BC杆:截面面积ABC=a2=1002mm2 σ BC=3MPa (压)
4.2.3 斜截面上的应力
设有一等直杆受拉力F作用。 求:斜截面m-n上的应力。 解:采用截面法 由平衡方程:FNa=F F F
轴向拉伸:杆的变形是轴向伸长,横向缩短。 轴向压缩:杆的变形是轴向缩短,横向变粗。
4.1.2 内力的概念
物体在受到外力作用而变形时,物体内部各质 点间的相对位置将发生变化。其各质点间相互作用 的力也会发生改变。这种相互作用的力由于物体受 到外力作用而引起的改变量,称为附加内力,通常 简称内力。
意 义 ①反映出轴力与截面位置变化关系,较直观; ②确定出最大轴力的数值 及其所在横截面的位置, FN F + x
即确定危险截面位置,为
强度计算提供依据。
【例4.2】
杆件受力如图4.6(a)所示,试 求杆内的轴力并作出轴力图。
【解】 1)为了运算方便,首先求出支座反力,取
整个杆为研究对象[图4.6(b)],列平衡方程 ∑x=0 一F+6 0+2 0一1 0一3 5=0 F=3 5(kN) 2)求各段杆的轴力。 求AB段轴力: 用1—1截面将杆件在AB段内截开,取左段为研究 对象[图4.6(c)],以FN1表示截面上的轴力,并假设 为拉力,由平衡方程
工程力学 第四章 杆件的基本变形
0
0
0
求出内力分量
3、平衡
注意:
用截面法求内力和取分离体求约束反力的方法本质 相同。这里取出的研究对象不是一个物体系统或一个完 整的物体,而是物体的一部分。
必须指出:用截面法之前 ⑴ 一般不允许用力的可传性原理。 ⑵ 不允许用合力来代替力系的作用。 ⑶ 不允许把力偶在物体上移动。
Thank you!
轴向拉伸或压缩变形
受力特点:作用线与杆轴重合的外力引起的。
拉 伸
压 缩
变形特点:杆轴沿外力方向伸长或缩短, 主要变形是长度的改变
屋 架 结 构 中 的 拉 压 杆
塔 式 结 构 中 的 拉 压 杆
桥 梁 结 构 中 的 拉 杆
剪 切 变形
受力特点:由垂直于杆轴方向的一对大小相等、 方向相反、作用线很近的横向外力引起的。
弯力偶引起的
变形特点:杆轴由直变弯,杆件的轴线变成曲线。
计算简图
计算简图
阳台梁是受弯构件 阳 台
内力及其截面法
一、内力的概念
1、外力:其它物体对构件作用的力。例如支座反力,荷载等。
2、内力:固有内力--分子内力,它是由构成物体的材料的
变形特点:二力之间的横截面产生相对错动变形 主要变形是横截面沿外力作用方向发生相对错动。
螺 栓
连 接 键
销钉
螺 栓
扭 转 变 形
受力特点:由垂直于杆轴线平面内的力偶作用引起的
变形特点:相邻横截面绕杆轴产生相对旋转变形。
对称扳手拧紧镙帽
自 行 车 中 轴 受 扭
桥 体 发 生 扭 转 变 形
二杆件变形的形式1基本变形轴向拉伸不压缩剪切变形扭转变形弯曲变形2组合变形同时发生两种或两种以上的变形形式杆件的外力不变形特点轴向拉伸或压缩变形受力特点
拉伸和压缩
§5-2 拉伸(压缩)时横截面上的内力——轴力
一、内力 二、内力的计算——截面法 三、轴力图
一、内力 1.定义
因外力作用而引起构件内部之间的相互作用 压变形时的内力,FN或N。 剪力——剪切变形时的内力,FQ。 扭矩——扭转变形时的内力,MT或T。 弯矩与剪力——弯曲变形时的内力,Mw与FQ。
[σ] =σs /ns
[σ] =Rm /nb
安全系数n
ns按屈服极限规定 nb按强度极限规定 取值,ns = 1.5~2.0 取值,nb = 2.5~3.5
三、强度条件
拉压强度条件方程: σ= FNmax/A ≤ [σ]
利用强度条件可解决工程中三类强度问题: 校核强度 选择截面尺寸 确定许可载荷
绝对变形
拉杆
压杆
绝对变形只表示了杆件变形的大小,但不能表示杆 件变形的程度。
2.相对变形
为了消除杆件长度的影响,通常以绝对变形除以原长 得到单位长度上的变形量——相对变形(又称线应变)来 度量杆件的变形程度。用符号表示为ε:
ε= ΔL/Lo =(Lu—Lo)/Lo
ε无单位,通常用百分数表示。对于拉杆,ε为正值; 对于压杆,ε为负值。
二、胡克定律
胡克定律——当杆横截面上的正应力不超过一 定限度时,杆的正应力σ与轴向线应变ε成正比。
σ=εE
常数E称为材料的弹性模量,它反映了材料的弹性性 能。材料的E值愈大,变形愈小,故它是衡量材料抵抗弹 性变形能力的一个指标。
胡克定律的另一种表达形式:
ε=ΔL/Lo
代入 σ=εE
得
σ= FN/A
FN ≤[σ] ·A
在载荷、材料、截面尺寸和工作条件这 四个因素中,工作应力与哪些因素有关?许 用应力[σ]与哪些因素有关?
轴向拉伸和压缩习题附标准答案
轴向拉伸和压缩习题附标准答案第四章轴向拉伸和压缩⼀、填空题1、杆件轴向拉伸或压缩时,其受⼒特点是:作⽤于杆件外⼒的合⼒的作⽤线与杆件轴线相________.2、轴向拉伸或压缩杆件的轴⼒垂直于杆件横截⾯,并通过截⾯________.4、杆件轴向拉伸或压缩时,其横截⾯上的正应⼒是________分布的.7、在轴向拉,压斜截⾯上,有正应⼒也有剪应⼒,在正应⼒为最⼤的截⾯上剪应⼒为________.8、杆件轴向拉伸或压缩时,其斜截⾯上剪应⼒随截⾯⽅位不同⽽不同,⽽剪应⼒的最⼤值发⽣在与轴线间的夹⾓为________的斜截⾯上.9、杆件轴向拉伸或压缩时,在平⾏于杆件轴线的纵向截⾯上,其应⼒值为________.10、胡克定律的应⼒适⽤范围若更精确地讲则就是应⼒不超过材料的________极限.11、杆件的弹必模量E表征了杆件材料抵抗弹性变形的能⼒,这说明杆件材料的弹性模量E值越⼤,其变形就越________.12、在国际单位制中,弹性模量E的单位为________.13、在应⼒不超过材料⽐例极限的范围内,若杆的抗拉(或抗压)刚度越________,则变形就越⼩.15、低碳钢试样据拉伸时,在初始阶段应⼒和应变成________关系,变形是弹性的,⽽这种弹性变形在卸载后能完全消失的特征⼀直要维持到应⼒为________极限的时候.16、在低碳钢的应⼒—应变图上,开始的⼀段直线与横坐标夹⾓为α,由此可知其正切tgα在数值上相当于低碳钢________的值.17、⾦属拉伸试样在屈服时会表现出明显的________变形,如果⾦属零件有了这种变形就必然会影响机器正常⼯作.18、⾦属拉伸试样在进⼊屈服阶段后,其光滑表⾯将出现与轴线成________⾓的系统条纹,此条纹称为________.19、低碳钢试样拉伸时,在应⼒-应变曲线上会出现接近⽔平的锯齿形线段,若试样表⾯磨光,则在其表⾯上关键所在可看到⼤约与试样轴线成________倾⾓的条纹,它们是由于材料沿试样的________应⼒⾯发⽣滑移⽽出现的.20、使材料试样受拉达到强化阶段,然后卸载,在重新加载时,其在弹性范围内所能随的最⼤荷载将________,⽽且断裂后的延伸率会降低,此即材料的________现象.21、铸铁试样压缩时,其破坏断⾯的法线与轴线⼤致成________的倾⾓.22、铸铁材料具有________强度⾼的⼒学性能,⽽且耐磨,价廉,故常⽤于制造机器底座,床⾝和缸体等.25、混凝⼟,⽯料等脆性材料的抗压强度远⾼于它的________强度.26、为了保证构件安全,可靠地⼯作在⼯程设计时通常把________应⼒作为构件实际⼯作应⼒的最⾼限度.27、安全系数取值⼤于1的⽬的是为了使⼯程构件具有⾜够的________储备.28、设计构件时,若⽚⾯地强调安全⽽采⽤过⼤的________,则不仅浪费材料⽽且会使所设计的结构物笨重.29、正⽅形截⽽的低碳钢直拉杆,其轴向向拉⼒3600N,若许⽤应⼒为100Mpa,由此拉杆横截⾯边长⾄少应为________mm.⼆、判断题(对论述正确的在括号内画 ,错误的画╳)1、杆件两端受到等值,反向和共线的外⼒作⽤时,⼀定产⽣轴向拉伸或压缩变形.()4、轴⼒图可显⽰出杆件各段内横截⾯上轴⼒的⼤⼩但并不能反映杆件各段变形是伸长还是缩短.()5、⼀端固定的杆,受轴向外⼒的作⽤,不必求出约束反⼒即可画内⼒图.()6、轴向拉伸或压缩杆件横截⾯上的内⼒集度----应⼒⼀定正交于横截⾯.()9、求轴向拉伸或压缩杆件的轴⼒时,⼀般地说,在采⽤了截⾯法之后,是不能随意使⽤⼒的可传性原理来研究留下部分的外⼒平衡的.()15、材料相同的⼆拉杆,其横截⾯⾯积和所产⽣的应变相等,但杆件的原始长度不⼀定相等. ()16、⼀钢杆和⼀铝杆若在相同下产⽣相同的应变,则⼆杆横截⾯上的正应⼒是相等的. ()17、弹性模量E值不相同的两根杆件,在产⽣相同弹性应变的情况下,其弹性模量E值⼤的杆件的受⼒必然⼤. ()32、在强度计算时,如果构件的⼯作和⼯作应⼒值⼤于许⽤应⼒很少,⽽且没有超过5%.则仍可以认为构件的强度是⾜够的.()三、最佳选择题(将最符合题意的⼀个答案的代号填⼊括号内)1、在轴向拉伸或压缩杆件上正应⼒为零的截⾯是()A、横截⾯B、与轴线成⼀定交⾓的斜截⾯C、沿轴线的截⾯D、不存在的2、在轴向拉伸或压缩杆件横截⾯上不在此列应⼒是均布的,⽽在斜截⾯上()A、仅正应⼒是均布的;B、正应⼒,剪应⼒都是均布的;C、仅剪应⼒是均布的;D、正应⼒,剪应⼒不是均布的;3、⼀轴向拉伸或压缩的杆件,设与轴线成45.的斜截⾯上的剪应⼒为τ,则该截⾯上的正应⼒等于()A、0;B、1.14τ;C、0.707;D、τ;6、⼀圆杆受拉,在其弹性变形范围内,将直径增加⼀倍,则杆的相对变形将变为原来的()倍.A 、41; B 、21; C 、1; D 、2 7、由两杆铰接⽽成的三⾓架(如图所⽰),杆的横截⾯⾯积为A ,弹性模量为E ,当在节点B 处受到铅垂载荷P 作⽤时,铅垂杆AB 和斜杆BC 的变形应分别为()A 、EA Pl ,EA Pl 34; B 、0,EA Pl ; C 、EA Pl 2,EA Pl 3 D 、EA Pl ,0 11、两圆杆材料相同,杆Ⅰ为阶梯杆,杆Ⅱ为等直杆,受到拉⼒P 的作⽤(如图所⽰),分析两杆的变形情况,可知杆Ⅰ的伸长()的结论是正确的.A 、为杆Ⅱ伸长的2倍; B 、⼩于杆Ⅱ的伸长;C 、为杆Ⅱ伸长的2.5倍;D 、等于杆Ⅱ的伸长;12、⼏何尺⼨相同的两根杆件,其弹性模量分别为E 1=180Gpa,E 2=60 Gpa,在弹性变形的范围内两者的轴⼒相同,这时产⽣的应变的⽐值21εε 应⼒为()A、31 B 、1; C 、2; D 、3 13、⼀钢和⼀铝杆的长度,横截⾯⾯积均相同,在受到相同的拉⼒作⽤时,铝杆的应⼒和().A 钢杆的应⼒相同,但变形⼩于钢杆;B 变形都⼩于钢杆;C 钢杆的应⼒相同,但变形⼤于钢杆;D 变形都⼤于钢杆.四、图所⽰⽀架,AB 为钢杆,横截⾯积A AB =600mm 2;BC 为⽊杆,横截⾯积A BC =300cm 2.钢的许⽤应⼒[σ]=140Mpa ,⽊材的许⽤拉应⼒[σL ]=8Mpa ,许⽤压应⼒[σy ]=4Mpa.求⽀架的许可载荷.第四章轴向拉伸和压缩答案⼀、填空题:1、重合;2、形⼼; 4、均匀;7、零;8、450;9、零;10、⽐例;11、⼩;12、Pa;13、⼤; 15、正⽐、⽐例;16、弹性模量;17、塑性;18、450、滑移线;19、450、最⼤剪;20、提⾼、冷作硬化;21、450;22、抗压;23、⾼;24、拉;25、抗拉;26、许⽤;27、强度;28、安全系数;29、6;.⼆、判断题:1、×;2、√;3、√;4、×;5、√;6、√;7、√;8、√;9、×;10、×;11、×;12、×;13、√;14、×;15、√;16、×;17、×; 32、√.三、最佳选择题:1—C;2—B;3—D;4—A;5—C;6—A;7—D;8—B;9—C;10—B;11—C;12—A;13—C;四、[P]=101KN.。
2020年10月自考《工程力学》2020第四章轴向拉伸与压缩习题答案及答案
第四章轴向拉伸与压缩习题答案1. 拉杆或压杆如图所示。
试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:(1)分段计算轴力杆件分为2段。
用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=F(拉);F N2=-F(压)(2)画轴力图。
根据所求轴力画出轴力图如图所示。
2. 拉杆或压杆如图所示。
试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:(1)分段计算轴力杆件分为3段。
用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=F(拉);F N2=0;F N3=2F(拉)(2)画轴力图。
根据所求轴力画出轴力图如图所示。
3. 拉杆或压杆如图所示。
试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:(1)计算A端支座反力。
由整体受力图建立平衡方程:∑F x=0,2kN-4kN+6kN-F A=0F A=4kN(←)(2)分段计算轴力杆件分为3段。
用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=-2kN(压);F N2=2kN(拉);F N3=-4kN(压)(3)画轴力图。
根据所求轴力画出轴力图如图所示。
4. 拉杆或压杆如图所示。
试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。
解:(1)分段计算轴力杆件分为3段。
用截面法取图示研究对象画受力图如图,列平衡方程分别求得:F N1=-5kN(压); F N2=10kN(拉); F N3=-10kN (压)(2)画轴力图。
根据所求轴力画出轴力图如图所示。
5. 圆截面钢杆长l=3m,直径d=25mm,两端受到F=100kN的轴向拉力作用时伸长Δl=2.5mm。
试计算钢杆横截面上的正应力σ和纵向线应变ε。
解:6. 阶梯状直杆受力如图所示。
已知AD段横截面面积A AD=1000mm2,DB段横截面面积A DB=500mm2,材料的弹性模量E=200GPa。
求该杆的总变形量Δl AB。
解:由截面法可以计算出AC,CB段轴力F NAC=-50kN(压),F NCB=30kN(拉)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
B
C
D
4F 3F
2F
2A
2A
A
F N 3F
+ A
2F
B
+
+
–
C
D
F
4.3 拉(压)杆的应力
1. 应力的概念:
F
F
(1)问题提出:
F
F
1. 两杆的轴力都为F. 2. 但是经验告诉我们,细杆更容易被拉断。同样材料,
同等内力条件下,横截面积较大的拉杆能承受的 轴向拉力较大。
3. 内力大小不能衡量构件强度的大小。 4. 根据连续性假设,内力是连续分布于整个横截面上的, 一般而言,截面上不同点处分布的内力大小和方向都不 同。
如果只受集中荷载,则轴力(图)的简便求法: 自左向右,轴 力从0开始, 遇到向左的F, 轴力 F N 增量为正F;
遇到向右的F , 轴力 F N 增量为负F。
如果左端是约束,需先求出约束反力(约束反力也是外力)
8kN
5kN
3kN
8kN 3kN
5kN +
8kN – 3kN
如果杆件由几段不同截面的等直杆构成,轴力的计算方 法和单一截面的轴力计算方法一样。
假如将杆假想为由无数根纵向纤维组成。则各纤维的伸长 都相同。因此可作如下假设:
(2)平面假设:直杆经历轴向拉(压)时,原为平面的横截 面(横线就代表杆的横截面)在变形后仍为平面。
假如材料是均匀的,那么,相同的内力将引起相同的变形 ,反过来,相同的变形必然是由于相同的内力引起的。因 为拉压杆每根纤维的伸长都相同,所以它的任意点的内力 集度(应力)都是相同的。也就是说,拉(压)杆横截面 上的应力分布是均匀的。因此
同理,求得AB、
FN2
BC
D
BC、CD段内力分
FB
FC
FD
别为:
FN3
C
D
FN2= –3F
FN3= 5F
FC
FD
FN4
D
FN4= F
FD FN2= –3F 表明该轴力方向与预设方向相反,其效果为压。
轴力图如右图 F N
5F
2F +
+ B
F +
x
A
–
C
D
3F
轴力沿杆件分段为常量时轴力图的简便作法: 分段点:集中载荷作用点,截面突变处 轴力图的特点:突变值 = 集中载荷值
轴力图——F N (x) 的图象表示。
轴力图:为了表示轴力随截面位置的变化,可以画出轴力 沿杆轴线方向变化的图形,即轴力图。 轴力图的作法:
1 用平行于杆轴线的坐标表示横截面的位置;
2 用垂直于杆轴线的坐标表示横截面上的轴力的数值;
3 习惯上将正轴力画在上侧,负轴力画在下侧,并标上正负号。
意 ①反映出轴力与截面位置变化关系,较直观; 义 ②确定出最大轴力的数值及其所在横截面的位置,
ΔF
F2
pm ΔA
F
分布内力
A
pm称为面积△A上的平
均应力。
当△A趋于零时,pm 的
大小和方向都将趋于某一
F3
极限值。
pΔ lA im 0pmΔ lA im 0Δ ΔF Ad dF A
p称为该点的总应力,它反映内力系在该点
的强弱程度,p是一个矢量。
p称为该点的应力,它反映内力系在该点的强弱程度,p是一 个矢量。
2 在某一截面上一点处的应力是矢量。
3 应力的量纲为ML-1T-2。应力的单位为帕斯卡, 1 Pa=1 N/m2, 1 MPa=106 Pa, 1 GPa=109 Pa
4 根据应力的定义,整个截面上各点处应力与微元面积 dA的乘积的合成,即为该截面的内力。
F A pdA
2、拉(压)杆横截面上的应力
应力正负号规定
• 正应力:离开截面的正应力为正,指向 截面的正应力为负。
• 切应力以其对分离体内一点产生顺时针 转向的力矩时为正值的切应力,反之, 则为负的切应力 。
• 切应力的说法只对平面问题有效。
(3). 应力的特征:
1 应力定义在受力物体的某一截面上的某一点处,因 此,讨论应力必须明确是在哪一个截面上的哪一点处。
5. 要判断杆是否会因强度不足而破坏,还必须知道: ① 度量分布内力大小的分布内力集度-应力。 ② 材料承受荷载的能力。
大多数情形下,工程构件的内力并非均匀分布,内力集度
的定义不仅准确而且重要,因为“破坏”或“失效”往往从内
力集度(应力)最大处开始。
(2)应力的表示: F1
截面
△A上的内力平均集度为:
拉(压)杆横截面上的内力即为轴力。也就是横截面上 各点应力与微元面积dA的乘积的合成。轴力是和截面垂 直的。因为切应力不可能合成与截面垂直的合力,所以 轴力只可能是正应力的合成,所以
FN
dA
A
(1) 变形规律试验及平面假设:
F 变形前
F 受载后
F F
变形后所有纵线都伸长了,所有横线都依然保持为直线, 并且与纵线垂直。
为强度计算提供依据。
FN
F
+ x
[例1] 图示杆的A、B、C、D点分别作用着大小为5F、8F、4F、 F 的力,方向如图,试画出杆的轴力图。
OA
BC
D
FA
FB
FC
FD
FN1ABC源自DFAFB
FC
FD
解: 求OA段内力FN1:设置截面如图
X 0 F N 1 F A F B F C F D 0
F N 1 5 F 8 F 4 F F 0 FN1 2F
第四章 轴向拉伸和压缩
4.1 轴向拉伸和压缩的概念
当作用在等截面直杆上的外力(或者外力合力)的 作用线和杆轴重合时,杆件的主要变形是轴向拉伸 或者压缩。
经历轴向拉伸(压缩)的等截面直杆称为拉(压) 杆。
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。
轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向
缩扩。
力学模型如图
F
F
轴向拉伸,对应的力称为拉力。
F
F
轴向压缩,对应的力称为压力。
为简单起见,也可以把拉压杆用一条粗直线表示
F
F
F
F
4.2 拉(压)杆的内力
轴力:等截面直杆在经历轴向拉伸或者压缩时,杆中 任一截面上的内力的合力的方向都和杆轴线方向重 合,这种顺延杆轴线方向的内力合力称为轴力。
轴力的正负规定:
F1
τ p
M
σ
p是M点的总应力,一般来
说既不与截面垂直,也不与截 F2 面相切,可以对其进行分解为
两部分:
垂直于截面的应力分量: σ
相切于截面的应力分量: τ
σ 正应力(normal stress)
τ 切应力(shear stress) 应力单位: 牛顿/米2 , 帕斯卡(Pa) 1KPa=1000Pa 1MPa=1000KPa 1GPa=1000MPa
当轴力方向与截面的外法线 F N
同向时,轴力为正(拉力)
n
FN
n
FN 0
当轴力方向与截面的外法线 F N
反向时,轴力为负(压力)
n
FN
n
FN 0
正轴力对留下部分起拉伸作用,负轴力对留下部分起压缩作用
。 正轴力背离截面,负轴力指向截面。
这样规定以后,在进行轴力显示和计算时,无论保留哪一 部分,所求得的任一截面上的轴力的正负号都是一样的。