传热过程的计算.ppt
合集下载
《传热计算》课件

辐射传热
通过辐射波的能量传递热量, 如太阳辐射。
传热计算方法
对流传热计算公式
根据流体介质传热的温度差、 传热面积和传热系数计算热量 传递。
导热计算方法
根据物质热传导性质和温度梯 度计算热量传递。
辐射传热计算公式
根据物体表面温度和辐射特性 计算热量传递。
传热问题实例
1
热传导问题
考虑通过不同材料的导热问题,如热量传递的速率和温度分布。
《传热计算》PPT课件
课程概述
传热的定义
传热是指热量从一个物体或一处区域向另一个物体或另一处区域的传递过程。
传热的基本原理
传热基于热量通过物质内部或物质之间的相互作用而传递,遵循热量自高温 区向低温区传递的规律。
传热的分类
对流传热
通过流体介质的对流传热, 如水和空气的流动使热能传 递。
导热
通过物质内部的分子振动传 递热量,如金属导体。
2
强迫对流传热问题
研究通过流体介质的对流传热问题,如流体流动对传热的影响。
3
自然对流传热问题
分析不需要外力推动的自然对流传热问题,如自然对流的流动和传热效果。
传热计算软件介绍
常用的传热计算软件
介绍一些在工程领域中常用的传热计算软件。
软件的功能
探索这些软件的功能和应用,如传热分析、热设计 以及结果可视化。
第五章传热ppt课件

第四章 传热
1
第一节 概述
一、传热在食品工程中的应用
(1)食品生产中一般必要的加热、冷却过程; (2)为延长食品贮藏时间而进行的杀菌或冷藏; (3)以除去食品中水分为目的的蒸发或结晶过程的加热或冷 却; (4)为食品完成一定生物化学变化而进行的蒸煮、焙烤等。
2
第一节 概述
二、传热的基本方式
热的传递是由于系统内或物体内温度不同而引起的,根据 传热机理不同,传热的基本方式有三种:
7
一维温度场:若温度场中温度只沿着一个坐标方向变化。
一维温度场的温度分布表达式为:
t = f (x,τ)
(4-1a)
➢不稳定温度场:温度场内如果各点温度随时间而改变。
➢稳定温度场:若温度不随时间而改变。
➢等温面:温度场中同一时刻相同温度各点组成的面。
等温面的特点: (1)等温面不能相交; (2)沿等温面无热量传递。
24
2 多层圆筒壁的稳定热传导
对稳定导热过程,单位时间内由多层壁所传导的 热量,亦即经过各单层壁所传导的热量。
如图所示:以三层圆筒壁为例。
➢假定各层壁厚分别为b1= r2-
r1,b2=r3- r2,b3=r4- r3;
➢各 层 材 料 的 导 热 系 数 λ1,
λ2,λ3皆视为常数;
➢层与层之间接触良好,相互
3、热辐射
因热的原因而产生的电磁波在空间的传递,称为热辐射。
➢所有物体都能将热以电磁波的形式发射出去,而不需要任何
介质。
➢任何物体只要在绝对零度以上都能发射辐射能,但是只有在
物体温度较高的时候,热辐射才能成为主要的传热形式。
实际上,上述三种传热方式很少单独出现,而往往是相互
伴随着出现的。
1
第一节 概述
一、传热在食品工程中的应用
(1)食品生产中一般必要的加热、冷却过程; (2)为延长食品贮藏时间而进行的杀菌或冷藏; (3)以除去食品中水分为目的的蒸发或结晶过程的加热或冷 却; (4)为食品完成一定生物化学变化而进行的蒸煮、焙烤等。
2
第一节 概述
二、传热的基本方式
热的传递是由于系统内或物体内温度不同而引起的,根据 传热机理不同,传热的基本方式有三种:
7
一维温度场:若温度场中温度只沿着一个坐标方向变化。
一维温度场的温度分布表达式为:
t = f (x,τ)
(4-1a)
➢不稳定温度场:温度场内如果各点温度随时间而改变。
➢稳定温度场:若温度不随时间而改变。
➢等温面:温度场中同一时刻相同温度各点组成的面。
等温面的特点: (1)等温面不能相交; (2)沿等温面无热量传递。
24
2 多层圆筒壁的稳定热传导
对稳定导热过程,单位时间内由多层壁所传导的 热量,亦即经过各单层壁所传导的热量。
如图所示:以三层圆筒壁为例。
➢假定各层壁厚分别为b1= r2-
r1,b2=r3- r2,b3=r4- r3;
➢各 层 材 料 的 导 热 系 数 λ1,
λ2,λ3皆视为常数;
➢层与层之间接触良好,相互
3、热辐射
因热的原因而产生的电磁波在空间的传递,称为热辐射。
➢所有物体都能将热以电磁波的形式发射出去,而不需要任何
介质。
➢任何物体只要在绝对零度以上都能发射辐射能,但是只有在
物体温度较高的时候,热辐射才能成为主要的传热形式。
实际上,上述三种传热方式很少单独出现,而往往是相互
伴随着出现的。
化工原理第五章传热过程计算与换热器

5.4 传热效率和传热单元数
• 当传热系数K和比热cpc为常数时,积分上式可得
• 式中NTUc(Number of Transfer Unit)称为对冷流体而言的传热单 元数,Dtm为换热器的对数平均温差。
• 同理,以热流体为基准的传热单元数可表 示
• 在换热器中,传热单元数定义 为
5.4 传热效率和传热单元数
• 2.由选定的换热器型式计算传热系数K;
• 3.由规定的冷、热流体进出口温度计算参数e、CR; • 4.由计算的e、CR值确定NTU。由选定的流动排布型
式查取e—NTU算图。可能需由e—NTU关系反复计算 NTU;
• 5.计算所需的传热面积
。
5.5 换热器计算的设计型和操作型问题
• 例5-2 一列管式换热器中,苯在换热器的管内 流动,流量为1.25 kg/s,由80℃冷却至30℃; 冷却水在管间与苯呈逆流流动,冷却水进口温 度为20℃,出口温度不超过50℃。若已知换热 器的传热系数为470 W/(m2·℃),苯的平均 比热为1900 J/(kg·℃)。若忽略换热器的散 热损失,试分别采用对数平均温差法和传热效 率—传热单元数法计算所需要的传热面积。
• 如图5-4所示,按照冷、热流 体之间的相对流动方向,流体之 间作垂直交叉的流动,称为错流 ;如一流体只沿一个方向流动, 而另一流体反复地折流,使两侧 流体间并流和逆流交替出现,这
种情况称为简单折流。
•图 P2
•55
5.3 传热过程的平均温差计算
•通常采用图算法,分三步: •① 先按逆流计算对数平均温差Dtm逆; •② 求出平均温差校正系数φ;
•查图 φ
•③ 计算平均传热温差: • 平均温差校正系数 φ <1,这是由于在列管式换热器内增设了
化工原理传热精品-PPT

化工原理传热精品
主要内容
4、1 概述 4、2 热传导 4、3 对流传热概述 4、4 对流传热系数关联式 4、5 传热过程计算 4、6 辐射传热 4、7 换热器
2
基本要求
了解热传导基本原理,掌握傅立叶定律及平壁、圆筒 壁得热传导计算;
了解对流传热得基本原理、牛顿冷却定律及影响对流 传热得因素;掌握对流传热系数得物理意义和经验关联 式得用法、使用条件及注意事项;
Sm 2rmL
Sm
S2 S1 ln S2 / S1
圆筒壁得 对数平均
半径
rm
r2 r1 ln r2
r1
注:当 r2/r1<2时,可用算术平均值代替对数平均值。 44
2、多层圆筒壁得热传导
假设层与层之 间接触良好,即互 相接触得两表面温 度相同。
图4-12 多层圆筒壁热传导
45
2、 多层圆筒壁得热传导
微分导 热速率
dQ dS t
n
Q与温度 梯度方向
相反
导热系 数
温度梯 度
傅立叶定律表明导热速率与 温度梯度及传热面积成正比,而 热流方向却与温度梯度相反。
Δn ət/ən Q
32
3、 导热系数
dQ dS t
q t
n n
① 在数值上等于单位温度梯度下得热通量,故物质得
越大,导热性能越好。
② 是物质得固有性质,是分子微观运动得宏观表现。
加热剂
适用温度,℃
冷却剂 适用温度,℃
热水 饱和蒸汽 矿物油 联苯混合物 熔盐 烟道气加热剂
40~100 100~180 180~250 255~380(蒸汽) 142~530 ~1000
水 空气 盐水
0~80 >30 0~-15
主要内容
4、1 概述 4、2 热传导 4、3 对流传热概述 4、4 对流传热系数关联式 4、5 传热过程计算 4、6 辐射传热 4、7 换热器
2
基本要求
了解热传导基本原理,掌握傅立叶定律及平壁、圆筒 壁得热传导计算;
了解对流传热得基本原理、牛顿冷却定律及影响对流 传热得因素;掌握对流传热系数得物理意义和经验关联 式得用法、使用条件及注意事项;
Sm 2rmL
Sm
S2 S1 ln S2 / S1
圆筒壁得 对数平均
半径
rm
r2 r1 ln r2
r1
注:当 r2/r1<2时,可用算术平均值代替对数平均值。 44
2、多层圆筒壁得热传导
假设层与层之 间接触良好,即互 相接触得两表面温 度相同。
图4-12 多层圆筒壁热传导
45
2、 多层圆筒壁得热传导
微分导 热速率
dQ dS t
n
Q与温度 梯度方向
相反
导热系 数
温度梯 度
傅立叶定律表明导热速率与 温度梯度及传热面积成正比,而 热流方向却与温度梯度相反。
Δn ət/ən Q
32
3、 导热系数
dQ dS t
q t
n n
① 在数值上等于单位温度梯度下得热通量,故物质得
越大,导热性能越好。
② 是物质得固有性质,是分子微观运动得宏观表现。
加热剂
适用温度,℃
冷却剂 适用温度,℃
热水 饱和蒸汽 矿物油 联苯混合物 熔盐 烟道气加热剂
40~100 100~180 180~250 255~380(蒸汽) 142~530 ~1000
水 空气 盐水
0~80 >30 0~-15
化工基础-传热 PPT课件

单位: cp J ·kg-1 ·K-1
cpm J ·mol-1 ·K-1
5、显热:单位量(质量或物质的量)物质在等压时变温伴 随的热量变化。单位: J
计算:Q=m ·cp ·Δt
或 Q=n ·cpm ·Δt
6、潜热:单位量(质量或物质的量)物质在发生相变时 伴随的热量变化。单位: J ·kg-1, J ·moj-1 汽化热、冷凝热、升华热、溶解热、结晶热等
1kcal ·h-1 =1.163W
3、传热强度q:
单位时间单位面积传递的热量。也叫热流密度。
q Q A
单位:W ·m-2 , kg·s-3
2020/7/9
第四章 传热过程
5
化工基础
College of Chemistry & Materials
4、恒压比热容cp、cpm:单位量物质恒压下升温1K所需热量。
t2
t3
A2
2 2
第三层: t3
t3
t4
A3
3 3
2020/7/9
第四章 传热过程
Φ
δ1 δ2 δ3
A
t1
△t1
t2
△t2 △t3
t3 t4
厚度δ
12
化工基础
College of Chemistry & Materials
对定态传热:A1=A2=A3=A,Φ1=Φ2=Φ3=Φ
上面三式相加:
q
t
i
0.24
940 50 0.12
0.24
890 1.248
713.4W
m2
i 0.9 0.2 0.63
由
q ti ti1
i i
得
t2
化工原理第五章传热过程计算与换热器

一.恒温差传热
T
t
tm T t
t
二.变温差传热
T
t1 0
T1
t1 浙江大学0本科生课程
过程工程原理
t
并流 t
0
T1 t2
t
A0 T1
T2 t2 t2
t
逆流 t
A0 第五章 传热过程计算与换热器
A T2
A T2 t1
A
13/25
§5.2.4 tm的计算
T1 t1
以冷、热流体均无相变、逆流流动为例:
t
T
11/2t5
1 1 b 1
T
KA 1 A1 Am 2 A2
Tw tw
考虑到实际传热时间壁两侧还有污垢热
阻,则上式变为:
t
1 1
KA 1 A1
Ra1
b
Am
Ra2
1
2 A2
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
12/25
§5.2.4 tm的计算
Q KAtm
T1
T
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
25/25
幻灯片2目录
习题课
浙江大学本科生课程 化工原理
第五章 传热过程计算与换热器
26/14
设 计 型
习题课 操作型 t1
LMTD法:
对数平均温差法
Q Ktm A
(1) T1
T2
Q mhc ph T1 T2 (2)
Q mc c pc t2 t1
浙江大学本科生课程
过程工程原理
第五章 传热过程计算与换热器
14/25
§5.2.4 tm的计算
《化工原理》传热计算

若不计热损失,则:热流体的放热量 = 冷流体的吸热量
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r
若热损失为Q损,则:
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r +Q损
(4)冷热流体均有相变
热流体的放热量 = W1 ·Cp1·(T1-T2 )+ W1R 冷流体的吸热量 = W2 ·Cp2 ·(t2 - t1) + W2 ·r
1 1 1
K
i
o
设 1 10;2 1000 则
K 1
1
10
1 1 1 1
1 2 10 1000
现提高 α2 10000
则
K
1 11
1 2
1
1
1
10 10000
10
若提高 α1 100
K
1
1
1
1
1
1
100
则
1 2 100 1000
若 i o 则 K o
管壁外侧对流传热控制
四、平均温度差的计算
1、恒温差传热
壁面两侧进行热交换的冷热流体,其温度不 随时间及位置而变化。
2、变温差传热
采用对数平均值计算平均温度差(传热平均推 动力)。
(1) 并流
冷热流体流动方向相同。
tm并
t1 t2 ln t1
T1
t1 T2 t2
ln T1 t1
t2
T2 t2
(2) 逆流
Q热
T
TW 1
α1 S1
Q壁
TW
b
tw
λ Sm
Q冷
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r
若热损失为Q损,则:
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r +Q损
(4)冷热流体均有相变
热流体的放热量 = W1 ·Cp1·(T1-T2 )+ W1R 冷流体的吸热量 = W2 ·Cp2 ·(t2 - t1) + W2 ·r
1 1 1
K
i
o
设 1 10;2 1000 则
K 1
1
10
1 1 1 1
1 2 10 1000
现提高 α2 10000
则
K
1 11
1 2
1
1
1
10 10000
10
若提高 α1 100
K
1
1
1
1
1
1
100
则
1 2 100 1000
若 i o 则 K o
管壁外侧对流传热控制
四、平均温度差的计算
1、恒温差传热
壁面两侧进行热交换的冷热流体,其温度不 随时间及位置而变化。
2、变温差传热
采用对数平均值计算平均温度差(传热平均推 动力)。
(1) 并流
冷热流体流动方向相同。
tm并
t1 t2 ln t1
T1
t1 T2 t2
ln T1 t1
t2
T2 t2
(2) 逆流
Q热
T
TW 1
α1 S1
Q壁
TW
b
tw
λ Sm
Q冷
化工原理.传热过程的计算

管内对流:
dQ2 b dAm (Tw tw )
dQ3 2dA2(tw-t)
对于稳态传热 dQ dQ1 dQ2 dQ3
总推动 力
dQ T Tw Tw tw tw t
T t
1
b
1
1b 1
1dA1 dAm 2dA2 1dA1 dAm 2dA2
总热阻
dQ T t 1
KdA
第五节 传热过程的计算
Q KAtm
Q — 传热速率,W K — 总传热系数,W /(m20C) A — 传热面积,m2 tm — 两流体间的平均温度差,0 C
一、热量衡算
t2 , h2
热流体 qm1, c p1
T1, H1
T2 , H 2
冷流体 qm2, cp2,t1, h1
无热损失:Q qm1H1 H 2 qm2 h2 h1
变形:
dQ dT
qm1 c p1=常数
dQ dt
qm2c p2=常数
d (T t) dT dt 常数 dQ dQ dQ
斜率=dt t1 t2
dQ
Q
由于dQ KtdA
d(t) t1 t2
KtdA
Q
分离变量并积分:
Q KA t1 t2 ln t1 t2
tm
t1 t2 ln t1
t2
讨论:(1)也适用于并流 (2)较大温差记为t1,较小温差记为t2 (3)当t1/t2<2,则可用算术平均值代替
tm (t1 t2 ) / 2
(4)当t1=t2,tm t1=t2
结论: (1) 就提高传热推动力而言,逆流优于并流。 当换热器的传热量Q及总传热系数K相同的条 件下,采用逆流操作,所需传热面积最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过热蒸汽 冷流体
又如:过冷液体 → 沸腾→ 过热蒸气 qmcc pcLtcL qmcrc qmcc pcV tcV qmhc phth
热流体 过冷液体
说明:① 换热过程中各流股热流量间关系; ② 各流股间相互制约,热量守恒。
பைடு நூலகம்
4.6.2 总传热速率方程
间壁传热过程: 热量:热流体 对 流传热管内壁
式中,K — 总传热系数,W/m2·K。
注意: K 与 A 对应,选Ai、Am 或 A0
1 1 1 1b 1
K0 A0 Ki Ai Km Am hi Ai Am h0 A0
故稳态传热时,
4.6.3 传热系数和传热面积
KAtm
tm 1
KA
K — 传热系数,表示换热设备性能的重要参数。
K的来源: 实验测定; 取生产实际的经验数据; 计算求得。
原因: 换热器内出现温度交叉或温度逼近现象。
避免措施: 采用多个换热器串联或采用多壳程结构,
换热器个数或所需的壳程数,可用图解法确定。
th1
tc2
4.6 传热过程的计算
计算类型 :
设计型计算:已知th1,th2,tc1 ,qmc,qmh,K 求 传热面积A; 操作型计算: 已知th1 ,tc1,qmc,qmh,K,A 求th2 、tc2、Ф。 计算基础:热量衡算方程和传热速率方程 。
4.6.1 热流量衡算方程
稳态传热,忽略热损失时,
冷流体吸收热量 = 热流体放出热量
一侧沸腾: qm,hc p,h (th,1 th,2 ) Dcrc 一侧冷凝: qm,cc p,c (tc,2 tc,1) Dhrh 两侧均有相变: Dhrh Dcrc
② 非饱和状态下 例:过热蒸气→冷凝→过冷液体
qmhcPhV thV qmhrh qmhcPhLthL qmcc pctc
R
th1 th2 tc2 tc1
热流体温降 冷流体温升
P
tc2 th1
tc1 tc1
冷流体温升 两流体最初温差
温度校正系数
说明:
a)校正系数ε△t可根据R和P两参数从相应的图中查得。 b)温差校正系数ε△t恒小于1。 c)当ε△t值小于0.8时,则传热效率低, 经济上不合理,
操作不稳定。
d
KtdA
1
t1 d (t)
t1 t2
A
dA
K t
t2
0
KA
t1 t2 ln t1
KAtm
t2
对数平均温度差: tm
t1 t2 ln t1
t2
说明:
① 逆流: t1 th,2 tc,1 t2 th,1 tc,2
逆流
并流: t1 th,1 tc,1 t2 th,2 tc,2
Ao Ai
b
A0 Am
Rdo
1 h0
圆管中: A0 d0L
其中, dm
do di ln do
di
近似取:dm 12(do di)
平壁: Ai Ao Am
1 Ko
1 Ki
1 Km
1 hi
Rdi
b
1 h2
Rdo
(2) 污垢热阻 Rdi和 Rdo
污垢热阻影响:使h↓,热流量↓。
污垢热阻取值: 经验数据。 注意:传热系数、污垢热阻的单位。 (3) 壁温计算 忽略污垢热阻,稳态传热时:
(1) K的计算 在实际生产中以外表面积A0作为传热面积。
1 1b 1
K0 A0 hi Ai Am h0 A0
实际计算热阻应包括壁两侧污垢热阻:
1 1 Rdi b Rd 0 1
K0 A 0 hi Ai Ai Am A0 h0 A0
将K0用K表示,则有:
1 K
1 K0
1 hi
A0 Ai
Rdi
th
th th,w th,w tc,w
1
b
hi Ai
Am
tc,w tc 1
h0 A0
热Φ 流 体
th,w
因此,
th tc
1 b 1
t R
hi Ai Am h0 A0
令: R 1 1 b 1
KA hi Ai Am h0 A0
Φ
冷 流 tc,w 体
tc
用平均传热温差 tm代替(th tc)
t’h t’c
(2) 变温传热 ① 一侧有温度变化
② 两侧流体均有温度变化
tc1
th2
tc2 th1
th1 tc1
tc2 th2
沿管长某截面取微元传热面积dA,
传热速率方程: d KtdA 热量衡算方程: d qm,hcp,hdth qm,ccp,cdtc
d qm,hcp,hdth qm,ccp,cdtc
②
t1
/ t2
2时,可近似取 tm
1 2
(t1
t2 )
③ 进、出口条件相同时, tm,逆 tm,并
并流
工业上,一般采用逆流操作(节省加热面积)。
④ 一侧流体温度有变化,另一侧恒温时,
tm,逆 tm,并
⑤ 错流、折流时平均温差 图算法
tm t tm,逆
2
1
1
2
1 一侧流体变温时的温差变化
温差校正系数: t f (R, P)
(1) 无相变传热 tc1
th1 tc2
th2
冷流体吸热量: c qm,ccp,c (tc2 tc1)
热流体放热量: h qm,hcp,h (th1 th2 )
即:qm,hcp,h (th1 th2 ) qm,ccp,c (tc2 tc1)
其中,cP取定性温度下数值 .
(2) 有相变传热 ① 饱和状态下
th th,w th,w tc,w
1
b
hi Ai
Am
tc,w tc 1
h0 A0
th,w
th
hi Ai
b
tc,w th,w Am
t c,w
tc
ho Ao
结论:壁温接近表面传热系数大的一侧流体温度。
4.6.4 平均温度差
(1) 恒温传热 两侧流体温度恒定: tm th tc 恒定
热传导管外壁
对流传热 冷流体 各部分传热速率方程:
th
热Φ 流 体
th,w
管内侧流体: i hi Ai (th th,w )
管壁导热: m Am (th,w tc,w ) / b
管外侧流体: 0 h0 A0 (tc,w tc )
Φ
冷 流 tc,w 体
tc
对稳态传热: i m o
th1
d dth
qm,h c p,h
d dtc
qm,c c p,c
th2
当qmhcph、 qmccpc=常数时,
tc1
Φ-th、 Φ-tc为线性关系,
Δ t2
所以, Φ-(th- tc)也为线性关系。
dth
tc2
dtc
Δt=th-tc
Δ t1
dA dФ
传热量Ф
Ф
平均传热温度差的推导
d (t) t1 t2 d (t) t1 t2