七年级数学解二元一次方程组练习题

合集下载

(完整版)七年级下册数学二元一次方程组试卷及答案(人教版)

(完整版)七年级下册数学二元一次方程组试卷及答案(人教版)

一、选择题1.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天B .11天C .13天D .22天2.对于实数x ,y ,定义新运算1x y ax by *=++,其中a ,b 为常数,等式右边为通常的加法和乘法运算,若3515*=,4728*=,则59*=( ) A .40B .41C .45D .463.已知方程组263a b a b m -=⎧⎨-=⎩中,a ,b 互为相反数,则m 的值是( )A .4B .4-C .0D .84.两位同学在解方程组时,甲同学由24ax by cx y +=⎧⎨-=-⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把c 写错了解得22x y =-⎧⎨=⎩,则a b c ++的值为( )A .3B .0C .1D .75.已知关于x ,y 的方程组25241x y ax y a +=-⎧⎨-=-⎩给出下列结论:①当a =1时,方程组的解也是x +y =2a +1的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 的自然数解有3对;④若2x +y =8,则a =2.正确的结论有( )个. A .1B .2C .3D .46.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH DC ⊥,垂足为H .将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是( )A .24B .32C .36D .647.若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩8.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .1003100x y x y +=⎧⎨+=⎩C .1003100x y x y +=⎧⎨+=⎩D .100131003x y x y +=⎧⎪⎨+=⎪⎩9.已知x ,y 互为相反数且满足二元一次方程组2321x y kx y +=⎧⎨+=-⎩,则k 的值是( )A .﹣1B .0C .1D .210.如果32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,则a 2008+2b 2008的值为( )A .1B .2C .3D .4二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.12.已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.13.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________.14.若方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则方程组111222a x y c a a x y c a +=-⎧⎨+=-⎩的解是______.15.已知x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,则m +n 的值为 ___. 16.若实数a 与b 满足()24320a b a b -+-+=,则ab 的平方根为________.17.某中学七年级在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前50名获奖,原定一等奖5人,二等奖10人,三等奖35人,现调整为一等奖10人,二等奖15人,三等奖25人,调整后一等奖平均分降低5分,二等奖平均分降低3分,三等奖平均分降低1分,如果原来一等奖比二等奖平均分数多2分,则调整后二等奖比三等奖平均分数多______分.18.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.19.关于x ,y 的方程组215x ay bx y -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则6a b -的平方根是______.20.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则34m n -的立方根=________.三、解答题21.如图,在平面直角坐标系中,已知,点()0,A a ,(),0B b ,()0,C c ,a ,b ,c 满足()282122a b c -+-=-+,(1)直接写出点A ,B ,C 的坐标及ABC 的面积;(2)如图2,过点C 作直线//l AB ,已知(),D m n 是l 上的一点,且152ACD S ≤△,求n 的取值范围;(3)如图3,(),M x y 是线段AB 上一点, ①求x ,y 之间的关系;②点N 为点M 关于y 轴的对称点,已知21BCN S =△,求点M 的坐标.22.阅读感悟:有些关于方程组的问题,要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2728x y x y +=⎧⎨+=⎩,则x y -=_______,x y +=_______;(2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元?(3)对于实数x 、y ,定义新运算:*x y ax by c =++,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*515=,4*728=,那么1*1=_______.23.在平面直角坐标系xOy 中,把线段AB 先向右平移h 个单位,再向下平移1个单位得到线段CD (点A 对应点C ),其中()(),,,A a b B m n 分别是第三象限与第二象限内的点.(1)若|3|10,2a b h +++==,求C 点的坐标; (2)若1b n =-,连接AD ,过点B 作AD 的垂线l ①判断直线l 与x 轴的位置关系,并说明理由;②已知E 是直线l 上一点,连接DE ,且DE 的最小值为1,若点B ,D 及点(),s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(),x y 为坐标的点,试判断()()s m t n -+-是正数、负数还是0?并说明理由.24.在平面直角坐标系xOy 中,点()4,0A -,点()0,3B ,点()3,0C .(1)ABC 的面积为______;(2)已知点()1,2D -,()2,3E --,那么四边形ACDE 的面积为______.(3)奥地利数学家皮克发现了一类快速求解格点多边形的方法,被称为皮克定理:如果用m 表示格点多边形内的格点数,n 表示格点多边形边上的格点数,那么格点多边形的面积S 和m 与n 之间满足一种数量关系.例如刚刚求解的几个多边形面积中,我们可以得到如表中信息:形内格点数m 边界格点数n格点多边形面积SABC611四边形ACDE 8 11 五边形ABCDE208根据上述的例子,猜测皮克公式为S =______(用m ,n 表示),试计算图②中六边形FGHIJK 的面积为______(本大题无需写出解题过程,写出正确答案即可).25.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数. ①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?26.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.27.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B . (1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.28.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.29.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.30.我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A 光射线自AM 顺时针旋转至AN 便立即逆时针旋转至AM ,如此循环灯B 光射线自BP 顺时针旋转至BQ 便立即逆时针旋转至BP ,如此循环.两灯交叉照射且不间断巡视.若灯A 转动的速度是a 度/秒,灯B 转动的速度是b 度/秒,且a ,b 满足22(4)(5)0a b a b -++-=.若这一带江水两岸河堤相互平行,即//PQ MN ,且60BAN ∠=︒.根据相关信息,解答下列问题.(1)a =__________,b =__________.(2)若灯B 的光射线先转动24秒,灯A 的光射线才开始转动,在灯B 的光射线到达BQ 之前,灯A 转动几秒,两灯的光射线互相平行?(3)如图2,若两灯同时开始转动照射,在灯A 的光射线到达AN 之前,若两灯射出的光射线交于点C ,过点C 作CD AC ⊥交PQ 于点D ,则在转动的过程中,BAC ∠与BCD ∠间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】解:根据题意设有x 天早晨下雨,这一段时间有y 天,有9天下雨, 即早上下雨或晚上下雨都可称之为当天下雨, ①总天数﹣早晨下雨=早晨晴天; ②总天数﹣晚上下雨=晚上晴天;列方程组7(9)6y x y x -=⎧⎨--=⎩,解得411x y =⎧⎨=⎩,所以一共有11天, 故选B . 【点睛】本题考查二元一次方程组的应用.2.B解析:B 【分析】根据定义新运算列出二元一次方程组即可求出a 和b 的值,再根据定义新运算公式求值即可. 【详解】解:∵1x y ax by *=++,3515*=,4728*=,∴1535128471a b a b =++⎧⎨=++⎩解得:3725a b =-⎧⎨=⎩∴59*=3752591-⨯+⨯+=41 故选B . 【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.3.D解析:D 【分析】根据a 与b 互为相反数得到0a b +=,即=-b a ,代入方程组即可求出m 的值. 【详解】解:因为a ,b 互为相反数, 所以0a b +=, 即=-b a ,代入方程组得:364a a m =⎧⎨=⎩,解得:28a m =⎧⎨=⎩,故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值,也考查了代入消元法解二元一次方程组以及相反数的意义.4.D解析:D 【分析】把甲的结果代入方程组两方程中,乙的结果代入第一个方程中,分别求出a ,b ,c 的值,即可求出所求. 【详解】解:把32x y =⎧⎨=-⎩代入方程组24ax by cx y +=⎧⎨-=-⎩得:322324a b c -⎧⎨+-⎩== , 把22x y =-⎧⎨=⎩代入ax +by =2得:-2a +2b =2,即-a +b =1,联立得:3221a b a b -⎧⎨-+⎩==,解得:45a b ⎧⎨⎩== , 由3c +2=-4,得到c =-2, 则a +b +c =4+5-2=7. 故选:D . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.C解析:C 【分析】先解出二元一次方程组得1222x a y a =+⎧⎨=-⎩,①当a =1时,方程组的解为30x y =⎧⎨=⎩,则x +y =3=2a +1;②x +y =1+2a +2﹣2a =3,无论a 取何值,x ,y 的值不可能是互为相反数;③3x y +=,,x y 是自然数,解得,x y 有4对解;④2x +y =2(1+2a )+(2﹣2a )=4+2a =8,则a =2. 【详解】解:25241?x y a x y a +=-⎧⎨-=-⎩①②,①﹣②,得y =2﹣2a , 将y =2﹣2a 代入②,得 x =1+2a ,∴方程组的解为1222x ay a =+⎧⎨=-⎩,当a =1时,方程组的解为30x y =⎧⎨=⎩,∴x +y =3=2a +1, ∴①结论正确;∵x +y =1+2a +2﹣2a =30≠,∴无论a 取何值,x ,y 的值不可能是互为相反数, ∴②结论正确;3x y +=,,x y 是自然数0123,,,,3210x x x x y y y y ====⎧⎧⎧⎧∴⎨⎨⎨⎨====⎩⎩⎩⎩共4对 ∴x ,y 的自然数解有4对, ∴③结论不正确;∵2x +y =2(1+2a )+(2﹣2a )=4+2a =8, ∴a =2, ∴④结论正确; 故选:C . 【点睛】本题考查了二元一次方程的解,二元一次方程组的解,解二元一次方程组 ,解题的关键是掌握二元一次方程的解,二元一次方程组的解,解二元一次方程组.6.C解析:C 【分析】由图可知:重新拼成一个长方形BEMN ,长BN =8,宽BE =4,得二元一次方程组,解出可得结论. 【详解】 解:如图所示,由已知得:BN =8,S 长方形BNME =32, ∴BE =32÷8=4,则84x y x y +⎧⎨-⎩== , 解得:2x =12, ∴x =6,∴正方形ABCD 的面积是36, 故选:C . 【点睛】此题主要考查了几何图形和解二元一次方程组,正确得出长方形的长与宽是解题关键.7.A解析:A 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.【详解】 解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=, ∴113b =, 3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩. 故选:A .【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.8.D解析:D【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:D .【点睛】本题考查列二元一次方程组解决实际问题,是中考的常考题型,正确找到等量关系是关键 9.A解析:A【分析】根据x ,y 互为相反数得到0x y +=,然后与原方程组中的方程联立新方程组,解二元一次方程组,求得x 和y 的值,最后代入求值.【详解】解:由题意可得021x y x y +=⎧⎨+=-⎩①②, ②﹣①,得:y =﹣1,把y =﹣1代入①,得:x ﹣1=0,解得:x =1,把x =1,y =﹣1代入2x +3y =k 中,k =2×1+3×(﹣1)=2﹣3=﹣1,故选:A .【点睛】本题考查解二元一次方程组,掌握消元法(加减消元法和代入消元法)解二元一次方程组的步骤是解题关键.10.C解析:C【分析】将方程组的解代入方程组可得关于a 、b 的二元一次方程组321325a b a b -=⎧⎨+=⎩,再求解方程组即可求解.【详解】解:∵32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解, ∴321325a b a b -=⎧⎨+=⎩①②, ①+②得,a =1,将a =1代入①得,b =1,∴a 2008+2b 2008=1+2=3,故选:C .【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二、填空题11.7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y解析:7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品.则有x 2-y 2=48,即(x 十y )(x-y )=48.∵x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,又∵x+y >x-y ,48=24×2=12×4=8×6,∴242x y x y +⎧⎨-⎩==或124x y x y +⎧⎨-⎩==或86x y x y +⎧⎨-⎩==. 解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A 买了13件商品,b 买了4件.同时符合x-y=7的也只有一种,可知B 买了8件,a 买了1件.∴C 买了7件,c 买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.12.±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②, ①×2-②得:5m =15,解得:m =3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.13.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值. 14.【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组的解是,∴,∴c1−a1=2,c2−a2=2,∴可化为,①解析:2 xy=⎧⎨=⎩【分析】先将方程组的解代入方程组得到c1−a1=2,c2−a2=2,再将所求方程组用加减消元法求解即可.【详解】解:∵方程组1122a x y c a x y c +=⎧⎨+=⎩的解是12x y =⎧⎨=⎩, ∴112222a c a c +=⎧⎨+=⎩, ∴c 1−a 1=2,c 2−a 2=2,∴111222a x y c a a x y c a +=-⎧⎨+=-⎩可化为1222a x y a x y +=⎧⎨+=⎩①②, ①−②,得(a 1−a 2)x =0,∴x =0,将x =0代入①中,得y =2,∴方程组的解为02x y =⎧⎨=⎩, 故答案为02x y =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的解,会用加减消元法解方程组,并能灵活将方程组变形是解题的关键.15.0【分析】把x 、y 的值代入mx+ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m+n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx+ny =6的解,∴解析:0【分析】把x 、y 的值代入mx +ny =6,得出关于m 、n 的方程组,再求出方程组的解,最后求出m +n 即可得到答案.【详解】∵x =4,y =1和x =2,y =﹣1都是方程mx +ny =6的解,∴4626m n m n +=⎧⎨-=⎩①② ①+②,得6m =12解得:m =2,把m =2代入①,得8+n =6,解得:n =﹣2,∴m +n =2+(﹣2)=0,故答案为:0.【点睛】本题考查了二元一次方程及二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.16.±4【分析】根据题意,结合乘方和绝对值的性质,得二元一次方程组并求解,即可得到a 和b ;再根据平方根的性质计算,即可得到答案.【详解】∵∴∴①②,得∴∴∴的平方根为±4故解析:±4【分析】根据题意,结合乘方和绝对值的性质,得二元一次方程组并求解,即可得到a 和b ;再根据平方根的性质计算,即可得到答案.【详解】∵()24320a b a b -+-+= ∴()240320a b a b ⎧-=⎪⎨-+=⎪⎩∴40320a b a b -=⎧⎨-+=⎩①② ①-②,得2a =∴48b a ==∴16ab =∴ab 的平方根为±4故答案为:±4.【点睛】本题考查了乘方、绝对值、二元一次方程组、平方根的知识;解题的关键是熟练掌握乘方、绝对值、二元一次方程组、平方根的性质,从而完成求解.17.9【分析】先设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低解析:9【分析】先设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低1分,列出代数式,即可求出答案.【详解】解:设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,得:510351051532512x y z x y z x y ++=-+-+-⎧⎨=+⎩()()()①② 由①得:x+y -2z =24 ③将②代入③得:y +2+y -2z =24解得:y-z =11,则调整后二等奖比三等奖平均分数多=(y -3)-(z -1)=(y-z )-2=11-2=9(分). 故答案为:9.【点睛】此题主要考查了三元一次方程组的应用,关键是读懂题意,找到等量关系,列出方程组. 18.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11x y =-⎧⎨=⎩ 【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11xy=-⎧⎨=⎩.故答案为:11xy=-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.19.±4【分析】将方程组的解代入方程组中求出a、b的值,然后代入代数式中求解即可.【详解】解:将代入方程组,得:,解得:,∴=6×3﹣2=16,∴的平方根是±4,故答案为:±4.【点睛解析:±4【分析】将方程组的解代入方程组中求出a、b的值,然后代入代数式中求解即可.【详解】解:将21xy=⎧⎨=⎩代入方程组215x aybx y-=⎧⎨+=⎩,得:41215ab-=⎧⎨+=⎩,解得:32ab=⎧⎨=⎩,∴6a b-=6×3﹣2=16,∴6a b-的平方根是±4,故答案为:±4.【点睛】本题考查二元一次方程组的解、代数式求值、平方根,理解方程组的解,正确求出a、b值和平方根是解答的关键.20.【分析】把x与y的值代入方程组求出m与n的值,即可确定出所求.【详解】解:把代入方程组得:,解得:,∵1的立方根为1,∴的立方根是1故答案为:1【点睛】此题考查了二元一次方解析:1【分析】把x 与y 的值代入方程组求出m 与n 的值,即可确定出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得: 2821m n n m +=⎧⎨-=⎩, 解得:32m n =⎧⎨=⎩, 34981m n ∴-=-=∵1的立方根为1,∴34m n -的立方根是1故答案为:1【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值.三、解答题21.(1)()0,8A ,()6,0B ,()0,2C -,30ABC S =;(2)n 的取值范围为40n -≤≤;(3)①4324x y +=;②()3,4M【分析】(1)根据()28212a b -+-=a 、b 、c 的值,由此求解即可;(2)分当D 点在直线l 上位于y 轴左侧时和当D 点在直线l 上位于y 轴右侧时讨论求解即可得到答案;(3)①由由AOB AON BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯,由此求解即可;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=,化简得,315x y +=,然后联立4324315x y x y +=⎧⎨+=⎩求解即可. 【详解】解:(1)∵()28212a b -+-=∴()282122=0a b c -+-++, ∴80a -=,2120b -=,20c +=, ∴8a =,6b =,2c =-,∴()0,8A ,()6,0B ,()0,2C -, ∴AC =10,OB =6,∴1302ABC S AC OB ==; (2)当D 点在直线l 上位于y 轴左侧时,由题意得,()()111510222ACD S AC m m =⨯⨯-=⨯⨯-≤△, 解得,32m ≥-, 当32m =-时,3,02D ⎛⎫- ⎪⎝⎭, 结合图形可知,当32m ≥-时,0n ≤; 同理可得,当D 点在直线l 上位于y 轴右侧时,32m ≤, 当32m =时,3,2D n ⎛⎫ ⎪⎝⎭, 12//,D D AB22,ACD BCD S S ∴=()()13113156262222222n n ⎛⎫⨯+⨯--⨯⨯-⨯⨯--= ⎪⎝⎭, 解得,4n =-,结合图形可知,当32m ≤时,4n ≥-,∴n 的取值范围为40n -≤≤; (3)①由AOB AOM BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯, 化简得,4324x y +=;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=, 化简得,315x y +=,联立方程组4324315x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩, ∴()3,4M【点睛】本题主要考查了绝对值和算术平方根的非负性,三角形面积,解二元一次方程组,坐标与图形,截图的关键在于能够熟练掌握相关是进行求解.22.(1)1-;5;(2)购买6支水笔、6块橡皮、6本记事本共需48元;(3)11-.【分析】(1)利用①−②可得x -y 的值,利用()13+①②可得出x +y 的值; (2)设铅笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,根据“买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①-②可得m n p ++的值,再乘5即可求得结果;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a b c ++的值,从而可求得结果.【详解】(1)2728x y x y +=⎧⎨+=⎩①②由①−②可得:x -y =-1,由()13⨯+①②可得x +y =5 故答案为:1-;5.(2)设水笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,依题意,得:203235395362m n p m n p ++=⎧⎨++=⎩①②, 由2⨯-①②可得8m n p ++=,6666848m n p ∴++=⨯=.故购买6支水笔、6块橡皮、6本记事本共需48元.(3)依题意得:35154728a b c a b c ++=⎧⎨++=⎩①②由3×①−2×②可得:11a b c ++=-即1*111=-故答案为:11-.【点睛】本题考查了二元一次方程组的应用及三元一次方程组的应用,解题的关键是:(1)运用“整体思想”求出x -y ,x +y 的值;(2)(3)找出等量关系,正确列出三元一次方程组. 23.(1)(-1,-2);(2)①结论:直线l ⊥x 轴.证明见解析;②结论:(s -m )+(t -n )=0.证明见解析【分析】(1)利用非负数的性质求出a ,b 的值,可得结论.(2)①求出A ,D 的纵坐标,证明AD ∥x 轴,可得结论.②判断出D (m +1,n -1),利用待定系数法,构建方程组解决问题即可.【详解】解:(1)|3|0a +,又|3|0a +10,3a ∴=-,1b =-,(3,1)A ∴--,点A 先向右平移2个单位,再向下平移1个单位得到点C ,(1,2)C ∴--.(2)①结论:直线l x ⊥轴.理由:1b n =-,(,1)A a n ∴-,(,)B m n ,向右平移h 个单位,再向下平移1个单位得到点D ,(,1)D m h n ∴+-,A ,D 的纵坐标相同,//AD x ∴轴,直线l AD ⊥,∴直线l x ⊥轴.②结论:()()0s m t n -+-=.理由:E 是直线l 上一点,连接DE ,且DE 的最小值为1,(1,1)D m n ∴+-,点B ,D 及点(,)s t 都是关于x ,y 的二元一次方程(0)px qy k pq +=≠的解(,)x y 为坐标的点,∴()()11p m q n k pm qn k ps qt k ++-=⎧⎪+=⎨⎪+=⎩①②③, ①-②得到0p q -=,p q ∴=,③-②得到,()()0p s m q t n -+-=,0pq ≠,0p q ∴=≠,()()0s m t n ∴-+-=.【点睛】本题考查坐标与图形变化-平移,非负数的性质,待定系数法等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数解决问题,属于中考常考题型.24.(1)10.5;(2)12.5;(3)10.5,12.5,23;12n m +-;30 【分析】(1)画出图形,根据三角形的面积公式求解;(2)画出图形,利用割补法求解;(3)设S =am +bn +c ,其中a ,b ,c 为常数,根据表中数据列方程组求出a ,b ,c ,然后根据公式即可求出六边形FGHIJK 的面积.【详解】(1)如图1,ABC 的底为7,高为3,所以面积为0.57310.5⨯⨯=,故答案为:10.5;(2)如图2,0.523320.5310.52236 1.5212.5S =⨯⨯+⨯+⨯⨯+⨯⨯=+++=,故答案为:12.5;(3)由(1)、(2)可填表格如下:形内格点数m 边界格点数n 格点多边形面积SABC 四边形ACDE 五边形ABCDE 设S = am +61110.581112.520823a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩, 解得1121a b c =⎧⎪⎪=⎨⎪=-⎪⎩, ∴皮克公式为12n S m =+-, ∵六边形FGHIJK 中,m =27,n =8,∴六边形FGHIJK 的面积为82712S =+-=30. 【点睛】本题考查了坐标与图形的性质,三角形的面积,三元一次方程组的应用等知识,解题的关键是理解题意,灵活运用所学知识解决问题.25.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【分析】(1)分别对连正确的数量进行分析,即可得到答案;(2)①设七年(1)班满分人数有x 人,则未满分的有2x 人,然后列出方程,解方程即可得到答案;②根据题意,先求出两个班各分数段的人数,然后求出各班的总分,即可进行比较.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故答案为:15.(2)①根据题意,设七年(1)班满分人数有x 人,则未满分的有2x 人,则4402x x ++=, 解得:24x =,∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,∴(1)班得5分和10分的人数相等, 人数为:1(40424)62--=(人); ∴(1)班得总分为:40656102420570⨯+⨯+⨯+⨯=(分);由题意,(2)班存在得5分、得10分、得20分,三种情况,设得5分的有y 人,得10分的有z 人,满分20分的有(2)y z +人,∴(2)40y z y z +++=,∴3240y z +=,∴七(2)班得总分为:51020(2)453015(32)1540600y z y z y z y z +++=+=+=⨯=(分);∵570600<,∴七(2)班的总分高.【点睛】本题考查了二元一次方程的应用,一元一次方程的应用,解题的关键是熟练掌握题意,正确掌握题目的等量关系,列出方程进行解题.26.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩,由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.27.(1)(6,0)A ,(0,1)B ,(4,1)C ;(2)见解析.【分析】(1)令26x y +=中的0y = ,求出相应的x 的值,即可得到A 的坐标,将方程40x y -=和方程26x y +=联立成方程组,解方程组即可得到C 的坐标,进而可得到B 的坐标; (2)分别利用梯形的面积公式表示出四边形MNAC 的面积与四边形MNOB 的面积,然后根据t 的范围,分情况讨论即可.【详解】(1)令0y =,则206x +⨯=,解得6x =,(6,0)A ∴.4026x y x y -=⎧⎨+=⎩ 解得41x y =⎧⎨=⎩(4,1)C ∴.//BC x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)(6,0)A ,(0,1)B ,(4,1)C ,6,4OA BC ∴==.。

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案知识点1-1 二元一次方程(组)1)二元一次方程:含有两个未知数 且 所含未知数的次数项的次数都是1的方程。

注:所有未知数项的次数必须是1 例: 不是 2x -3xy =2 不是 2)将几个相同未知数的一次方程联合起来 就组成了二元一次方程组。

注:①在方程组中 相同未知数必须代表同一未知量。

②二元一次方程组不一定都是二元一次方程组合而成 方程个数也不一定是两个。

例: 是 3)判断二元一次方程组的方法:①方程组中是否一共有两个未知数;②含未知数的项的次数是否都是1;③是否含有多个方程组成.例1.(2021·湖南·衡阳市华新实验中学七年级月考)下列方程中 ①;②;③;④ 是二元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】A【分析】根据二元一次方程的定义:含有两个未知数 并且含有未知数的项的次数都是1的整式方程叫做二元一次方程 即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程 此项正确; ②化简后为 不符合定义 此项错误; ③含有三个未知数不符合定义 此项错误;④不符合定义 此项错误;所以只有①是二元一次方程 故选:A .【点睛】本题考二元一次方程 解题的关键是熟练运用二元一次方程的定义 本题属于基础题型.变式1.(2022·山东济南·八年级期末)下列方程中 为二元一次方程的是( ) A .2x +3=0 B .3x -y =2zC .x 2=3D .2x -y =5【答案】D【分析】根据二元一次方程的定义 从二元一次方程的未知数的个数和次数方面辨别. 【详解】解:A .是一元一次方程 故本选项不合题意; B .含有三个未知数 不是二元一次方程 故本选项不合题意;C .只含有一个未知数 且未知数的最高次数是2 不是二元一次方程 故本选项不合题意;D .符合二元一次方程的定义 故本选项符合题意.故选:D .20x y-=3235x y x y -=⎧⎨+=⎩6x y +=()16x y +=31x y z +=+7mn m +=6x y +=()16x y +=6xy x +=31x y z +=+7mn m +=【点睛】此题考查了二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数都是1 像这样的整式方程叫做二元一次方程.例2.(2021·湖南·衡阳市华新实验中学七年级月考)已知是关于 的二元一次方程 则______. 【答案】4【分析】根据二元一次方程的定义 可得方程组 解得m 、n 的值 代入代数式即可.【详解】解:由题意得 解得: ∴ 4 故填:4. 【点睛】本题考查二元一次方程的定义 属于基础题型. 变式2.(2021·天津一中七年级期中)若是关于 的二元一次方程 则( )A .B .C .D .【答案】D【分析】二元一次方程满足的条件:含有2个未知数 未知数的项的次数是1的整式方程. 【详解】解:是关于的二元一次方程解得: .故选:D . 【点睛】此题主要考查了二元一次方程的定义 关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例3.(2021·河南淇县·七年级期中)下列方程组中 是二元一次方程组的是( )A .B .C .D .【答案】C【分析】根据二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的 故本选项错误;B.方程组中含有3个未知数 故本选项错误;C. 符合二元一次方程组的定义 故本选项正确;D. 第二个方程中的xy 是二次的 故本选项错误.故选C .3211203n m x y -+-=x y n m +=31211n m -=⎧⎨+=⎩31211n m -=⎧⎨+=⎩40n m =⎧⎨=⎩n m +=20193(2020)(4)2021m n m x n y---++=x y 2020m =±4n =±2020m =-4n =-2020m =4n =2020m =-4n =()()20193202042021m n m x n y ---++=x y ∴2019120200m m ⎧-=⎨-≠⎩3140n n ⎧-=⎨+≠⎩2020m =-4n =2214x y x +=⎧⎨=⎩1236x y y z ⎧-=⎪⎨⎪-=⎩225x y x y +=-⎧⎨-=⎩213xy y y +=⎧⎨=-⎩2x【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数 且未知数的项最高次数都应是一次的整式方程 判断各选项即可.变式3.(2021·上海市建平中学西校期末)下列方程组 是二元一次方程组的是( ).A .B .C .D . 【答案】B【详解】A 选项:在中最高次数为2 故为二元二次方程组 不合题意;B 选项:为二元一次方程组 符合题意;C 选项:在中 共有3个未知数 为三元一次方程组 不合题意;D 选项:在中最高次数为2 故为二元二次方程组 不合题意.故选B . 【点睛】本题考查了二元一次方程的概念 掌握二元一次方程的概念(含有两个未知数 并且含有未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.例4.(2021·日照市新营中学七年级期中)若方程组是二元一次方程组 则a 的值为________. 【答案】-3【分析】根据二元一次方程组的定义得到|a |-2=1且a -3≠0 然后解方程与不等式即可得到满足条件的a 的值.【详解】解:∵方程组是二元一次方程组 ∴|a |-2=1且a -3≠0 ∴a =-3 故答案为:-3. 【点睛】本题考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起 就组成了一个二元一次方程组.变式4.(2021·全国·七年级课时练习)若是关于 的二元一次方程组 则__ __ __. 【答案】 3或2【分析】二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1 据此列式即可求解. 【详解】解:是关于 的二元一次方程组 或0 解得:或2 答案:3或2223xy x y =⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x-+=⎧⎨=⎩223xy x y=⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x -+=⎧⎨=⎩()20390a x ya x -⎧+=⎪⎨-+=⎪⎩23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y =a b =c =2-3-23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y 30c ∴+=21a -=31b +=3a =2b =-3c =-2-【点睛】本题主要考查了二元一次方程组的定义 利用它的定义即可求出代数式的解.知识点1-2 二元一次方程(组)的解1)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值(有序数对) 例:x+y=10 (1 9) (2 8) (3 7)等。

七年级数学二元一次方程组练习题人教版

七年级数学二元一次方程组练习题人教版

二元一次方程组一、填空题1、把方程2x -y -5=0化成含y 的代数式表示x 的形式:x =.2、在方程3x -ay =8中,如果⎩⎨⎧==13y x 是它的一个解,那么a 的值为.3、已知二元一次方程2x -y =1,若x =2,则y =,若y =0,则x =.4、方程x +y =2的正整数解是__________.5、某人买了60分的邮票和80分的邮票共20X ,用去了13元2角,则60分的邮票买了枚,80分的邮票买了枚。

6、若3xmy2-m 和-2x4yn 是同类项,则m=_______,n=________.7、若∣x -2y +1∣+∣x +y -5∣=0,则x =,y =.8、大数和小数的差为12,这两个数的和为60,则大数是,小数是. 9、某种植大户计划安排10个劳动力来耕作 30亩土地,这些土地可以种蔬菜也可以种水稻,种这些作物所需劳动力及预计产值如下表:为了使所有土地种上作物,全部劳动力都有工作,应安排种蔬菜的劳动力为 _________人,这时预计产值为 _________元。

10、二元一次方程52=+x y 在正整数X 围内的解是。

11、5+=x y 中,若3-=x 则=y _______。

12、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。

13、如果方程组⎩⎨⎧-=-=+1242a by x b y ax 的解是⎩⎨⎧-==11y x ,则=a,=b 。

14、15、甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟X 米,每分钟Y 米,则可列方程组{___________________. 16、已知:10=+b a ,20=-b a ,则2b a -的值是。

二、选择题:1、下列方程组中,属于二元一次方程组的是[ ]A 、⎩⎨⎧==+725xy y xB 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎪⎩⎪⎨⎧=+=343453y x yxD 、⎩⎨⎧=+=-12382y x y x 2、若3243y x b a +与b a yx -634是同类项,则=+b a 1[ ]A 、-3B 、0C 、3D 、6每亩所需劳动力(个) 每亩预计产值(元)蔬 菜213000 水 稻 417003.A 、 是这方程的唯一解B 、不是这方程的一个解C 、是这方程的一个解D 、以上结论都不对 4、在方程4x-3y=12中,若x=0,那么对应的y值应为: [ ] A 、4 B 、-4 C 、3 D 、-35.、甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,列方程组正确的个数为:( )A.1个 C.3个 D.4个6、下列说法正确的 [ ] A.二元一次方程2x+3y=17的正整数解有2组7、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为[ ]A 、⎩⎨⎧=++=x y x y 5837B 、⎩⎨⎧=-+=x y x y 5837C 、⎩⎨⎧+=-=5837x y x yD 、⎩⎨⎧+=+=5837x y x y 8、一个二元一次方程的解集,是指这个方程的( ) A 、一个解B 、两个解C 、三个解D 、所有解组成的集合9、在方程2(x+y)-3(y -x)=3中,用含x 的一次式表示y ,则( )A 、y=5x -3B 、y=-x -3C 、 y=223-x D 、y=-5x -310、下列各方程组中,属于二元一次方程组的是( )A 、⎩⎨⎧==+5723xy y xB 、⎩⎨⎧=+=+212z x y xC 、⎪⎩⎪⎨⎧=+=-243123y x y xD 、⎪⎩⎪⎨⎧=+=+322135y x y x11、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、⎩⎨⎧=-=21y xB 、⎩⎨⎧-==12y xC 、⎩⎨⎧==21y xD 、⎩⎨⎧==12y x12、已知⎩⎨⎧=+=+25ay bx by ax 的解是⎩⎨⎧==34y x ,则( )A 、⎩⎨⎧==12b a B 、⎩⎨⎧-==12b a C 、⎩⎨⎧=-=12b a D 、⎩⎨⎧-=-=12b a13、一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排,则这间会议室共有座位排数是( )A 、14B 、13C 、12D 、155 14、用加减法解方程组⎩⎨⎧=-=+1123332y x y x 时,有下列四种变形,其中正确的是( )A 、⎩⎨⎧=-=+1169364y x y x B 、⎩⎨⎧=-=+2226936y x y x C 、⎩⎨⎧=-=+3369664y x y x D 、⎩⎨⎧=-=+1146396y x y x15、既是方程2x-y=3,又是3x+4y-10=0的解是( )A、⎩⎨⎧1=2=y x B、⎩⎨⎧5=4=y x C、⎩⎨⎧1-=1=y x D、⎩⎨⎧5-=4-=y x三、解方程组1. 2.⎩⎨⎧=-=-22534y x y x ⎩⎨⎧-=+=-632953y x y x3. 4.⎩⎨⎧=-=+113032Y X Y X ⎩⎨⎧=-=+422822y x y x5. 6.⎩⎨⎧=-=+6)3(242y x ⎩⎨⎧=+=-172305y x y x7、 8、⎩⎨⎧=+=-1732623y x y x ⎪⎩⎪⎨⎧=-=+3431332n m n m四、用方程组解应用题1、有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?(6分)2、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?( 5分)3、加工一批零件,甲先单独做8小时,然后又与乙一起加工5小时完成任务。

初一数学 第八章 二元一次方程组练习题(含答案)

初一数学 第八章 二元一次方程组练习题(含答案)

二元一次方程组复习题一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246...22222222x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?找规律专题给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个()2、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _______个。

初一数学二元一次方程组试题答案及解析

初一数学二元一次方程组试题答案及解析

初一数学二元一次方程组试题答案及解析1.方程组的解满足方程x+y-a=0,那么a的值是A.5B.-5C.3D.-3【答案】A.【解析】把①代入②得:y=-5,把y=-5代入①得:x=0,把y=-5,x=0代入x+y+a=0得:a=5;故选A.【考点】1.二元一次方程组的解;2.二元一次方程的解.2.解方程组(1)(2)【答案】(1);(2).【解析】分别把所给方程组进行变形,然后再求解即可.试题解析:(1)由①得:x="3y-7" ③把③代入②得:6y-14=5y整理解得:y=14把y=14代入①得:x=35所以方程组的解为:;(2)方程组可变形为:由①得:x="300-y" ③把③代入②得:1500-5y+53y=7500整理解得:x=125.把x=125代入①得:y=175.所以方程组的解为:.【考点】解二元一次方程组.3.为庆祝“六·一”国际儿童节,鸡冠区某小学组织师生共360 人参加公园游园活动,有A 、B 两种型号客车可供租用,两种客车载客量分别为45 人、30 人,要求每辆车必须满载,则师生一次性全部到达公园的租车方案有种。

【答案】5【解析】分析:可设租用A型号客车x辆,B型号客车Y辆,根据共360人参加公园游园活动可列方程,再根据车辆数为非负整数求解即可.解答:解:设租用A型号客车x辆,B型号客车Y辆,则45x+30y=360,即3x+2y=24,当x=0时,y=12,符合题意;当x=2时,y=9,符合题意;当x=4时,y=6,符合题意;当x=6时,y=3,符合题意;当x=8时,y=0,符合题意.故师生一次性全部到达公园的租车方案有5种.故选C.【考点】二元一次方程的应用.4.已知3x-2y+6=0,用含x的代数式表示y得:y= .【答案】.【解析】要把方程3x-2y+6=0写成用含x的式子表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项,系数化1就可用含x的式子表示y的形式.试题解析:∵3x-2y+6=0∴2y=3x+6即:.【考点】解二元一次方程.5.若是二元一次方程组的解,求的值.【答案】3【解析】根据方程组解的定义,将代入得到关于的二元一次方程组,二式相减即可求得的值.把代入方程组得:,(1)(2),得.【考点】1.方程组的解;2.求代数式的值;3.整体思想的应用.6.方程mx-2y=x+5是二元一次方程时,m的取值范围为()A.m≠0B.m≠1C.m≠-1D.m≠2【答案】B【解析】原方程移项,得mx-x-2y=5,合并同类项,得(m-1)x-2y=5,根据二元一次方程的定义,得m-1≠0,即m≠1.故选B.【考点】二元一次方程的定义7.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数(单位:公里)如下:设小明12:00时看到的两位数的个位数字为x。

七年级下册数学二元一次方程组题

七年级下册数学二元一次方程组题

七年级下册数学二元一次方程组题一、基础题型。

1. 已知方程2x + y = 5,当x = 2时,求y的值。

- 解析:将x = 2代入方程2x+y = 5中,得到2×2 + y=5,即4 + y = 5,解得y = 5 - 4=1。

2. 解方程组x + y = 3 x - y = 1- 解析:将两个方程相加,可得(x + y)+(x - y)=3 + 1,即2x=4,解得x = 2。

把x = 2代入x + y = 3中,得到2+y = 3,解得y = 1。

所以方程组的解为x = 2 y = 1。

3. 若x = 1 y = - 1是方程ax - 2y = 3的解,则a的值是多少?- 解析:将x = 1,y=-1代入方程ax-2y = 3中,得到a×1-2×(-1)=3,即a + 2 = 3,解得a=1。

4. 解方程组2x+3y = 8 3x - 2y=-1- 解析:给第一个方程乘以2,第二个方程乘以3,得到4x + 6y = 16 9x-6y=-3。

将这两个新方程相加,可得(4x + 6y)+(9x - 6y)=16+( - 3),即13x = 13,解得x = 1。

把x = 1代入2x+3y = 8中,得到2 + 3y = 8,解得3y = 6,y = 2。

所以方程组的解为x = 1 y = 2。

5. 已知x = 2m y = 3m满足方程2x + y = 14,求m的值。

- 解析:将x = 2m,y = 3m代入方程2x + y = 14中,得到2×2m+3m = 14,即4m+3m = 14,7m = 14,解得m = 2。

二、应用题类型。

6. 一个长方形的周长是40,长比宽多4,设长为x,宽为y,求这个长方形的长和宽。

- 解析:根据长方形周长公式C = 2(x + y),已知周长C = 40,可得方程2(x + y)=40,即x + y = 20。

又因为长比宽多4,所以x-y = 4。

七年级数学二元一次方程组练习题及答案

七年级数学二元一次方程组练习题及答案

题目一:解方程组1.3x+2y=72.x-y=3解答:将第二个方程两边同时乘以2,得到2x-2y=6然后将第一个方程与新得到的方程相加,得到(3x+2y)+(2x-2y)=7+65x=13x=13/5将x的值代入第二个方程,求得y的值:x-y=313/5-y=3y=-2/5所以方程组的解为x=13/5,y=-2/5题目二:解方程组1.5x-2y=92.3x+4y=12解答:将第一个方程乘以2,得到10x-4y=18然后将第二个方程与新得到的方程相加,得到(3x+4y)+(10x-4y)=12+1813x=30x=30/13将x的值代入第一个方程,求得y的值:5x-2y=95(30/13)-2y=9-10/13-2y=9-2y=9+10/13-2y=127/13y=-127/26所以方程组的解为x=30/13,y=-127/26题目三:解方程组1.2x-3y=82.x+4y=7解答:将第一个方程乘以4,得到8x-12y=32然后将第二个方程与新得到的方程相加,得到(x+4y)+(8x-12y)=7+329x-8y=39将第一个方程乘以3,得到6x-9y=24然后将上式与新得到的方程相加,得到(6x-9y)+(9x-8y)=24+3915x-17y=63解得15x-17y=639x-8y=39联立解得x=207/103,y=-255/103题目四:解方程组1.4x-y=72.2x+3y=1解答:将第一个方程乘以3,得到12x-3y=21然后将第二个方程与新得到的方程相加,得到(2x+3y)+(12x-3y)=1+2114x=22x=22/14将x的值代入第一个方程,求得y的值:4x-y=74(22/14)-y=788/14-y=7-y=7-88/14-y=-38/14y=38/14所以方程组的解为x=11/7,y=19/7题目五:解方程组1.3x+2y=82.4x-3y=2解答:将第一个方程乘以4,得到12x+8y=32然后将第二个方程与新得到的方程相加,得到(4x-3y)+(12x+8y)=2+3216x+5y=34将第一个方程乘以5,得到15x+10y=40然后将上式与新得到的方程相加,得到(15x+10y)+(16x+5y)=40+3431x+15y=74解得31x+15y=7416x+5y=34联立解得x=16/11,y=58/33题目六:解方程组1.2x+y=52.3x-y=7解答:将第一个方程乘以3,得到6x+3y=15然后将第二个方程与新得到的方程相加,得到(3x-y)+(6x+3y)=7+159x=22x=22/9将x的值代入第一个方程,求得y的值:2x+y=52(22/9)+y=544/9+y=5y=5-44/9y=1/9所以方程组的解为x=22/9,y=1/9题目七:解方程组1.5x-2y=72.x+6y=3解答:将第一个方程乘以6,得到30x-12y=42然后将第二个方程与新得到的方程相加,得到(x+6y)+(30x-12y)=3+4231x-6y=45将第一个方程乘以3,得到15x-6y=21然后将上式与新得到的方程相加,得到(15x-6y)+(31x-6y)=21+4546x-12y=66解得46x-12y=6631x-6y=45联立解得x=21/17,y=-15/17题目八:解方程组1.2x-3y=52.x+2y=4解答:将第一个方程乘以2,得到4x-6y=10然后将第二个方程与新得到的方程相加,得到(x+2y)+(4x-6y)=4+105x-4y=14将第一个方程乘以4,得到8x-12y=20然后将上式与新得到的方程相加,得到(8x-12y)+(5x-4y)=20+1413x-16y=34解得13x-16y=345x-4y=14联立解得x=82/89,y=-79/89题目九:解方程组1.3x-4y=62.2x+5y=1解答:将第一个方程乘以2,得到6x-8y=12然后将第二个方程与新得到的方程相加,得到(2x+5y)+(6x-8y)=1+128x-3y=13将第一个方程乘以3,得到9x-12y=18然后将上式与新得到的方程相加,得到(9x-12y)+(8x-3y)=18+1317x-15y=31解得17x-15y=318x-3y=13联立解得x=218/229,y=-125/229题目十:解方程组1.4x-y=62.x+3y=4解答:将第一个方程乘以3,得到12x-3y=18然后将第二个方程与新得到的方程相加,得到(x+3y)+(12x-3y)=4+1813x=22x=22/13将x的值代入第一个方程,求得y的值:4x-y=64(22/13)-y=688/13-y=6-y=6-88/13-y=-70/13y=70/13所以方程组的解为x=22/13,y=70/13。

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案) (110)

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案) (110)

人教版七年级数学下册第八章第二节解二元一次方程组作业练习题(含答案)已知2521a b a b +=⎧⎨-=⎩,则3a b +的值是_______. 【答案】6【解析】【分析】令方程组中两个方程分别为①和②,将两个方程相加即可求解.【详解】2521a b a b +=⎧⎨-=⎩①② ①+②,得3a b +=6故答案为:6【点睛】本题考查了二元一次方程组的应用,已知二元一次方程组,求解代数式的值,可将两个方程相加或相减直接求解.如果用此方法求解不了,再求出方程组的解,代入即可.92.若方程组31x y x y +=⎧⎨-=⎩与方程组23x my nx y -=-⎧⎨-=⎩同解,则mn =_____. 【答案】8【解析】【分析】先求出方程组31x y x y +=⎧⎨-=⎩的解,再把x 、y 的值代入方程组23x my nx y -=-⎧⎨-=⎩中,得到关于m 、n 的二元一次方程组,求出m 、n 的值,代入代数式求解即可.【详解】解方程组31x y x y ①②+=⎧⎨-=⎩, ①+②得,24=x ,解得2x =,①-②得,22y =,解得1y =.把2x =,1y =代入方程组23x my nx y -=-⎧⎨-=⎩, 得22213m n -=-⎧⎨-=⎩, 解得4m =,2n =.故428mn =⨯=.【点睛】本题考查的是二元一次方程组的解法,解答此题的关键是先求出x 、y 的值,得到关于m 、n 的二元一次方程组,再求出m 、n 的值.93.甲乙两人同解方程组278ax by cx y +=⎧⎨-=⎩时甲正确解得32x y =⎧⎨=-⎩,乙因抄错c 而得22x y =-⎧⎨=⎩则a+c=_______ 【答案】2【解析】【分析】根据方程组解的定义,无论c 是对是错,甲和乙求出的解均为ax +by =2的解.将32x y =⎧⎨=-⎩和22x y =-⎧⎨=⎩分别代入ax +by =2,组成方程组,从而得出a 的值.将甲的正确解32x y =⎧⎨=-⎩代入cx −7y =8,从而得出c 的值.【详解】根据方程组解的定义,无论c 是对是错,甲和乙求出的解均为ax +by =2的解.故将32x y =⎧⎨=-⎩和22x y =-⎧⎨=⎩分别代入ax +by =2, 得322222a b a b -⎧⎨-+⎩==, 解得a =4,把32x y =⎧⎨=-⎩代入cx −7y =8,得3c +14=8, 所以c =−2.故a+c=4-2=2,故答案为:2.【点睛】本题考查二元一次方程组的解和二元一次方程的解的定义,解题的关键是知道不定方程有无数个解.94.将方程5x+2y=11变形为用含x 的式子表示y ,________. 【答案】5211x y -=【解析】【分析】要用含x 的代数式表示y ,或用含y 的代数式表示x ,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.【详解】解:移项得, 2y=11-5x ,系数化为1得,5211x y -=. 故答案是:5211x y -=. 【点睛】本题考查了二元一次方程的变形,用其中一个未知数表示另一个未知数,解题时可以参照一元一次方程的解法,把一个未知数当做已知数,利用等式的性质解题.95.已知方程组3496527x y x y +=⎧⎨+=⎩,则88x y +=_______. 【答案】32【解析】【分析】方程组两方程相加可先求出x+y 的值,从而可求出8x+8y 的值.【详解】解:3496527x y x y +=⎧⎨+=⎩①②, ①+②得,9x+9y=36,∴9(x+y)=36,∴x+y=4,∴8x+8y=8(x+y )=32.故答案为:32.【点睛】此题考查了加减消元法,利用了整体思想是解本题的关键.96.用加减法解方程组5212528x y x y +=⎧⎨-=⎩时,若先求出x 的值,则应将两个方程_______;若先求出y 的值,则应将两方程______.【答案】相加相减【解析】【分析】根据方程组中两个方程x、y的系数特点:含x的项系数相同,含y的项系数互为相反数,求x两式相加消去y,求y两式相减消去x.【详解】解:∵方程组中的两个方程,含x的项系数相同,含y的项系数互为相反数,∴求x的值,应将两个方程相加,消去y,求y的值,应将两个方程相减,消去x.故答案为:相加;相减.【点睛】本题考查了用加减消元法解方程组的一般方法,需要熟练掌握.97.若2344514x yx y+=⎧⎨-=-⎩,则8x y+=_________.【答案】-6【解析】【分析】先根据加减消元法求出方程组的解,再将x,y的值代入即可得出结果.【详解】解:2344514x yx y+=⎧⎨-=-⎩①②,由①×5得:10x+15y=20①,由①×3得:12x-15y=-42①,③+④得:22x=-22,解得x=-1,把x=-1代入①得:-2+3y=4,解得y=2,∴原方程组的解是12xy=-⎧⎨=⎩,∴8x+y=-8+2=-6.故答案为:-6.【点睛】本题主要考查了二元一次方程组的解法以及代数式的求值,掌握基本运算法则是解题的关键.98.在二元一次方程5630x y+=中,若x与y互为相反数,则x=_____.【答案】-30【解析】【分析】根据x与y互为相反数,得出x+y=0,与5x+6y=30组成方程组,解方程组即可.【详解】解:根据题意得,5630x yx y+=⎧⎨+=⎩,解得3030xy=-⎧⎨=⎩,故答案为:-30.【点睛】本题考查了方程组的解法和相反数的知识,正确解方程组是关键.99.下面是二元一次方程组的不同解法,请你把下列消元的过程填写完整:对于二元一次方程组24326x yx y+=⎧⎨+=⎩①②(1)方法一:由 ①,得 24y x=-③把 ③ 代入 ②,得________________. (2)方法二:3⨯①,得3612x y +=④-④②,得________________. (3)方法三:()1⨯-① ,得 24x y --=-⑤+⑤②,得________________. (4)方法四:由 ②,得 ()226x x y ++=⑥把 ① 代入⑥,得________________. 【答案】346x x +-= 46y = 22x = 246x +=【解析】【分析】根据代入消元法和加减消元法的步骤解二元一次方程组即可得出相应的过程.【详解】解:24326x y x y +=⎧⎨+=⎩①②, (1)方法一:由①,得24y x =-③,把③代入②,得346x x +-=;(2)方法二:①×3,得3612x y +=④ ④-②,得46y =;(3)方法三:①×(﹣1),得24x y --=-⑤⑤+②,得22x =;(4)方法四:由②,得()226x x y ++=⑥,把①代入⑥,得246x +=.故答案为:(1)346x x +-=;(2)46y =;(3)22x =;(4)246x +=.【点睛】此题考查运用加减消元和代入消元解二元一次方程组的方法,实际上是运用等式的性质来进行消元.100.已知x ,y 满足方程345254x y x y +=⎧⎨+=⎩,则x -y 的值为_______; 【答案】1【解析】【分析】方程组中两个方程相加即可求出x -y 的值.【详解】345254x y x y +=⎧⎨+=⎩中的第一个方程减去第二个方程得:x -y=1, 故答案为1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两个方程都成立的未知数的值.。

七年级数学下册二元一次方程组练习题

七年级数学下册二元一次方程组练习题

七年级数学下册二元一次方程组练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______ . 2.下列式子各表示什么意义?(1)(x +y )2:________;(2)5x =12y ﹣15:__________;(3)12(x +23x )=24:________. 3.已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____. 4.若关于,x y 的方程组2x ny m x my n --=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则|2|m n -=_______. 5.如果关于x 的方程()42022a x -=有解,那么实数a 的取值范围是__.6.把方程2340x y --=改写成用含x 的式子表示y ,则y =_______.二、单选题7.若关于x ,y 的方程215m n x y +--=是二元一次方程,则m n +的值为( )A .1B .1-C .3D .3-8.下列说法中,正确的是( )A .392x y xy -=⎧⎨=⎩是二元一次方程组 B .31x y =⎧⎨=-⎩是方程组4233x y x y -=⎧⎨+=⎩的解C .方程36x y +=的解是31x y =⎧⎨=⎩ D .方程23x y -=的解必是方程组2331x y x y -=⎧⎨+=⎩的解 9.若21x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( ) A .351x y x y +=⎧⎨+=⎩ B .251x y x y -=⎧⎨+=⎩C .231x y x y =⎧⎨=+⎩D .325x y y x =-⎧⎨+=⎩ 10.若12x y =⎧⎨=-⎩是方程3x +ay =5的解,则a 的值是( ) A .1 B .﹣1 C .4 D .﹣411.下列可以是二元一次方程x +3y =2的解的是( )A .42x y =-⎧⎨=⎩B .27x y =⎧⎨=⎩C .11x y =⎧⎨=-⎩D .03x y =⎧⎨=⎩12.已知关于x ,y 的方程组2464x y a x y a +=-⎧⎨-=⎩,给出下列结论:①62x y =⎧⎨=-⎩是原方程组的一个解;①当a =-2时,x ,y 的值互为相反数;①当a =1时,方程组的解也是方程x +y =4-a 的解;①x ,y 间的数量关系是22153x y +=.其中正确的是( ) A .①①① B .①①① C .①①① D .①①①①13.如果13xa +2y 3与-3x 3y 2b -a 是同类项,那么a ,b 的值分别是( ) A .1,2 B .0,2 C .2,1 D .1,1三、解答题14.蒙城黄花梨名扬全国,今年篱笆梨园喜获丰收,个体商贩张杰准备租车把一批梨子运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满梨子一次可运货17吨;用3辆甲型车和4辆乙型车装满梨了一次可运货24吨,现有30吨梨子,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满梨子,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满梨子一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?(3)若1辆甲型车需租金180元/次,1辆乙型车需租金150元/次,请选出费用最少的租车方案,并求出最少租车费.15.已知()2120a b ++-=,求()()20202019a b a b --++的值.参考答案:1.1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可. 【详解】①本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可 ①令1a =,1b =,得x y c +=①把21x y =⎧⎨=-⎩代入方程x y c += 解出1c =①1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键. 2. x ,y 的和的平方 x 的5倍比y 的一半小15 x 与它的23的和的一半等于24【分析】根据题意以及题中的式子直接写出代数式和方程所表示什么意义即可.【详解】解:(1)(x +y )2表示x ,y 的和的平方;(2)5x =12y ﹣15表示x 的5倍比y 的一半小15;(3)12(x +23x )=24表示x 与它的23的和的一半等于24.故答案为:x ,y 的和的平方;x 的5倍比y 的一半小15;x 与它的23的和的一半等于24.【点睛】本题主要考查代数式的定义和方程的定义,属于基础题,熟练掌握代数式的定义和方程的定义是解决本题的关键.3.1 【分析】把12x y =⎧⎨=⎩代入ax +by =3可得23a b +=,而2a +4b ﹣5225a b ,再整体代入求值即可.【详解】解:把12x y =⎧⎨=⎩代入ax +by =3可得: 23a b +=,∴ 2a +4b ﹣5225a b2351.故答案为:1【点睛】本题考查的是二元一次方程的解,利用整体代入法求解代数式的值,掌握“方程的解的含义及整体代入的方法”是解本题的关键.4.1【分析】将方程组的解代入原方程组,然后利用加减消元法解方程组,然后代入代数式求解.【详解】解:将21x y =⎧⎨=⎩代入方程组2x ny m x my n --=⎧⎨+=⎩可得:42n m m n --=⎧⎨+=⎩ 解得:31m n =-⎧⎨=-⎩①()|2|3211m n -=--⨯-=故答案为:1.【点睛】本题考查方程组的解及解二元一次方程组,掌握解方程的计算步骤和法则正确计算是解题关键. 5.4a ≠【分析】根据一元一次方程有意义的条件得40a -≠,进行计算即可得.【详解】解:①(a −4)x =2022有解①40a -≠故答案为:4a ≠.【点睛】本题考查了一元一次方程有意义的条件,解题的关键是掌握一元一次方程有意义的条件. 6.243x - 【分析】将方程中含x 的项和常数项移到等号右边即可求解.【详解】解:2340x y --=,变形可得324y x =-, ①243x y -= 故答案为:243x -. 【点睛】本题主要考查二元一次方程的变形,解决本题的关键熟练掌握二元一次方程的变形方法. 7.A【分析】根据二元一次方程的定义列出关于m ,n 的等式,求出m 和n 的值,即可求出m n +的值.【详解】解:①关于x ,y 的方程215m n x y +--=是二元一次方程,①21,11,m n +=⎧⎨-=⎩解得:1,2m n =-⎧⎨=⎩. ①121m n +=-+=.故选:A .【点睛】本题考查了二元一次方程的定义,熟练掌握该知识点是解题关键.8.B【分析】根据二元一次方程组的定义、二元一次方程组的解的定义、二元一次方程的解的定义逐一分析判断即可.【详解】A 、方程组是二元二次方程组,不是二元一次方程组,故本选项不符合题意;B 、31x y =⎧⎨=-⎩是方程组4233x y x y -=⎧⎨+=⎩的解,故本选项符合题意; C 、方程36x y +=的一组解是31x y =⎧⎨=⎩,还有很多组解,如:02x y =⎧⎨=⎩也方程36x y +=的解,故本选项不符合D 、方程23x y -=有无数组解,但不一定都是方程组2331x y x y -=⎧⎨+=⎩的解,故本选项不符合题意; 故选:B .【点睛】本题考查了二元一次方程组的定义、二元一次方程组的解的定义、二元一次方程的解的定义等知识点,能理解知识点的内容是解题的关键.9.B【分析】运用代入排除法进行选择或分别解每一个方程组求解.【详解】A .x =2,y =﹣1不是方程x +3y =5的解,故该选项错误;B .x =2,y =﹣1适合方程组中的每一个方程,故该选项正确.C .x =2,y =﹣1不是方程组中每一个方程的解,故该选项错误;D .x =2,y =﹣1不是方程组中每一个方程的解,故该选项错误.故选B .【点睛】本题考查了方程组的解的定义,即适合方程组的每一个方程的解是方程组的解.10.B【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数a 的一元一次方程,从而可以求出a 的值.【详解】把=12x y ⎧⎨=-⎩代入方程35x ay +=得: 325a -= ,①1a =-,故选:B .【点睛】此题考查的知识点是二元一次方程组的解,解题关键是把方程的解代入原方程,使原方程转化为以a 为未知数的方程,一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.11.A【分析】分别把每个选项的数值代入x +3y ,计算即可得答案.【详解】A.当x =-4,y =2时,x +3y =2,故该选项符合题意,B.当x =2,y =7时,x +3y =23,故该选项不符合题意,C.当x =1,y =-1时,x +3y =-2,故该选项不符合题意,D.当x=0,y=3时,x+3y=9,故该选项不符合题意,故选:A.【点睛】本题考查的是二元一次方程的解,掌握方程的解的含义是解题的关键.12.A【分析】①将x=6,y=-2代入检验即可做出判断;①将a=-2代入方程组求出方程组的解即可做出判断;①将a=1代入方程组求出方程组的解,代入方程中检验即可;①消去a得到关于x与y的方程,即可做出判断.【详解】①将x=5,y=-1代入方程组得:12866(2)4aa-=-⎧⎨--=⎩,解得:a=2,本选项正确;①将a=-2代入方程组得:246(2)4(2)x yx y+=--⎧⎨-=⨯-⎩,解得:44xy=-⎧⎨=⎩,则x与y互为相反数,本选项正确;①将a=1代入方程组得:246141x yx y+=-⎧⎨-=⨯⎩,解得:7212xy⎧=⎪⎪⎨⎪=-⎪⎩,将7212xy⎧=⎪⎪⎨⎪=-⎪⎩代入方程x+y=4-1得:3=3,是方程x+y=3的解,本选项正确;①2464x y ax y a+=-⎧⎨-=⎩①②,由①得:a=6-2x-4y,代入①得:x-y=4(6-2x-4y),整理得:35188x y+=,本选项错误,则正确的选项为①①①.故选:A.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.13.A【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a ,b 的值.【详解】解:根据题意得:a +2=3,3=2b -a ,解得:a =1,b =2,故选:A .【点睛】本题考查同类项的定义,所含字母相同,相同字母的指数相同,理解定义是关键.14.(1)4,3;(2)共有2种租车方案,方案一:3辆甲型车,6辆乙型车;方案二:6辆甲型车,2辆乙型车;(3)当租6辆甲型车,2辆乙型车时费用最少,最少费用为1380元.【分析】(1)设1辆甲型车装满梨子一次可运货x 吨,1辆乙型车装满梨子一次可运货y 吨,根据题意可得到关于x ,y 的二元一次方程组,解出答案即可;(2)根据一次可运货物的重量=每辆车的承载量⨯租车数量,即可得出关于m ,n 的二元一次方程,再结合m ,n 均为正整数,即可得出租车方案;(3)根据租车总费用=每辆车的租金⨯租车数量,分别求出上一问中两种方案的费用,比较后即可得出答案.【详解】解:(1)设1辆甲型车装满梨子一次可运货x 吨,1辆乙型车装满梨子一次可运货y 吨,依题意,得:23173424x y x y +=⎧⎨+=⎩, 解得:43x y =⎧⎨=⎩, 答:1辆甲型车装满梨子一次可运货4吨,1辆乙型车装满梨子一次可运货3吨;故答案为:4,3.(2)依题意,得:4330m n +=, ∴4103n m =-, m 、n 均为正整数,∴当3m =时,6n =;当6m =时,2n =;∴共有2种租车方案,方案一:3辆甲型车,6辆乙型车;方案二:6辆甲型车,2辆乙型车.(3)方案一:当3m =时,6n =,租车费用:180315061440⨯+⨯=(元);方案二:当6m =时,2n =,租车费用:180615021380⨯+⨯=(元),14401380>,∴方案二省钱,∴当租6辆甲型车,2辆乙型车时费用最少,最少费用为1380元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,找准等量关系列出方程及方程组是解题的关键.15.2【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可求解.【详解】解:①()2120a b ++-=,①a +1=0,b ﹣2=0,解得a =﹣1,b =2,①(﹣a ﹣b )2020+(a +b )2019=(1﹣2)2020+(﹣1+2)2019=1+1=2.【点睛】本题考查了非负数的性质①几个非负数的和为0时,这几个非负数都为0,掌握非负数的性质是解题的关键.。

人教版七年级下册数学第八章《二元一次方程组》单元练习题含答案

人教版七年级下册数学第八章《二元一次方程组》单元练习题含答案

七年级下册数学第八章《二元一次方程组》单元练习题一、单选题 1.已知,那么x+y 的值是( )A .0B .5C .﹣1D .12.已知单项式 23x m y -- 与 2323n m nx y - 是同类项,那么m ,n 的值分别是A .31m n =⎧⎨=-⎩B .31m n =⎧⎨=⎩C .31m n =-⎧⎨=⎩D .31m n =-⎧⎨=-⎩3.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少? 设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是( )A .30()40080()400x y y x +=⎧⎨-=⎩B .30()40080()400y x x y -=⎧⎨+=⎩C .30()40080()400x y x y +=⎧⎨-=⎩D .30()40080()400x y x y -=⎧⎨+=⎩4.《孙子算经》是中国古代重要的数学著作,其中第三卷中记载一题:今有兽,六首四足;禽,二首二足,上有七十六首,下有四十六足,问:禽、兽各几何?译文:今有一只怪兽,有6个头4只脚,一只怪鸟,有2个头2只脚,现在上面有76个头,下面有46只脚,问怪兽、怪鸟各有多少?设怪兽为x 只,怪鸟为y 只,可列方程组为( ).A .62464276x y x y +=⎧⎨+=⎩B .64762246x y x y +=⎧⎨+=⎩C .62764246x y x y +=⎧⎨+=⎩D .22766246x y x y +=⎧⎨+=⎩5.甲、乙二人同时同地出发,都以不变的速度在300米环形跑道上奔跑.若反向而行,每隔20s 相遇一次,若同向而行,则每隔300s 相遇一次,已知甲比乙跑得快,设甲每秒跑x 米,乙每秒跑y 米,则可列方程为( )A .30020x y x y +=⎧⎨-=⎩B .20300x y x y +=⎧⎨-=⎩C .2020300300300300x y x y +=⎧⎨-=⎩D .2030030030020300x y x y +=⎧⎨-=⎩6.已知|2x+y+3|+(x-y+3)2=0,则(x+y )2019等于( ) A .2019B .-1C .1D .-20197.把方程7215x y =-写成用含x 的代数式表示y 的形式,得( ) A .2517x y -=B .1527yx +=C .7152x y -=D .1572xy -=8.在一个古代文献里记录了一个“鸡免同笼”问题,翻译内容如下:在一个笼子里混装有鸡和兔子若干只,已知共有头45个,脚160个,设鸡x 只,兔子y 只,根据题意可列出方程组( )A .4524160x y x y +=⎧⎨+=⎩B .4522160x y x y +=⎧⎨+=⎩C .452160x y x y -=⎧⎨+=⎩D .4524160x y x y +=⎧⎨-=⎩9.如果│x+y -1│和2(2x+y -3)2互为相反数,那么x ,y 的值为( )A .12x y =⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .21x y =⎧⎨=-⎩D .21x y =-⎧⎨=-⎩10.如果方程x ﹣y =3与下面的方程组成的方程组的解为47x y =-⎧⎨=-⎩,那么这一个方程可以是( )A .2(x ﹣y )=6yB .3x ﹣4y =16C .1x 2y 54+=D .1x 3y 82+=二、填空题11.二元一次方程3x +2y =15共有_______组正整数解.... 12.已知24280x x y -++-=,则()2019x y -=_____________.13.已知关于x ,y 的二元一次方程组3522x y k x y k +=⎧⎨+=-⎩的解互为相反数,则k 的值是_______14.方程组26{0x y x y -=+=的解是 . 15.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶_____对.16.已知关于 x ,y 的二元一次方程组2122x y k x y k -=+⎧⎨-=-+⎩,则 x ﹣y 的值是_____17.《九章算术》是我国东汉年间编订的一部数学经典著作,其中有一个问题是:“今有三人公车,二车空;二人公车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,若每3人坐一辆车,则有2辆空车;若每2人坐一辆车,则有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为_________.18.若7353x y x y +=⎧⎨-=-⎩,则5x ﹣3y 的值是_____.三、解答题19.(1)阅读下列材料并填空:对于二元一次方程组4354{336x y x y +=+=,我们可以将x ,y 的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b== ,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程.20.如果264(1)(2)12x x A B Cx x x x x x +-=++-+-+,求A,B,C 的值.21.甲、乙两车将一批抗疫物资从A 地运往B 地,两车各自的速度都保持匀速行驶.甲出发0.5h 后乙开始出发,结果比甲早0.5h 到达B 地.甲、乙两车离A 地的路程1s ()km 、2s ()km 与甲车行驶时间行驶的时间()t h 之间的函数关系如图所示.(1)求2s ()km 与t ()h 之间的函数关系式; (2)图中a =_______;b =______;(3)若甲、乙两车之间的路程不小于20km ,则t 的取值范围是________.(直接写出答案)22.对于两个不相等的实数a 、b ,我们规定符号max{a ,b}表示a 、b 中的较大值,min{a ,b}表示a 、b 中的较小值.如:max{2,4}=4,min{2,4}=2.按照这个规定:解方程组:{}{}1max ,3min 39,3114x x y x x y ⎧-=⎪⎨⎪++=⎩23.已知关于x ,y 的方程组3+5223x y m x y m =+⎧⎨+=⎩的解满足x +y =-10,求式子m 2-2m +1的值.24.学完二元一次方程组的应用之后,老师写出了一个方程组如下:254340x y x y -=⎧⎨+=⎩,要求把这个方程组赋予实际情境. 小军说出了一个情境:学校有两个课外小组,书法组和美术组,其中书法组的人数的二倍比美术组多5人,书法组平均每人完成了4幅书法作品,美术组平均每人完成了3幅美术作品,两个小组共完成了40幅作品,问书法组和美术组各有多少人?小明通过验证后发现小军赋予的情境有问题,请找出问题在哪?25.对于实数a ,b ,定义关于“⊕”的一种运算:a ⊕b=2a+b ,例如3⊕4=2×3+4=10.若x ⊕(-y )=2,(2y)⊕x=1,求x+y 的平方根.26.开学初,小芳和小亮去学校商店购买学习用品,小芳用17元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.求每支钢笔和每本笔记本的价格.27.某班将举行“庆祝建党90周年知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,试计算两种笔记本各买了多少本?答案1.B2.B3.A4.C5.C6.B7.C8.A9.C10.B 11.2 12.1- 13.4 14.2{2x y ==- 15.22. 16.117.()3229y x y x ⎧-=⎨+=⎩18.1119.(1) 6,10;(2)02x y =⎧⎨=⎩。

七年级数学下册 二元一次方程组经典练习题+答案解析100道 人教新课标

七年级数学下册 二元一次方程组经典练习题+答案解析100道  人教新课标

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组) 一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( )2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x-2y=13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a2-1)x2+(a-1)x+(2a-3)y=0是二元一次方程,则a 的值为±1( )6、若x+y=0,且|x|=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x+y=5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a+5|=5,a+b=1则32-的值为ba ………()12、在方程4x-3y=7里,如果用x 的代数式表示y ,则437yx +=( )二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a<2; (B )34->a ; (C )342<<-a ;(D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+my x m y x 932的解是方程3x+2y=34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( ) (A )15x-3y=6 (B )4x-y=7 (C )10x+2y=4 (D )20x-4y=3 19、下列方程组中,是二元一次方程组的是( ) (A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a=-3,b=-14 (B )a=3,b=-7 (C )a=-1,b=9(D )a=-3,b=14 21、若5x-6y=0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23(C )1 (D )-1 22、若x 、y 均为非负数,则方程6x=-7y 的解的情况是( )(A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y=kx+b 的解,则k 与b 的值为( ) (A )21=k ,b=-4 (B )21-=k ,b=4 (C )21=k ,b=4(D )21-=k ,b=-4 三、填空:25、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x+3y=10中,当3x-6=0时,y=_________;27、如果0.4x-0.5y=1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;29、方程|a|+|b|=2的自然数解是_____________; 30、如果x=1,y=2满足方程141=+y ax ,那么a=____________;31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a=______,m=______;32、若方程x-2y+3z=0,且当x=1时,y=2,则z=______;33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;34、若x+y=a ,x-y=1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x:z=_______;y:z=________;36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________;四、解方程组□x +5y =13 ① 4x -□y =-2 ②37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x+4y=|a|成立的x 、y 的值,满足(2x+y-1)2+|3y-x|=0,又|a|+a=0,求a 的值; 49、代数式ax2+bx+c 中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

(必考题)初中七年级数学下册第八单元《二元一次方程组》经典练习题(含答案解析)

(必考题)初中七年级数学下册第八单元《二元一次方程组》经典练习题(含答案解析)

一、选择题1.甲、乙两人分别从相距40km 的两地同时出发,若同向而行,则5h 后,快者追上慢者;若相向而行,则2h 后,两人相遇,那么快者速度和慢者速度(单位:km/h)分别是( )A .14和6B .24和16C .28和12D .30和1A 解析:A【分析】设快者的速度是/xkm h ,慢者的速度是/ykm h ,根据追及问题和相遇问题的求解方法列二元一次方程组求解.【详解】解:设快者的速度是/xkm h ,慢者的速度是/ykm h ,列式()()540240x y x y ⎧-=⎪⎨+=⎪⎩,解得146x y =⎧⎨=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意列出二元一次方程组.2.若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( )A .6B .9C .12D .16C 解析:C【分析】先把a 看作已知数求出42x a =-,然后结合方程组的解为整数即可求出a 的值,进而可得答案.【详解】解:对方程组2{28x y ax y +=+=①②,②-①×2,得()24a x -=,∴42x a =-, ∵关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数, ∴21,2,4a -=±±±,即a =﹣2、0、1、3、4、6,∴满足条件的所有a 的值的和为﹣2+0+1+3+4+6=12.故选:C .【点睛】本题考查了二元一次方程组的解法,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.3.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12aD .﹣12a A 解析:A【分析】 设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.4.下列方程中是二元一次方程的是( )A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy = B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误; -1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误;5xy =最高次是2次,故D 选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键. 5.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l B 解析:B 【分析】 设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可.【详解】解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=. 3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=, 116x l ∴=. ∴标号为①的正方形的边长116l .故选:B.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.6.方程组2824x yx y⎧+=⎪⎨+=⎪⎩的解的个数为()A.1 B.2 C.3 D.4A解析:A【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断.【详解】解:根据x、y的正负分4种情况讨论:①当x>0,y>0时,方程组变形得:2824x yx y+=⎧⎨+=⎩,无解;②当x>0,y<0时,方程组变形得:28 24 x yx y+=⎧⎨-=⎩,解得x=3,y=2>0,则方程组无解;③当x<0,y>0时,方程组变形得:28 24x yx y-+=⎧⎨+=⎩,此时方程组的解为16xy=-⎧⎨=⎩;④当x<0,y<0时,方程组变形得:2824x yx y-+=⎧⎨-=⎩,无解,综上所述,方程组的解个数是1.故选:A.【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.7.已知:关于x、y的方程组2423x y ax y a+=-+⎧⎨+=-⎩,则x-y的值为( )A.-1 B.a-1 C.0 D.1D 解析:D【解析】分析:由x、y系数的特点和所求式子的关系,可确定让①-②即可求解.详解:2423x y ax y a+=-+⎧⎨+=-⎩①②,①−②,得x−y=−a+4−3+a=1.故选:D.点睛:此题考查了解二元一次方程组,一般解法是用含有a 的代数式表示x 、y ,再计算,但也要注意能简便的则简便.此题中注意整体思想的渗透.8.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩A 解析:A【分析】图2中,第一个方程x 的系数为2,y 的系数为1,相加为11;第二个方程x 的系数为4,y 的系数为3,相加为27,据此解答即可.【详解】解:图2所示的算筹图所表示的方程组是2114327x y x y +=⎧⎨+=⎩. 故选:A .【点睛】本题考查了二元一次方程组的应用,读懂题意、明确图1表示方程组的方法是解题关键. 9.已知关于x ,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩的解适合方程x-y=4,则m 的值为( )A .1B .2C .3D .4C 解析:C【分析】通过观察方程组可知第一个方程减去第二个方程可得22x y m -=-,再结合4x y -=即可求得答案.【详解】解:∵323223x y m x y m +=-⎧⎨+=⎩①② ①-②得,22x y m -=-∵4x y -=∴224m -=∴3m =.故选:C【点睛】本题考查了根据二元一次方程组的解满足一定的条件求参数问题,能根据题目特点灵活运用加减消元法、代入消元法是解题的关键.10.方程组320x y x y +=⎧⎨-=⎩的解是( ) A .11x y =⎧⎨=⎩ B .12x y =⎧⎨=⎩ C .21x y =⎧⎨=⎩ D .30x y =⎧⎨=⎩B 解析:B【分析】二元一次方程组的求解方法有两种:(1)加减消元法;(2)代入消元法,此题用加减消元法求解更为简便;【详解】∵320x y x y +=⎧⎨-=⎩①② ,①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为12x y =⎧⎨=⎩ , 故选:B .【点睛】本题考查了二元一次方程组的解法,正确利用加减消元法求解是解题的关键. 二、填空题11.若方程x |m|-2+(m+3)y 2m-n =6是关于x 、y 的二元一次方程,则m+n=_____8【分析】根据二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程可得|m|-2=12m-n=1解出mn 的值可得答案【详解】解:由题意知|m|-2=12m-n=1且m+3≠0解得m=解析:8【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得|m|-2=1,2m-n=1,解出m 、n 的值可得答案.【详解】解:由题意,知|m|-2=1,2m-n=1且m+3≠0.解得m=3,n=5.所以m+n=3+5=8.故答案是:8.【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % .140【分析】设甲乙两筐苹果各有先求出从甲筐拿出20到乙筐后甲乙两筐分别为再求出从乙筐拿出25到甲筐后甲乙两筐分别为:列方程求出x 与y 的关系即可【详解】设甲乙两筐苹果各有从甲筐拿出20到乙筐后甲乙两 解析:140【分析】设甲、乙两筐苹果各有x 、kg y ,先求出从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,再求出从乙筐拿出25%到甲筐后,甲、乙两筐分别为:171204x y +,33420y x +,列方程17133204420x y y x +=+,求出x 与y 的关系即可. 【详解】设甲、乙两筐苹果各有x 、kg y ,从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,从乙筐拿出25%到甲筐后,甲、乙两筐分别为:()17180%25%20%204x y x x y +⨯+=+, ()3375%20%420y x y x ⨯+=+, 由题可得:17133204420x y y x +=+, 解得75y x =, 75y x =, 则原来乙筐苹果质量为甲筐的:7100%100%140%5y x ⨯=⨯=. 故答案为:140.【点睛】本题考查循环倒液类型问题,掌握循环倒液类型问题的解法,抓住经过两次循环两者质量相等构造等式(或方程)解决问题是关键.13.如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,已知()8,5B -,则点A 的坐标为__________.(-36)【分析】设长方形纸片的长为a 宽为b 由B 点坐标可以得到关于ab 的二元一次方程组解方程组可以得到a 和b 再根据纸片的摆放可以得到A 点坐标【详解】解:设长方形纸片的长为a 宽为b 由B 点坐标可以得到:解析:(-3,6)【分析】设长方形纸片的长为a ,宽为b ,由B 点坐标可以得到关于a 、b 的二元一次方程组,解方程组可以得到a 和b ,再根据纸片的摆放可以得到A 点坐标.【详解】解:设长方形纸片的长为a ,宽为b ,由B 点坐标可以得到:285a a b -=-⎧⎨+=⎩,解之可得: 41a b =⎧⎨=⎩, ∴根据A 点位置可得其坐标为:()326x a b y a b ⎧=--=-⎨=+=⎩, 故答案为(-3,6).【点睛】本题考查点的坐标表示与长方形的综合运用,根据点的坐标及长方形的摆放位置求出长方形的长和宽后再根据长方形的摆放位置求出新的点坐标 .14.鼠年新春佳节将至,小瑞准备去超市买些棒棒糖,送一份“甜蜜礼物”给他的好朋友.有甲、乙、丙三种类型的棒棒糖,若甲种买2包,乙种买1包,丙种买3包共23元;若甲种买1包,乙种买4包,丙种买5包共36元.则甲种买1包,乙种买2包,丙种买3包,共______元.22【分析】首先设买1包甲乙丙三种糖各abc元根据买甲种糖2包和乙种1包丙种3包共23元列出方程2a+3c+b=23;根据买甲种1包乙4包丙种5包共36元列出方程a+4b+5c=36通过加减消元法求解析:22【分析】首先设买1包甲,乙,丙三种糖各a,b,c元.根据买甲种糖2包和乙种1包,丙种3包共23元,列出方程2a+3c+b=23;根据买甲种1包,乙4包,丙种5包,共36元,列出方程a+4b+5c=36.通过加减消元法求得b+c,a+c的值.题目所求买甲种1包,乙种2包,丙种3包,共需a+2b+3c=(a+c)+2(b+c),因而将b+c、a+c的值直接代入即求得本题的解.【详解】解:设买1包甲,乙,丙三种糖各a,b,c元.由题意得23234536 a b ca b c++=⎧⎨++=⎩①②由②×2−①得:b+c=7③,由③代入①得:a+c=8④,由④+2×③得:a+2b+3c=(a+c)+2(b+c)=8+14=22.故答案为:22.【点睛】根据系数特点,通过加减消元法,得到b+c、a+c的值,再将其做为一个整体,代入求解.15.某商场在“迎新年”搞促销活动,刘海的家长准备用2000元在活动中购买价格分别为160元和240元的两种商品,在钱都用尽的情况下,可供刘海的家长选择的购买方案有_______种.4【分析】设购买160元的商品数量为x购买240元的商品数量为y 根据总费用是2000元列出方程求得正整数xy的值即可【详解】解:设购买80元的商品数量为x购买120元的商品数量为y依题意得:160x解析:4【分析】设购买160元的商品数量为x,购买240元的商品数量为y,根据总费用是2000元列出方程,求得正整数x、y的值即可.【详解】解:设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:160x+240y=2000,整理,得y=2523x-.因为x是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用.对于此类问题,挖掘题目中的关系,找出等量关系,列出二元一次方程.然后根据未知数的实际意义求其整数解.16.设 a 、b 是有理数,且满足等式2321a b ++=-则a+b=___________.1或﹣11【分析】根据实数相等的条件可求出ab 的值然后代入所求式子计算即可【详解】解:∵ab 是有理数且满足等式∴解得:当a=6b=﹣5时a+b=6-5=1;当a=﹣6b=﹣5时a+b=﹣6-5=﹣1解析:1或﹣11【分析】根据实数相等的条件可求出a 、b 的值,然后代入所求式子计算即可.【详解】解:∵a 、b 是有理数,且满足等式2321a b ++=-∴2321,5a b b +==-,解得:5,6b a =-=±,当a =6,b =﹣5时,a +b =6-5=1;当a =﹣6,b =﹣5时,a +b =﹣6-5=﹣11;故答案为:1或﹣11.【点睛】本题考查了实数的相关知识,正确理解题意、得到关于a 、b 的方程组是解题的关键. 17.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______.45【分析】设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意列出方程组进行解答便可【详解】解:设甲乙丙三种水稻各种植了a 亩b 亩c 亩乙种水稻平均亩产量的增长率为x 根据题意得化 解析:45%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(140%)a b c a b c c a a b x c a b c ++=++⎧⎪=⨯⎨⎪+++++=+++⎩化简整理得:30350241311a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩, 解得:0.4545%x ==;故答案为:45%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.18.为减轻“新冠”带来的影响,西城天街商场决定在国庆期间开展促销活动,方案如下:在负二楼兑奖区旁放置一个不透明的箱子,箱子里有大小、形状、质地等完全相同的黑、白、红球各一个,顾客购买的商品达到一定金额可获得一次摸球机会,摸中黑、白、红三种颜色的球可分别返还现金100元、60元、20元.商场分上午、下午和晚上三个时间段统计摸球次数和返现金额,汇总统计结果如下:下午摸到黑球次数为上午的3倍,摸到白球次数为上午的2倍,摸到红球次数为上午的4倍;晚上摸到黑球次数与上午相同,摸到白球次数为上午的4倍,摸到红球次数为上午的2倍,三个时间段返现总金额共为5020元,晚上返现金额比上午多840元,则下午返现金额为_______元.【分析】根据题意表示出上午下午晚上摸到黑白红的次数列数返现的金额式子确定出abc 的值代入计算即可;【详解】设上午黑白红摸到的次数分别是abc 则下午摸到黑白红的次数是3a2b4c 晚上摸到黑白红的次数是解析:2460【分析】根据题意表示出上午、下午、晚上摸到黑、白、红的次数,列数返现的金额式子,确定出a ,b ,c 的值代入计算即可;【详解】设上午黑、白、红摸到的次数分别是a ,b ,c ,则下午摸到黑、白、红的次数是3a ,2b ,4c ,晚上摸到黑、白、红的次数是a ,4b ,2c ,晚上返现金额比上午多840,∴36020840b c ⨯+⨯=,∴18020840b c +=,总返现为:5004201405020a b c ++=,根据题意:a ,b ,c 是大于零的正整数,当4b =时满足条件a ,b ,c 为正整数,∴4b =,6c =,5a =,即下午返现的金额为1510086024202460⨯+⨯+⨯=元;故答案是2460.【点睛】本题主要考查了概率公式的应用,准确分析计算是解题的关键.19.已知方程组32223x y m x y m +=+⎧⎨+=⎩的解适合8x y +=,则m =_______.19【分析】将m 看做已知数表示出x 与y 代入x+y=8中计算即可求出m 的值【详解】解:得5x=m+6即得:-5y=4-m 即代入x+y=8中得:去分母得:2m+2=40解得:m=19故答案为:19【点睛解析:19【分析】将m 看做已知数表示出x 与y ,代入x+y=8中计算即可求出m 的值.【详解】解:32223x y m x y m ++⎧⎨+⎩=①=② 32⨯-⨯①②得5x=m+6,即65m x += 23⨯-⨯①②得:-5y=4-m ,即45m y -=代入x+y=8中,得:64855m m +-+= 去分母得:2m+2=40,解得:m=19.故答案为:19【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.20.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶.10【分析】根据好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33可列方程组解之即可【详解】解:设有好酒x 瓶薄酒y 瓶根据题意可列方程组为解得:∴好酒是有10瓶故答案为:10【点睛】本题主解析:10根据“好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33”可列方程组,解之即可.【详解】解:设有好酒x 瓶,薄酒y 瓶.根据题意,可列方程组为193333x y y x +=⎧⎪⎨+=⎪⎩,解得:109x y =⎧⎨=⎩, ∴好酒是有10瓶,故答案为:10.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是掌握理解题意,找到题目蕴含的相等关系.三、解答题21.今年11月份,某商场用22200元购进长虹取暖器和格力取暖器共400台,已知长虹取暖器每台进价为50元,售价为70元,格力取暖器每台进价为60元,售价为90元. (1)求11月份两种取暖器各购进多少台?(2)在将11月份购买的两种取暖器从厂家运往商场的过程中,长虹取暖器出现13的损坏(损坏后的产品只能为废品,不能再进行销售),而格力取暖器完好无损,商场决定对这两种取暖器的售价进行调整,使这次购进的取暖器全部售完后,商场可获利35%,已知格力取暖器在原售价基础上提高5%,问长虹取暖器调整后的每台售价比原售价多多少元? (3)今年重庆的天气比往年寒冷了许多,进入12月份,格力取暖器的需求量增大,商场在筹备“双十二”促销活动时,决定去甲、乙两个生产厂家都只购进格力取暖器,甲、乙生产厂家给出了不同的优惠措施:甲生产厂家:格力取暖器出厂价为每台60元,折扣数如下表所示:金.支付9700元,若将在两个生产厂家购买格力取暖器的总量改由在乙生产厂家一次性购买,则商场可节约多少元?解析:(1)长虹取暖器购进180台,格力取暖器购进220台;(2)6.5元;(3)1064元【分析】(1)长虹取暖器和格力取暖器的总量是400,两种日光灯的总价是22200,可得方程组,即可得解;(2)设长虹取暖器调整后的每台售价比原售价多m 元根据题意可得:长虹取暖器销售额×(1-13)+格力取暖器销售额=总销售额,根据等量关系列出等式即可; (3)通过已知条件计算出乙生产厂家一次性购买的总支出,然后,在甲乙两家购买总支出-乙生产厂家一次性购买的总支出=节约金额,注意分类讨论,在乙厂家支付的9700元的原价是否小于10000元.【详解】解:(1)设长虹取暖器购进x 台,则格力取暖器购进y 台.由题意得:506022200400x y x y +=⎧⎨+=⎩解得:180y 220x =⎧⎨=⎩ 答:长虹取暖器购进180台,格力取暖器购进220台.(2)设长虹取暖器调整后的每台售价比原售价多m 元, 由题意得:()()()11801m 702209015%22200135%3⎛⎫⨯-++⨯⨯+=⨯+ ⎪⎝⎭解得:m 65=.答:长虹取暖器调整后的每台售价比原售价多6.5元.(3)当购买甲厂家150台,共支付150600.981008610⨯⨯=<.设在甲厂家购买了z 台,则()8100150600.858610z +-⨯⨯=.解得:160z =.若在乙厂家支付的9700元的原价小于10000元,则可节约()()861097001605097002000.982961064+-⨯++⨯-=⎡⎤⎣⎦元.若在乙厂家支付的9700元的原价大于10000元,则可节约()970029686109700160500.982967700.98⎡+⎤⎛⎫+-⨯+⨯-= ⎪⎢⎥⎝⎭⎣⎦元. 答:商场可节约1064元或770元.【点睛】本题主要是考查二元一次方程组的应用,在应用中结合实际情况考虑物品的损耗和最终利润问题,切记:单价×数量=总价,(售价-进价)•数量=利润,利用公式解决问题. 22.对于平面直角坐标系xoy 中的点(),P a b ,若点P'的坐标为(),a kb ka b ++(其中k 为常数,0k ≠)则称点P'为点P 的“k 属派生点”,例如:()1,4P 的“2属派生点”为()'124,214P +⨯⨯+,即()'9,6P .(1)点()2,3P -的“3属派生点”的坐标为________;(2)若点P 的“5属派生点”的坐标为()3,9-,求点P 的坐标.解析:(1)(7,-3);(2)点P 的坐标为(-2,1)【分析】(1)根据公式直接代入计算即可;(2)设点P 的坐标为(a ,b ),根据题意列得5359a b a b +=⎧⎨+=-⎩,求解即可. 【详解】(1)由题意得点()2,3P -的“3属派生点”的横坐标为233-+⨯=7,点()2,3P -的“3属派生点”的纵坐标为3(2)3⨯-+=-3,点()2,3P -的“3属派生点”的坐标为(7,-3),故答案为:(7,-3);(2)设点P 的坐标为(a ,b ),由题意得5359a b a b +=⎧⎨+=-⎩,解得21a b =-⎧⎨=⎩, ∴点P 的坐标为(-2,1).【点睛】此题考查新定义,列方程组解决实际问题,有理数的混合运算,正确理解题中的计算公式是解题的关键.23.如图,线段AB 上有一点C ,D 为线段BC 的中点,E 为线段AC 上一点,EC =4AE , AB =25(1)若AD =20,求AE 的长;(2)若DE =14,求BC 的长解析:(1)AE=3;(2)BC=20【分析】(1)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解;(2)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解;【详解】解:(1)设AE =a ,CD =b ,∵EC =4AE ,D 为线段BC 的中点,∴CE =4a ,AC =AE +CE =5a ,BC =2b ,∵AD =20,AB =25∴AC +CD =5a +b =20AC +BC =5a +2b =25解得:a =3,b =5即AE =a =3;(2)设AE =a ,CD =b ,∵EC =4AE ,D 为线段BC 的中点,∴CE =4a ,BC =2b ,∵DE =CE +CD =4a +b =14AB =AE +CE +BC =5a +2b =25解得:a =1,b =10即BC =2b =20.【点睛】本题考查两点间的距离和二元一次方程组,解题的关键是熟练掌握线段中点的性质及线段的和差倍数.24.一个电器超市购进A 、B 两种型号的电风扇进行销售,已知购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元.(1)求A 、B 两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A 种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A 、B 两种型号的电风扇各多少台?解析:(1)A 、B 两种型号的电风扇每台进价分别是200元和170元;(2)该超市本次购进A 、B 两种型号的电风扇各是20台和10台【分析】(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,进而利用购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元,列出二元一次方程组求出答案;(2)首先设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30-a )台,直接利用本次购进的两种电风扇全部售出后,总获利为1400元,列方程求出答案.【详解】解:(1)设A 、B 两种型号的电风扇每台进价分别是x 元、y 元,依题意,得2391032260x y x y +=⎧⎨-=⎩,解得200170x y =⎧⎨=⎩, 答:A 、B 两种型号的电风扇每台进价分别是200元和170元.(2)设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇(30)a -台, 依题意,得:(260200)(190170)(30)1400a a -+--=,解得:20a =,则3010a -=.答:该超市本次购进A 、B 两种型号的电风扇各是20台和10台.【点睛】此题主要考查了二元一次方程的应用,正确根据题目间等量关系列方程组进行计算求解是解题关键.25.阅读感悟:有些关于方程组的问题,需要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x ,y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x ,y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组23173213x y x y +=⎧⎨+=⎩,则x y -= ,x y += ; (2)“战疫情,我们在一起”,某公益组织计划为老年公寓捐赠一批防疫物资.已知购买20瓶消毒液、3支测温枪、2套防护服共需1180元;购买30瓶消毒液、2支测温枪、8套防护服共需2170元,若该公益组织实际捐赠了100瓶消毒液、10支测温枪、20套防护服,则购买这批防疫物资共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=-+,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,求11*的值.解析:(1)﹣4;6;(2)购买这批防疫物资共需6700元;(3)11=11*-.【分析】(1)直接把两个方程相加或相减,即可求出答案;(2)根据题意,列出方程组,然后利用整体思想代入计算,即可得到答案;(3)根据题意,利用新定义进行计算,然后利用整体的思想即可求出11*的值.【详解】解:(1)23173213x y x y +=⎧⎨+=⎩①② 由①+②,得5530x y +=,∴6x y +=;由②-①,得4x y -=-;故答案为:﹣4;6.(2)设的消毒液单价为m 元,测温枪的单价为n 元,防护服的单价为p 元, 依题意,得: 2032118030282170m n p m n p ++=⎧⎨++=⎩①②, 由①+②可得505103350m n p ++=,∴1001020335026700m n p ++=⨯=.答:购买这批防疫物资共需6700元.(3)依题意,得: 35154728a b c a b c -+=⎧⎨-+=⎩①②, 由3×①﹣2×②可得:11a b c -+=-,∴1111a b c *=-+=-.【点睛】本题考查了二元一次方程组的应用,解二元一次方程的方法,以及利用整体的思想进行解题,解题的关键是熟练掌握利用整体思想进行解题.26.萱萱家为方便她上学,在黄冈小河中学旁边购买了一套经济适用房.她家准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题: (1)写出用含x 、y 的整式表示地面总面积;(2)已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?解析:(1)6218x y ++;(2)3600元【分析】(1)根据长方形的面积=长×宽,表示各部分的面积,于是可表示出总面积.(2)根据已知客厅面积是厨房面积的4倍,且地面总面积是卫生间面积的15倍,列出方程组求解,可求出总面积,再根据单价可求出铺地砖的总费用.【详解】解:(1)卧室的长=2+2=4,厨房的长=6-3=3,∴地面的总面积为:3×4+2y+2×3+6x=6x+2y+18.(2)由题意得64236218152x x y y =⨯⨯⎧⎨++=⨯⎩解得:41.5x y =⎧⎨=⎩∴地面总面积为:S=6x+2y+18=45(m 2),∴铺地砖的总费用为:45×80=3600(元).答:那么铺地砖的总费用为3600元.【点睛】本题考查二元一次方程组的应用,关键是能根据等量关系列出方程组.27.在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.。

初中数学二元一次方程组练习题(附答案)

初中数学二元一次方程组练习题(附答案)

初中数学二元一次方程组练习题_一、单选题1.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y 厘米,则依题意列方程正确的是( )A.2753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x+=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩2.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱:每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A.8374x yy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=⎩C.8374y xx y-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩3.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?设有x只鸡、y只兔,则可用二元一次方程组表示题中的数量关系为( )A.35294x yx y+=⎧⎨+=⎩B.352294x yx y+=⎧⎨+=⎩C.35294x yx y+=⎧⎨+=⎩D.352494x yx y+=⎧⎨+=⎩4.在中国古代的数学著作《孙子算经》中记载了一道题目,大意是:一百匹马,一百块瓦,大马一匹拖三块,小马三匹拖一块.问:大马小马各几何?下列结论正确的是( )A.大马40匹,小马60匹B.大马30匹,小马70匹C.大马25匹,小马75匹D.大马15匹,小马85匹5.七年级学生在会议室开会,每排坐12人,则有12人没有座位;每排坐14人,则余2人独坐最后一排,则这间会议室的座位排数是( )A.15B.14C.13D.126.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是( )C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元7.打折前购买A商品40件与购买B商品30件所花的钱一样多,商家打折促销,A商品打八折,B商品打九折,此时购买A商品40件比购买B商品30件少花600元,则打折前A商品和B商品每件的价格分别为( )A.75元,100元B.120元,160元C.150元,200元D.180元,240元8.根据如图提供的信息,小红去商店买一只水瓶和一只杯子应付( )A.30元B.32元C.31元D.34元9.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是( )A.0.8元/支,2.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.1.2元/支,3.6元/本二、解答题10.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产,A B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,饮料加工厂生产了,A B两种饮料各多少瓶?11.A市有近20年的马拉松比赛历史,过去全程马拉松名额一直相对较少.而近几年,这一现状大大改变,很多想参加全程马拉松(简称全马)的跑者报不上名.所以该城市近两年也大幅增加“全马”的名额.2017年,参加“全马”的人数比“半马”的人少,但是2018年,2019年参加“全马”的人数呈上升趋势,且每年比前一年均增加25%(即2018年比2017年增加25%,2019年比2018年增加25%),2019年,有12500名“全马”参赛者.(1)求2017年、2018年“全马”参赛人数;(2)据赞助食物的某商家反映:2017年与2018年该商家分别给参加“全马”和“半马”的参赛者提供了不同价格的食物,每个“全马”参赛者获得的食物价值高于“半马”参赛者,2017年,商家提供食物共用去22万元;这两年商家是按同一个标准分别给“全马”和“半马”参赛者提供食物(人太多,标准不可轻易提高),即使这样,2018年,虽然参加马拉松比赛的总人数与2017年一样多,但是由于“全马”参赛者人数刚好与“半马”参赛者人数调换了,赞助商比2017年多提供了p万元的食物;商家发现这p万元的食物刚好可以供400名“全马”参赛者和400名“半马”参赛者享用.求p的值.12.某自行车行销售甲、乙两种品牌的自行车,若购进甲品牌自行车5辆,乙品牌自行车6辆,需要进货款9500元,若购进甲品牌自行车3辆,乙品牌自行车2辆,需要进货款4500元.(1)求甲、乙两种品牌自行车每辆进货价分别为多少元;(2)今年夏天,车行决定购进甲、乙两种品牌自行车共50辆,在销售过程中,甲品牌自行车的利润率为80%,乙品牌自行车的利润率为60%,若将所购进的自行车全部销售完毕后其利润不少于29500,那么此次最多购进多少辆乙种品牌自行车?13.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(2)全部售完500箱矿泉水,该商场共获得利润多少元?14.某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?三、填空题15.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,设小强同学生日的月数为x,日数为y,根据题意可列方程组为_____.16.程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法综宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法,书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁,意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,则小和尚有__________人. 17.《九章算术》是我国古代一部数学专著,其中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银各重几何?”意思是甲袋中装有黄金9枚(每枚黄金重量相同)乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).则黄金每枚重___两,白银每枚重____两.18.小蒲家与学校之间是一条笔直的公路,小蒲从家步行前往学校的途中发现忘带作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小蒲沿原路返回,两人相遇后,小蒲立即赶往学校,妈妈沿原路返回家,小蒲到达学校刚好比妈妈到家晩了2分钟.若小蒲步行的速度始终不变,打电话和交接作业本的时间忽略不计,小蒲和妈妈之间的距离y米与小蒲打完电话后步行的时间x分钟之间的函数关系如图所示;则相遇后妈妈返回家的速度是每分钟_____米.19.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶_____对.20.初2019级即将迎来中考,很多家长都在为孩子准备营养午餐.一家快餐店看准了商机,在5月5号推出了A B C,,三种营养套餐.套餐C单价比套餐A贵5元,三种套餐的单价均为整数,其中A套餐比C套餐少卖12份,B套餐比C套餐少卖6份,且C套餐当天卖出的数量大于26且不超过32,当天总销售量为偶数且当天销售额达到了1830元,商家发现C套餐很受欢迎,因此在6号加推出了C套餐升级版D套餐,四种套餐同时售卖,A套餐比5号销售量减少,C套餐比5号销售量增加13,且A减少的份数比C套餐增加的份数多5份,B套餐销售量不变,由于商家人手限制,两天的总销售量相同,则其他套餐单价不变的情况下,D套餐至少比C套餐费贵______时,才能使6号销售额达到1950元.参考答案1.答案:D解析:根据图示可得,2753x yx y+=⎧⎨=⎩,故选D.2.答案:A解析:设合伙人数为x人,物价为y钱,根据题意,可列方程组:8374x yy x-=⎧⎨-=⎩,故选:A.3.答案:D解析:由题意得,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:35 2494x yx y+=⎧⎨+=⎩;故选择:D.4.答案:C解析:设大马有x 匹,小马有y 匹, 根据题意得100131003x y x y +=⎧⎪⎨+=⎪⎩,解得2575x y =⎧⎨=⎩, 所以大马有25匹,小马有75匹. 故选:C. 5.答案:D解析:设这间会议室共有座位x 排,有学生y 人,则121214(1)2x y x y +=-+=⎧⎨⎩,解得12156x y =⎧⎨=⎩,故选:D. 6.答案:A解析:设每支百合花x 元,每支玫瑰花y 元,根据题意得:()83658x y x y ++=-,整理得:228x y -=, ∴2支百合花比2支玫瑰花多8元. 故选:A. 7.答案:C解析:设打折前A 商品价格为x 元,B 商品为y 元, 根据题意得:4030400.8600300.9x y x y =⨯+=⨯⎧⎨⎩,解得:150200x y =⎧⎨=⎩,则打折前A 商品价格为150元,B 商品为200元. 故选:C. 8.答案:C解析:设购买一只水瓶需要x 元,购买一只杯子需要y 元, 根据题意得:237256x y x y +=⎧⎨+=⎩①②,()3+÷①②,得:31x y +=.故选:C. 9.答案:D解析:设小红所买的笔和笔记本的价格分别是x 元,y 元, 则51042x y +=,10530x y +=, 解得 1.2x =, 3.6y =,所以小红所买的笔和笔记本的价格分别是1.2元,3.6元. 故选D.10.答案:解:设甲种饮料x 瓶,乙种饮料y 瓶, 由题意得10023260x y x y +=⎧⎨+=⎩,解之得4060x y =⎧⎨=⎩,答:生产甲饮料40瓶,乙饮料60瓶. 解析:11.答案:(1)设2017年参加全马有x 人,根据题意得 由2(125%)12500x +=,得8000x =,那么8000(125%)10000⨯+=,所以2017年、2018年参加全马分别为8000人、10000人;(2)设赞助商给每个全马,半马参赛者提供的食物价格分别是a 万元,b 万元, 则400()8000100002210000800022a b p a b a b p +=⎧⎪+=⎨⎪+=+⎩①②③, 由②+③,得18000()44a b p +=+④, 由①得400p a b +=,代入④,得,1800044400p p ⨯=+, 解得1p =, 所以p 值为1. 解析:12.答案:(1)设甲种品牌自行车每辆进货价为x 元,乙种品牌自行车每辆进货价为y 元, 依题意,得:569500324500x y x y +=⎧⎨+=⎩,解得:1000750x y =⎧⎨=⎩.答:甲种品牌自行车每辆进货价为1000元,乙种品牌自行车每辆进货价为750元. (2)设购进乙种品牌自行车m 辆,则购进甲种品牌自行车()50m -辆, 依题意,得:()10005080%75060%29500m m ⨯-⨯+⨯≥, 解得:30m ≤.答:此次最多购进30辆乙种品牌自行车. 解析:13.答案:(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱, 由题意得:500243313800x y x y +=+=⎧⎨⎩,解得:300200x y ==⎧⎨⎩.(2)()()30036242004833360030006600⨯-+⨯-=+= (元). 答:该商场共获得利润6600元. 解析:14.答案:解:设去年的总收入为x 万元,总支出为y 万元. 根据题意,得50(110%)(120%)100x y x y -=+--=⎧⎨⎩,解这个方程组,得200150x y =⎧⎨=⎩,∴()110%220x +=,()120%120y -=.答:今年的总收入为220万元,总支出为120万元. 解析:15.答案:2231x y x y -=⎧⎨+=⎩解析:根据题意,列方程得2231x y x y -=⎧⎨+=⎩,故答案是:2231x y x y -=⎧⎨+=⎩. 16.答案:75解析:设大和尚有x 人,小和尚有y 人, 根据题意得:10031003x y yx +=⎧⎪⎨+=⎪⎩,解得2575x y =⎧⎨=⎩. 所以,小和尚75人. 17.答案:1434;1174解析:设每枚黄金重x 两,每枚白银重y 两, 由题意得:911(10)(8)13x y y x x y =⎧⎨+-+=⎩,解得:14341174x y ⎧=⎪⎪⎨⎪=⎪⎩,故答案为:1434,1174. 18.答案:50解析:设相遇后妈妈返回家的速度是每分钟x 米,小蒲的速度为每分钟y 米,由题意得:1610200016182960x y x y +=⎧⎨+=⎩,解得:50120x y =⎧⎨=⎩,∴相遇后妈妈返回家的速度是每分钟50米. 19.答案:22解析:设购进暖瓶x 对,则有2x 只暖瓶,衬衫2x 件,留下的17件物品中有a 只暖瓶,(17)a -件衬衫,∵每件衬衣的进价是40元,每对暖瓶的进价是60元,商店将这批物品以高出进价10%的价格售出,∴暖瓶每只售价为()30110%33⨯+= (元), 衬衫每件售价为()40110%44⨯+= (元),∴总售价为3324421()()715411748x a x a x a =⨯-+-+=+- (元), 根据题意得:()1541174890%40260x a x x +-=⨯+, 整理得:2811748x a +=, ∵a 为偶数,且170a -,∴a 为2,4,6,8,10,12,14,16, 当2a =,x 的值为分数,不合题意; 当4a =,x 的值为分数,不合题意; 当6a =,x 的值为分数,不合题意; 当8a =,x 的值为分数,不合题意; 当10a =,x 的值为分数,不合题意; 当12a =,22x =,当14a =,x 的值为分数,不合题意; 当16a =,x 的值为分数,不合题意; ∴即只有当12a =,22x =时符合题意. 答:最初购进这批暖瓶22对, 故答案为:22. 20.答案:9元解析:设5号时,A 套餐单价为x 元,销售量为y 份,B 套餐单价为z 元,6号时,D 套餐比C 套餐贵a 元时,才能使6号销售额达到1950元.则5号时,C 套餐单价为()5x +元,B 套餐销量为()6y +份,C 套餐销售()12y +份;∵两天的总销售量相同,∴D 套餐6号的销量为5份,由题意得:261232(6)(5)(12)183011(12)5(6)1(12)(5)5(5)195033y xy z y x y x y y z y y x a x ⎧⎪<+≤⎪⎪+++++=⎨⎪⎡⎤⎛⎫⎪-+-+++++++++= ⎪⎢⎥⎪⎣⎦⎝⎭⎩①②③,由①得:1420y <≤,∵y 是整数,∴151617181920y =,,,,,,5号时销量为偶数,即612318y y y x ++++=+, ∴符合条件的y 值为16,18,20,由②得:把16y =代入,()16222851830x z x +++=, 44221690x z +=,845211x z +=,方程无整数解,不符合题意, 把18y =代入,()182********x z x +++=,48241680x z +=④, 把20x =代入,()20263251830x z x +++=,52261670x z +=, 方程无整数解,不符合题意,∴18y =,把18y =代入③中得:4(18105)2430(5)5(5)19503x z x a x --++⨯++++=,548241725a x z ++=,51725168045a =-=,9a =,故答案为:9元.。

七年级数学下册 专题 解二元一次方程组(计算题50题)(解析版)

七年级数学下册 专题 解二元一次方程组(计算题50题)(解析版)

七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)−=4,3+=16;(2)−=2,3+5=14.【分析】(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,即可求出y的值,则x的值也就迎刃而解了;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,即可求出x的值,则y的值也就可以求出了.【解答】解:(1)−=4①3+=16②,由①得:x=y+4,代入②得:3(y+4)+y=16,解得y=1.将y=1代入x=y+4中得x=5,故方程组的解为:=5=1;(2)−=4①3+5=14②,由①得:y=x﹣2,代入②得:3x+5(x﹣2)=14,解得x=3.将x=3代入y=x﹣2,得y=1.故方程组的解为:=3=1.【点评】本题主要考查了二元一次方程组的解法,解题的关键是掌握代入法解方程.2.用代入法解下列方程组:(1)2−=33+2=8;(2)+=103−2=5.【分析】两方程组利用代入消元法求出解即可.【解答】解:(1)2−=3①3+2=8②,由①得:y=2x﹣3③,把③代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入③得:y=4﹣3=1,则方程组的解为=2=1;(2)+=10①3−2=5②,由①得:u=10﹣v③,把③代入②得:3(10﹣v)﹣2v=5,解得:v=5,把v=5代入①得:5+u=10,解得:u=5,则方程组的解为=5=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.用代入法解下列方程组:(1)3−=2,9+8=17;(2)3−4=10+3=12.【分析】(1)由①得出y =3x ﹣2③,把③代入②得出9x +8(3x ﹣2)=17,求出x ,再把x =1代入③求出y 即可;(2)由②得出x =12﹣3y ③,把③代入①得出3(12﹣3y )﹣4y =10,求出y ,再把y =2代入③求出x 即可.【解答】解:(1)3−=2①9+8=17②,由①,得y =3x ﹣2③,把③代入②,得9x +8(3x ﹣2)=17,解得:x =1,把x =1代入③,得y =3×1﹣2,即y =1,所以原方程组的解是=1=1;(2)3−4=10①+3=12②,由②,得x =12﹣3y ③,把③代入①,得3(12﹣3y )﹣4y =10,解得:y =2,把y =2代入③,得x =12﹣3×2,即x =6,所以原方程组的解是=6=2.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.4.用代入法解下列方程组.(1)+2=4=2−3;(2)−=44+2=−2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)+2=4①=2−3②,把②代入①得:x +2(2x ﹣3)=4,解得:x =2,把x =2代入②得:y =4﹣3=1,则方程组的解为=2=1;(2)方程组整理得:−=4①2+=−1②,①+②得:3x =3,解得:x =1,把x =1代入①得:1﹣y =4,解得:y =﹣3,则方程组的解为=1=−3.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用代入法解下列方程组:(1)5+4=−1.52−3=4(2)4−3−10=03−2=0【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用代入消元法求出解即可.【解答】解:(1)5+4=−1.5①2−3=4②,由②得:x =3r42③,把③代入①得:15r202+4y =﹣1.5,去分母得:15y +20+8y =﹣3,移项合并得:23y =﹣23,解得:y =﹣1,把y =﹣1代入③得:x =12,则方程组的解为=12=−1;(2)方程组整理得:4−3−10=0①=23t ,把②代入①得:83y ﹣3y ﹣10=0,去分母得:8y ﹣9y ﹣30=0,解得:y=﹣30,把y=﹣30代入②得:x=﹣20,则方程组的解为=−20=−30.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.用代入法解下列方程组:(1)−=42+=5;(2)3−=29+8=17;(3)3+2=−86−3=−9.【分析】各方程组利用代入消元法求出解即可.【解答】解:(1)−=4①2+=5②,由①得:x=y+4③,把③代入②得:2(y+4)+y=5,解得:y=﹣1,把y=﹣1代入③得:x=﹣1+4=3,则方程组的解为=3=−1;(2)3−=2①9+8=17②,由①得:y=3x﹣2③,把③代入②得:9x+8(3x﹣2)=17,解得:33x=33,解得:x=1,把x=1代入③得:y=3﹣2=1,则方程组的解为=1=1;(3)3+2=−8①2−=−3②,由②得:y=2x+3③,把③代入①得:3x+2(2x+3)=﹣8,解得:x=﹣2,把x=﹣2代入②得:﹣4﹣y=﹣3,解得:y=﹣1,则方程组的解为=−2=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.用代入法解下列方程组:(1)3+2=11,①=+3,②(2)4−3=36,①+5=7,②(3)2−3=1,①3+2=8,②【分析】(1)将方程②代入方程①进行求解;(2)将方程②变形为y=﹣5x+7,再代入方程①进行求解;(3)将方程①变形为y=2K13,再代入方程②进行求解.【解答】解:(1)将方程②代入方程①得,3(y+3)+2y=11,解得y=25,把y=25代入②得,x=175,∴该方程组的解为=175=25;(2)将方程②变形为y=﹣5x+7③,把③代入①得,4x﹣3(﹣5x+7)=36,解得x=3,将x=3代入③得,y=﹣5×3+7,解得y=﹣8,∴该方程组的解为=3=−8;(3)将方程①变形为y=2K13③,把③代入②得,3x+2×2K13=8,解得x=2,将x =2代入③得,y =2×2−13,解得y =1,∴该方程组的解为=2=1.【点评】此题考查了利用代入法解二元一次方程组的能力,关键是能直接或将某方程变式后进行代入消元求解.8.用代入法解下列方程组:(1)5+2=15①8+3=−1②;(2)3(−2)=−172(−1)=5−8.【分析】(1)用代入消元法解二元一次方程组即可;(2)用代入消元法解二元一次方程组即可.【解答】解:(1)5+2=15①8+3=−1②,由①得,y =15−52③,将③代入②得,8x +15−52×3=﹣1,解得,x =﹣47,将x =﹣47代入①得,y =125,∴方程组的解为=−47=125;(2)3(−2)=−172(−1)=5−8,整理得,3−=−11①2−5=−6②,由①得,x =3y +11③,将③代入②得,y =﹣28,将y =﹣28代入①得,x =﹣73,∴方程组的解为=−73=−28.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组是解题的关键.9.用代入法解下列方程组:(1)=6−53−6=4(2)5+2=15+=6(3)3+4=22−=5(4)2+3=73−5=1【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)=6−5s3−6=4②,把①代入②得3(6﹣5y)﹣6y=4,解得y=23,∴x=6−5×23=83,所以方程组的解为=83=23;(2)5+2=15①+=6②,由②得x=6﹣y③,把③代入①,得y=5,∴x=6﹣5=1,所以原方程组的解为=1=5;(3)3+4=2①2−=5②,由②得y=2x﹣5③,把③代入①得,解得x=2,∴y=2×2﹣5=﹣1,所以原方程组的解为=2=−1;(4)2+3=7①3−5=1②,由①得x=7−32③,把③代入②得解得y=1,∴x=7−3×12=2,所以原方程组的解为=2=1.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.10.用代入法解下列方程组:(1)2+=3+2=−6;(2)+5=43−6=5;(3)2−=63+2=2;(4)5+2=113−=−9;【分析】(1)用代入消元法解方程组即可.(2)用代入消元法解方程组即可.(3)用代入消元法解方程组即可.(4)用代入消元法解方程组即可.【解答】解:(1)2+=3①+2=−6②,由①得y=3﹣2x,把y=3﹣2x代入②得x+2(3﹣2x)=﹣6,解得x=4,∴y=3﹣2×4=﹣5.∴方程组的解为=4=−5.(2)+5=4①3−6=5②,由①得x=4﹣5y,把x=4﹣5y代入②得3(4﹣5y)﹣6y=5,解得y=13,∴x=4﹣5×13=73.∴方程组的解为=73=13.(3)2−=6①3+2=2②,由①得y=2x﹣6,把y=2x﹣6代入②得3x+2(2x﹣6)=2,解得x=2,∴y=2x﹣6=2×2﹣6=﹣2.方程组的解为=2=−2.(4)5+2=11①3−=−9②,由②得x=3y+9,把x=3y+9代入①得5(3y+9)+2y=11,解得y=﹣2,∴x=3×(﹣2)+9=3.∴方程组的解为=3=−2.【点评】本题考查二元一次方程组的解法,解题关键是熟知代入消元法解方程组的步骤.1.用加减法解下列方程组:(1)4−=143+=7(2−2=7−3=−8【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)4−=14①3+=7②,①+②得:7x=21,解得:x=3,把x=3代入②得:y=﹣2,则方程组的解为=3=−2;(2−2=7①−3=−8②,①﹣②得:y=15,把y=15代入①得:x=74,则方程组的解为=74=15.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.用加减法解下列方程组:(1)2+7=53+=−2(2)5=123=−2(37=127=13【分析】(1)由②得出n=﹣2﹣3m③,把③代入①得出2m+7(﹣2﹣3m)=5,求出m,把m=﹣1代入③求出n即可;(2)②﹣①×2得出13v=﹣26,求出v,把v=﹣2代入①求出u即可;(3)整理后①+②得出28x=35,求出x,②﹣①求出y即可.【解答】解:(1)2+7=5①3+=−2②由②得:n=﹣2﹣3m③,把③代入①得:2m+7(﹣2﹣3m)=5,解得:m=﹣1,把m=﹣1代入③得:n=1,所以原方程组的解是:=−1=1;(2)2−5=12①4+3=−2②②﹣①×2得:13v=﹣26,解得:v=﹣2,把v=﹣2代入①得:2u+10=12,解得:u=1,所以原方程组的解是:=1=−2;(3)整理得:14−6=21①14+6=14②,①+②得:28x=35,解得:x=54,②﹣①得:12y=﹣7,解得:y=−712,所以原方程组的解是:=54=−712.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.3.用加减法解下列方程组:(1)−=53+4=−1.2+=4;(2)−2=3【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)−=5①2+=4②,①+②得:3x =9,解得:x =3,把x =3代入①得:3﹣y =5,解得:y =﹣2,则方程组的解为=3=−2;(2)−2=3①3+4=−1②,①×2+②得:5x =5,解得:x =1,把x =1代入①得:1﹣2y =3,解得:y =﹣1,则方程组的解为=1=−1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.用加减法解下列方程组:(1)4−3=11,2+=13;(2)−=3,2+3(−p =11【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)4−3=11①2+=13②,①+②×3得:10x =50,解得:x =5,把x =5代入①得:20﹣3y =11,解得:y =3,所以方程组的解为=5=3;(2)方程组整理得:−=3①3−=11②,②﹣①得:2x =8,解得:x =4,把x=4代入①得:4﹣y=3,解得:y=1,所以方程组的解为=4=1.【点评】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.用加减法解下列方程组:(1)3+2=76−2=11(2)2+=33+=4.【分析】各个方程组利用加减消元法求出解即可.【解答】解:(1)3+2=7①6−2=11②,①+②得:9μ=18,即μ=2,把μ=2代入①得:6+2t=7,解得:t=12,则方程组的解为=2=12;(2)2+=3①3+=4②,②﹣①得:a=1,把a=1代入①得:2+b=3,解得:b=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3−4=04+=8;(2+=3−32=−1.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3−4=0①4+=8②,①+②得:4y=8,解得:y=2,把y=2代入②得:4x+2=8,解得:x=32,则方程组的解为=32=2;(2)方程组整理得:2+=3①−3=−2②,①×3+②得:7x=7,解得:x=1,把x=1代入①得:2+y=3,解得:y=1,则方程组的解为=1=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法是代入消元法与加减消元法.7.(2022秋•陕西期末)用加减法解下列方程组:(1)−=33−8=14;(2+2=10=1+r13.【分析】(1)根据加减消元法解二元一次方程组即可求解;(2)将第二个方程去分母化简,然后根据加减消元法解二元一次方程组即可求解.【解答】解:(1)−=3①3−8=14②,①×3﹣②得:﹣3y+8y=9﹣14,解得:y=﹣1,将y=﹣1代入①得:x+1=3,解得:x=2,∴原方程组的解为:=2=−1;(2+2=10①=1+r13②,由②得3x=6+2(y+1),即3x﹣2y③,①﹣③得:4y=2,解得:=12,①+③得:6x=18,解得:x=3,∴原方程组的解为:=3=12.【点评】本题考查了加减消元法解二元一次方程组,掌握解二元一次方程组的方法是解题的关键.8.用加减法解下列方程组:(1)+3=,2(+1)−=6;(2)+=2800,96%+64%=2800×92%.【分析】(1)先用第二个方程减去第一个方程即可得到x 的值,然后将x 的值代入任意一个方程,解方程即可得到y 的值;(2)先对方程组进行化简可得+=2800①3+2=8050②,易得两个方程中y 的系数存在2倍关系,故只需用方程②减去方程①乘2的积即可得到关于x 的方程,解方程即可.【解答】解:(1)+3=,①2(+1)−=6.②②﹣①,得x ﹣1=6,∴x =7,x =7代入①得y =10,所以原方程组的解为=7=10.(2)原方程化简得+=2800,①3+2=8050.②②﹣①×2,得﹣x =﹣2450,∴x =2450,将x =2450代入①得:y =350,∴原方程组的解为:=2450=350.【点评】本题考查二元一次方程组的解法,利用正确的方法求解是本题的关键.9.用加减法解下列方程组:(1)−=5,①2+=4;②(2)−2=1,①+3=6;②(3)2−=5,①−1=12(2−1).②【分析】(1)利用加减消元法解答即可;(2)利用加减消元法解答即可;(3)利用加减消元法解答即可.【解答】解:(1)−=5①2+=4②,①+②得:3x=9,解得:x=3,把x=3代入①得:3﹣y=5,解得:y=﹣2,所以方程组的解为:=3=−2;(2)−2=1①+3=6②,②﹣①得:5y=5,解得:y=1,把y=1代入①得:x﹣2=1,解得:x=3,所以方程组的解为:=3=1;(3)2−=5①−1=12(2−1)②,由②得:2x﹣2y=1③,①﹣③得:y=4,把y=4代入①得:2x﹣4=5,解得:x=92,所以方程组的解为:=92=4.【点评】此题考查了解二元一次方程组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.10.用加减法解下列方程组:(1)+3=62−3=3(2)7+8=−57−=4(3)−1=3(−2)+4=2(+1)(4+4=1−3=−1.【分析】各方程组整理后,利用加减消元法求出解即可.【解答】解:(1)+3=6①2−3=3②,①+②得:3x=9,即x=3,把x=3代入①得:y=1,则方程组的解为=3=1;(2)7+8=−5①7−=4②,①﹣②得:9y=﹣9,即y=﹣1,把y=﹣1代入①得:x=37,则方程组的解为=37=−1;(3)方程组整理得:3−=5①2−=2②,①﹣②得:x=3,把x=3代入①得:y=4,则方程组的解为=3=4;(4)方程组整理得:4+3=12①3−2=−6②,①×2+②×3得:17x=6,即x=617,①×3﹣②×4得:17y=60,即y=6017,则方程组的解为=617=6017.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2−5=14①3+5=16②(加减法).=−t(代入法);(2)2+3=9①【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)把②代入①得:2x+5x=14,解得:x=2,把x=2代入②,得:y=﹣2,则原方程组的解是=2=−2;(2)①×3得:6x+9y=27③,②×2得:6x+10y=32④,④﹣③得:y=5,把y=5代入①得:2x+15=9,解得:x=﹣3,则原方程组的解是=−3=5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.(2022春•安岳县校级月考)解下列方程组:(1)3−=75+2=8(用代入法);(23=104=5(用加减法).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)3−=7①5+2=8②,由①得:y=3x﹣7③,把③代入②得:5x+2(3x﹣7)=22,解得:x=2,把x=2代入①得:6﹣y=7,解得:y=﹣1,则方程组的解为=2=−1;(2)方程组整理得:3+4=120①4−3=60②,①×3+②×4得:25m=600,解得:m=24,把m=24代入①得:72+4n=120,解得:n=12,则方程组的解为=24=12.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2022春•大连期中)用指定的方法解下列方程组:(1)−3=42+=13(代入法);(2)5+2=4+4=−6(加减法).【分析】(1)利用代入法解方程组;(2)利用加减消元法解方程组.【解答】解:(1)−3=4①2+=13②,由①得x =3y +4③,把③代入②,得2(3y +4)+y =13,解得y =57,∴x =3×57+4=617,∴方程组的解为=617=57;(2)5+2=4①+4=−6②,①×2﹣②,得9x =14,解得x =149,把x =149代入②,得149+4y =﹣6,解得y =−179.∴方程组的解为=149=−179.【点评】本题考查了解二元一次方程组,做题的关键是掌握加减消元法,和代入消元法解二元一次方程组.4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5−=113+=7(代入消元法);(2)2−5=245+2=31(加减消元法).【分析】(1)由方程①,得b =5a ﹣11,再代入方程②求出未知数a ,进而得出未知数b ;(2)用方程①×2﹣②×5,可消去未知数y ,求出未知数x ,进而得出y 的值.【解答】解:(1)5−=11①3+=7②,由①,得b =5a ﹣11③,把③代入②,得3a +5a ﹣11=7,解得a =94,把a=94代入③,得b=14,故方程组的解为=94=14;(2)2−5=24①5+2=31②,①×2﹣②×5,得29x=203,解得x=7,把x=7代入①,得y=﹣2,故方程组的解为=7=−2.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2+3=11①=+3②(代入消元法);(2)3−2=2①4+=10②(加减消元法).【分析】(1)利用代入消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)2+3=11①=+3②,把②代入①得:2(y+3)+3y=11,解得y=1,把y=1代入②得:x=1+3=4,故原方程组的解是:=4=1;(2)3−2=2①4+=10②,②×2得:8x+2y=20③,①+③得:11x=22,解得x=2,把x=2代入②得:8+y=10,解得y=2,故原方程组的解是:=2=2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握.6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)−2=22+3=12(代入法);(2)6−5=36+=−15(加减法).【分析】(1)整理后由①得出n =2m ﹣4③,把③代入②得出2m +3(2m ﹣4)=12,求出m ,再把m =3代入③求出n 即可;(2)②﹣①得出6t =﹣18,求出t ,再把t =﹣3代入①求出s 即可.【解答】解:(1)整理得:2−=4①2+3=12②,由①,得n =2m ﹣4③,把③代入②,得2m +3(2m ﹣4)=12,解得:m =3,把m =3代入③,得n =2×3﹣4=6﹣4=2,所以原方程组的解是=3=2;(2)6−5=3①6+=−15②,②﹣①,得6t =﹣18,解得:t =﹣3,把t =﹣3代入①,得6s +15=3,解得:s =﹣2,所以原方程组的解是=−2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键,解二元一次方程组的方法有代入消元法和加减消元法两种.7.(2022春•泰安期中)用指定的方法解下列方程组(1)3+4=19−=4(代入消元法);(2)2+3=−53−2=12(加减消元法);(3−9)=6(−2)r13=2.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3+4=19①−=4②,由②得:x =y +4③,把③代入①得:3(y +4)+4y =19,解得:y=1,把y=1代入③得:x=1+4=5,则方程组的解为=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,则方程组的解为=2=−3;(3)方程组整理得:5−6=33①3−4=28②,①×2﹣②×3得:x=﹣18,把x=﹣18代入①得:﹣90﹣6y=33,解得:y=−412,则方程组的解为=−18=−412.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3+2=143+4=17.(加减法)=+3;(代入法)(2)2+3=12【分析】(1)用代入消元法解方程组即可;(2)用加减消元法解方程组即可.【解答】解:(1)3+2=14①=+3②,将②代入①,得3y+9+2y=14,解得y=1,将y=1代入②得x=4,∴方程组的解为=4=1;(2)2+3=12①3+4=17②,①×3得,6x+9y=36③,②×2得,6x+8y=34④,③﹣④,得y=2,将y=2代入①得,x=3,∴方程组的解为=3=2.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题的关键.9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)=2−33+2=8(代入法);(2)3+4=165−6=33(加减法).【分析】(1)把①代入②得出x的值,再把x的值代入①求出y的值,从而得出方程组的解;(2)①×3+②×2得出19x=114,求出x,把x=6代入①求出y即可.【解答】解:(1)=2−3①3+2=8②,把①代入②得:3x+2(2x﹣3)=8,解得:x=2,把x=2代入①得:y=1,则原方程组的解是:=2=1.(2)3+4=16①5−6=33②,①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:18+4y=16,解得:y=−12,所以方程组的解=6=−12.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.10.用指定的方法解下列方程组:(1)3+4=19−=4(代入法);(2)2+3=−53−2=12(加减法).【分析】(1)由②得出x=4+y③,把③代入①得出3(4+y)+4y=19,求出y,把y =1代入③求出x即可;(2)①×2+②×3得出13x=26,求出x,把x=2代入①求出y即可.【解答】解:(1)3+4=19①−=4②,由②得:x=4+y③,把③代入①得:3(4+y)+4y=19,解得:y=1,把y=1代入③得:x=4+1=5,所以方程组的解是=5=1;(2)2+3=−5①3−2=12②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,所以方程组的解=2=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.1.(2022•苏州模拟)用适当的方法解下列方程组.(1)+2=9−3=1;(2−34=1−p−(−4p=4.【分析】(1)利用加减消元法,方程组可化为:7y=28,解得:y=4,将y=4代入①得:x=1;(2)先将方程组化为:8−9=12①8−5=4②,利用加减消元法解得:y=﹣2,将y=﹣2代入①得:=−34.【解答】解:(1)+2=9①−3=1②①×3+②得:7y=28,解得:y=4,将y=4代入①得:x=1,即方程的解为:=1=4;(2)原方程组可化为:8−9=12①8−5=4②,①﹣②得:﹣4y=8,解得:y=﹣2,将y=﹣2代入①得:=−34,即方程的解为:=−34=−2.【点评】本题主要考查的是二元一次方程组的解法,利用合适的方法解方程组即可.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)=2−14+3=7;(2)3+2=22+3=28,.【分析】(1)方程组利用代入消元法求解即可;(2)用方程①×3﹣②×2,可消去未知数y,求出未知数x,进而得出y的值.【解答】解:(1)=2−1①4+3=7②,把①代入②,得4(2y﹣1)+3y=7,解得y=1,把y=1代入①,得x=1,故原方程组的解为=1=1;(2)3+2=2①2+3=28②,①×3﹣②×2,得5x=﹣50,解得x=﹣10,把x=﹣10代入①,得y=16,故原方程组的解为=−10=16.【点评】本题考查了解二元一次方程组,掌握加减消元法和代入消元法是解答本题的关键.3.用适当的方法解下列方程组:(1)+2=0,3+4=6;(2=21)−=11(3)+0.4=40,0.5+0.7=35;(4K4=−14,5(r1)12=2.【分析】(1)由x+2y=0可用y表示x,利用代入消元法求第一个方程组的解.同理解(2)(3)利用加减消元法求方程组的解.(4)对于关于m、n的方程,将其化为整系数方程时,给第一个方程两边同时乘12,给第二个方程两边同时乘12.利用加减消元法求方程组的解.【解答】解:(1)+2=0,①3+4=6;②由①,得x=﹣2y,③把③代入②,得﹣6y+4y=6,解得y=﹣3,把y=﹣3代入①,得x=6.∴原方程组的解为=6=−3;(2=2s1)−=11②由①,得x+1=6y,③把③代入②,得12y﹣y=11,解得y=1.把y=1代入③,得x+1=6,解得x=5.∴原方程组的解为=5=1;(3)+0.4=40,①0.5+0.7=35;②②×2,得x+1.4y=70,③③﹣①,得y=30.把y=30代入①,得x+0.4×30=40,解得x=28.∴原方程组的解为=28=30;(4K4=−14,5(r1)12=2,原方程组化为:+7=−3,①2−5=13,②,①×2﹣②,得19n=﹣19,解得n=﹣1.把n=﹣1代入①,得m﹣7=﹣3,解得m=4.∴原方程组的解为=4=−1.【点评】此题主要考查了解二元一次方程组的方法,灵活运用代入消元法和加减消元法是解题的关键.4.(2022•天津模拟)用适当的方法解下列方程组:(1)+=52−=4;(2=r24−K33=112.【分析】(1)应用代入消元法,求出方程组的解即可.(2)应用加减消元法,求出方程组的解即可.【解答】解:(1)+=5①2−=4②,由①,可得:x=5﹣y③,③代入②,可得:2(5﹣y)﹣y=4,解得y=2,把y=2代入③,可得:x=5﹣2=3,∴原方程组的解是=3=2.(2=r24①−K33=112②,由①,可得:4x﹣3y=2③,由②,可得:3x﹣4y=﹣2④,③×4﹣④×3,可得7x=14,解得x=2,把x=2代入③,可得:4×2﹣3y=2,解得y=2,∴原方程组的解是=2=2.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2−3=7−3=7.(2)0.3+0.4=40.2+2=0.9.【分析】(1)利用加减法消元法解二元一次方程组即可;(2)先整理方程,再利用加减消元法解二元一次方程组即可.【解答】解:(1)2−3=7①−3=7②,①﹣②得x =0,把x =0代入②得0﹣3y =7,解得y =−73,∴方程组的解为=0=−73;(2)整理原方程组得3+4=40①2−9=−20②,①×2﹣②×3得35q =140,q =4,把q =4代入②得2p ﹣36=﹣20,解得p =8,∴方程组的解为=8=4.【点评】本题考查了解二元一次方程组,做题关键是掌握加减消元法和代入消元法解二元一次方程组.6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)+=52+=8;(2)2+3=73−2=4.【分析】(1)应用代入消元法,求出方程组的解是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【解答】解:(1)+=5①2+=8②,由①,可得:x =5﹣y ③,③代入②,可得:2(5﹣y )+y =8,解得y =2,把y =2代入③,解得x =3,∴原方程组的解是=3=2.(2)2+3=7①3−2=4②,①×2+②×3,可得13x=26,解得x=2,把x=2代入①,解得y=1,∴原方程组的解是=2=1.【点评】此题主要考查了解二元一次方程组的方法,注意代入消元法和加减消元法的应用.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)+2=93−2=−1(2)2−=53+4=2【分析】(1)利用加减消元法进行求解即可;(2)利用加减消元法进行求解即可.【解答】解:(1)+2=9①3−2=−1②,①+②得:4x=8,解得:x=2,把x=2代入①得:2+2y=9,解得:y=72,故原方程组的解是:=2=72;(2)2−=5①3+4=2②,①×4得:8x﹣4y=20③,②+③得:11x=22,解得:x=2,把x=2代入①得:4﹣y=5,解得:y=﹣1,故原方程组的解是:=2=−1.【点评】本题主要考查解二元一次方程组,解答的关键是熟练掌握解二元一次方程组的方法.8.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2+3=16①+4=13②;(2)2r3=3K28=3.【分析】(1)②×2﹣①得出5y=10,求出y,再把y=2代入②求出x即可;(2)整理后得出得2+=9①3−2=24②,①×2+②得出7s=42,求出s,再把s=6代入①求出t即可.【解答】解:(1)2+3=16①+4=13②,②×2﹣①,得5y=10,解得:y=2,把y=2代入②,得x+8=13,解得:x=5,所以方程组的解为=5=2;(2)整理方程组,得2+=9①3−2=24②,①×2+②,得7s=42,解得:s=6,把s=6代入①,得12+t=9,解得:t=﹣3,所以方程组的解为=6=−3.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)=2−1+2=−7(2+3=7+2=8【分析】(1)用代入消元解二元一次方程组即可;(2)用加减消元解二元一次方程组即可;【解答】解:(1)=2−1①+2=−7②,把①代入②得,x+2(2x﹣1)=﹣7,解得x=﹣1,将x=﹣1代入①得y=﹣3,∴方程组的解为=−1=−3.(2)整理得3+4=84①2+3=48②,①×2﹣②×3得,﹣y=24,解得y=﹣24,将y=﹣24代入②得x=60,∴方程组的解为=60=−24.【点评】本题考查二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.10.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3+2=9−=8;(2=r25=7.【分析】(1)由②可得x=8+y③,再把③代入①,可得y的值,然后把y的值代入③求出x的值即可;(2)方程组整理后可得+5=0①2−5=7②,利用①+②可得x的值,然后把x的值代入①求出y的值即可.【解答】解:(1)3+2=9①−=8②,由②得,x=8+y③,将③代入①得,3(8+y)+2y=9,解得,y=﹣3,把y=﹣3代入③得,x=5,则方程组的解为=5=−3;(2)方程组整理得:+5=0①2−5=7②,①+②得:3x=7,解得:x=73,把x=73代入①得:y=−715,则方程组的解为=73=−715.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1.先阅读材料,然后解方程组:材料:解方程组+=4①3(+p+=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以=2=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组−−1=0①4(−p−=5②.【分析】根据阅读材料中的方法求出方程组的解即可.【解答】解:由①得:x﹣y=1③,把③代入②得:4﹣y=5,即y=﹣1,把y=﹣1代入③得:x=0,则方程组的解为=0=−1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.(2021秋•乐平市期末)解方程组3−2=8⋯⋯⋯①3(3−2p+4=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得=2=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2−3=123(2−3p+5=26.【分析】利用整体代入法的求解方法进行解答即可.【解答】解:2−3=12①3(2−3p+5=26②,把①代入②得:3×12+5y=26,解得y=﹣2,把y=﹣2代入①得:2x+6=12,解得x =3,故原方程组的解是:=3=−2.【点评】本题主要考查解二元一次方程组,解答的关键是对解二元一次方程组的方法的掌握与运用.3.先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1.③,然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0=−1这种方法被称为“整体代入法”,请用这5=0=2+1.【分析】利用整体代入法解方程组即可.5=0①=2+1②,由①得,2x ﹣3y =﹣5,③,把③代入②得,10+37=2y +1,解得,y =37,把y =37代入③得,x =−137,则方程组的解为:=−137=37.【点评】本题考查的是二元一次方程组的解法,掌握整体代入法解方程组的一般步骤是解题的关键.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组−−1=0①4(−p −=5②时,可由①得x ﹣y =1,③然后再将③代入②得4×1﹣y =5,求得y =﹣1,从而进一步求得=0①=−1②这种方法被称为“整体代入法”,2=02=9.【分析】仿照所给的题例先把①变形,再代入②中求出y 的值,进一步求出方程组的解即可.2=0①+2=9②,由①得,2x﹣3y=2③,代入②得2+57+2y=9,解得y=4,把y=4代入③得,2x﹣3×4=2,解得x=7.故原方程组的解为=7=4.【点评】本题考查的是在解二元一次方程组时整体思想的应用,利用整体思想可简化计算.5.先阅读,然后解方程组.解方程组−−1=0①4(−p−=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2−3−2=03(2−3p+=7.【分析】把2x﹣3y看作一个整体,代入第二个方程求出y的值,进而求出x的值即可.【解答】解:2−3−2=0①3(2−3p+=7②,把①变形得:2x﹣3y=2③,③代入②得:6+y=7,即y=1,把y=1代入③得:x=2.5,则方程组的解为=2.5=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元方法与加减消元法.1.用换元法解下列方程组+2=12−1=34【分析】方程组利用换元法求出解即可.【解答】解:设1=a,1=b,方程组变形为2+2=12①5−=34②,①+②×2得:12a=2,解得:a=16,把a=16代入②得:b=112,则方程组的解为=16=112,即=6=12.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.2.用换元法解下列方程组:(1)3(p+2(−p=36(−4(−p=−16(2+r53=2−(+5p=5.【分析】(1)令x+y=m、x﹣y=n得关于m、n的方程组,解得m、n的值,从而可得关于x、y的方程组,求解可得;(2)令x﹣4y=a、x+5y=b得关于a、b的方程组,解该方程组可得a、b的值,从而可得关于x、y的方程组,求解可得.【解答】解:(1)令x+y=m,x﹣y=n,则原方程组可化为:3+2=36−4=−16,解得:=8=6,即+=8−=6,解得:=7=1;(2)令x﹣4y=a,x+5y=b,+3=2−=5,解得:=6=−3,即:−4=6+5=−3,解得:=2=−1.【点评】本题主要考查换元法解方程组的能力,熟练而准确地解方程组是基础,正确找到共同的整体加以换元是关键.3.(2022春•云阳县期中)阅读探索:解方程组(−1)+2(+2)=62(−1)+(+2)=6解:设a﹣1=x,b+2=y原方程组可以化为+2=62+=6,解得=2=2,即:−1=2+2=2∴=3=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(4−1)+2(5+2)=102(4−1)+(5+2)=11;(2)能力运用已知关于x,y的方程组1+1=12+2=2的解为=6=7,求关于m、n的方程组1(−2)+1(+3)=12(−2)+2(+3)=2的解.【分析】(1)仿照“阅读探索“的思路,利用换元法进行计算即可解答;(2)仿照“阅读探索“的思路,利用换元法进行计算即可解答.【解答】解:(1)设4−1=x,5+2=y,∴原方程组可变为:+2=102+=11,解这个方程组得:=4=3,−1=45+2=3,所以:=20=5;(2)设−2=+3=,可得:−2=6+3=7,解得:=8=4.【点评】本题考查了解二元一次方程组,二元一次方程组的解,理解并掌握例题的换元法是解题的关键.4.在学过了二元一次方程组的解法后,+K10=3①−K10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8+2=90③2+8=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即=13=−7小刚:设r6=m,K10=n,则+=3③−=−1④③+④得m=1,③﹣④得m=2,=1=2,所以+=6−=20,所以=13=−7.小芳:①+②得2(rp6=2,即x+y=6.③①﹣②得2(Kp10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y=﹣7,即=13=−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2r37=1−2r37=5.【分析】设3K26=m,2r37=n,方程组整理后求出m与n的值,即可确定出x与y 的值.【解答】解:设3K26=m,2r37=n,方程组整理得:+=1①−=5②,①+②得:2m=6,即m=3,①﹣②得:2n=﹣4,即n=﹣2,=32r3=−2,整理得:3−2=182+3=−14,解得:=2=−6.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(−1)+2(+2)=62(−1)+(+2)=6.解:设a﹣1=x,b+2=y.原方程组可变为+2=62+=6,解这个方程组得=2=2,即−1=2+2=2,所以=3=0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3−1)+2(5+2)=43(3−1)−(5+2)=5.(3)能力运用已知关于x,y的方程组1+1=12+2=2的解为=3=4,请直接写出关于m、n的方程组1(+2)−1=12(+2)−2=2的解是.【分析】(2)仿照(1)的思路,利用换元法进行计算即可解答;(3)仿照前两个题的思路,利用换元法进行计算即可解答.【解答】解:(2)设3−1=x,5+2=y,∴原方程组可变为:+2=43−=5,解这个方程组得:=2=1,−1=25+2=1,所以:=9=−5;(3)设+2=−=,可得:+2=3−=4,解得:=1=−4.。

七年级下册数学列二元一次方程组解应用题专项训练

七年级下册数学列二元一次方程组解应用题专项训练

第八章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了;”请问老师、学生今年多大年龄了呢2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元1若分班购票,则共应付1240元,求两班各有多少名学生2请您计算一下,若两班合起来购票,能节省多少元钱3若两班人数均等,您认为是分班购票合算还是集体购票合算5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满;已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元;1初一年级人数是多少原计划租用45座汽车多少辆2若租用同一种车,要使每个学生都有座位,怎样租用更合算6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生;1求平均每分钟一道正门和一道侧门各可以通过多少名学生2检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定请说明理由;8、现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子9、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度;10、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度;11、为了保护生态环境,我省某山区县响应国家“退耕还林”号召,将该县某地一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地各为多少平方千米12、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元13、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元14、在一次足球选拔赛中,有12支球队参加选拔,每一队都要与另外的球队比赛一次,记分规则为胜一场记3分,平一场记1分,负一场记0分;比赛结束时,某球队所胜场数是所负的场数的2倍,共得20分,问这支球队胜、负各几场15、某个体户向银行申请了甲、乙两种贷款,共计136万元,每一年需付利息16.84万元,甲种贷款的年利率是12%,乙种贷款的年利率是13%,问这两种贷款的数额各是多少16、李明以两种形式分别储蓄了2000元各1000元,一年后全部取出,扣除利息所得税可得利息43.92,已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几注:公民应交利息所得税=利息金额×20%;17、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元18、“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折按售价的70%销售和九折按售价的90%销售,共付款386元,这两种商品原售价之和为500元,问这两种商品的原销售价分别为多少元19、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件20、某商场按定价销售某种电器时,每台可获利48元 ,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等;求该电器每台的进价、定价各是多少元21、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价;在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元22、某工厂去年的利润总产值——总支出为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,问去年的总产值、总支出各是多少万元小红家去年结余5000元,估计今年可结余9500元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入和支出各是多少23、某校2004年秋季初一年级和高一年级招生总数为500人,计划2005年秋季期初一年级招生数增加20%;高一年级招生数增加15%,这样2005年秋季初一、高一年级招生总数比2004年将增加18%,求2005年秋季初一年级、高一年级的计划招生数是多少24、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量每小时通过观测点的汽车车辆数,三位同学汇报高峰时段的车量情况下如下:甲同学说:“二环路车流量为每小时1000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请您根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少25、初三2班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.26、根据下图给出的信息,求每件T恤衫和每瓶矿泉水的价格;27、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元;1求该同学看中的随身听和书包单价各是多少元2某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售不足100元不返券,购物券全场通用,但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗若两家都可以选择,在哪一家购买更省钱28、“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.1若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.2若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.29、 列一段文字,然后解答问题.修建润扬大桥,途经镇江某地,需搬迁一批农户,为了节约土地资源和保护环境,政府决定统一规划建房小区,并且投资一部分资金用于小区建设和补偿到政府规划小区建房的搬迁农户.建房小区除建房占地外,其余部分政府每平方米投资100元进行小区建设;搬迁农户在建房小区建房,每户占地100 平方米,政府每户补偿4万元,此项政策,吸引了搬迁农户到政府规划小区建房,这时建房占地面积占政府规划小区总面积的20%.政府又鼓励非搬迁户到规划小区建房,每户建房占地120平方米,但每户需向政府交纳土地使用费2.8万元,这样又有20户非搬迁户申请加入.此项政策,政府不但可以收取土地使用费,同时还可以增加小区建房占地面积,从而减少小区建设的投资费用.若这20户非搬迁户到政府规划小区建房后,此时建房占地面积占政府规划规划小区总面积的40%. 1设到政府规划小区建房的搬迁农户为x 户,政府规划小区总面积为y 平方米. 可得方程组解得 2在20户非搬迁户加入建房前,请测算政府共需投资 __________万元;在20户非搬迁户加入建房后,请测算政府将收取的土地使用费投入后,还需投资__________万元.3设非搬迁户申请加入建房并被政府批准的有z 户,政府将收取的土地使用费投入后,还需投资p 万元.①用含z 的代数式表示p ;②当p 不高于140万元,而又使建房占地面积不超过规划小区总面积的35%时,那么政府可以批准多少户非搬迁户加入建房29、某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a , , x =y =元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:1 求a、b的值;2 初三年级学生的捐款解决了其余..贫困中小学生的学习费用,请将初三学生年级学生可捐助的贫困中、小学生人数直接填入表中.不需写出计算过程30、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车;熟练工人晓云元月份领工资900多元,她记录了如下表的一些数据:元月份作小狗和小汽车的数目没有限制,从二月分开始,厂方从销售方面考虑逐月调整为:k 月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k 倍k =2,3,4,……,12,假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为参考答案:12.解:21. 解:设甲服装的成本是x 元,乙服装的成本是y 元,依题意得;⎩⎨⎧+=+++=+157500%90]%)401(%)501[(500y x y x 解得x=300,y=200 答:甲、乙两件服装的成本分别为300元、200元25.解: 设去年A 超市销售额为x 万元,B 超市销售额为y 万元,由题意得()()⎩⎨⎧=+++=+,170%101%151,150y x y x 解得⎩⎨⎧==.50,100y x 1001+15%=115万元,501+10%=55万元.答:A,B 两个超市今年“五一节” 期间的销售额分别为115万元,27. 解:1解法一:设书包的单价为x 元,则随身听的单价为()48x -元根据题意,得48452x x-+=解这个方程,得答:该同学看中的随身听单价为360元,书包单价为92元; 解法二:设书包的单价为x元,随身听的单价为y元根据题意,得x yy x+==-⎧⎨⎩45248解这个方程组,得xy==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元;2在超市A购买随身听与书包各一件需花费现金:45280%3616⨯=.元因为3616400.<,所以可以选择超市A购买;在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金:3602362+=元因为362400<,所以也可以选择在超市B购买; ……4分因为3623616>.,所以在超市A购买更省钱; ……5分30.解: 设制作一个小狗用时间t1分钟,可得工资x元,制作一辆小汽车用时间t2分钟,可得工资y 元;依题意得解得:4.175.0 20t 1521===y x t ,,=,就二月份来讲,设二月份生产汽车玩具a 件,则生产小狗2a 件,此时可得工资: M =a a a 9.2100100275.04.1+=+⨯+又因为工人每月工作8×25×60=12000分钟,所以二月份可生产玩具汽车 20a +15×2a =12000 解得 a =240件;故二月份可领工资796元,小于计件工资的最低额,所以说厂家的广告有欺诈行为;。

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)

七年级数学下册第八章《二元一次方程组》综合测试卷-人教版(含答案)一、选择题(本大题共10小题,共30分)1. 二元一次方程x −2y =1有无数多个解,下列四组值中不是该方程的解的是( )A. {x =0y =−12B. {x =1y =1C. {x =1y =0D. {x =−1y =−12. 若(k -2)x |k|−1-3y =2是关于x ,y 的二元一次方程,则k 2-3k -2的值为( )A. 8B. 8或−4C. −8D. −43. 方程组{2x +y =4,x −y =−1的解是( )A. {x =1y =2B. {x =−3y =−2C. {x =2y =0D. {x =3y =−14. 《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A. 160钱B. 155钱C. 150钱D. 145钱5. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−506. 用代入法解方程组时,比较容易的变形是( )A. 由 ①,得x =y+12B. 由 ①,得y =2x −1C. 由 ②,得y =3x+56D. 由 ②,得x =6y−537. 为做好防疫消毒工作,某单位制作日常消毒液.将浓度分别为90%和60%的甲、乙两种酒精溶液,配制成浓度是75%的消毒酒精溶液500g ,设甲种酒精溶液为xg ,乙种酒精溶液为yg ,则()A. {x =300y =200B. {x =250y =200C. {x =250y =250D. {x =200y =3008. 在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图,则x ,y 的值是( )A. x =1,y =−1B. x =−1,y =1C. x =2,y =−1D. x =−2,y =19. 两位同学在解方程组时,甲同学由{ax +by =2,cx −y =−4正确地解出{x =3,y =−2;乙同学因把c 写错了解得{x =−2,y =2,则a +b +c 的值为( )A. 3B. 0C. 1D. 710. 若点P (x ,y )的坐标满足方程组{x +y =k,x −y =6−3k,则点P 不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共4小题,共12分)11. 已知方程组{3x +2y =m −22x +3y =m的解适合x +y =2,则m 的值为______.12. 当m ,n 满足关系 时,关于x ,y 的方程组{x −5y =2m,2x +3y =m −n 的解互为相反数.13. 已知乙组人数是甲组人数的一半,若将乙组人数的13调入甲组,则甲组比乙组多15人,甲、乙两组的人数分别为__________.14. 已知2x -y -z =0,3x +4y -2z =0,则x−y+zx+y+z =________________.三、计算题(本大题共2小题,共12分) 15. 解方程组:(1{3x −2y +20=0,2x +15y −3=0;(2){1.5(20x +10y)=15000,1.2(110x +120y)=97200.16. 若方程组{ax +by =32ax +by =4与方程组{2x +y =3x −y =0有相同的解,求a 、b 的值.四、解答题(本大题共5小题,共46分)17. 某两位数,两个数位上的数之和为11.这个两位数加上45,得到的两位数恰好等于原两位数的两个数字交换位置所表示的数,求原两位数. (1)列一元一次方程求解.(2)如果设原两位数的十位数字为x ,个位数字为y ,列二元一次方程组. (3)检验(1)中求得的结果是否满足(2)中的方程组.18. 一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?19.某新长途客运站准备在国庆前建成营运.后期工程若请甲乙两个工程队同时施工,8天可以完工,需付两工程队施工费用7040元;若先请甲工程队单独施工6天,再请乙工程队单独施工12天也可以完工,需付两工程队施工费用6960元.问甲、乙两工程队施工一天,应各付施工费用多少元?20.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).21. 先阅读材料,然后解方程组.材料:解方程组{x −y −1=0,①4(x −y)−y =5.②由①,得x -y =1.③把③代入②,得4×1-y =5,解得y =-1. 把y =-1代入③,得x =0. ∴原方程组的解为{x =0,y =−1. 这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用整体代入法解方程组:{2x −3y −2=0,①2x−3y+57+2y =9.②参考答案1.【答案】B【解析】 【分析】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.将x 、y 的值分别代入x -2y 中,看结果是否等于1,判断x 、y 的值是否为方程x -2y =1的解. 【解答】解:A 、当x =0,y =-12时,x -2y =0-2×(-12)=1,是方程的解; B 、当x =1,y =1时,x -2y =1-2×1=-1,不是方程的解; C 、当x =1,y =0时,x -2y =1-2×0=1,是方程的解; D 、当x =-1,y =-1时,x -2y =-1-2×(-1)=1,是方程的解. 故选B .2.【答案】A【解析】 【分析】本题主要考查了二元一次方程的概念,代数式求值,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程; 根据二元一次方程满足的条件列式求出k 的值,即可得解. 【解答】解:根据题意得:{k −2≠0|k |−1=1,解得:k =-2,∴k 2-3k -2=(-2)2-3×(-2)-2=4+6-2=8. 故选:A .3.【答案】A【解析】 【分析】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组利用加减消元法求出解即可. 【解答】 解:,①+②得:3x =3, 解得:x =1,把x =1代入①得:y =2, 则方程组的解为{x =1y =2.故选:A .4.【答案】C【解析】解:设共有x 人合伙买羊,羊价为y 钱, 依题意,得:{5x +45=y7x +3=y ,解得:{x =21y =150.故选:C .设共有x 人合伙买羊,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决. 本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.6.【答案】B【解析】观察方程组的特点可知,B 中的变形比较容易,7.【答案】C【解析】根据题意,得{x +y =500,90%x +60%y =500×75%,解得{x =250,y =250,故选C .8.【答案】B【解析】 【分析】本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,根据题意列出方程组,难度一般. 根据每行每列及对角线上三个方格中的数字和都相等,可得出方程组,解出即可. 【解答】解:由题意,得{2x +3+2=2−3+4y,2−3+4y =2x +y +4y, 解得{x =−1,y =1. 故选B .9.【答案】D【解析】把{x =3,y =−2代入方程组得把{x =−2,y =2代入ax +by =2得-2a +2b =2,即-a +b =1,联立得{3a −2b =2,−a +b =1,解得{a =4,b =5,由得c =-2,则a +b +c =4+5-2=7.故选D .10.【答案】C【解析】略11.【答案】6【解析】解:两个方程相加,得 5x +5y =2m -2, 即5(x +y )=2m -2, 即x +y =2m−25=2.解得m =6.方程组中的两个方程相加,即可用m 表示出x +y ,即可解得m 的值.注意到两个方程的系数之间的关系,而采用方程相加的方法解决本题是解题的关键.12.【答案】m =34n【解析】由题可知x =-y ,代入方程组,得{−6y =2m,y =m −n,则-6m +6n =2m ,所以m =34n .13.【答案】甲组18人,乙组9人【解析】 【分析】此题主要考查了二元一次方程组的应用,找准等量关系是解决应用题的关键,特别注意第二个等量关系的理解.等量关系有:①乙组人数是甲组人数的一半;②乙组人数的三分之一调入甲组,即甲组现有(x +13y)人,乙组现有人数23y 人,此时甲组比乙组多15人,据此列方程组求解即可. 【解答】解:设甲组有x 人,乙组有y 人,根据乙组人数是甲组人数的一半,则y =12x ; 根据乙组人数的三分之一调入甲组时甲组比乙组多15人,得方程x +13y =23y +15, 可列方程组为:{y =12x x +13y =23y +15, 解得:{ x =18 y =9.所以甲组人数为18人,乙组人数为9人, 故答案是甲组18人,乙组9人.14.【答案】89【解析】【分析】此题考查的是解三元一次方程组,需将三元一次方程组中的一个未知数当做已知数来处理,转化为二元一次方程组来解.将x 、y 写成用z 表示的代数式然后代入即可得到答案. 【解答】 解:{2x −y −z =0①3x +4y −2z =0②①×4+②得, 11x −4z −2z =0, 解得x =6z11,将x =6z 11代入①得,12z11−y −z =0, 解得y =z11, ∴原式=6z 11−z 11+z 6z 11+z 11+z =1618=89.故答案为89.15.【答案】(1)方程组整理得×15+×2得49x =-294,解得x =-6,把x =-6代入得-12+15y =3,解得y =1, ∴方程组的解为{x =−6,y =1.(2)方程组整理得 ×12-得13x =3900,解得x =300,把x =300代入得600+y =1000,解得y =400, ∴方程组的解为{x =300,y =400.【解析】略16.【答案】解:,解得该方程组的解为{x =1y =1,由题意该方程组的解也是方程组{ax +by =32ax +by =4的解,代入ax +by =3可得a +b =3③,代入2ax +by =4可得2a +b =4④,④-③可得a =1,代入③可得b =2,∴a =1,b =2.【解析】先求出第二个方程组的解,再代入第一个方程组即可求出a 、b 的值.本题主要考查二元一次方程组的解,解答此题的关键是要弄清题意,正确求出第二个方程组的解.17.【答案】解:(1)设原两位数的个位数字为m ,则十位数字为(11-m ),依题意,得:10×(11-m )+m +45=10m +(11-m ),解得:m =8,∴11-m =3.答:原两位数为38.(2)设原两位数的十位数字为x ,个位数字为y ,依题意,得:{x +y =1110x +y +45=10y +x. (3)结合(1),可知:x =3,y =8,∴x +y =11,10x +y +45=83=10y +x ,∴(1)中求得的结果满足(2)中的方程组.【解析】(1)设原两位数的个位数字为m ,则十位数字为(11-m ),根据原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设原两位数的十位数字为x ,个位数字为y ,根据原两位数两个数位上的数之和为11及原两位数+45等于原两位数的两个数字交换位置所表示的数,即可得出关于x ,y 的二元一次方程组,此问得解;(3)由(1)的结论可得出x ,y 的值,再将其代入(2)的方程组中验证后即可得出结论. 本题考查了一元一次方程的应用以及由实际问题抽象出二元一次方程组,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出二元一次方程组;(3)将(1)的结论代入方程组中验证方程组是否正确.18.【答案】解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:{6(x +y)=90(6+4)(x −y)=90,解得:{x =12y =3. 答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,依题意,得:a 12+3=90−a 12−3,解得:a =2254.答:甲、丙两地相距2254千米.【解析】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程. (1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,根据路程=速度×时间,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90-a )千米,根据时间=路程÷速度,即可得出关于a 的一元一次方程,解之即可得出结论.19.【答案】解:设甲工程队每天需费用x 元,乙工程队每天需费用y 元,由题意得,{8x +8y =70406x +12y =6960, 解得:{x =600y =280. 答:甲工程队每天需费用600元,乙工程队每天需费用280元.【解析】设甲工程队每天需费用x 元,乙工程队每天需费用y 元,根据题意可得:甲乙合作8天完工,需付两工程队施工费用7040元;甲队单独施工6天,再请乙工程队单独施工12天完工,需付两工程队施工费用6960元,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.20.【答案】解:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4. 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a +4b =31,∴b =31−3a 4.∵a ,b 均为正整数,∴有{a =1b =7、{a =5b =4和{a =9b =1三种情况. 故共有三种租车方案,分别为:①A 型车1辆,B 型车7辆;②A 型车5辆,B 型车4辆;③A 型车9辆,B 型车1辆.【解析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据等量关系,列出关于x 、y 的二元一次方程组;(2)由(1)的结论结合共运货31吨,找出3a +4b =31.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)由(1)的结论结合某物流公司现有31吨货物,即可得出3a +4b =31,即b =31−3a 4,由a 、b 均为正整数即可得出各租车方案.21.【答案】解:由①,得2x -3y =2.③把③代入②,得2+57+2y =9,解得y =4.把y =4代入③,得2x -3×4=2, 解得x =7.∴原方程组的解为{x =7,y =4.【解析】略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解二元一次方程组专题训练一、基础过关1.用加、减法解方程组436,43 2.x yx y+=⎧⎨-=⎩,若先求x的值,应先将两个方程组相_______;若先求y的值,应先将两个方程组相________.2.解方程组231,367.x yx y+=⎧⎨-=⎩用加减法消去y,需要()A.①×2-② B.①×3-②×2 C.①×2+② D.①×3+②×2 3.已知两数之和是36,两数之差是12,则这两数之积是()A.266 B.288 C.-288 D.-1244.已知x、y满足方程组259,2717x yx y-+=⎧⎨-+=⎩,则x:y的值是()A.11:9 B.12:7 C.11:8 D.-11:85.已知x、y互为相反数,且(x+y+4)(x-y)=4,则x、y的值分别为()A.2,2xy=⎧⎨=-⎩B.2,2xy=-⎧⎨=⎩C.1,212xy⎧=⎪⎪⎨⎪=-⎪⎩D.1,212xy⎧=-⎪⎪⎨⎪=⎪⎩6.已知a+2b=3-m且2a+b=-m+4,则a-b的值为() A.1 B.-1 C.0 D.m-17.若23x5m+2n+2y3与-34x6y3m-2n-1的和是单项式,则m=_______,n=________.8.用加减法解下列方程组:(1)3216,31;m nm n+=⎧⎨-=⎩(2)234,443;x yx y+=⎧⎨-=⎩(3)523,611;x yx y-=⎧⎨+=⎩(4)357,234232.35x yx y++⎧+=⎪⎪⎨--⎪+=⎪⎩二、综合创新9.已知关于x、y的方程组352,23x y mx y m+=+⎧⎨+=⎩的解满足x+y=-10,求代数m2-2m+1的值.10.(1)今有牛三头、羊二只共1900元,牛一头、羊五只共850元,•问每头牛和每只羊各多少元?(2)将若干只鸡放入若干个鸡笼中,若每个鸡笼放4只,则有一只鸡无笼可放;•若每个鸡笼放5只,则有一个笼无鸡可放,那么有鸡多少只?有鸡笼多少个?11.在解方程组2,78ax bycx y+=⎧⎨-=⎩时,哥哥正确地解得3,2.xy=⎧⎨=-⎩,弟弟因把c写错而解得2,2.xy=-⎧⎨=⎩,求a+b+c的值.12.(1)解方程组11,233210.x yx y+⎧-=⎪⎨⎪+=⎩(2)已知等式(2A-7B)x+(3A-8B)=8x+10对一切实数x都成立,•求A、B的值.三、培优训练13.(探究题)解方程组200520062004,200420052003.x yx y-=⎧⎨-=⎩二元一次不等式专题训练一、填空题:1.用不等式表示:① a大于0_____________;②是负数____________;③ 5与x 的和比x的3倍小______________________.2.不等式的解集是__________________.3.用不等号填空:若.4.当x _________时,代数代的值是正数.5.不等式组的解集是__________________.6.不等式的正整数解是_______________________.7.的最小值是a,的最大值是b,则8.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b小时,则____________< b <_____________.9.编出解集为的一元一次不等式为______________________.10.若不等式组的解集是空集,则a、b的大小关系是_______________.二、选择题:11.下列不等式中,是一元一次不等式的是()A.2x-1>0 B.-1<2 C.3x-2y<-1 D.y2+3>512.不等式的解集是()A.x≤ B.x ≥ C.x≤ D.x ≥13.一元一次不等式组的解集是()A.-2<x<3 B.-3<x<2 C.x<-3 D.x<214.如图1,在数轴上所表示的是哪一个不等式的解集()A. B. C.x+1≥-1 D .-2x>415.下列两个不等式是同解不等式的是()A .与 B.与C.与 D.与16.解下列不等式组,结果正确的是( )A.不等式组的解集是x>3 B.不等式组的解集是-3<x<-2C.不等式组的解集是x<-1 D.不等式组的解集是-4<x<217.若,则a只能是()A.a≤-1 B.a<0 C.a≥-1 D.a≤0 18.关于x的方程的解是非负数,那么a满足的条件是( ) A.a>3 B.a≤3 C.a<3 D.a≥3三、解一元一次不等式(或不等式组),并把它们的解集在数轴上表示出来.19.6x<7x-2 20.四、解答题:21.x为何值时,代数式的值比代数式的值大.22.已知关于x、y的方程组.(1)求这个方程组的解;(2)当m取何值时,这个方程组的解中,x大于1,y不小于-1.23.已知方程组的解为负数,求k的取值范围.24.某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0。

5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)解二元一次方程组专题训练参考答案:一、填空题1.a>0,x+y<0,x+5<3x;2.x≤5;3.>,<,>;4.X <;5.-2≤x<1;6.1,2,3;7.-4;8.a-8%a<b<a-15%a;9.x-1≥1;10.a<b;二、选择题答案分别为:ABCCADBD三、解答题19.x>2;20.-2≤x<3图略;21.当x<时;22.当m取值在1<m≤5时;23.k<;24.800米;25.提示:通过列三种票的函数二元一次不等式专题训练答案:1.加;减2.C3.B 点拨:设两数分别为x、y,则36,12.x yx y+=⎧⎨-=⎩解得24,12.xy=⎧⎨=⎩∴xy=24×12=288.故选B.4.C5.C 点拨:由题意,得4()4,0.x yx y-=⎧⎨+=⎩解得1,212xy⎧=⎪⎪⎨⎪=-⎪⎩故选C.6.A 点拨:23,2 4.a b m a b m+=-⎧⎨+=-+⎩②-①得a-b=1,故选A.7.1;-12点拨:由题意,得5226,321 3.m nm n++=⎧⎨--=⎩解得1,12mn=⎧⎪⎨=-⎪⎩8.(1)2,5.mn=⎧⎨=⎩(2)5,41.2xy⎧=⎪⎪⎨⎪=⎪⎩(3)5,413.8xy⎧=⎪⎪⎨⎪=⎪⎩(4)5,231.4xy⎧=⎪⎪⎨⎪=⎪⎩9.解:解关于x、y的方程组352,23x y mx y m+=+⎧⎨+=⎩得26,4.x my m=-⎧⎨=-+⎩把26,4.x my m=-⎧⎨=-+⎩代入x+y=-10得(2m-6)+(-m+4)=-10.解得m=-8.∴m2-2m+1=(-8)2-2×(-8)+1=81.10.(1)解:设每头牛x元,每只羊y元,依题意,得321900,5850.x yx y+=⎧⎨+=⎩解这个方程组,得600,50.xy=⎧⎨=⎩答:每头牛600元,每只羊50元.(2)解:设有鸡x只,有鸡笼y个,依题意,得41,5(1).y xy x+=⎧⎨-=⎩解这个方程组,得25,6.xy=⎧⎨=⎩答:有鸡25只,有鸡笼6个.11.解:把3,2.xy=⎧⎨=-⎩代入2,78ax bycx y+=⎧⎨-=⎩得322,3148.a bc-=⎧⎨+=⎩把2,2.xy=-⎧⎨=⎩代入ax+by=2 得-2a+2b=2.解方程组322,3148,22 2.a bca b-=⎧⎪+=⎨⎪-+=⎩得4,5,2.abc=⎧⎪=⎨⎪=-⎩∴a+b+c=4+5-2=7.点拨:弟弟虽看错了系数c,但2,2.xy=-⎧⎨=⎩是方程ax+by=2的解.12.(1)解:①×6,得3x-2y-2=6,即3x-2y=8.③②+③,得6x=18,即x=3.③-②,得4y=2,即y=12.∴3,1.2 xy=⎧⎪⎨=⎪⎩(2)65、-45点拨:∵(2A-7B)x+(3A-8B)=8x+10对一切实数x都成立.∴对照系数可得2A-7B=8,3A-8B=10.∴278, 3810.A BA B-=⎧⎨-=⎩解得6,54.5 AB⎧=⎪⎪⎨⎪=-⎪⎩即A、B的值分别为65、-45.13.解:200520062004, 200420052003.x yx y-=⎧⎨-=⎩①-②,得x-y=1,③③×2006-①,得x=2.把③代入①,得y=1.∴2,1. xy=⎧⎨=⎩点拨:由于方程组中的数据较大,所以正确解答本题的关键是将两方程相减得出x-y=1.14.解:设式中所有加数的和为a,所有减数的和为b,则a-b=23.又∵a+b=9+8+…+1=45,∴b=11.∴若干个减数的和为11.又11=8+3=7+4=6+5=8+2+1=7+3+1=6+4+1=6+3+2=5+4+2=5+3+2+1.∴使等式成立的填法共有9种.点拨:因为只填入“+”或“-”号,所以可以把加数的和,•减数的和看作整体数学世界答案:如果琼斯小姐换不了1美元,那么她钱柜中的50美分硬币不会超过1枚.如果她换不了50美分,那么钱柜中的25美分硬币不会超过1枚,10美分硬币不会超过4枚,10•美分换不了,意味着她的5美分硬币不会超过1枚;5美分换不了,由她的1•美分硬币不超过4枚,因此,钱柜中各种硬币数目的上限是:50美分1枚 $0.50 25美分1枚 0.2510美分4枚 0.405美分1枚 0.051美分4枚 0.04$1.24这些硬币还够换1美元(例如,50美分和25美分各1枚,10美分2枚,5美分1枚),•但是我们毕竟知道了钱柜中各种硬币的数目不可能比上面列出的更多,•上面这些硬币加起来总共有1.24美元,比我们所知道的钱柜中的硬币总值1.15美元正好多出9美分.现在,组成9美分的唯一方式是1枚5美分硬币加上4枚1美分,所以必须把这5枚硬币从上面列出的硬币中除去,余下的是1枚50美分、1枚25美分和4枚10美分的硬币.•它们既换不了1美元,也无法把50美分或者25美分、10美分、5•美分的硬币换成小币值的硬币,而且它们的总和正是1.15美元,于是我们便得到了本题的唯一答案.。

相关文档
最新文档