三年级奥数重叠问题
三年级奥数4课题:重叠问题
课题:重叠问题【知识讲解】重叠问题的解决方法。
例1.小丽将3块手帕用夹子夹在绳子上晾晒,每一块的手帕两边必须用夹子夹住,同一个夹子夹住相邻两块手帕的两边,小丽一共要用多少个夹子?例2.人们排队上公共汽车,小红排在队伍的中间,无论是从前面数还是从后面数,她都是第4个,这一排队伍一共有多少人?例3.同学们排练舞蹈,15个同学排成一对,从左边数小宁排在第8,问从右边数小宁排在第几?例4.学校要举行鼓操表演,同学们排成方队,不论是从前往后数,还是从后往前数,或者从左往右数,还是从右往左数,王洁都是第4,这支方队有多少人?例5.有两块塑料板各长50厘米,把两块板钉成一个塑料板,中间钉在一起的重叠部分是10厘米,钉成的塑料板长是多少厘米?例6.二年级一班有36名学生,期末测试后,老师问:语文得“优”的请举手!结果有25人举手。
老师又问:数学得“优”的请举手!结果有30人举手。
最后老师问:两门都没有得“优”的请举手!没有人举手。
你知道这个班两门可都得“优”的有多少人吗?【巩固练习】1.幼儿园阿姨把洗好的6张床单用夹子夹在绳子上晾晒,每一张床单两边都用夹子夹住,同一个夹子夹住相邻的两块床单,一共需要多少个夹子?2.小红准备把8张照片钉在墙上钉成一行,每一张照片两边都用钉子钉住,同一个钉子可以钉住相邻的两张照片,一共需要多少个钉子?3.小朋友们排成一排做操,不论是从前往后数还是从后往前数,小红都是第6个,这一排一共有多少个小朋友?4.一串珠子摆放在桌子上,这一串珠子上有一颗红色的珠子。
从左往右数这颗红色的珠子排在第18,从右往左数这颗珠子排在第32,这一串珠子一共有多少颗?5.16辆七成排成一列车队向前行进,从前面数,唯一的一辆黑色是小汽车是第9辆,问从后面数它是第几辆?6.二年级两个班的同学在做操时正好排成一个方形队伍,不论是从前往后数,还是从后往前数,或者从左往右数,还是从右往左数,李伟都是第5个,二年级两个班做操的同学一共有多少个?7.二(1)班同学排队做操,每行是人数同样多。
小学三年级奥数第19讲 重叠问题(含答案分析)
3、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种。三年级既带矿泉水又带水果的小朋友有多少人?
4、三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。三(4)班共有学生多少人?
【思路导航】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠的部分是16厘米,所以这两块木板的总长度是120+16=136厘米,每块木板的长度是136÷2=68厘米。
练习3:
1.把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
【思路导航】根据题意,画出下图:
图中间重叠部分表示两道题都做对的人数,把做第一道题和做对第二道题的人数加起来得21+18=39人,这39人比全班总人数36多出了39-36=3人,这多出的3人既在做对第一题的人数中算过,也在做对第二道题的人数中算过,即表示两道题都做对的人数。
练习4:
1.三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。已知参加赛跑的有36人,参加跳绳的有38人。两项比赛都参加的有几人?
2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。鲜花队共多少人?
【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?
练习3:
1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
三年级奥数《重叠问题》
三年级奥数《重叠问题》三年级奥数《重叠问题》公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]第九讲:重叠问题【知识要点】:三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
【例1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?【思路导航】根据题意画出下图。
从图上可以看出,从前数起红旗是第______面,从后数起是第______面,这样红旗就数了______次,重复了______次,所以这行彩旗共有[ ] +[ ]-[ ]=[ ]面。
【课堂反馈1】1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?【思路导航】根据题意画出下图。
由图可看出:小明的位置从左数第____个,从右数第____个,说明横行有[ ]+[ ]-[ ]=[ ]个人;从前数第_____个,从后数第_____个,说明竖行有[ ]+[ ]-[ ]=[ ]人。
所以做操的同学共有:[ ]×[ ]=[ ]人。
三年级奥数《重叠问题》
三年级奥数《重叠问题》文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]第九讲:重叠问题【知识要点】:三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
【例1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?【思路导航】根据题意画出下图。
从图上可以看出,从前数起红旗是第______面,从后数起是第______面,这样红旗就数了______次,重复了______次,所以这行彩旗共有[ ] +[ ]-[ ]=[ ]面。
【课堂反馈1】1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?【思路导航】根据题意画出下图。
由图可看出:小明的位置从左数第____个,从右数第____个,说明横行有[ ]+[ ]-[ ]=[ ]个人;从前数第_____个,从后数第_____个,说明竖行有[ ]+[ ]-[ ]=[ ]人。
所以做操的同学共有:[ ]×[ ]=[ ]人。
小学三年级奥数第19讲 重叠问题(含答案分析)
第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?练习1:1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?练习2:1、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
三年级奥数 重叠问题
第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品, 当中队长玲玲将28份纪念品发下去时, 却多出5份, 这是怎么回事?对了, 因为有5位同学既参加了绘画比赛, 又参加了朗读比赛, 所以奖品就多出了5份. 数学中, 我们将这样的问题称为重叠问题.解答重叠问题要用到数学中的一个重要原理——包含与排除原理, 即当两个计数部分有重复包含时, 为了不重复计数, 应从它们的和中排除重复部分.解答重叠问题的应用题, 必须从条件入手进行认真的分析, 有时还要画出图示, 借助图形进行思考, 找出哪些是重复的, 重复了几次?明确求的是哪一部分, 从而找出解答方法.二、精讲精练【例题1】六一儿童节, 学校门口挂了一行彩旗. 小张从前数起, 红旗是第8面;从后数起, 红旗是第10面. 这行彩旗共多少面?练习1:1、小朋友排队做操, 小明从前数起排在第4个, 从后数起排在第7个. 这队小朋友共有多少人?2、学校组织看文艺演出, 冬冬的座位从左数起是第12个, 从右数起是第21个. 这一行座位有多少个?【例题2】同学们排队做操, 每行人数同样多. 小明的位置从左数起是第4个, 从右数起是第3个, 从前数起是第5个, 从后数起是第6个. 做操的同学共有多少个?练习2:1、同学们排队跳舞, 每行、每列人数同样多. 小红的位置无论从前数从后数, 从左数还是从右数起都是第4个. 跳舞的共有多少人?2、为庆祝“六一”, 同学们排成每行人数相同的鲜花队, 小华的位置从左数第2个, 从右数第4个;从前数第3个, 从后数第5个. 鲜花队共多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板. 如果这块钉在一起的木板长120厘米, 中间重叠部分是16厘米, 这两块木板各长多少厘米?练习3:1、把两段一样长的纸条粘合在一起, 形成一段更长的纸条. 这段更长的纸条长30厘米, 中间重叠部分是6厘米, 原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起, 钉成一块长35厘米的木板. 中间重合部分长11厘米, 这两块木板各长多少厘米?【例题4】一次数学测试, 全班36人中, 做对第一道聪明题的有21人, 做对第二道聪明题的有18人, 每人至少做对一道. 问两道聪明题都做对的有几人?练习4:1、三(1)班有学生55人, 每人至少参加赛跑和跳绳比赛中的一种. 已知参加赛跑的有36人, 参加跳绳的有38人. 两项比赛都参加的有几人?2、两块木板各长75厘米, 像下图这样钉成一块长130厘米的木板, 中间重合部分是多少厘米?【例题5】三(1)班订《数学报》的有32人, 订《阅读报》的有30人, 两份报纸都订的有10人, 全班每人至少订一种报纸. 三(1)班有学生多少人?练习5:1、三(4)班做完语文作业的有37人, 做完数学作业的有42人, 两种作业都完成的有31人, 每人至少完成一种作业. 三(4)班共有学生多少人?2、两块木板各长90厘米, 像下图这样钉成一块木板, 中间重合部分是15厘米, 这块钉在一起的木板总长多少厘米?三、课后作业1、同学们排队去参观展览, 无论从前数还是从后起起, 李华都排在第8个. 这一排共有多少个同学?2、三(5)班有42名同学, 会下象棋的有21名同学, 会下围棋的有17名, 两种棋都不会的有10名. 两种棋都会下的有多少名?3、三年级有107个小朋友去春游, 带矿泉水的有78人, 带水果的有77人, 每人至少带一种. 三年级既带矿泉水又带水果的小朋友有多少人?4、三(4)班排成每行人数相同的队伍入场参加校运动会, 梅梅的位置从前数是第6个, 从后数是第5个;从左数、从右数都是第3个. 三(4)班共有学生多少人?5、两根木棍放在一起, 从头到尾共长66厘米, 其中一根木棍长48厘米, 中间重叠部分长12厘米. 另一根木棍长多少厘米?加减巧算一、知识要点在进行加减运算时, 为了又快又好, 除了要熟练地掌握计算法则外, 还需要掌握一些巧算的方法. 加减法的巧算主要是运用“凑整”的方法, 把接近整十、整百、整千的数看做所接近的数进行简算.进行加减巧算时, 凑整之后, 对于原数与整十、整百、整千……相差的数, 要根据“多加要减去, 少加要再加, 多减要加上, 少减要再减”的原则进行处理. 另外, 可以结合加法交换律、结合律以及减法的性质进行凑整, 从而达到简算的目的.二、精讲精练【例题1】你有好办法迅速算出结果吗?(1) 502+799-298-98 (2) 9999+999+99+9练习1:计算.(1) 308+203-399-97 (2) 99999+9999+999+99+9(3) 1999+199+19 (4) 375+483+525+617【例题2】计算.(1) 487+321+113+279 (2) 736-567+264(3) 877+345-677 (4) 528-248-152练习2:计算.(1) 321+127+73+279 (2) 235-125+365 (3) 987-733-167 (4) 487+(413-89)【例题3】计算下面各题.(1) 962-(284+262) (2) 432-(154-168)练习3:计算.(1) 421+(279-125) (2) 812+(168-112)(3) 823-(175+323) (4) 538-(283-162) 【例题4】2000-111-89-112-88-113-87-114-86-115-85-116-84练习4:计算.(1)800-99-1-98-2-97-3-96-4-95-5(2) 1000-10-20-30-40-50-60-70-80-90【例题5】计算: 98+97-96-95+94+93-92-91+90+89-88-87……-4-3+2+1练习5:计算.(1) 2009+1+2-3-4+5+6-7-8+9+10-11-12+13+14……+2006(2) 1+2-3+4+5-6+7+8-9……+97+98-99三、课后作业1、计算下列各题.(1)256+503+44 (2)953—267—133(3)465—198+335 (4)362—202+2382、用简便方法计算下列各题.(1)43+40+39+41+37+42 (2)503+301-298-91+52(3)199999+19999+1999+199+19 (4)83+81+78+80+84+78+79+77+843、巧算1000-99-98-97-96-95-5-4-3-2-14、29999+2999+299+295、(1)2356-(356+187)(2)5723-(723-189)6、(534+786+896)+(104+214+466)。
三年级奥数讲义必备专题第3讲.重叠问题.学生版
一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集AB 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.第三讲重叠问题教学目标知识点拨1.先包含——A B +重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.模块一:两量重叠问题【巩固】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?例题精讲例题 11图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【巩固】 芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?例题33例题22【巩固】 四年级科技活动组共有63人.在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人.每个同学都至少完成了一项活动.问:同时完成这两项活动的同学有多少人?【巩固】 实验二校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,两种都能表演的有7人.这个表演队共有多少人能登台表演歌舞?【巩固】 某班组织象棋和军棋比赛,参加象棋比赛的有32人,参加军棋比赛的有28人,有18人两项比赛都参加了,这个班参加棋类比赛的共有多少人?【巩固】 47名学生参加数学和语文考试,其中语文得分95分以上的14人,数学得分95分以上的21人,两门都不在95分以上的有22人.问:两门都在95分以上的有多少人?例题44【巩固】某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都参加了.这个班既没参加美术小组也没参加音乐小组的有多少人?【巩固】四年级一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了.一班有多少人两项比赛都没有参加?【巩固】某次英语考试由两部分组成,结果全班有12人得满分,第一部分有25人做对,第二部分有19人有错,问两部分都有错的有多少人?【巩固】对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人,两项都不会的有9人.这个班一共有多少人?5例题5【巩固】 育才小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,五、六年级共展出25幅画,其他年级的画共有多少幅?例题88例题77例题66【巩固】在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?【巩固】求在1至100的自然数中能被3或7整除的数的个数。
三年级奥数《重叠问题》
重叠问题【知识要点】:解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
【例1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?【思路导航】根据题意画出下图。
从图上可以看出,从前数起红旗是第______面,从后数起是第______面,这样红旗就数了______次,重复了______次,所以这行彩旗共有[ ] +[ ]-[ ]=[ ]面。
【课堂反馈1】1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?【思路导航】根据题意画出下图。
由图可看出:小明的位置从左数第____个,从右数第____个,说明横行有[ ]+[ ]-[ ]=[ ]个人;从前数第_____个,从后数第_____个,说明竖行有[ ]+[ ]-[ ]=[ ]人。
所以做操的同学共有:[ ]×[ ]=[ ]人。
【课堂反馈2】1、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?【例3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?【思路导航】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠的部分是____ _厘米,所以这两块木板的总长度是[ ]+[ ]=[ ]厘米,每块木板的长度是[ ]÷[ ]=[ ]厘米。
三年级奥数三大原理重叠问题教师版
知识要点【课前引入】脑筋急转弯:两位妈妈和两位女儿一起去参加动漫节,可是她们只买了两张票,便顺利地通过了检票处,这是怎么回事?答案:外婆、妈妈、女儿 排队:小明在超市排队付款,从前数小明排在第三,从后数小明排在第四,你能算出排队的一共有多少人?(请学生用自己喜欢的方式解释一下,排队的一共有8人)排队【例 1】 学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【分析】 1221132+-=个【例 2】 同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。
这一排共有多少个同学? 【分析】 88115+-=个【例 3】 同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?【分析】 每行每列都为:4417+-=个,7749⨯=人重叠问题要用到数学的一个重要原理:包含和排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从他们的和中排除重复部分。
解决重叠问题的应用题,必须从条件入手(综合法)进行认真的分析,有时还要画图,借助图形进行思考,找出哪些是重叠的和重叠的次数,明确求的是哪一部分,从而找出解答方法。
重叠问题【例 4】为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?【分析】每行:2415+-=人,共有学生:5735⨯=人+-=人,每列:3517简单计算【例 5】洗好的8块手帕用夹子夹在绳子上晾干,每一块手帕的两边必须用夹子夹住,同1个夹子夹住相邻的两块手帕的两边,这样一共要多少个夹子?【分析】1块手帕要用2个夹子;2块手帕有1个重叠,用3个夹子;3块手帕有2个重叠,用4个夹子……8块手帕有7个重叠,每个重叠的边需要1个夹子,两头不重叠的边各要1个夹子。
因此需要的夹子数为7+2=9个。
总结本题规律:把手帕挂在绳子上晾干,需要的夹子数比手帕数多一个。
三年级奥数 重叠问题
第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品, 当中队长玲玲将28份纪念品发下去时, 却多出5份, 这是怎么回事?对了, 因为有5位同学既参加了绘画比赛, 又参加了朗读比赛, 所以奖品就多出了5份. 数学中, 我们将这样的问题称为重叠问题.解答重叠问题要用到数学中的一个重要原理——包含与排除原理, 即当两个计数部分有重复包含时, 为了不重复计数, 应从它们的和中排除重复部分.解答重叠问题的应用题, 必须从条件入手进行认真的分析, 有时还要画出图示, 借助图形进行思考, 找出哪些是重复的, 重复了几次?明确求的是哪一部分, 从而找出解答方法.二、精讲精练【例题1】六一儿童节, 学校门口挂了一行彩旗. 小张从前数起, 红旗是第8面;从后数起, 红旗是第10面. 这行彩旗共多少面?练习1:1、小朋友排队做操, 小明从前数起排在第4个, 从后数起排在第7个. 这队小朋友共有多少人?2、学校组织看文艺演出, 冬冬的座位从左数起是第12个, 从右数起是第21个. 这一行座位有多少个?【例题2】同学们排队做操, 每行人数同样多. 小明的位置从左数起是第4个, 从右数起是第3个, 从前数起是第5个, 从后数起是第6个. 做操的同学共有多少个?练习2:1、同学们排队跳舞, 每行、每列人数同样多. 小红的位置无论从前数从后数, 从左数还是从右数起都是第4个. 跳舞的共有多少人?2、为庆祝“六一”, 同学们排成每行人数相同的鲜花队, 小华的位置从左数第2个, 从右数第4个;从前数第3个, 从后数第5个. 鲜花队共多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板. 如果这块钉在一起的木板长120厘米, 中间重叠部分是16厘米, 这两块木板各长多少厘米?练习3:1、把两段一样长的纸条粘合在一起, 形成一段更长的纸条. 这段更长的纸条长30厘米, 中间重叠部分是6厘米, 原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起, 钉成一块长35厘米的木板. 中间重合部分长11厘米, 这两块木板各长多少厘米?【例题4】一次数学测试, 全班36人中, 做对第一道聪明题的有21人, 做对第二道聪明题的有18人, 每人至少做对一道. 问两道聪明题都做对的有几人?练习4:1、三(1)班有学生55人, 每人至少参加赛跑和跳绳比赛中的一种. 已知参加赛跑的有36人, 参加跳绳的有38人. 两项比赛都参加的有几人?2、两块木板各长75厘米, 像下图这样钉成一块长130厘米的木板, 中间重合部分是多少厘米?【例题5】三(1)班订《数学报》的有32人, 订《阅读报》的有30人, 两份报纸都订的有10人, 全班每人至少订一种报纸. 三(1)班有学生多少人?练习5:1、三(4)班做完语文作业的有37人, 做完数学作业的有42人, 两种作业都完成的有31人, 每人至少完成一种作业. 三(4)班共有学生多少人?2、两块木板各长90厘米, 像下图这样钉成一块木板, 中间重合部分是15厘米, 这块钉在一起的木板总长多少厘米?三、课后作业1、同学们排队去参观展览, 无论从前数还是从后起起, 李华都排在第8个. 这一排共有多少个同学?2、三(5)班有42名同学, 会下象棋的有21名同学, 会下围棋的有17名, 两种棋都不会的有10名. 两种棋都会下的有多少名?3、三年级有107个小朋友去春游, 带矿泉水的有78人, 带水果的有77人, 每人至少带一种. 三年级既带矿泉水又带水果的小朋友有多少人?4、三(4)班排成每行人数相同的队伍入场参加校运动会, 梅梅的位置从前数是第6个, 从后数是第5个;从左数、从右数都是第3个. 三(4)班共有学生多少人?5、两根木棍放在一起, 从头到尾共长66厘米, 其中一根木棍长48厘米, 中间重叠部分长12厘米. 另一根木棍长多少厘米?加减巧算一、知识要点在进行加减运算时, 为了又快又好, 除了要熟练地掌握计算法则外, 还需要掌握一些巧算的方法. 加减法的巧算主要是运用“凑整”的方法, 把接近整十、整百、整千的数看做所接近的数进行简算.进行加减巧算时, 凑整之后, 对于原数与整十、整百、整千……相差的数, 要根据“多加要减去, 少加要再加, 多减要加上, 少减要再减”的原则进行处理. 另外, 可以结合加法交换律、结合律以及减法的性质进行凑整, 从而达到简算的目的.二、精讲精练【例题1】你有好办法迅速算出结果吗?(1) 502+799-298-98 (2) 9999+999+99+9练习1:计算.(1) 308+203-399-97 (2) 99999+9999+999+99+9(3) 1999+199+19 (4) 375+483+525+617【例题2】计算.(1) 487+321+113+279 (2) 736-567+264(3) 877+345-677 (4) 528-248-152练习2:计算.(1) 321+127+73+279 (2) 235-125+365 (3) 987-733-167 (4) 487+(413-89)【例题3】计算下面各题.(1) 962-(284+262) (2) 432-(154-168)练习3:计算.(1) 421+(279-125) (2) 812+(168-112)(3) 823-(175+323) (4) 538-(283-162) 【例题4】2000-111-89-112-88-113-87-114-86-115-85-116-84练习4:计算.(1)800-99-1-98-2-97-3-96-4-95-5(2) 1000-10-20-30-40-50-60-70-80-90【例题5】计算: 98+97-96-95+94+93-92-91+90+89-88-87……-4-3+2+1练习5:计算.(1) 2009+1+2-3-4+5+6-7-8+9+10-11-12+13+14……+2006(2) 1+2-3+4+5-6+7+8-9……+97+98-99三、课后作业1、计算下列各题.(1)256+503+44 (2)953—267—133(3)465—198+335 (4)362—202+2382、用简便方法计算下列各题.(1)43+40+39+41+37+42 (2)503+301-298-91+52(3)199999+19999+1999+199+19 (4)83+81+78+80+84+78+79+77+843、巧算1000-99-98-97-96-95-5-4-3-2-14、29999+2999+299+295、(1)2356-(356+187)(2)5723-(723-189)6、(534+786+896)+(104+214+466)。
三年级奥数重叠问题
三年级奥数重叠问题 Revised by Chen Zhen in 2021第九讲:重叠问题【知识要点】:三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
【例1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?【思路导航】根据题意画出下图。
从图上可以看出,从前数起红旗是第______面,从后数起是第______面,这样红旗就数了______次,重复了______次,所以这行彩旗共有[ ] +[ ]-[ ]=[ ]面。
【课堂反馈1】1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?【思路导航】根据题意画出下图。
由图可看出:小明的位置从左数第____个,从右数第____个,说明横行有[ ]+[ ]-[ ]=[ ]个人;从前数第_____个,从后数第_____个,说明竖行有[ ]+[ ]-[ ]=[ ]人。
所以做操的同学共有:[ ]×[ ]=[ ]人。
【课堂反馈2】1、同学们排队跳舞,每行、每列人数同样多。
三年级奥数4种重叠问题
三年级奥数4种重叠问题
以下是三年级奥数中的 4 种重叠问题:
1. 鸡兔同笼问题:假设有若干只鸡和若干只兔子,它们共有若干只脚。
如果假设其中的一些鸡变成了兔子,那么脚的总数会增加;如果假设其中的一些兔子变成了鸡,那么脚的总数会减少。
问有多少只鸡和兔子?
2. 重叠盒子问题:有若干个盒子,每个盒子都可以容纳若干只小动物。
现在要根据每个盒子的容量,将小动物平均分到每个盒子中。
问有多少个盒子和小动物?
3. 重叠蛋糕问题:有若干个蛋糕,每个蛋糕都可以切成若干份。
现在要根据每个蛋糕的切块数,将蛋糕平均分到每个小朋友手中。
问有多少个蛋糕和小朋友?
4. 重叠排队问题:有若干个小朋友,每个小朋友都可以排在若干种位置。
现在要根据每个小朋友的位置,将小朋友排队。
问有多少个小朋友和排队方式?。
(完整版)三年级奥数--重叠问题
一、简易计算。
(每题5分)(1)585+199(2)602+ 228(3)885-698(4)825-302(5)99999+9999+999 +99+9(6)121+119+120+118+123+122(7)246+178+254+322(8)471-284+129(9)745+837-545(10)785-227-373(11)457+(243+249)(12)871-(401-129)(13)455-(255-188)二、解决问题。
1.把两根长2米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是6分米,这根长木棍有多长?2.把两根同样长的鸡毛掸子绑在一起,使它们变成一根10分米长的棍子,中间重叠部分是10厘米,原来每根鸡毛掸子有多长?3.从1楼走到4楼共要用30秒,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要用多少秒?4.有一根木头长6分米,打算把每根锯成6段,每锯开一处,需要5分钟,全部锯完需要多少分钟?5.小虎在做一道减法题时,把减数十位上的9写成了6,减数个位上的0写成了2,最后得到的差是376,正确的结果应该是多少?6.小龙在做一道减法题时,把被减数十位上的9看成了6,减数个位上的6看成了9,最后得到的差是545,正确的差是多少?重叠问题(1)(1)把两根长8分米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是15厘米,这根长木棍有多长?(2)把两根长15厘米的纸条贴在一起,使其成为一条长纸条,中间重叠部分是4厘米,这根长纸条有多长?(3)把两根长2米的木棍绑在一起,使其成为一根长木棍,中间重叠部分是6分米,这根长木棍有多长?(4)把两段一样长的纸条贴在一起,是它们变成一段54厘米的纸条,中间重叠部分是6厘米。
原来的纸条有多长?(5)把两段一样长的纸条贴在一起,是它们变成一段100厘米的纸条,中间重叠部分是1分米。
原来的纸条有多长?(6)把两根长的鸡毛掸子绑在一起,使它们变成一根12分米长的棍子,中间重叠部分是8厘米,原来每根鸡毛掸子有多长?(7)两块木板各长80厘米,钉成一块木板,中间重叠部分是12厘米,这块长木板有多长?(8)两块木板各长80厘米,钉成一块长150厘米的木板,中间重合部分是多少厘米?(9)两条长2分米的纸条,粘成一条长18厘米的长纸条,中间重合部分是多少厘米?(10)两根长2米的棍子,绑成一根长39分米的长棍子,中间重合部分是多少厘米?重叠问题(2)(1)同学们排队做操,每行每列的人数同样多。
三年级奥数重叠问题
三年级奥数重叠问题重叠问题例1、同学们排队做操,从前数丁丁是第6个,从后数他排在第8个,这一队一共有多少个同学?同类练习:1、同学们排队做操,从前数小王是第8个,从后来数小王是第9个,这一队一共有多少个同学?2、同学们排队,从前数小明是第9个,从后数乐乐是第7个,小明和乐乐中间还有5个人,这一队可能是多少个同学?还可能是多少个同学?例2、为庆祝“六一”,同学们排成每行人数相等的鲜花队,小华的位置是从左边是第2个,从右边是第4个,从前数是第3个,从后面数是第5个,鲜花队有多少人?同类练习:1、三(4)班排成每行人数相同的队伍参加学校运动会,梅梅位置从前数是第6个,从后数是第4个,从左边、从右边数都是第3个,三(4)班共有多少人?2、小朋友排成方阵跳集体舞,笑笑不管从前数,从后数,还是从左数、从右数,都是第5个,这个方阵中一共有多少个小朋友?例3、有两块木板,一块长80cm,另一块长70cm,把它们钉在一起,中间重叠的部分是10cm,这块钉在一起的木板全长多少厘米?同类练习:1、小张把两根长20cm的彩色纸条粘贴成一根长纸条,黏贴部分长3cm,贴好后的长纸条长多少厘米?2、王师傅把两根木条钉成一根长木条,这两根木条,一根长50cm,另一根比第一根短10cm,钉成的木条重叠部分长10cm,钉成的木条全长多少厘米?例4、把两块一样长的木板钉在一起,成一块长木板,这块钉成的木板长14分米,中间重叠部分长2分米,这两块木板分别长多少分米?同类练习:1、把两条一样长的纸条粘贴成一根长16分米的纸条,中间粘贴部分长2分米,这两根纸条的长多少分米?2、把两块木板钉成一条较长的木板,钉成的木板长8分米,中间重叠部分长1分米,已知一块长3分米,另一块长是多少分米?例5、有一块长5分米的木板和一块长7分米的木板钉在一起,得到一块长10分米的木板,中间重叠部分有多长?同类练习:1、把两根长度分别是60cm和40cm的绳子打一个结,结成一根长90cm的绳子,打结部分的长度是多少?2、把3块长度都是5dm的木板钉成一块木板,每个重叠处的长度都是一样,钉成的这块木板总长度为13dm,每个重叠处长度分别是多少分米?例6、自习课商,做完语文作文的有35人,做完数学作业的有28人,全班总人数是50人,每人至少完成一项作业,有多少同学两项作业都做完?同类练习:1、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种,三年级既带矿泉水,又带水果的小朋友有多少人?2、在一次数学测试中,三(3)班50人中有12人两道思考题都没有做对,有32人做对第一道,有20人做对第二道,有多少人两道题都做对?例7、上美术课,三(6)班同学每人都带一种彩色笔,有18人带水彩笔,有37人带油画棒,还有6人两种笔都带,三(6)班一共有多少人?同类练习:1、同学们去图书室借文艺书和科技书,每人都借了书,有27人借文艺书,有32人借科技书,其中5人两类书都借了,去图书室借书一共有多少人?2、三(5)班的同学参加跳绳和踢毽子比赛,有8人没有参加,有21人参加踢毽子比赛,有24人参加跳绳比赛,还有6人两项都参加,三(5)班一共有多少名同学?例8、朝阳小学有50人参加象棋比赛和围棋比赛,参加象棋比赛的有38人,有12人既参加象棋比赛,又参加围棋比赛,参加围棋比赛的有多少人?同类练习:1、50个同学报名参加文体活动,每人至少参加体育组和文娱组中的一个,其中参加体育组的有29人,既参加体育组又参加文娱组的有8人,参加文娱组有多少人?2、40人参加智力比赛,答对第一题的有28人,答对第二题的有21人,两题都答对的有15人,两题都没答对的有多少人?综合练习1、同学们做早操,从前数小刚是第7个,从后数他是第4个,这一队一共有多少个同学?2、同学们排成方阵跳舞,从前数小玉是第5人,从后面数她是第4人,从左数她是第4个,从右数她是第2个,这个方阵一共有多少人?3、同学们排队跳舞,每行,每列人数同样多,小红的位置无论从前数、从后数、从左数还是右数都是第3个,一共有多少个同学跳舞?4、王师傅把两根长度都是25cm的铁丝焊接在一起,焊接部分长5cm,焊接部分长5cm,焊接好的铁丝共长多少厘米?5、张师傅把两块一样长的木板钉成一块木板,钉好的木板长9分米,中间重叠部分长1分米,这两块木板分别长多少分米?6、把一块长45cm和一块长50cm的木板钉在一起,得到一块长85cm的木板,中间重叠部分是多长?7、三(2)班同学每人至少订一份《英语学习报》或《中国少年报》,其中30人订《英语学习报》,有21人订《中国少年报》,全班40人,有多少人两份报纸都订了?8、三(2)班有学生46人,做对第一道思考题的有29人,两道思考题都做对的有5人,两道题都做错的有5人,做对第二道思考题的有多少人?9、三(2)班有学生46人,做对第一道题思考题的有29人,做对第二道思考题的有17人,两道题都做错的有5人,两道题都做对的有多少人?10、三(5)班43人上美术课,有2人没带画笔,带油画笔的有25人,带水彩笔的有23人,两种笔都带的有多少人?11、五(1)班同学排成5条队做操,每队人数一样多,小华的位置是:从前面数第6个,从后面数第4个。
三年级奥数《重叠问题》
第九讲:重叠问题【知识要点】:三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
【例1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?【思路导航】根据题意画出下图。
从图上可以看出,从前数起红旗是第______面,从后数起是第______面,这样红旗就数了______次,重复了______次,所以这行彩旗共有[ ] +[ ]-[ ]=[ ]面。
【课堂反馈1】1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?【思路导航】根据题意画出下图。
由图可看出:小明的位置从左数第____个,从右数第____个,说明横行有[ ]+[ ]-[ ]=[ ]个人;从前数第_____个,从后数第_____个,说明竖行有[ ]+[ ]-[ ]=[ ]人。
所以做操的同学共有:[ ]×[ ]=[ ]人。
【课堂反馈2】1、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级奥数重叠问题集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#
重叠问题
解答重叠问题要用到数学问题中的一个重要原理-----------包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题时,必须要从条件入手认真的分析,有时还要画出示意图,借助图形去思考,找出哪些是重复的,重复了几次明确求得是哪部分,从而找出解题的方法。
1.同学们排队做操,每行人数同样多。
小明的位置从左数是第4个,从右面数是第3个,从前面数是第5个,从后面数是第6个。
做操的同学共有多少人
2.同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数,从后数,从左数,从右边数都是第3个。
共有多少个同学跳舞
3.为庆祝六一,同学们排成每行人数相同的鲜花队。
小华的位置是从左数第2个,从右数是第4个,从前数是第3个,从后数是第5个。
鲜花队共有多少人
4.三(4)班排成每行人数相同的队伍参加学校运动会。
梅梅的位置是从前数是第6个,从后数是第5个,从左数、从右数都是第3个。
三(4)班共有学生多少人
5.把两块同样长的模板如下图这样钉在一起,使其成为了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分的长度是16厘米。
这两块木板各长多少厘米
6.把两段一样长的纸条黏在一起,使其成为一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分的长度是6厘米。
原来两段纸条各长多少厘米
7.把两块同样长的木板钉在一起,钉成一块长35厘米的木板,中间重叠部分长11厘米。
这两块木板各长多少厘米
8.学校进行大扫除,由于鸡毛掸子不够长,为了能够掸掉灰尘,小明想了一个好办法,将鸡毛掸子和木棒绑在一起,使其从头到尾共长180厘米,其中鸡毛掸子长85厘米,鸡毛掸子与木棒重叠部分长20厘米。
木棒有多长
9.一次数学测试,全班36人中做对一道题的有21人,做对两道题的有18人,没人至少做对了一道题。
两道题都做对的有几人
10.三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一项比赛。
已知参加赛跑的学生有36人,参加跳绳的学生有38人。
两项比赛都参加的学生有几人
11.两块相同的木板各长75厘米,钉成了一块长130厘米的木板。
中间重合部分的长度是多少厘米
12.三(5)班有42名同学,会下象棋的同学有21名,会下围棋的同学有17名,两种棋都不会下的同学有10名。
两种都会下的同学有多少名
13.三(1)班订《数学报》的学生有32人,订《阅读报》的学生有30人,两种报纸都订的学生有10人,全班学生没人至少订了一种报纸。
三(1)班有学生多少人
14.三(4)班做完语文作业的学生有37人,做完数学作业的学生有42人,两种作业都做完的学生有31人,没人至少做完一种作业。
三(4)班共有学生多少人
15.两块木板各长90厘米,如下图这样钉成一块木板,中间重合部分的长度是15厘米。
这块钉在一起的木板总长度是多少厘米
16.三年级有107个小朋友去春游,带矿泉水的小朋友有78人,带水果的小朋友有77人,要求矿泉水和水果没人至少带一种。
既带矿泉水又带水果的小朋友有多少人
17.三(1)班有学生50人,参加学校绘画比赛的有20人,既参加绘画比赛又参加摄影比赛的学生有12人,两项比赛都没参加的学生有10人。
参加摄影比赛的学生有多少人
18.三(2)班有学生46人,做对第一道思考题的学生有29人,两道思考题都做对的学生有5人,两道思考题都做错的学生有5人。
做对第二道思考题的学生有多少人
19.三(2)班有学生46人,在一次测验中,做对第一道思考题的学生有29人,做对第二道思考题的学生有17人,两道思考题都做错的学生有5人。
两道思考题都做对的学生有几人
20.三(5)班有43人上美术课,有2人没带画笔,带蜡笔的有25人,带水彩笔的有23人。
两种笔都带的有多少人。