传热过程的计算.ppt
《传热计算》课件

辐射传热
通过辐射波的能量传递热量, 如太阳辐射。
传热计算方法
对流传热计算公式
根据流体介质传热的温度差、 传热面积和传热系数计算热量 传递。
导热计算方法
根据物质热传导性质和温度梯 度计算热量传递。
辐射传热计算公式
根据物体表面温度和辐射特性 计算热量传递。
传热问题实例
1
热传导问题
考虑通过不同材料的导热问题,如热量传递的速率和温度分布。
《传热计算》PPT课件
课程概述
传热的定义
传热是指热量从一个物体或一处区域向另一个物体或另一处区域的传递过程。
传热的基本原理
传热基于热量通过物质内部或物质之间的相互作用而传递,遵循热量自高温 区向低温区传递的规律。
传热的分类
对流传热
通过流体介质的对流传热, 如水和空气的流动使热能传 递。
导热
通过物质内部的分子振动传 递热量,如金属导体。
2
强迫对流传热问题
研究通过流体介质的对流传热问题,如流体流动对传热的影响。
3
自然对流传热问题
分析不需要外力推动的自然对流传热问题,如自然对流的流动和传热效果。
传热计算软件介绍
常用的传热计算软件
介绍一些在工程领域中常用的传热计算软件。
软件的功能
探索这些软件的功能和应用,如传热分析、热设计 以及结果可视化。
第五章传热ppt课件

1
第一节 概述
一、传热在食品工程中的应用
(1)食品生产中一般必要的加热、冷却过程; (2)为延长食品贮藏时间而进行的杀菌或冷藏; (3)以除去食品中水分为目的的蒸发或结晶过程的加热或冷 却; (4)为食品完成一定生物化学变化而进行的蒸煮、焙烤等。
2
第一节 概述
二、传热的基本方式
热的传递是由于系统内或物体内温度不同而引起的,根据 传热机理不同,传热的基本方式有三种:
7
一维温度场:若温度场中温度只沿着一个坐标方向变化。
一维温度场的温度分布表达式为:
t = f (x,τ)
(4-1a)
➢不稳定温度场:温度场内如果各点温度随时间而改变。
➢稳定温度场:若温度不随时间而改变。
➢等温面:温度场中同一时刻相同温度各点组成的面。
等温面的特点: (1)等温面不能相交; (2)沿等温面无热量传递。
24
2 多层圆筒壁的稳定热传导
对稳定导热过程,单位时间内由多层壁所传导的 热量,亦即经过各单层壁所传导的热量。
如图所示:以三层圆筒壁为例。
➢假定各层壁厚分别为b1= r2-
r1,b2=r3- r2,b3=r4- r3;
➢各 层 材 料 的 导 热 系 数 λ1,
λ2,λ3皆视为常数;
➢层与层之间接触良好,相互
3、热辐射
因热的原因而产生的电磁波在空间的传递,称为热辐射。
➢所有物体都能将热以电磁波的形式发射出去,而不需要任何
介质。
➢任何物体只要在绝对零度以上都能发射辐射能,但是只有在
物体温度较高的时候,热辐射才能成为主要的传热形式。
实际上,上述三种传热方式很少单独出现,而往往是相互
伴随着出现的。
化工原理第五章传热过程计算与换热器

5.4 传热效率和传热单元数
• 当传热系数K和比热cpc为常数时,积分上式可得
• 式中NTUc(Number of Transfer Unit)称为对冷流体而言的传热单 元数,Dtm为换热器的对数平均温差。
• 同理,以热流体为基准的传热单元数可表 示
• 在换热器中,传热单元数定义 为
5.4 传热效率和传热单元数
• 2.由选定的换热器型式计算传热系数K;
• 3.由规定的冷、热流体进出口温度计算参数e、CR; • 4.由计算的e、CR值确定NTU。由选定的流动排布型
式查取e—NTU算图。可能需由e—NTU关系反复计算 NTU;
• 5.计算所需的传热面积
。
5.5 换热器计算的设计型和操作型问题
• 例5-2 一列管式换热器中,苯在换热器的管内 流动,流量为1.25 kg/s,由80℃冷却至30℃; 冷却水在管间与苯呈逆流流动,冷却水进口温 度为20℃,出口温度不超过50℃。若已知换热 器的传热系数为470 W/(m2·℃),苯的平均 比热为1900 J/(kg·℃)。若忽略换热器的散 热损失,试分别采用对数平均温差法和传热效 率—传热单元数法计算所需要的传热面积。
• 如图5-4所示,按照冷、热流 体之间的相对流动方向,流体之 间作垂直交叉的流动,称为错流 ;如一流体只沿一个方向流动, 而另一流体反复地折流,使两侧 流体间并流和逆流交替出现,这
种情况称为简单折流。
•图 P2
•55
5.3 传热过程的平均温差计算
•通常采用图算法,分三步: •① 先按逆流计算对数平均温差Dtm逆; •② 求出平均温差校正系数φ;
•查图 φ
•③ 计算平均传热温差: • 平均温差校正系数 φ <1,这是由于在列管式换热器内增设了
化工原理传热精品-PPT

主要内容
4、1 概述 4、2 热传导 4、3 对流传热概述 4、4 对流传热系数关联式 4、5 传热过程计算 4、6 辐射传热 4、7 换热器
2
基本要求
了解热传导基本原理,掌握傅立叶定律及平壁、圆筒 壁得热传导计算;
了解对流传热得基本原理、牛顿冷却定律及影响对流 传热得因素;掌握对流传热系数得物理意义和经验关联 式得用法、使用条件及注意事项;
Sm 2rmL
Sm
S2 S1 ln S2 / S1
圆筒壁得 对数平均
半径
rm
r2 r1 ln r2
r1
注:当 r2/r1<2时,可用算术平均值代替对数平均值。 44
2、多层圆筒壁得热传导
假设层与层之 间接触良好,即互 相接触得两表面温 度相同。
图4-12 多层圆筒壁热传导
45
2、 多层圆筒壁得热传导
微分导 热速率
dQ dS t
n
Q与温度 梯度方向
相反
导热系 数
温度梯 度
傅立叶定律表明导热速率与 温度梯度及传热面积成正比,而 热流方向却与温度梯度相反。
Δn ət/ən Q
32
3、 导热系数
dQ dS t
q t
n n
① 在数值上等于单位温度梯度下得热通量,故物质得
越大,导热性能越好。
② 是物质得固有性质,是分子微观运动得宏观表现。
加热剂
适用温度,℃
冷却剂 适用温度,℃
热水 饱和蒸汽 矿物油 联苯混合物 熔盐 烟道气加热剂
40~100 100~180 180~250 255~380(蒸汽) 142~530 ~1000
水 空气 盐水
0~80 >30 0~-15
化工基础-传热 PPT课件

单位: cp J ·kg-1 ·K-1
cpm J ·mol-1 ·K-1
5、显热:单位量(质量或物质的量)物质在等压时变温伴 随的热量变化。单位: J
计算:Q=m ·cp ·Δt
或 Q=n ·cpm ·Δt
6、潜热:单位量(质量或物质的量)物质在发生相变时 伴随的热量变化。单位: J ·kg-1, J ·moj-1 汽化热、冷凝热、升华热、溶解热、结晶热等
1kcal ·h-1 =1.163W
3、传热强度q:
单位时间单位面积传递的热量。也叫热流密度。
q Q A
单位:W ·m-2 , kg·s-3
2020/7/9
第四章 传热过程
5
化工基础
College of Chemistry & Materials
4、恒压比热容cp、cpm:单位量物质恒压下升温1K所需热量。
t2
t3
A2
2 2
第三层: t3
t3
t4
A3
3 3
2020/7/9
第四章 传热过程
Φ
δ1 δ2 δ3
A
t1
△t1
t2
△t2 △t3
t3 t4
厚度δ
12
化工基础
College of Chemistry & Materials
对定态传热:A1=A2=A3=A,Φ1=Φ2=Φ3=Φ
上面三式相加:
q
t
i
0.24
940 50 0.12
0.24
890 1.248
713.4W
m2
i 0.9 0.2 0.63
由
q ti ti1
i i
得
t2
化工原理第五章传热过程计算与换热器

一.恒温差传热
T
t
tm T t
t
二.变温差传热
T
t1 0
T1
t1 浙江大学0本科生课程
过程工程原理
t
并流 t
0
T1 t2
t
A0 T1
T2 t2 t2
t
逆流 t
A0 第五章 传热过程计算与换热器
A T2
A T2 t1
A
13/25
§5.2.4 tm的计算
T1 t1
以冷、热流体均无相变、逆流流动为例:
t
T
11/2t5
1 1 b 1
T
KA 1 A1 Am 2 A2
Tw tw
考虑到实际传热时间壁两侧还有污垢热
阻,则上式变为:
t
1 1
KA 1 A1
Ra1
b
Am
Ra2
1
2 A2
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
12/25
§5.2.4 tm的计算
Q KAtm
T1
T
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
25/25
幻灯片2目录
习题课
浙江大学本科生课程 化工原理
第五章 传热过程计算与换热器
26/14
设 计 型
习题课 操作型 t1
LMTD法:
对数平均温差法
Q Ktm A
(1) T1
T2
Q mhc ph T1 T2 (2)
Q mc c pc t2 t1
浙江大学本科生课程
过程工程原理
第五章 传热过程计算与换热器
14/25
§5.2.4 tm的计算
《化工原理》传热计算

Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r
若热损失为Q损,则:
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r +Q损
(4)冷热流体均有相变
热流体的放热量 = W1 ·Cp1·(T1-T2 )+ W1R 冷流体的吸热量 = W2 ·Cp2 ·(t2 - t1) + W2 ·r
1 1 1
K
i
o
设 1 10;2 1000 则
K 1
1
10
1 1 1 1
1 2 10 1000
现提高 α2 10000
则
K
1 11
1 2
1
1
1
10 10000
10
若提高 α1 100
K
1
1
1
1
1
1
100
则
1 2 100 1000
若 i o 则 K o
管壁外侧对流传热控制
四、平均温度差的计算
1、恒温差传热
壁面两侧进行热交换的冷热流体,其温度不 随时间及位置而变化。
2、变温差传热
采用对数平均值计算平均温度差(传热平均推 动力)。
(1) 并流
冷热流体流动方向相同。
tm并
t1 t2 ln t1
T1
t1 T2 t2
ln T1 t1
t2
T2 t2
(2) 逆流
Q热
T
TW 1
α1 S1
Q壁
TW
b
tw
λ Sm
Q冷
化工原理.传热过程的计算

管内对流:
dQ2 b dAm (Tw tw )
dQ3 2dA2(tw-t)
对于稳态传热 dQ dQ1 dQ2 dQ3
总推动 力
dQ T Tw Tw tw tw t
T t
1
b
1
1b 1
1dA1 dAm 2dA2 1dA1 dAm 2dA2
总热阻
dQ T t 1
KdA
第五节 传热过程的计算
Q KAtm
Q — 传热速率,W K — 总传热系数,W /(m20C) A — 传热面积,m2 tm — 两流体间的平均温度差,0 C
一、热量衡算
t2 , h2
热流体 qm1, c p1
T1, H1
T2 , H 2
冷流体 qm2, cp2,t1, h1
无热损失:Q qm1H1 H 2 qm2 h2 h1
变形:
dQ dT
qm1 c p1=常数
dQ dt
qm2c p2=常数
d (T t) dT dt 常数 dQ dQ dQ
斜率=dt t1 t2
dQ
Q
由于dQ KtdA
d(t) t1 t2
KtdA
Q
分离变量并积分:
Q KA t1 t2 ln t1 t2
tm
t1 t2 ln t1
t2
讨论:(1)也适用于并流 (2)较大温差记为t1,较小温差记为t2 (3)当t1/t2<2,则可用算术平均值代替
tm (t1 t2 ) / 2
(4)当t1=t2,tm t1=t2
结论: (1) 就提高传热推动力而言,逆流优于并流。 当换热器的传热量Q及总传热系数K相同的条 件下,采用逆流操作,所需传热面积最小。
04.传热过程计算

过热蒸汽 冷流体
又如:过冷液体 → 沸腾→ 过热蒸气
Q WccpcLtcL Wcrc WccpcV tcV Q Whcphth
热流体 过冷液体
说明:① 换热过程中各流股热流量间关系; ② 各流股间相互制约,热量守恒。
4.4.2 总传热速率微分方程 和总 传热系数 1、间壁传热过程:
热量:热流体 对 流传热管内壁
注意: K 与 S 对应,选Si、Sm 或 S0
1 1 1 1b 1
K0dS0 KidSi KmdSm idSi dSm 0dS0
K的来源: 实验测定; 取生产实际的经验数据; 计算求得。
(1) K的计算 在实际生产中以外表面积So作为传热面积。
1 1b 1
K0dS0 idSi dSm 0dS0
用平均传热温差 tm代替(T t)
故稳态传热时,
(1) 恒温传热 两侧流体温度恒定:
tm T t 恒定
T t
(2) 变温传热 ① 一侧有温度变化
② 两侧流体均有温度变化
t1
T2
t2 T1
T1
t1
t2
T2
沿管长某截面取微元传热面积dS,
传热速率方程: dQ KtdS
热量衡算方程: dQ Whcp,hdT Wccp,cdt
KStm
t
对数平均温度差: tm
t1 t2 ln t1
t2
说明:
① 逆流: t1 T2 t1
t2 T1 t2
逆流
并流: t1 T1 t1
t2 T t2
②
t1
/ t2
பைடு நூலகம்2时,可近似取 tm
1 2
(t1
t2 )
③ 进、出口条件相同时, tm,逆 tm,并
(完整PPT)传热学

(完整PPT)传热学contents •传热学基本概念与原理•导热现象与规律•对流换热原理及应用•辐射换热基础与特性•传热过程数值计算方法•传热学实验技术与设备•传热学在工程领域应用案例目录01传热学基本概念与原理03热辐射通过电磁波传递热量的方式,不需要介质,可在真空中传播。
01热传导物体内部或两个直接接触物体之间的热量传递,由温度梯度驱动。
02热对流流体中由于温度差异引起的热量传递,包括自然对流和强制对流。
热量传递方式传热过程及机理稳态传热系统内的温度分布不随时间变化,热量传递速率保持恒定。
非稳态传热系统内的温度分布随时间变化,热量传递速率也随时间变化。
传热机理包括导热、对流和辐射三种基本传热方式的单独作用或相互耦合作用。
生物医学工程研究生物体内的热量传递和温度调节机制,为医学诊断和治疗提供理论支持。
解决高速飞行时的高温问题,保证航空航天器的安全运行。
机械工程用于优化机械设备的散热设计,提高设备运行效率和可靠性。
能源工程用于提高能源利用效率和开发新能源技术,如太阳能、地热能等。
建筑工程在建筑设计中考虑保温、隔热和通风等因素,提高建筑能效。
传热学应用领域02导热现象与规律导热基本概念及定律导热定义物体内部或物体之间由于温度差异引起的热量传递现象。
热流密度单位时间内通过单位面积的热流量,表示热量传递的强度和方向。
热传导定律描述导热过程中热流密度与温度梯度之间关系的定律,即傅里叶定律。
导热系数影响因素材料性质不同材料的导热系数差异较大,如金属通常具有较高的导热系数,而绝缘材料则具有较低的导热系数。
温度温度对导热系数的影响因材料而异,一般情况下,随着温度的升高,导热系数会增加。
压力对于某些材料,如气体,压力的变化会对导热系数产生显著影响。
稳态与非稳态导热过程稳态导热物体内部各点温度不随时间变化而变化的导热过程。
在稳态导热过程中,热流密度和温度分布保持恒定。
非稳态导热物体内部各点温度随时间变化而变化的导热过程。
化工原理传热过程的计算

K 700~1800
300~800 200~500 50~300
100~350 50~250 10~60
两流体 气体-气体 蒸气冷凝-气体 液体沸腾-液体 液体沸腾-气体 水蒸气冷凝-水 有机物冷凝-有机物 水蒸气冷凝-水沸腾 水蒸气冷凝-有机物沸腾
K 10~40 20~250 100~800 10~60 1500~4700 40~350 1500~4700 500~1200
Q ─ 热流体放出或冷流体吸收的热量,W; qm1,qm2 ─ 热冷流体的质量流量,kg/s; h1,h2 ─ 冷流体的进出口焓,J/kg; H1,H2 ─ 热流体的进出口焓, J/kg 。
1.无相变,且Cp可视为常数
热量衡算式:
Q qm1c p1 T1 T2 qm2cp2 t2 t1
式中: cp1,cp2 ── 热冷流体的比热容, J/(kg·℃) ; t1,t2 ── 冷流体的进出口温度, ℃ ; T1,T2 ── 热流体的进出口温度, ℃ 。
1 K
1
1
Rd1
b
Rd 2
1
2
当传热壁热阻很小,可忽略,且流体清洁,污
垢热阻液可忽略时,则:
11 1
K 1 2
(7)换热器中总传热系数的经验值
两流体 水-水 有机物-水
有机物粘度μ<0.5mPa·s μ=0.5~1.0mPa·s μ>1.0mPa·s
有机物-有机物 冷流体粘度μ<1.0mPa·s μ>1.0mPa·s
2.有相变时
2.1 饱和蒸汽冷凝:
Q qm1r qm2c p2 t2 t1
r ─热流体的汽化潜热,kJ/kg;
2.2 冷凝液出口温度T2低于饱和温度TS :
传热学-第十章

3. 其它复杂布置时换热器平均温差计算
交叉流及其它形式(简单顺流、逆流除外)换热器的 平均温差算法比较麻烦,有人已经作出了表格,用时可以 直接查表。查法如下: (1). 先按逆ห้องสมุดไป่ตู้方式算出对数平均温差(tm)c;
(2). 将(tm)c乘以一个修正系数,这样问题就归结为求不 同情况下的。
=f (P,R) 而P,R的定义见书P327-329。由图即可查得。注意书上 t’ 和t” 与图的对应关系,不再是我们前面所说的热、冷 流体。 25
l π (70 - 40) do 1 1 ln 2 0.15 0.0051 10 d o
9
计算结果用图线表示于图中。
讨论: 散热量先增后减, 有最大值 最大值的求法
1 1 π l (ti to ) 2 d 2d o ho d o 0 2 dd o 1 do 1 1 ln hi d i 2 d i ho d o
相应的,以光侧表面面积Ai为基准的传热系数为:
kf ' 1 Ai hi hoo Ao 1 1 1 hi hooβ 1
肋化系数 β=Ao/Ai,即加肋后的总表面积与该侧未加肋 时的表面积之比。 一般β>>1,ηo<1, 但ηoβ>1。 hoηoβ----当量对流换热系数,即把肋部分折算到对流中。
若以管内侧面积为基准,则传热系数为:
1 ki do 1 di 1 di ln hi 2 di ho d o
6
三、 通过肋壁的传热
下图是一侧有肋的平壁。在稳态条件下,通过传热过程 各环节的热流量 是一样的,于是可以列出以下方程式:
hi Ai (tfi t wi )
《第四章传热》PPT课件

2. 傅立叶定律 傅立叶定律是热传导的基本定律,它表示热传导的速率与温度 梯度和垂直于热流方向的导热面积成正比。
Q S t 或:q t
n
n
热传导中,Q S,Q t n
Q——传热速率,W;
λ——导热系数,W/(m·K) 或W/(m·℃);
S——导热面积,垂直于热流方向的截面积,m2;
946℃。试求:
(1)单位面积的热损失;(2)保温砖与建筑砖之间界面的温度;
(3)建筑砖外侧温度。
解 t3为保温砖与建筑砖的界面温度,t4为建筑砖的外侧温度。
(1)热损失q
q=
Q A
1
b1
t1
t2
1.06 0.15
(1000-946)
=381.6W/m2
(2) 保温砖与建筑砖的界面温度t3 由于是稳态热传导,所以 q1=q2=q3=q
典型换热设备: 间壁式换热器(冷、热流体间的换热设备) 例:列管式换热器 3、本章研究的主要问题 1)三种传热机理(传热速率计算) 2)换热器计算 3)换热设备简介
4.1.1传热的基本方式
根据传热机理不同,传热的基本方式有三种: 热传导、热对流和热辐射。
1.热传导 热传导(导热):物体各部分之间不发生相对位移,依靠原子、 分子、自由电子等微观粒子的热流运动而引 起的热量传递。
t t'∞
t∞
u
tw-t=
t' t
tw
图4-13 流体流过平壁被加热时的温度边界
2、热边界层的厚度
tw t 0.99(tw t )
3、热边界层内(近壁处) 认为:集中全部的温差和热阻
dt 0 dy
热边界层外(流体主体)
高等传热学ppt课件

复合换热过程的数学模型
建立复合换热过程的数学模型,包括热传导、对流换热和辐射换热 的综合效应,以及不同换热方式之间的耦合关系。
复合换热过程的数值模拟
采用数值模拟方法,对复合换热过程进行仿真分析,揭示其温度场 、流场和传热特性的变化规律。
06
高等传热学应用领域探讨
Chapter
微尺度传热现象研究
微尺度传热机制
探讨在微米和纳米尺度下,热传导、热对流 和热辐射等传热机制的特点和规律。
微尺度效应
分析微尺度下,表面积与体积比增大、热边界层变 薄等效应对传热过程的影响。
微纳器件热管理
研究微纳电子器件、MEMS器件等的热设计 、热分析和热控制方法,以提高器件性能和 可靠性。
多维稳态导热问题求解
多维稳态导热
物体内部温度分布不随时间变化,但热量在多 个方向上传递。
求解方法
通过求解多维导热微分方程,结合给定的定解 条件,得到物体内部的温度分布。
应用举例
求解复杂形状物体、多层材料组成的复合结构等在稳态导热下的温度分布。
03
对流换热过程分析与计算
Chapter
对流换热现象及分类
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以 与机械能或其他能量互相转换,但是在转换过程 中,能量的总值保持不变。
牛顿冷却定律
当物体表面与周围存在温度差时,单位时间从单 位面积散失的热量与温度差成正比。
热力学第二定律
不可能把热从低温物体传到高温物体而不产生其 他影响,或不可能从单一热源取热使之完全转换 为有用的功而不产生其他影响,或不可逆热力过 程中熵的微增量总是大于零。
传热过程的计算

2.2 冷凝液出口温度T2低于饱和温度TS :
Q qm1 r c p1 Ts T2 qm2c p 2 t2 t1
TS ─热流体的饱. 恒温传热
饱 和 蒸 汽 液
体
沸 腾 t
t T t t m
T Tw
冷 流 体 Q tw
Q1 •热流体 固体壁面一侧 对流
Q2 •固体壁面一侧 热传导另一侧
Q3 •固体壁面另一侧 冷流体 对流
热 流 体
对流 导 热
t 对流
dQ KdA(T t )
管外对流:
dQ1 1dA1 (T Tw )
管壁热传导:
dQ2
管内对流:
b
dAm (Tw t w )
dQ3 2 dA2 (t w-t )
对于稳态传热
dQ dQ1 dQ2 dQ3
总推动 力
T Tw Tw t w tw t T t dQ 1 b 1 1 b 1 1dA1 dAm 2 dA2 1dA1 dAm 2 dA2
(3)在某些生产工艺有特殊要求时,如 要求冷流体被加热时不得超过某一温度或 热流体冷却时不得低于某一温度,应采用 并流操作。
(4)当换热器有一侧流体发生相变而 保持温度不变时,就无所谓并流和逆流 了,不论何种流动形式,只要进出口温 度相同,平均温度就相等。
三、总传热系数
Q KAt m
如何确定K值,是传热过程计算中的重要问题。
四、壁温的计算
T TW Tw tW t w t 稳态传热 Q KAt m 1 b 1 1 A1 Am 2 A2
Q bQ Q tW TW , TW T , tW t Am 1 A1 2 A2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过热蒸汽 冷流体
又如:过冷液体 → 沸腾→ 过热蒸气 qmcc pcLtcL qmcrc qmcc pcV tcV qmhc phth
热流体 过冷液体
说明:① 换热过程中各流股热流量间关系; ② 各流股间相互制约,热量守恒。
பைடு நூலகம்
4.6.2 总传热速率方程
间壁传热过程: 热量:热流体 对 流传热管内壁
式中,K — 总传热系数,W/m2·K。
注意: K 与 A 对应,选Ai、Am 或 A0
1 1 1 1b 1
K0 A0 Ki Ai Km Am hi Ai Am h0 A0
故稳态传热时,
4.6.3 传热系数和传热面积
KAtm
tm 1
KA
K — 传热系数,表示换热设备性能的重要参数。
K的来源: 实验测定; 取生产实际的经验数据; 计算求得。
原因: 换热器内出现温度交叉或温度逼近现象。
避免措施: 采用多个换热器串联或采用多壳程结构,
换热器个数或所需的壳程数,可用图解法确定。
th1
tc2
4.6 传热过程的计算
计算类型 :
设计型计算:已知th1,th2,tc1 ,qmc,qmh,K 求 传热面积A; 操作型计算: 已知th1 ,tc1,qmc,qmh,K,A 求th2 、tc2、Ф。 计算基础:热量衡算方程和传热速率方程 。
4.6.1 热流量衡算方程
稳态传热,忽略热损失时,
冷流体吸收热量 = 热流体放出热量
一侧沸腾: qm,hc p,h (th,1 th,2 ) Dcrc 一侧冷凝: qm,cc p,c (tc,2 tc,1) Dhrh 两侧均有相变: Dhrh Dcrc
② 非饱和状态下 例:过热蒸气→冷凝→过冷液体
qmhcPhV thV qmhrh qmhcPhLthL qmcc pctc
R
th1 th2 tc2 tc1
热流体温降 冷流体温升
P
tc2 th1
tc1 tc1
冷流体温升 两流体最初温差
温度校正系数
说明:
a)校正系数ε△t可根据R和P两参数从相应的图中查得。 b)温差校正系数ε△t恒小于1。 c)当ε△t值小于0.8时,则传热效率低, 经济上不合理,
操作不稳定。
d
KtdA
1
t1 d (t)
t1 t2
A
dA
K t
t2
0
KA
t1 t2 ln t1
KAtm
t2
对数平均温度差: tm
t1 t2 ln t1
t2
说明:
① 逆流: t1 th,2 tc,1 t2 th,1 tc,2
逆流
并流: t1 th,1 tc,1 t2 th,2 tc,2
Ao Ai
b
A0 Am
Rdo
1 h0
圆管中: A0 d0L
其中, dm
do di ln do
di
近似取:dm 12(do di)
平壁: Ai Ao Am
1 Ko
1 Ki
1 Km
1 hi
Rdi
b
1 h2
Rdo
(2) 污垢热阻 Rdi和 Rdo
污垢热阻影响:使h↓,热流量↓。
污垢热阻取值: 经验数据。 注意:传热系数、污垢热阻的单位。 (3) 壁温计算 忽略污垢热阻,稳态传热时:
(1) K的计算 在实际生产中以外表面积A0作为传热面积。
1 1b 1
K0 A0 hi Ai Am h0 A0
实际计算热阻应包括壁两侧污垢热阻:
1 1 Rdi b Rd 0 1
K0 A 0 hi Ai Ai Am A0 h0 A0
将K0用K表示,则有:
1 K
1 K0
1 hi
A0 Ai
Rdi
th
th th,w th,w tc,w
1
b
hi Ai
Am
tc,w tc 1
h0 A0
热Φ 流 体
th,w
因此,
th tc
1 b 1
t R
hi Ai Am h0 A0
令: R 1 1 b 1
KA hi Ai Am h0 A0
Φ
冷 流 tc,w 体
tc
用平均传热温差 tm代替(th tc)
t’h t’c
(2) 变温传热 ① 一侧有温度变化
② 两侧流体均有温度变化
tc1
th2
tc2 th1
th1 tc1
tc2 th2
沿管长某截面取微元传热面积dA,
传热速率方程: d KtdA 热量衡算方程: d qm,hcp,hdth qm,ccp,cdtc
d qm,hcp,hdth qm,ccp,cdtc
②
t1
/ t2
2时,可近似取 tm
1 2
(t1
t2 )
③ 进、出口条件相同时, tm,逆 tm,并
并流
工业上,一般采用逆流操作(节省加热面积)。
④ 一侧流体温度有变化,另一侧恒温时,
tm,逆 tm,并
⑤ 错流、折流时平均温差 图算法
tm t tm,逆
2
1
1
2
1 一侧流体变温时的温差变化
温差校正系数: t f (R, P)
(1) 无相变传热 tc1
th1 tc2
th2
冷流体吸热量: c qm,ccp,c (tc2 tc1)
热流体放热量: h qm,hcp,h (th1 th2 )
即:qm,hcp,h (th1 th2 ) qm,ccp,c (tc2 tc1)
其中,cP取定性温度下数值 .
(2) 有相变传热 ① 饱和状态下
th th,w th,w tc,w
1
b
hi Ai
Am
tc,w tc 1
h0 A0
th,w
th
hi Ai
b
tc,w th,w Am
t c,w
tc
ho Ao
结论:壁温接近表面传热系数大的一侧流体温度。
4.6.4 平均温度差
(1) 恒温传热 两侧流体温度恒定: tm th tc 恒定
热传导管外壁
对流传热 冷流体 各部分传热速率方程:
th
热Φ 流 体
th,w
管内侧流体: i hi Ai (th th,w )
管壁导热: m Am (th,w tc,w ) / b
管外侧流体: 0 h0 A0 (tc,w tc )
Φ
冷 流 tc,w 体
tc
对稳态传热: i m o
th1
d dth
qm,h c p,h
d dtc
qm,c c p,c
th2
当qmhcph、 qmccpc=常数时,
tc1
Φ-th、 Φ-tc为线性关系,
Δ t2
所以, Φ-(th- tc)也为线性关系。
dth
tc2
dtc
Δt=th-tc
Δ t1
dA dФ
传热量Ф
Ф
平均传热温度差的推导
d (t) t1 t2 d (t) t1 t2