第四章 传热过程
化工原理-第四章-传热
d12
d1
4 d2 d1
入口效应修正 在管进口段,流动尚未充分发展,传热边界层较
薄,给热系数较大,对于l d1 60 的换热管,应考虑进口段对给 热系数的增加效应。故将所得α乘以修正系数:
l
1 d l
0.7
弯管修正 流体流过弯曲管道或螺旋管时,会引起二次环流而强
化传热,给热系数应乘以一个大于1的修正系数:
水和甘油:T ↗ ↗ 一般液体: T ↗ ↘ 纯液体>溶液
气体的导热系数:
T ↗ ↗ P ↗ 变化小 极高P ↗ ↗
气体导热系数小,保温材料之所以保温一般是材料中空 隙充有气体。
18
三、平壁的稳态热传导
1.单层平壁的热传导
t1 t2
b
t Q t1
t2
0 bx
b:平均壁厚,m; t:温度差,oC;
4
❖ 一、传热过程的应用
物料的加热与冷却 热量与冷量的回收利用 设备与管路的保温
❖ 二、热传递的三种基本方式
热传导 热对流 热辐射
5
1. 热传导(又称导热)
热量从高温物体传向低温物体或从物体内部高温部 分向低温部分传递。
特点:物体各部分不发生相对位移,仅借分子、原 子和自由电子等微观粒子的热运动而引起的热量 传递。
8
3. 热辐射
因热的原因而产生的电磁波在空间的传递, 称为热辐射。
热辐射的特点:
①不需要任何介质,可以在真空中传播;
②不仅有能量的传递,而且还有能量形式 的转移;
③任何物体只要在热力学温度零度以上, 都能发射辐射能,但是只有在物体温度较高时, 热辐射才能成为主要的传热方式。
9
二、间壁传热与速率方程
41
化工原理第四章两流体间传热过程的计算
2019/10/1
【温差校正系数ψ的获取方法之——图算法】 【基本原理】由Underwood和Bowan提出。
f(P,R)
P t2 t1 T1 t1
冷流体温升 两流体最初温差
——温度效率
R=T1 T2 t2 t1
热流体温降 冷流体温升
——温度相关因数
【方法】根据R与P的数值,从各种算图中查得温差
2019/10/1
(2)双侧变温 【特点】在热交 换过程中,两侧 温度均发生变化 。
2019/10/1
【特点】局部温度差Δt 沿传热面而变化。
在面积为dA两 侧,可视为恒
Δt=T-t
2 温差传热。 1
t2
A
dQ=K(T-t)dA
T1
t1 T2
变温差传热过程的温差变化特点
2019/10/1
5、变温差传热过程传热温度差的计算依据 【特点】在计算传热速率时,采用先微分、后积分
② t1、 t2——设备同一端热、冷流体的温度差;
2019/10/1
t2
t2 T1
tm
t1 t2 ln t1
t2
t1
t1
T2
③习惯上将较大温差记为t1,较小温差记为t2,避
免在计算中带入负号;
t1t2 lnt1 t2
( lt1n t t1 2t2)l nt2 tt1 2 t 11lt2n tt 1 2t1
2、影响平均传热温度差的因素 (1)流体的流动型式
冷、热流体的相互流动方向有不同的流动型式,
传热平均温差tm的计算方法因流动型式而异。
(2)温度的变化情况 冷、热流体在沿传热面流动时的温度变化情况不
同,传热平均温差tm的计算方法因而不同。
化工原理第四章传热
4-2.2
平面壁的稳态热传导
t Q R
dt Q A d
单层平面壁的稳态热传导
t1
△t
1、过程分析 假设Ⅰ:一维稳态热传导,即t=f(x) 假设Ⅱ:无限大平壁 A 2、模型 Q (t t )
1 2
A
Q
t2
可改写为:
t t Q A R
Am,3 2 rm,3l
Ф
t4
数学模型
★
1 1 Am,1
t1
t4
其中,
t1
Am,1 2 rm,1l Am,2 2 rm,2l
rm ,1
t4 Ф
r r r2 r1 r r rm ,2 3 2 rm ,3 4 3 r r r4 ln 2 ln 3 ln r1 r2 r3
非稳态传热——传热面各点温度t、传热速率Q 、热通量q等 物理量不仅为位置的函数,同时也随时间而改变。 Q, q, t……=f (x,y,z, τ)
化工原理
等温面 在温度场中,温度相同的各点组成的面。
等温面
温度梯度 等温面法线方向上的温度变化率。
t1>t2
对于一维稳定温度场, t=f(x),温度梯度表示为:
★ Q
t t t R 2 lrm Am
其中,
r2 r1 rm r ln 2 r1
Am 2 rml
rm——半径的对数平均值;当r2/r1<2时,rm≈ (r1+r2)/2
化工原理
多层圆筒壁的热传导
Q t1 t4 t t 3 2 R Am 2 Am,2 3 Am,3
dt grad (t ) d
工程热力学与传热学 第四章对流换热
从公式可知,要计算热流量,温度及面积比较容易得到,
主要是如何求得对流换热系数α,这是研究对流换热的主要任
务之一。
确定α;
➢对流换热的任务 揭示α与其影响因素的内在关系;
增强换热的措施。
➢研究对流换热的方法 ➢ 分析法 ➢ 实验法
➢ 比拟法 ➢ 数值法
➢ 分析法:对描写某一类对流换热问题的偏微分方程及相应的定 解条件进行数学求解,从而获得速度场和温度场的分析解的方法。
➢关于速度边界层的几个要点
(1) 边界层厚度 与壁的定型尺寸L相比极小, << L
(2) 边界层内存在较大的速度梯度
(3) 边界层流态分层流与紊流;紊流边界层紧靠壁 面处仍有层流特征,粘性底层(层流底层)
(4) 流场可以划分为边界层区与主流区,主流区 的流体当作理想流体处理
热边界层
➢定义
当流体流过平板而平板的 温度tw与来流流体的温度t∞不相 等时,在壁面上方也能形成温 度发生显著变化的薄层,常称 0 为热边界层。
:流动边界层厚度 u 0.99u
t∞ u
δt δ
tw
x
l 如,空气外掠平
板u=10m/s:
x100mm 1.8mm; x200mm 2.5mm
➢速度边界层的形成及发展过程
紊流核心
临界距边离界xc层:从层流开始向紊流过渡的距离。其大小取决
于流体的物性、固体壁面的粗糙度等几何因素以及来流的稳定
相变换热:凝结、沸腾、升华、凝固、融化等
4、流体的物理性质
流体内部和流体与壁面间导热热阻小 c 单位体积流体能携带更多能量
有碍流体流动,不利于热对流
自然对流换热增强
体胀系数:
1
(
传热计算
T2 - 0
( ) ( ) \
qm,
C
h
p,h
T1
- T2
= qm,cC p,c t2 - t1
……………… (I )
式中, qm,h、qm,c ——分别为热、冷流体的质量流速, kg × s -1 ; C p,h、C p,c ——分别为热、冷流体的定压比容, J × kg -1 × K -1 ;
T1、T2 、——分别为热流体的进、出口温度, K ;
空气的流速加大,可加快热量的传递,这是一种什么形式的热量传递呢?我们定义为 对流给热。
对流给热的定义是,通过流体内质点的定向流动和混合而导致热量的传递。 对流给热服从牛顿冷却定律,也称牛顿给热定律。
先讨论一下对流给热的机理。如图 4-9 所示。固体壁面温度为 tw (高温端),流体湍流
主体的温度为 t 。
1 A
ççèæ
b1 l1
+
b2 l2
+
b3 l3
÷÷øö
4
图 4-7 多层平壁的稳态热传导 所以 n 层平壁热传导的公式为:
n
å (ti ) - ti+1
å Q = i=1
1
n
bi
A i=1 li
………………… (V )
4-5 圆筒壁稳定热传导计算
比平壁复杂的一点在于,传热面积 A 是个变量。
今有一长为 L ,内径为 r1 ,内壁温度为 t1 ,外半径为 r2 ,外壁温度为 t2 的圆筒,导出
Q
=
tw d
t
lA
……………… (VII )
7
由于上式中的传热边界层d 是难以测定的,所以仍无法进行计算。于是令 l = a ,则 dt
化工原理 第四章 传热过程
• 传导传热的机理 • 一个物体的两部分存在温差,热就要从高温部分 向低温部分传递,直到各部分的温度相等为止, 这种传热方式就称为传导传热(或热传导)。 • 传导传热的本质是物体内部微观粒子的热运动而 引起的热量传递。物质的三态均可以充当热传导 介质,但导热的机理因物质种类不同而异,具体 为: • 固体金属:自由电子运动在晶格之间; • 液体和非金属固体:晶格结构的振动;即分子、 原子在其平衡位置的振动。 • 气体:分子的不规则运动。
第四章 传热过程 §4-1 概述 4-1.1 化工生产中的传热过程 1、传热过程在化工生产中的应用 例如:蒸发、蒸馏、干燥、结晶等 由于化工生产过中传热过程的普遍性,使得换热 设备的费用在总投资费用中所占的比重甚高。据 统计:在一般石油化工企业中占30~40% 在炼油厂中占40~50%。因此,认识传热过程, 掌握一般换热设备运行的规律,充分利用反应热、 余热、废热,对化工生产具有十分重要的意义。
r2 t 2 t1 ln 2l r1
r2 t1 t 2 ln 2l r1 t1 t 2 2l r2 ln r1
• 上式即为单层圆筒壁的导热速率方程。 • 在圆筒壁内找一个合理的平均导热面积Am , 或与Am对应的平均半径 rm ,这样圆筒壁的导 热速率就可按平壁来处理。 • 将(4)分子分母同乘以(r2-r1)
r1 2
术平均值代替,误差不超过4%,在工程上是允 许的。
r1 r2 rm 2
• 4、多层圆筒壁的导热 • 热量是由多层壁的最内壁传导到最外壁, 要依次经过各层,所以多层圆筒壁的传热, 可以看成是各单层壁串联进行的热量传递。
r2 r3
r1
• 对于稳定传热
• 对第一层
1 2 3
化工原理第四章对流传热41页PPT
Re
lu
普兰德数 (Prandtl number)
Pr c p
表示惯性力与粘性力之比, 是表征流动状态的准数
表示速度边界层和热边界层 相对厚度的一个参数,反映
与传热有关的流体物性
影响 较大的物性常数有:,, Cp ,。 (1)的影响 ; (2)的影响 Re ;
(3)Cp的影响 Cp 则单位体积流体的热容量大,
则较大; (4)的影响 Re 。
2020/3/29
3、流动型态 【层流】主要依靠热传导的方式传热。由于流体的
导热系数比金属的导热系数小得多,所以热阻大。
【湍流】由于质点充分混合且层流底层变薄,较大
2020/3/29
2、有效膜模型
(1)流体与固体壁面之间存在一个厚度为bt的虚拟 膜(流体层),称之为有效膜; (2)有效膜集中了传热过程的全部传热温差的以及 全部热阻,在有效膜之外无温差也无热阻存在(所 有的热量传递均产生在有效膜内); (3)在有效膜内,传热以热传导的方式进行。
2020/3/29
2020/3/29
二、对流传热速率方程 1、什么是模型法
【定义】把复杂问题简单化、摒弃次要的条件,抓 住主要的因素,对实际问题进行理想化处理,构建 理想化的物理模型,获得某一过程的有关规律。具 体方法为: (1)对过程进行合理的简化; (2)获得物理模型(构象); (3)对物理模型进行数学描述,获得有关规律。
过程的因素都归结到了当中。
2020/3/29
三、影响对流传热系数的因素
1、引起流动的原因 【自然对流】由于流体内部存在温差引起密度差形
成的液体内部环流,一般u较小,也较小。
【强制对流】在外力作用下引起的流动运动,一般u
较大,故较大。因此:
化工原理第四章 传热及传热设备..
4.2 热传导
4.2.5 圆筒壁的稳定热传导 二、多层圆筒壁
第一层
第二层
盐城工学院
第三层
Q
2L(t1 tn1 ) in 1 ln ri1
i1 i
ri
-----通式
可写成与多层平壁计算公式相仿的形式:
Q
t1 t4
b1
b2
b3
1 Am1
2 Am 2
3 Am3
Am1、 Am2 、Am3分别为各层 圆筒壁的对数平均面积。
主要特点:冷热两种流体被一固体间壁所隔开,在 换热过程中,两种流体互不接触,热量由热流体通 过间壁传给冷流体。以达到换热的目的。
优点:传热速度较快,适用范围广,热量的综合利 用和回收便利。
缺点:造价高,流动阻力大,动力消耗大。
典型设备:列管式换热器、套管式换热器。
适用范围:不许直接混合的两种流体间的热交换。
解:(1)每米管长的热损失
r1=0.053/2=0.0265m r2=0.0265+0.0035=0.03m r3=0.03+0.04=0.07 m r4 =0.07+0.02=0.09 m
=191. 4 W/m
第四章 传热及传热设备
(2)保温层界面温度t3
盐城工学院
解得:t3=131.2℃
第四章 传热及传热设备
热导率
纯金属 金属合金 液态金属 非金属固体 非金属液体 绝热材料 气体
100~1400 50~500 30~300 0.05 ~50 0.5~5 0.05~1 0.005~0.5
可见,在数值上: 金属 非金属 液体 气体
第四章 传热及传热设备
盐城工学院
4.2 热传导
环境工程原理第四章 热量传递
特点:伴随着流体质点的运动,只能发生在流体中。 对流传热的运动方式: ①自然对流:由于流体内部各点温度不同,温度高的地方
流体密度小而上浮,温度低的地方流体密度大而下
沉,这样引起流体质点的相对运动称为自然对流。 ②强制对流:由于外界机械作用,强迫流体质点发生相对运 动称为强制对流(强制对流时,流体质点的运动较
(1)、傅立叶定律:单位时间内的传热量与温度梯度及垂 直于热流方向的导热截面积成正比。
dT 或 dT 数学表达式 dQ dA dQ dA dy dy
负号表示热流方向总是与温度梯度方向相反,即热流方向是沿 着温度降低的方向。 dT 稳态导热时 : Q A dy 4.2.2、导热系数 ( ) Q dT 单位: A W m1 K 1 dy 物理意义:系温度梯度为1 K m ,导热面积为1 m2时,单位 时间内传递的热量。导热系数是物质导热能力的标志,物质 的λ 值越大,说明该物质的导热能力越强。 一般地:金属的导热系数最大,非金属固体次之,液体的较 小,而气体的最小。
以x表示沿壁厚方向上的距离,
在x处等温面上的温度为 q 2641 T T1 x 950 x 950 1625 x m 1.625 即温度分布为直线关系。
(2)导热系数取为变量
q dT dT (1.0 0.001T ) dx dx
b 0
分离变量并积分
T2
b
0
T2 Q dx dT T1 A T
T1 T2 Q A b
或
T Q b R A
----单层平壁的稳态热传导方程式
环境工程原理第四章 热量传递
3、辐射传热
以电磁波形式发出辐射能的过程。 特点:辐射传热不仅是能量的传递,还伴随着能量的
转化。不需要任何介质作媒介,可以在真空中
传播。
传热过程的基本问题 ⑴ 载热体用量的确定; ⑵ 设计新的换热器; ⑶核算现有换热器的传热性能; ⑷ 强化或削弱传热的方法。 热量恒算
解决这些问 题需要两个 基本关系式
纯液体的导热系数比溶液的导热系数大。
4、气体的导热系数
气体导热系数很小,不利于导热,但利于保温。
气体导热系数随温度升高而加大 。 在相当大的压强范围内,气体的导热系数随压强变 化极小。
注意:传热过程中,物质内不同位置的温度可能
不同,因而导热系数也不同,工程计算中常取导热系 数的算术平均值。
r1q1 r2q2 r3q3
【例题4.2.3】外径为426mm的蒸汽管道外包装厚度为 426mm 的 保 温 材 料 , 保 温 材 料 的 导 热 系 数 为 0.615 W/(m· K)。若蒸汽管道外表面温度为177℃,保温层的 外表面温度为38℃,试求每米管长的热损失和保温层 中的温度分布。
r
b
(T1 T2 ) T Q R R
导热热阻,K/W
Q T q A r
温差为传 热推动力
单位传热面积的导热热阻,m2· K/W
传导距离越大,传热壁面和导热好,相接触两表面温度相同,T1>T2>T3>T4 稳态热传导中,通过各层的热流量相等,故有:
成正比。
傅立叶定律的表达式
t dQ dA n
t dQ dA n
dQ ──传热速率,W或J/s; dA ── 导热面积,m2; t/ n ── 温度梯度,℃/m或K/m;热量传递的推动力 ── 导热系数,W/(m· ℃)或W/(m· K)。 负号表示热流方向与温度梯度方向相反(即热量向温度降低 方向传递)。
化工原理--传热
第四章传热本章介绍了三种基本传热方式,即导热、对流传热、辐射传热的基本概念和定律;详细分析了对流传热过程机理,建立了对流传热速率方程以及表面传热系数的经验关联式;由总传热速率方程出发,对传热过程进行设计计算和操作分析、诊断;介绍了换热设备的类型和列管式换热器的设计和选用。
本章重点要求掌握:①对流传热过程的基本概念、定律、传热速率方程;②管内强制湍流流动时表面传热系数的经验关联及影响因素;③总传热速率方程以及传热过程的计算。
4.1 概述4.1.1 传热在化工生产中的应用传热,即热量的传递,是自然界中普遍存在的物理现象。
由热力学第二定律可知,凡是有温度差存在的物系之间,就会导致热量从高温处向低温处的传递,故在科学技术、工业生产以及日常生活中都涉及许多的传热过程。
化工生产过程与传热关系十分密切。
这是因为化工生产中的很多过程都需要进行加热和冷却。
例如,为保证化学反应在一定的温度下进行,就需要向反应器输入或移出热量;化工生产设备的保温或保冷;生产过程中的热量的合理使用以及废热的回收利用,换热器网络的综合利用;蒸发、精馏、吸收、萃取、干燥等单元操作都与传热过程有关。
化工生产过程中需要解决的传热问题大致分为两类:(1)传热过程的计算,包括设计型计算和操作型计算;(2)传热过程的改进与强化。
这两类问题的解决,都需要从总的传热速率方程出发,即:(4.1.1)式中:Q—冷流体吸收或热流体放出的热流量,W;K—传热系数,W/(m2·℃);A—传热面积,m2;Δtm—平均传热温差,℃。
4.1.2 传热的基本方式根据热量传递机理的不同,传热基本方式有三种,即热传导、对流和辐射。
热传导:热传导又称导热。
是指热量从物体的高温部分向同一物体的低温部分、或者从一个高温物体向一个与它直接接触的低温物体传热的过程。
对流传热:对流传热是依靠流体的宏观位移,将热量由一处带到另一处的传递现象。
在化工生产中的对流传热,往往是指流体与固体壁面直接接触时的热量传递。
化工原理课程课件PPT之第四章传热
第四章 传热
23
思考题:
气温下降,应添加衣服,应把保暖性好的衣服穿在 里面好,还是穿在外面好?
Q
Q
bb
1 2
1 2
bb
2 1
天津商业大学
本科生课程 化工原理
第四章 传热
24
Q ti to b b
1S1 2S2
Q' ti to bb
2S1 1S2
1 2
S1 S2
Q' Q (ti
to
天津商业大学
本科生课程 化工原理
第四章 传热
8
dQ dS t
n
——傅里叶定律
λ——比例系数,
称为导热系数,W/(m •℃)。
负号表示热流方向与
温度梯度方向相反。
du
dy
天津商业大学
本科生课程 化工原理
第四章 传热
9
§4.2.2 导热系数
1、导热系数的定义
dQ q
dS t
t
n
n
在数值上等于单位温度梯度下的热通量,λ越大导热性能
第四章 传热
§4.1 概述
化工生产中传热过程: 强化传热 削弱传热
一、传热的基本方式:
动 量 传 递 热 量 传 递
质 量 传 递
热 传 导 :发生在相互接触的物质之间或物质(静止或层流
(导 热 )
流动)内部,靠分子、原子、电子运(振)动。 无物质的宏观位移。
对 流 传 热 :
自然对流 强制对流
Q t1 t2 t3 t1 tn1
R1 R2 R3
n bi
i1 i Smi
t1 t4
t1 t4
b1 b2 b3
1Sm1 2Sm2 3Sm3
《第四章传热》PPT课件
2. 傅立叶定律 傅立叶定律是热传导的基本定律,它表示热传导的速率与温度 梯度和垂直于热流方向的导热面积成正比。
Q S t 或:q t
n
n
热传导中,Q S,Q t n
Q——传热速率,W;
λ——导热系数,W/(m·K) 或W/(m·℃);
S——导热面积,垂直于热流方向的截面积,m2;
946℃。试求:
(1)单位面积的热损失;(2)保温砖与建筑砖之间界面的温度;
(3)建筑砖外侧温度。
解 t3为保温砖与建筑砖的界面温度,t4为建筑砖的外侧温度。
(1)热损失q
q=
Q A
1
b1
t1
t2
1.06 0.15
(1000-946)
=381.6W/m2
(2) 保温砖与建筑砖的界面温度t3 由于是稳态热传导,所以 q1=q2=q3=q
典型换热设备: 间壁式换热器(冷、热流体间的换热设备) 例:列管式换热器 3、本章研究的主要问题 1)三种传热机理(传热速率计算) 2)换热器计算 3)换热设备简介
4.1.1传热的基本方式
根据传热机理不同,传热的基本方式有三种: 热传导、热对流和热辐射。
1.热传导 热传导(导热):物体各部分之间不发生相对位移,依靠原子、 分子、自由电子等微观粒子的热流运动而引 起的热量传递。
t t'∞
t∞
u
tw-t=
t' t
tw
图4-13 流体流过平壁被加热时的温度边界
2、热边界层的厚度
tw t 0.99(tw t )
3、热边界层内(近壁处) 认为:集中全部的温差和热阻
dt 0 dy
热边界层外(流体主体)
化工原理第四章传热
对于一维温度场,等温面x及(x+Δx)的温度分别为t(x,τ)及
t(x+Δx,τ),则两等温面之间的平均温度变化率为:
t(x x,)t(x,)
t-t t
x
t+t
Q
温度梯度:
dA
gr la it( x m d x ,t) t( x ,) t n
x 0
x
x
温度梯度是向量,其方向垂直于等温面,并以温度增加 的方向为正。
实际上,上述三种传热方式很少单独出现,而往往是相互伴 随着出现的。
冷热流体的接触方式
一、直接接触式
板式塔
二、间壁式 套管换热器
热流体T1
t2
冷流体t1
T2
传热面为内管壁的表面积
列管换热器
热流体T1
t2
冷流体t1
T2
传热面为壳内所有管束壁的表面积
热载体及其选择
加热剂:热水、饱和水蒸气 矿物油或联苯等低熔混合物、烟道气等 用电加热
r1,b2=r3- r2,b3=r4- r3;
➢各层材料的导热系数λ1,λ2,
λ3皆视为常数;
➢层与层之间接触良好,相互
接触的表面温度相等,各等温 面皆为同心圆柱面。
r1 r2 r3 r4
t2t1 t3 t4
多层圆筒壁的热传导计算,可参照多层平壁。 对于第一、 二、三层圆筒壁有
Q2L1
t1 t2 lnr2
解: 根据题意,已知t1=10℃ ,t4=-5℃ ,b1=b3=0.12m, b2=0.10m,λ1= λ3= 0.70w/m•k, λ2= 0.04w/m•k。
按热流密度公式计算q
:q Q t 1 t 4 1 ( 0 5 ) 5 . 2 w / 7 m 2
环境工程原理 第四章 热量传递
有利于提高管程流体的流速和对流传热系数,但能量损失增加,传热
温度差小,程数以2、4、6程多见。 管外流体每通过一次壳体成为一个壳程。在管外装有折流板(或挡 板)可以提高壳程流体的流速,以保持较高的传热系数,折流板形式 常用的有弓形和盘环形两种。折流板同时起中间支架作用。
换热器
*列管式换热器
优点:
固体壁面的形状、尺度、方位、粗糙度、是否处于管 道进口段以及是弯管还是直管等。 a c p
(3)流动特征
对流传热
一、影响对流传热的因素
(3)流动特征 流动起因(自然对流、强制对流) 流动状态(层流、湍流) 有无相变化(液体沸腾、蒸汽冷凝) 流体对流方式(并流、逆流、错流)
第四节 辐射传热
浮头补偿 补偿圈补偿 U形管补偿
换热器
选择的原则:
⑴ 不清洁易结垢的物料应选管;
⑵ 需要通过增大流速以提高给热系数的流体应选管; ⑶ 腐蚀性流体宜走管程,以免管束和壳体同时受腐蚀; ⑷ 压力高的流体宜选管程,以防止壳体受压; ⑸ 蒸汽走壳程,冷凝液易于排出;
⑹ 被冷却的流体一般走壳程,便于散热;
⑺ 粘度大流量小流体选壳程,壳程Re>100即可达到湍流。
折流挡板
按一定数目与管束垂直设置;防止短路、增加流速;可 强制流体按规定路径、多次错流经过管束,增加湍动程 度。
t1
t1 T1 T2
T1 T2 t2
t2
热流体 T1
t2
冷流体 t1
T2
换热器
*列管式换热器
冷、热流体两种流体在进行换热时,一种流体通过管内,其行程称
为管程;另一种流体在管外流动,其行程称为壳程。 换热器内通过管内的流体每通过一次管束称为一个管程;管程数多
化工原理 第四章 传热
注意→气体很小,有利于保温、绝热,如玻璃棉。
传热-热传导
3. 平壁导热 ① 单层平壁
dt Q S dx x 0,t t1;
x b,t t2; t1 t2
Q
S
b
t1 t2
Q
单层平壁导热
假设→①稳态、一维导热。 ②λ不随温度变化。 ③不计热损失。
⑴ 给热是集热对流和热传导于一体的耦合过程。 ⑵ R集中在层流内层→ 层流内层厚度↓是强化给热的主要途径。
传热-对流传热
② 热边界层 热边界层→即温度边界层,指壁面附近处具有温度梯度的流体薄层。
dt dQ dS dy w
dQ tw t dS
dt dt tw t dy w t dy w
⑴
平板上的热边界层
dt t不变时, t , dy w
。
⑵ 流体在管内流动时,热边界层与流动边 ⑴ 热边界层边缘处→ 界层类似。不同的是,经历进口段和完全 t t 0.99 t t 发展区后,温度分布随管长渐变为平坦, < ⑵ 热边界层厚度→ 。 继而温度梯度消失,直至传热停止。
dQ T Tw dS
Q S t
R
1 S
① →平均给热系数。 ② 流体温度→流动横截面上的平均温度。 ③ 若热流体走管内,冷流体走环隙, dQ i T Tw dSi o tw t dSo
④ 给热研究的内核→不同给热情况下,α 的大小、影响因素及其计算式。
n
bi
mi
Q
2 πL t1 t4 1 r2 1 r3 1 r4 ln ln ln 1 r1 2 r2 3 r3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2l (t1 t 2 ) 2l (t1 t 2 ) 1 1 r2 1 1 1 ln 1r1 r1 2 r2 1r1 rm 2 r2
1. 若r2 ≦2r1,可取算术平均值取代分子中第二项;
2. 当圆筒壁厚度不大时,可以视为r2 =r1 =rm
=1678 W/(m2K)
圆形直管内层流流时的给热
di N u 1.86 Re P r L W 应用范围:Re﹤2300, Pr﹥0.6, Re×Pr×(di/L)﹥10
1 3 1 3 1 3 0.14
流体在非圆形管内流动时,用当量直径de
=
1 1 1 A1 Am 2 A2
t1 t 2
t R
传热推动力 热阻
平面壁的总传热方程 牛顿冷却定律—— φ =α A(tw-t2) 对于平面壁而言,A1=A2=A 参照牛顿冷却定律,将式
= 1 1 1 A1 Am 2 A2 t1 t 2 t 传热推动力 热阻 R
近似处理:用算术平均值代替对数平均值。
多层圆筒壁的稳定热传导
2L (t1 t n 1 ) n ri 1 1 ln ri i 1 i
例4-3
例4-4
4.3 对流传热
4.3.1 对流传热机理
基本概念
对流传热—流体各部分发生相对位移而引起的传热现象。 实质因为流体质点变动位置并相互碰撞,热量由高能量质点传递 到低能量质点。 工程上的对流传热一般在液体和固体壁面间进行传热(加热或冷 却)。包括4种情形: A:流体无相变 A1—— 管内强制对流 A2——自然对流 B:流体有相变 B1——蒸汽冷凝(又分部分冷凝和全部冷凝) B2—— 液体汽化(又分部分汽化和全部汽化)
Q / q Q / A
CP,m
Φ
定压热容,包括比定压热容和 定压摩尔热容
Cp=∑xiCi
J.K-1.kg-1 J.K-1.mol-1
相变热或潜热(气化热、冷凝 r =∑xiri 热、升华热、融解热、溶解热、 m 结晶热、稀释热)
J. kg-1 J.mol-1
4.2 热传导
热传导是物体温度较高的分子因热而振动,
志着物质导热能力的大小。
f (化学组成、物理状态、 湿度、压强、温度)
导热系数λ 为:温度梯度1K/m,导热面积为1m2, 单位时间内传递的热量, W/(m · k)
=- dt A dn
物质种类 纯金属
液态金属 非金属液体 气体
导热系数 W/(m· K) 100~140 0 30~300
对流传热机理
牛顿传热方程(牛顿冷却定律)
牛顿冷却定律—— 壁面温度为tw的固体, 给热于温 度为t的周围流体,传热速率Φ 与壁面的面积成正比, 与壁面和流体的温度差tw-t成正比。
=
Q
A(t w t )
微分方程形式: (t w t )dA d 其中为传热膜系数(或传质 分系数) 单位是W .m 2 .K 1
f (v, l , ga , t , , , , c p )
准数
Nu(努塞尔)
准数形式 物理意义
l
传热膜系数的特征数,表明流体导 热系数及几何尺寸的作用
Re(雷诺)
Pr(普朗特)
dv
Gr(格拉晓夫)
cp gl3 2 t
确定传热时流体的流动形态, 并表明对换热的影响
传热膜系数的关联式
运用各种准数关联式要注意:
应用条件,应用范围;特征尺寸;定性温度。
圆形直管内湍流时的给热
du 0.8 c p n 0.023 ( ) ( ) d
流体被加热时,n=0.4;流体被冷却,n=0.3 应用范围:
Re>104(湍流)0.7<Pr< 120,L/di≥50。
由于
1 2 3 , A1 A2 A3 A
将(a ), (b), (c )相加可得 t1 t 4 = 3 1 2 1 A 2 A 3 A
利用上式,可推出:
1 2 3 t1 : t 2 : t3 : t : : : 1 2 3
根据上式,也可以得到 各层介面的温度
1 1 1 2 Biblioteka 2 t3 t 2 1 1 2
t 2 t1
1 t 2 3 3 2 t 2 3 3
例4-1
例4-2
4.2.3 通过园筒壁的稳定热传导
单层圆筒壁的稳定热传导
需要解决的问题: ①热量衡算,传 热速率。 ②温度沿传热面 变化。 ③tw Tw不好测。
4.4 热交换的计算
4.4.1 总传热方程
热流体向壁面的对流传热 φ 1=α 1A1(t1-tw,1) 器壁的导热 φ 2=Am(tw,1-tw,2)/(δ /λ ) 壁面向冷流体的对流传热 φ 3=α 2A2(tw,2-t2) 定态条件的总传热方程
表明某些物理性质对传热的影响
2
α——传热膜系数,W.m-2.K-1 l——传热面几何特征,m v——流体流速,m.s-1 Δt ——流体与壁面温度差,K
表明因受热引起的自然对流对传热 的影响
λ ——流体导热系数, W.m-2.K-1 d ——管内径, m β ——流体膨胀系数, K-1 g ——重力加速度, m.s-2
并与相邻的分子碰撞,而将能量传递给相邻分子, 顺序的将能量从高温向低温部分传递。
4.2.1 基本概念和傅立叶定律
温度场和等温面 t=f(x,y,z,τ ) 稳定温度场——各点温度不随时间而变化,即 t=f(x,y,z,)
温度梯度——沿等温面垂直方向的向量,
它的正方向是沿着温度增加的方向。等温面 上温度T不变,法线方向T变化最大。
第四章 传热过程
4.1 概述
凡有温度差的地方就有传热,
如太阳辐射,兑开水,暖气。
4.1.1 化工生产中的传热
化学反应器: 吸热,放热 传热与其它单元操作同时出现: 蒸发,精馏,干燥 ,结晶 热量综合利用:强化,削弱 热力学第二定律:在不消耗外界功的条件下, 热仅能从高温往低温方向传递或传播
例4-5 例4-6
沸腾和冷凝的传热膜系数
对流传热膜系数的大致范围 传热情况
空气自然对流 气体强制对流 水自然对流 水强制对流 水蒸汽膜状冷凝 水蒸汽滴状冷凝 水沸腾 有机蒸汽冷凝
α /w/(m2K)
5~25 20~100 200~1000 1000~15000 5000~15000 40000~120000 2500~25000 500~2000
定性尺寸、定性温度 高粘度校正
du 0.8 c p 0.33 0.027c ( ) ( ) d
例: 一流体流经Ф 25×2.5的管子(湍流),对流给 热系数α 为1000W/(m2K),现流量不变,管子变为 Ф 19×2,问对流给热系数α 。
α ’=α (di'/di)1.8=1000(20/15)1.8
流体与蛇管或与器壁以自然对流传热的传热膜系数 gl3 2 t c p n =c ( ) 2 l Gr· Pr
<0.001 0.001~500 Nu=0.5 1.18 1/3
c
n
500 ~20,000,000 >20,000,000
0.54 0.135
1/4 1/3
涡轮式搅拌器附属夹套的圆筒容器,流体与 壁面间的传热膜系数
总传热系数以外壁面为计算基准:
φ =K0A0(t1-t2)
其中A0为外管截面积
Ao Ao 1 1 r2 r2 1 K 0 1A1 Am 2 1r1 rm 2
总传热系数以内壁面为计算基准:
φ =KiAi(t1-t2)
其中Ai为内管截面积
Ai Ai 1 1 1 r1 r1 K i 1 Am 2 Ao 1 rm 2 r2
改写成
φ =KA(t1-t2)=KAΔ t
此式即平面壁的总传热方程 其中 K 为总传热系数,单位W.m-2 .K-1 1 1 K 1 1 RA
1
2
例 4-7
求传热速率
和各热阻
圆筒壁的总传热方程
= 1 1 1 A1 Am 2 A2 t1 t 2
物质种类 金属合金
导热系数 W/(m· K) 50~500
非金属固体 绝热材料
0.05~50 0.05~1
0.5~5 0.005~0. 5
表4.1 导热系数的大致范围
导热系数随温度的变化
温度升高,金属的导热系数λ 金属下降;液体的 导热系数λ 液体下降(水和甘油除外);气体的 导热系数上升。 均质固体物 λ =λ 0(1+α t) 物质种类 导热系数 W/(m· K) 5~420 0.01~0.4 0.09~0.7 物质种类 导热系数 W/(m· K) 建筑材料 0.5~2 0.6 水 0.007~0.17 气体
0
dx Adt
t2 t1
dx
A(t1 t 2 )
q t1 t 2 传热推动力 A 传热阻力
单位是:W /(m 2 .s )
平壁内某处(x)的温度tx= t1-(t1- t2)x/δ
多层平壁的稳定热传导
1 A 1 1= (t1 t 2 ) t1 t 2 (a) 1 A 1 1 2 A 2 2= (t 2 t3 ) t 2 t3 (b) 2 A 2 2 3 A 1 3= (t3 t 4 ) t3 t 4 (c ) 3 A 3 3
实际工业或民用形式
热量传递的基本方式——
传导、对流和辐射 本章主要内容—— 从传热机理出发, 分析传热过程的传热速率及其影响因素, 阐明主要的计算方法, 说明传热设备的基本结构, 指出传热强化的途径