高二数学二项分布及其应用
二项分布及其应用教案定稿
二项分布及其应用教案定稿第一章:引言1.1 教学目标了解二项分布的背景和意义,理解二项分布的概念及其在实际问题中的应用。
1.2 教学内容1.2.1 二项分布的定义通过具体案例引入二项分布的概念,讲解二项分布的基本性质。
1.2.2 二项分布的概率质量函数推导二项分布的概率质量函数,讲解影响二项分布概率的因素。
1.3 教学方法采用案例分析法,通过具体案例引导学生理解二项分布的概念及其应用。
1.4 教学评估通过小组讨论和课堂练习,检查学生对二项分布的理解程度。
第二章:二项分布的概率质量函数2.1 教学目标掌握二项分布的概率质量函数的推导和运用。
2.2 教学内容2.2.1 二项分布的概率质量函数推导讲解二项分布的概率质量函数的推导过程,引导学生理解各个参数的含义。
2.2.2 二项分布的概率质量函数的应用通过具体案例,讲解如何运用二项分布的概率质量函数解决实际问题。
2.3 教学方法采用讲解法,结合具体案例,引导学生理解和运用二项分布的概率质量函数。
2.4 教学评估通过课堂练习和小组讨论,检查学生对二项分布概率质量函数的掌握程度。
第三章:二项分布的期望和方差3.1 教学目标掌握二项分布的期望和方差的计算方法及其应用。
3.2 教学内容3.2.1 二项分布的期望讲解二项分布的期望的计算方法,引导学生理解期望的含义。
3.2.2 二项分布的方差讲解二项分布的方差的计算方法,引导学生理解方差的概念。
3.3 教学方法采用讲解法,结合具体案例,引导学生理解和运用二项分布的期望和方差。
3.4 教学评估通过课堂练习和小组讨论,检查学生对二项分布的期望和方差的掌握程度。
第四章:二项分布的应用4.1 教学目标了解二项分布在不同领域的应用,提高学生解决实际问题的能力。
4.2 教学内容4.2.1 生物学领域的应用讲解二项分布在生物学领域的应用,如基因遗传等。
4.2.2 医学领域的应用讲解二项分布在医学领域的应用,如药物疗效等。
4.2.3 社会科学领域的应用讲解二项分布在社会科学领域的应用,如民意调查等。
高二数学二项分布及其应用
三
凡是少年时代迷恋过几何解题的人,对阿基米德大约都会有一种同情的理解。刚刚觉醒的求知欲的自我享受实在是莫大的快乐,令人对其余一切视而无睹。当时的希腊,才告别天人浑 然不分的童稚的神话时代,正如同一个少年人一样惊奇地发现了头上的星空和周遭的万物, 试图
凭借自己的头脑对世界作出解释。不过,思维力的运用至多是智慧的一义,且是较不重 要的一义。神话的衰落不仅使宇宙成了一个陌生的需要重新解释的对象,而且使人生成了一 个未知的有待独立思考的难题。至少从苏格拉底开始,希腊哲人们更多地把智慧视作一种人 生觉悟,并且相信这种
境遇。但是,也有无可逃脱的时候,我就是百事无心,不想见任何人,不想做 任何事。 自我似乎喜欢捉迷藏,如同蒙田所说:"我找我的时候找不着;我找着我由于偶然的邂逅比 由于有意的搜寻多。"无聊正是与自我邂逅的一个契机。这个自我,摆脱了一切社会的身份 和关系,来自虚无,
归于虚无。难怪我们和它相遇时,不能直面相视太久,便要匆匆逃离。 可是,让我多坚持一会儿吧,我相信这个可怕的自我一定会教给我许多人生的真理。 自古以来,哲人们一直叮咛我们:"认识你自己!"卡莱尔却主张代之以一个"最新的教义 ":"认识你要做和能做的工作!"因为一个人永
二项式定理的应用习题课
知识回顾
1.二项式定理:
(a + b)n = C n0a n + C n1a n- 1b + C n2a n- 2b2 +
L
+
C
n n
-
1abn -
1
+
C nnbn
2.二项展开式的通项:
T k + 1 = C nka n - kbk
高二数学二项分布及其应用
金钻游戏
广义的文化是指人类在社会历史实践过程中所创造的____和___的总和. 应用顺序标号,来保证系统每笔日记账都是唯一的,并且系统不会接受相同编号,能达到的信息处理目标是。A.完整性B.准确性C.授权D.访问限制 [单选,共用题干题]36岁妇女,月经周期规律,近2个月有接触性出血。妇科检查:宫颈重度糜烂,阴道脱落细胞涂片发现核大深染,核形不规则或双核确诊后最恰当的治疗应是。A.全子宫切除术B.扩大性全子宫切除术C.广泛全子宫切除及盆腔淋巴结清扫术D.放射治疗E.放疗后行全子宫切除术 时,防洪库容和兴利库容不结合。A.防洪限制水位和死水位重合B.防洪限制水位高于死水位C.防洪限制水位和正常蓄水位重合D.防洪限制水位高于正常蓄水位 女患,59岁,左侧面部发作性剧痛2年,疼痛自上唇始,延至外眦下方,每次持续数秒钟,讲话、进食、刷牙和洗脸可诱发,神经系统检查无阳性体征。诊断考虑为A.偏头痛B.鼻窦炎C.原发性三叉神经痛D.蝶腭神经痛E.非典型面痛 牙体缺损修复后短期内出现自发痛最常见的原因是A.牙髓充血发展为牙髓炎B.根管侧壁穿孔引起的急性根尖周炎C.创伤造成的急性牙周炎D.继发龋引起的牙髓炎E.邻牙发生牙髓炎 人类行为可分为本能行为和A.外显行为B.社会行为C.生物行为D.遗传行为E.能动行为 女孩从月经初潮至生殖器官逐渐发育成熟的时期称为A.青春期B.排卵期C.性成熟期D.月经期E.发育期 某轮空船排水量为2000t,空船重心高度为5.5m;船舶载荷重量为8000t,其重心高度为3.50m;查得船舶初稳心距基线高度KM为4.70m。该轮的初稳性高度GM为m。A.0.8B.1.2C.1.5D.1.82 下述哪种药物在骨关节炎的治疗中对软骨保护有作用A.糖皮质激素,如强的松B.非甾体类抗炎药C.环孢素AD.硫酸氨基葡萄糖E.间断在关节腔内注射长效激素 商业银行通过同业拆借取得的拆入资金可以用于。A.弥补票据结算、联行汇差头寸的不足B.解决临时性周转资金的需要C.投资政府债券D.发放固定资产贷款E.投资上市公司股票 存放在磁盘上的文件,称为。A、批处理文件;B、执行文件;C、磁盘文件;D、数据库文件。 为何晴天天空常呈尉蓝色?阴天时天空常呈现乳白色? 帧中继技术主要用于传递业务,它使用一组规程将数据以帧的形式有效地进行传送。 下列哪一项不是家庭资产负债表中金融项目应该包括的内容。A.银行存款B.房屋C.股票D.债券 当在颈部行常规甲状腺显像,未见甲状腺显影,结合XCT等其他影像检查疑有异位甲状腺的患者,应选择下列哪种显像剂来确诊异位甲状A.B.C.D.E.以上都不对 患者,女性70岁,因双眼视力骤降半天就诊。检查:右眼视力0.02,左眼0.03,结膜无充血,角膜透明,角膜后沉着物阴性,瞳孔对光反射对称、迟钝,晶状体轻度混浊,玻璃体无混浊;视乳头充血水肿。下列有关本病的治疗原则中错误的为()A.大剂量皮质类固醇B.大剂量维生素BC.病因治疗 在证券清算和价款清算中,可以合并计算的包括。A.同一清算期内发生的不同种类的证券B.同一清算期内发生的不同种类的证券价款C.不同清算期内发生的相同种类的证券D.不同清算期内发生的相同种类的证券价款 以下哪种物质为骨吸收促进因子,抑制骨胶原合成。A.前列腺素B.白细胞介素C.肿瘤坏死因子D.成纤维细胞生长因子E.以上都不是 隐睾下降固定术,一般应在几岁以内手术()A.2岁以内B.5岁以内C.7岁以内D.9岁以内E.12岁以内都可以 男性,70岁,腹股沟三角突出半球形包块,易还纳,未进入阴囊,不透光,主要考虑为A.鞘膜积液B.隐睾C.股疝D.斜疝E.直疝 水中硬度的表示方法,按阳离子表示,可分为硬度和硬度。 青少年身体的发展变化包括A.认识过程发展B.机体的正常发育和体质的增强C.个体的发展D.个性心理发展和个体的发展 符合下颌第一乳磨牙特点的是。A.面似以近中缘为底的三角形B.颊面远中缘长于近中缘C.近中颊颈嵴特别突出D.颊面似以远中缘为底的三角形E.牙根细长,分叉度小 10kV可燃性油浸电力电容器设置单独电容器室。A.宜B.应C.必须D.可 可提高婴儿出生后局部免疫屏障的是A.IgAB.IgGC.IgMD.IgDE.IgE 以铸造生铁为原料,经化铁炉重熔并铸造成型的高碳系铁合金称为。 患者,女性,48岁,左眼红痛伴视力下降4天。检查左眼视力0.4,结膜混合性充血,角膜后沉着物阳性,房水闪辉阳性,瞳孔小,有后粘连,玻璃体前部轻度混浊。最可能是下列哪种疾病()A.急性闭角性青光眼B.急性结膜炎C.视网膜脱离D.急性虹膜睫状体炎E.新生血管性青光眼 保证邮联组织法的实施和邮联工作的进行而制定的条款,且对邮联各会员国均有约束力的是。A.邮联总规则B.邮联组织法C.万国邮政公约D.邮联协定 男性,30岁。踢足球时被踢伤右小腿外侧。X线检查:右腓骨干骨折,有部分移位。较恰当的治疗是。A.切开复位钢板螺丝钉内固定B.切开复位髓内针内固定C.石膏外固定D.皮牵引治疗E.骨牵引治疗 下列不符合右心室肥厚心电图表现的是。A.V1导联R/S≥1B.RV5>2.5mVC.QRS电轴≥90°D.RaVR>0.5mVE.aVR导联R/S≥1 LGD的含义是A、债项预期损失率,根据债项等级与违约损失率的映射关系取得B、违约风险暴露,即贷款风险敞口,就是贷款违约时的余额C、客户违约概率,通过历史数据统计的客户信用等级对应的平均违约概率D、客户贡献率,根据客户的存款、贷款(含票据贴现)和中间业务收入计算 下列药物粉碎的目的不包括A.增加药物的表面积,促进药物的溶解与吸收,提高药物的生物利用度B.便于调剂和服用C.将表面能转变成机械能D.加速中药中有效成分的浸出或溶出E.为制备多种剂型奠定基础 乳癌根治术后,局部和区域复发中最常见的部位为A.腋窝淋巴结B.锁骨上淋巴结C.胸壁D.内乳淋巴结E.手术疤痕处 梅尼埃病的基本病理改变是()A.膜迷路纤维化B.膜迷路充血C.膜迷路积水D.螺旋器退行性变E.血管纹萎缩 肺痨的治疗大法以何者为主A.滋阴B.益气C.养血D.温阳E.抗痨 上清肺润燥,中清胃生津,下滋阴降火的药物是A.知母B.芦根C.石膏D.竹叶E.夏枯草 电力生产企业有特殊情况需另行制定上网电价的,具体办法由供电局规定。A.正确B.错误 商业银行充实资本、提高资本充足率,可以采用的做法包括。A.发行普通股B.发行可转换债券C.发行次级债券D.发行非累积优先股E.发行短期债券 球墨铸态管球化剂的作用有哪些?
高考数学复习二项分布及其应用
引例:抛掷两枚骰子 (1)两枚出现的点数都是偶数的概率是多少? (2)若两枚都出现偶数点,就说这次实验成功, 试求在3次实验中成功次数X的分布列.
1.事件的相互独立性定义: 设A,B为两个事件,如果P(AB)=P(A)P(B),则 称事件A与事件B相互独立。
引例:抛掷两枚骰子 (1)两枚出现的点数都是偶数的概率是多少? (2)若两枚都出现偶数点,就说这次实验成功, 试求
C n2 5 (1)设“世博会会徽”卡有 n 张,由 2 ,得 n 5 , C9 18 C42 1 故“海宝”卡有 4 张,抽奖者获奖的概率为 2 ; C9 6
(2) ~ B(4, ) 的分布列为 P( k ) C 4 ( ) ( )
k k
1 6
1 6
5 6
4 k
例 3.某单位举办 2010 年上海世博会知识宣传活动, 进行现场 抽奖.盒中装有 9 张大小相同的精美卡片,卡片上分别印有 “世博会会徽”或“海宝”(世博会吉祥物)图案; 抽奖规则 是: 参加者从盒中抽取卡片两张, 若抽到两张都是“海宝” 卡即可获奖,否则,均为不获奖. 卡片用后放回盒子,下一位 参加者继续重复进行.活动开始后,一位参加者问:盒中有几 张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是 5 “世博会会徽”卡的概率是 , 18 (1)求抽奖者获奖的概率; (2)现有 4 人依次抽奖,用 表示获奖的人数,求 的分布列.
例1:甲乙两人独立地对同一目标各射击一次,其中 命中率分别是0.6和0.5
(1)求两人都击中目标的概率 (2)求两人中恰有一人击中目标的概率 (3)求两人中至多有一人击中目标的概率
变式.若甲连续射击4次,且各次射击是否击中目标
相互之间没有影响,有下列结论:
【高中数学】二项分布及其应用
【高中数学】二项分布及其应用一、条件概率1.定义:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率。
记作P(B |A),读作A发生的条件下B的概率。
2.事件的交(积):由事件A和事件B同时发生所构成的事件D,称为事件A与事件B的交(或积)。
记作D=ANB或D=AB3. 条件概率计算公式:P(B | A)相当于把AB发生的概率:若P(A)>0,则P(AB)=P(B | A) · P(A)(乘法公式);O≤P(B | A)≤1 .4. 公式推导过程:5. 解题步骤:例1. 10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二个又取到次品的概率.解:设A={第一个取到次品},B={第二个取到次品}所以,P(B | A)=P(AB)/P(A)=2/9答:第二个又取到次品的概率为2/9.二、相互独立事件1. 定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
说明:(1)判断两事件A、B是否为相互独立事件,关键是看A(或B)发生与否对B(或A)发生的概率是否影响,若两种状况下概率不变,则为相互独立.(2)互斥事件是指不可能同时发生的两个事件.相互独立事件是指一事件的发生与否对另一事件发生的概率没影响.(3)如果A、B是相互独立事件,则A的补集与B的补集、A与B的补集、A的补集与B也都相互独立.2. 相互独立事件同时发生的概率公式两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
则有:P(A●B)=P(A)●P(B)说明:(1)使用时,注意使用的前提条件;(2)此公式可作为判断事件是否相互独立的理论依据,即P(A · B )=P(A) · P (B)是A 、B 相互独立的充要条件. (3)如果事件Al,Az, … Aa 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。
高二数学二项分布及其应用
时时计划
一般情况下,测定家畜下列测定点的温度,其中皮温最高的是A、直肠B、腋下C、尾尖D、耳尖 下列说法中,是不正确的。A.一般的分布式系统是建立在计算机网络之上的,因此分布式系统与计算机网络在物理结构上基本相同B.分布式操作系统与网络操作系统的设计思想是不同的,但是它们的结构、工作方式与功能是相同的C.分布式系统与计算机网络的主要区别不在它们的物理结构,而是 男,77岁,有10年排尿不畅病史,近期排尿明显费力,伴尿液不断从尿道口滴出,最大的可能是A.遗尿B.真性尿失禁C.压力性尿失禁D大肠杆菌B.变形杆菌C.产气杆菌D.绿脓杆菌E.金黄色葡萄球菌 防止有毒植物中毒事故的措施有哪些。某年9月中旬,某县发生5名小学生食物中毒,报告食用杏仁,潜伏期均在1小时以内,症状主诉口中苦涩,流涎,头晕,头痛,恶心,呕吐,脉频,四肢软弱无力,5名学生不同程度呼吸困难。A.不要生吃各种核仁B.开展卫生宣传C.杏仁此类产品一定要煮 信息化军队 是以国家为主体,通过政府的收支活动,集中一部分社会资源,用于履行政府职能和满足社会公共需要与经济活动。A.财政B.税收C.国债D.股票 中国进出口银行业务之一是为机电产品和成套设备等资本性货物提供。A.出口信贷B.进口信贷C.融资租赁D.贴息 在询价一报价方法中,除非下列哪种情况,买方或许希望在确定最终采购决策之前与供应商进行谈判:A.需求是低价值的;B.所有的供应商报出相同的价格;C.一个供应商已经报出比其他供应商低很多的价格;D.一个供应商的首席执行官与采购经理是密切的私人朋友。 盐化土壤 2008年奥运会会徽的名称是。A.中国印舞动的B.京字印C.福娃D.美丽的科技大学 图纸上标注的比例是1:1000则图纸上的10mm表示实际的。A.10mmB.100mmC.10mD.10km 时分多址系统是的重用。 商业银行因为没有足够的现金来满足客户取款需求而引起的风险是。A.信用风险B.操作风险C.流动性风险D.合规风险 下列哪种情况最不可能是牙周病的局部促进因素。A.不良修复体B.设计不良的活动义齿C.正畸治疗D.用橡皮圈关闭前牙间隙E.牙线的使用 一个数据包过滤系统被设计成只允许你要求服务的数据包进入,而过滤掉不必要的服务。这属于什么基本原则A.最小特权B.阻塞点C.失效保护状态D防御多样化 因肝属木,味酸,所以口酸只见于肝胃郁热。A.正确B.错误 要求保持床单位清洁干燥,无、、污迹,无,无。 植物的根皮、茎、叶、果实分别都是常用中药,此植物是A、菘蓝B、枸杞C、肉桂D、桑 石油产品的损耗主要有、或人力无法抗拒的自然灾害所造成的油品数量的损失。 与起搏器寿命有关的因素不包括。A.主要由起搏器的电池决定B.与耗电量有关C.与起搏器工作的百分比有关D.与起搏阈值有关E.与起搏器体积大小有关 ()开办需要批准的个人理财业务,应由其法人统一向中国银行业监督管理委员会申请,由中国银行业监督管理委员会审批。A.中资商业银行(不包括城市商业银行和农村商业银行)B.城市商业银行C.农村商业银行D.外资独资银行 除哪项外均是全身性骨关节炎表现A.关节功能预后较差B.有明显家族聚集倾向C.有Bouchard结节D.有Hebereden结节E.累及多个指间关节 《川西钻探公司环境保护管理办法》规定,井场周围造成局部污染,责任性赔、罚款在的为较大环境污染事故。A、6000-10000;B、10000-50000;C、50000-80000。 舌弓指A.第一鳃弓B.第一鳃沟C.第二鳃弓D.第二鳃沟E.第三鳃弓 总承包合同管理模式下进度管理的主要特点是。A.采购程序的复杂性B.设计细节的不确定性C.采购过程外部条件的影响性D.采购数量的不确定性 飞行考试每个项目分别评分,并给予总体评分和评语,最低通过分数为A、80分(百分制)B、60分(百分制)C、4分(五分制) 如果高水平学生在测验项目上能得高分,而低水平学生只能得低分,那么说明下列哪种质量指标高()。A.效度B.信度C.难度D.区分度 下列各组中的物质,都是由分子构成的是。A.二氧化碳、二氧化硅、二氧化硫B.氮气、钠蒸气、氢气C.氧化钙、氯化镁、苛性钠D.二氧化硫、氨气、蔗糖 女性患者,62岁,晨起出现讲话不清,右侧肢体无力,2天后病情渐加重。血压148/80mmHg,意识清,Broca失语,右侧偏瘫。可完全排除的诊断是A.脑栓塞B.动脉粥样硬化性脑梗死C.TIAD.脑出血E.腔隙性梗死 试述影响我国古代小农经济形成的主要因素。 隐孢子虫在人体主要寄生部位是A.小肠B.肺C.扁桃体D.胆囊E.生殖道 骨的化学成分A.主要含有机物和无机物两种成分B.无机物使骨具有韧性和弹性C.成人骨有机物与无机物之比为1:1D.幼儿骨无机物含量较多E.老年人骨有机物含量较多 对于从事危及公路安全的作业,如在大中型公路桥梁和渡口周围200m、公路隧道上方和洞口外100m范围内,进行爆破作业以及其他危及公路、公路桥梁等安全的活动,由交通主管部门责令停止违法行为,可以处以罚款。A.1万元以上B.2万元以下C.3万元以下D.3万元以上 [多选,案例分析题]患者男,51岁。有结核病接触史,吸烟30余年,无自觉症状。体检时胸片发现左上肺于第2前肋间近外侧胸壁处有直径约3cm的肿块阴影,边缘较模糊,痰液检查未发现癌细胞,亦未找到抗酸杆菌,支纤镜检阴性。如果该患者术后病理报告为小细胞肺癌,关于SCLC放疗的正确说 当井喷失控时,下列应急程序必须执行。A.现场总负责人或其指定人员向当地政府报告,协助当地政府作好井口500m范围内居民的疏散工作,根据监测情况决定是否扩大撤离范围B.关停生产设施C.设立警戒区,任何人未经许可不得入内D.请求援助 对慢性阻塞性肺气肿诊断最有意义的检查是A.血气分析B.胸部X线检查C.心电图和心电向量检查D.肺功能检查E.肺动脉压测定 “16Mn”是指。 砂中的含泥量不应超过A、1%B、3%C、5%D、8% 是保证产品质量和安全生产的重要条件。
二项分布及其应用(答案)
二项分布及其应用【知识要点】一、条件概率及其性质1、条件概率一般地,设A ,B 为两个事件,且0)(>A P ,称)()()(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的条件概率。
2、性质(1)任何事件的条件概率都在0和1之间,即1)(0≤≤A B P .(2)如果B 和C 是两个互斥事件,则)()()(A C P A B P A C B P ==Y 。
【例题1—1】从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则=)(A B P ( B ) A 、81 B 、41 C 、52 D 、21 【例题1—2】在一次考试的5道题中,有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为 21 。
【例题1—3】某地区空气质量监测表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A )A 、0.8B 、0.75C 、0.6D 、0.45【例题1—4】从混有5张假钞的20张一百元钞票中任意抽取2张,将其中一张在验钞机上检验发现是假钞,则这两张都是假钞的概率为( A )A 、172B 、152C 、51D 、103 【例题1—5】把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则=)(A B P ( A )A 、21B 、41 C 、61 D 、81 【例题1—6】1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则在从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是94 。
二、相互独立事件及n 次独立重复事件1、相互独立事件同时发生的概率(1)相互独立事件的定义:如果事件A (或B )是否发生对事件B (A )发生的概率没有影响,这样的两个事件叫做相互独立事件。
二项分布及其应用
二项分布及其应用1. 相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件.(2)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立.(3)若P (AB )=P (A )P (B ),则A 与B 相互独立.2. 二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验, 在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)n 次独立重复试验中,用X 表示事件A 发生的次数,设试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布, 记为X ~B (n ,p ),并称题型一 相互独立事件的概率例1 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (1)求乙投球的命中率p ;(2)求甲投球2次,至少命中1次的概率;(3)若甲、乙两人各投球2次,求共命中2次的概率.练:甲、乙两运动员,对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,(1)两人都射中的概率;(2)两人中恰有一人射中的概率; (3)两人中至少一人射中的概率;(4)两人中至多一人射中的概率.甲、乙、丙做一道题,甲做对的概率12,三人都做对的概率124,三人全做错的概率是14. (1)求乙、丙两人各自做对这道题的概率;(2)求甲、乙、丙三人恰有一人做对这道题的概率.题型二 独立重复试验与二项分布例2 某气象站天气预报的准确率为80%,计算:(结果保留到小数点后第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.练习. 某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X 为3人中参加过培训的人数,求X 的分布列.粒子A 位于数轴x =0处,粒子B 位于数轴x =2处,这两颗粒子每隔1秒钟向左或向右移动一个单位,设向右移动的概率为23,向左移动的概率为13. (1)求4秒后,粒子A 在点x =2处的概率;(2)求2秒后,粒子A 、B 同时在x =2处的概率.基础测试1.两人独立地破译一个密码,他们能译出的概率分别为15,14,则密码被译出的概率为( ) A .0.45 B .0.05 C .0.4 D .0.62.一学生通过一种英语听力测试的概率是12,他连续测试两次,恰有一次通过的概率是 A.14 B.13 C.12 D.343.已知随机变量X 服从二项分布X ~B ⎝⎛⎭⎫6,13,则P (X =2)等于( ) A.1316 B.4243 C.13243 D.802434.一次测量中出现正误差和负误差的概率都是12,在5次测量中至少3次出现正误差的概率 A.516 B.58 C.23 D.125.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.6.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是 A.⎝⎛⎭⎫125 B .C 25⎝⎛⎭⎫125 C .C 25⎝⎛⎭⎫123 D .C 25C 35⎝⎛⎭⎫125 7.一个电路如图所示,A 、B 、C 、D 、E 、F 为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( )A.164B.5564C.18D.1168.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为________(用数字作答).9.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为________.10.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.12B.35C.23D.3411. 明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.12.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是13. (1)求这支篮球队首次胜场前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好胜了3场的概率.13.甲、乙两个乒乓球选手进行比赛,他们的水平相当,规定“七局四胜”,即先赢四局者胜,若已知甲先赢了前两局,(1)乙取胜的概率;(2)比赛打满七局的概率;(3)设比赛局数为ξ,求ξ的分布列.。
高二数学二项分布及其应用试题
高二数学二项分布及其应用试题1.已知随机变量服从二项分布,,则等于( )A.B.C.D.【答案】D【解析】二项分布公式,其中q=1-p依照题意有p=, n=6, k="2" ,q=,所以=,故选D。
【考点】本题主要考查概率的计算及二项分布公式的应用,考查考生的计算能力。
点评:注意运用计算公式时,分清p,q的值。
2. 10个球中有一个红球,有放回的抽取,每次取出一球,直到第次才取得次红球的概率为()A.B.C.D.【答案】C【解析】由题意知10个球中有一个红球,有放回的抽取,每次取出一球,每一次的抽取是相互独立的,得到本实验符合独立重复试验,直到第n次才取得k(k≤n)次红球,表示前n-1次取到k-1个红球,第n次一定是红球.根据独立重复试验的公式得到P=,故选C.【考点】本题主要考查n次独立重复试验中恰好发生k次的概率。
点评:本题考查独立重复试验,是一个易错题,解题时注意直到第n次才取得k(k≤n)次红球,表示前n-1次取到k-1个红球,第n次一定是红球,这个地方容易忽略。
3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为,乙投中的概率为,而且不受其他次投篮结果的影响,设投篮的轮数为,若甲先投,则等于()A.B.0.24k-1×0.4C.D.【答案】B【解析】∵甲和乙投篮不受其他投篮结果的影响,∴本题是一个相互独立事件同时发生的概率,∵每次投篮甲投中的概率为0.4,乙投中的概率为0.6,甲投篮的次数为,甲先投,则=k表示甲第K次投中篮球,而乙前k-1次没有投中,根据相互独立事件同时发生的概率得到0.4k-1×0.6k-1×0.4=0.24k-1×0.4;故选B.【考点】本题主要考查相互独立事件的概率乘法公式.点评:是一个基础题,本题最大的障碍是理解=k的意义,相互独立事件是指,两事件发生的概率互不影响,注意应用相互独立事件同时发生的概率公式。
第06章二项分布及其应用
二项分布概念:二项分布即重复n次独立的伯努利试验。
在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是伯努利分布。
该事件发生k次的概率为:P=C(k,n)×p^k×(1-p)^(n-k),其中C(k,n)表示组合数,即从n个事物中拿出k个的方法数.,p为事件发生的概率,k是发生的次数,其中k=1,2,3...n,Ek=np,方差:Dk=np(1-p)例6-1某种药物治疗某种非传染性疾病的有效率为0.70,无效率为0.30。
今用该药治疗该疾病患者10人,试分别计算这10人中有6人、7人、8人有效的概率(《医学统计学》,第三版,孙振球)。
#源代码例6-1:dbinom(6,10,0.7)#二项分布函数dbinom(7,10,0.7)dbinom(8,10,0.7)#其中dbinom(k,n,p)中,k是发生的次数,10是共次数,p是概率>#源代码例6-1:>dbinom(6,10,0.7)[1]0.2001209>dbinom(7,10,0.7)[1]0.2668279>dbinom(8,10,0.7)[1]0.2334744>#其中dbinom(k,n,p)中,k是发生的次数,10是共次数,p是概率例6-2在对13名输卵管结扎的育龄妇女经壶腹部-壶腹部吻合术后,观察其受孕情况,发现有6人受孕,试据此资料估计该吻合术受孕率的95%可信区间。
#源代码例6-2:binom.test(6,13,p=6/13,conf.level=0.95)>#源代码例6-2:>binom.test(6,13,p=6/13,conf.level=0.95)Exact binomial testdata:6and13number of successes=6, number of trials=13, p-value=1alternative hypothesis:true probability of success is not equal to0.461538595percent confidence interval:0.19223240.7486545sample estimates:probability of success0.4615385例6-3在观测一种药物对某种非传染性疾病的治疗效果时,用该药治疗了此种非传染性疾病患者100人,发现55人有效,试据此估计该药物治疗有效率的95%可信区间。
高中数学二项分布及其应用
二项分布及其应用二项分布是概率论中最重要的几种分布之一,在实际应用和理论分析中都有着重要的地位:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生K 次的概率为P(X=k)=C n k p k (1-p)n-k ,k=0,1,2,…,n ,此时称随机变量X 服从二项分布,记作X ~B(n,p),并称p 为成功概率。
二项分布是一种常见的重要离散型随机变量分布列,其识别特点主要有两点:其一是概率的不变性;其二是试验的可重复性,下面加以例谈。
例题1 某车间有10台同类型的机床,每台机床配备的电动机功率为10千瓦,已知每台机床工作时,平均每小时实际开动12分钟,且开动与否是相互独立的。
现因当地电力供应紧张,供电部门只提供50千瓦电力,这10台机床能够不因电力不足而无法工作的概率为多大?在一个工作班的8小时内,不能正常工作的时间大约是多少?解析:设10台机床中实际开动的机床数为随机变量ξ,由题意知满足二项分布,即ξ~B (10,p ),其中p 是每台机床开动的概率,p=516012= ,从而)10,2,1,0()54()51()(1010 ===-k C k P k k k ξ , 50千瓦电力可同时供5台机床同时开动,因而10台中同时开动数不超过5台都可以正常工作,这一事件的概率55510644107331082210911010010)54()51()54()51()54()51()54()51()54)(51()54()5(C C C C C C P +++++=≤ξ994.0≈。
由以上知,在电力供应为50千瓦的条件下,机床不能正常工作的概率仅为0.006,从而一个工作班的8小时内不能正常工作的时间大约为8×60×0.006=2.88(分钟),这说明,10台机床的工作基本不受电力供应紧张的影响。
高二数学(理)二项分布及其应用人教实验版(A)知识精讲
高二数学(理)二项分布及其应用人教实验版(A )【本讲教育信息】一. 教学内容:二项分布及其应用二. 重点、难点: 1. 条件概率在事件A 发生的条件下,事件B 发生的概率)()()|(A P AB P A B P =)|()|()|(A C P A B P A C B P +=⋃2. 独立重复试验n 次独立重复试验中恰发生k 次的概率k n kk n p P C k P --==)1()(ξ(P 为一次试验成功概率)3. 二项分布n 次独立重复试验中随机变量服从二项分布 X~B (n ,p ) EX=np DX=np (1-p )【典型例题】[例1] 甲、乙两人投篮投中的概率分别为0.6、0.7两个各投三次,求得分相同的概率)()()()()(33221100B A P B A P B A P B A P D P +++=223213213336.0)7.01(7.0)6.01(6.0)7.01()6.01(C C C +-⋅-+--=321.07.06.0)7.01(7.0)6.01(33223=⋅+-⋅-C[例2] 在四次独立重复试验中,事件A 至少发生一次的概率为8180,求事件A 在一次试验中发生的概率。
设x A P =)(3142224334444)1()1()1(8180x x C x x C x x C x C -+-+-+=404)1(1x C --= 811)1(4=-x 32=x[例3] 同时抛掷15枚均匀的硬币。
(1)求至多有一枚正面向上的概率;(2)判断正面向上为奇数枚的概率与正面向上为偶数枚的概率是否相等。
(1))1()0(P P P +=11141151515)21()21()21()21(=⋅⋅+=C C(2)P (奇)=15151521331512331514115)21()21()21()21()21()21)(21(⋅+++⋅+C C C C1515155********)21)((C C C C ++++= 21)21(21514=⋅=∴ )(奇P 21)(==偶P[例4] 在某次测验中共10道判断题,每题10分。
高中 数学 选修 二项分布及其应用
二项分布及其应用【知识要点】1、条件概率的定义和性质(1)定义:一般地,设A,B 为两个事件,且 ,称)()()(A P AB P A B P =为在 的条件下, 的条件,)(A B P 读作A 发生的条件下B 发生的概率。
(2)性质:①条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即 ②如果B 和C 是两个互斥事件,则2、事件的相互独立性设A ,B 为两个事件,如果 ,则称事件A 与事件B 相互独立。
如果事件A 与B ,那么A 与-B ,-A 与B ,-A 与-B 也都3、n 次独立重复试验一般地,在相同条件下重复做的n 次试验成为 。
4、二项分布若设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为P ,那么在n 次独立重复试验中事件A 恰好发生k 次的概率为()__________,P X k ==其中k 的取值为_________.此时随机就是X 服从二项分布,记为 ,并称P 为成功概率。
【典型例题】1、甲、乙两地都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%求:甲市为雨天,乙市也为雨天的概率 乙市为雨天,甲市也为雨天的概率2、加工某种零件需经过三道工序。
设第一、二、三道工序的合格率分别为109、98、87,且各道工序互不影响。
(1) 求该种零件的合格率;(2) 从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率。
3、某气象站天气预报的准确率为80%,计算(结果保留两个有效数字): (1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率4、从6名男同学和4名女同学中随机选出3名同学参加计算机理论测试,每位同学通过测试的概率为0.7,试求:(Ⅰ)选出的三位同学中至少有一名女同学的概率;(Ⅱ)选出的三位同学中同学甲被选中并且通过测试的概率; (Ⅲ)设选出的三位同学中男同学的人数为ξ,求ξ的概率分布.【巩固练习】1、一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为 ( ) A.41004901C C - B.4100390110490010C C C C C + C.4100110C C D.4100390110C C C .2、已知盒中装有3只螺口与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为 ( ) A.310 B.29 C.78 D.793、国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ) A.5960 B.35 C.12 D.1604、如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率 都是12,且是相互独立的,则灯泡甲亮的概率为 ( )A.18B.14C.12D.1165、位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位于点(2,3)的概率是 ( )A .(12)3B .25C (12)5 C .35C (12)3D .25C 35C (12)56、甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 ( )A. 0.216B.0.36C.0.432D.0.648 7、已知随机变量服从二项分布,,则(等于 ( )A.B. C.D.8、设某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第次首次测到正品,则等于 ( )A. B. C. D.9、设随机变量的概率分布列为,则的值为 ( )A B C D10、甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为,乙投中的概率为,而且不受其他次投篮结果的影响,设投篮的轮数为,若甲先投,则等于( )A.B.C.D.二. 填空题1、设A 、B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B发生的概率为12,则事件A 发生的概率为________________.2、有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.3、某人射击1次,击中目标的概率是0.8,他射击4次,至少击中3次的概率是________.4、三人独立地破译一个密码,它们能译出的概率分别为、、,则能够将此密码译出的概率为________.三. 解答题1、甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率.2、一考生参加某大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被该考生正确做出的概率都是34.(1)求该考生首次做错一道题时,已正确做出了两道题的概率;(2)若该考生至少正确作出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率.3、某单位有6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立) (1)求至少3人同时上网的概率;(2)至少几个人同时上网的概率小于0.3。
高二数学二项分布及其应用
;图文快印 图文快印
;
别来无恙乎,挑帘入座,可对弈纵横、把盏擎歌,可青梅煮酒、红袖添香 国学大师陈寅恪,托十载光阴,毕暮年全部心血,著皇皇80万言《柳如是别传》。我想,灵魂上形影相吊,慰先生枯寂者,唯有这位300年前的秦淮女子了。其神交之深、之彻,自不待言。 6 古人尚神交古人,今 人当如何? 附庸风雅的虚交、名利市场的攀交、蜂拥而上的公交、为稻粱谋的业交,甚嚣尘上,尤其炒栗子般绽爆的“讲坛热”“国学热”“私塾热”“收藏热”“鉴宝热”“拍卖热”。但人生意味的深交、挚交,纯粹的君子之交、私人的精神之恋,愈发稀罕。 读闲书者少了,读古人 者少了,读古心者更少。 星转斗移,今心性已大变。 有朋友曾说过一句:为什么我们活得如此相似? 问得太好了。人的个体性、差异性越来越小。恰如生物多样性之锐减,人生多样性也急剧流失,精彩的生活个案、诗意的栖息标本,皆难搜觅。 某日,我半玩笑地对一同事说:“给我 介绍一两位闲人吧,有趣的人,和我们不一样的人,比我们有意思有意义 ”他长期做一档“讲述老百姓自己的故事”的节目,猎奇于民间旮旯,又兼话剧导演,脑筋活泛,当有这方面资源。他嘿嘿几声,皱眉半晌,摇头:“明白你的意思,但不骗你,这物种,还真绝迹了,恐怕得往古 时候找了。” 陋闻了不是?我就知道一位:王世襄,九十高龄,人誉“京城第一玩家”。不过朋友所言也是,老人虽在世,但显然不属于当下,乃古意十足之人,算是古时留给后世的“漏”。在现代眼里,世襄不真实;在世襄看来,眼前也不真实。 王世襄活在旧光阴和白日梦里,连个 发小、玩伴都找不到。 其实还有位我爱羡的前辈,汪曾祺。只是先生已驾鹤西去。 “恐怕得往古时候找了。”朋友没说错。 论数量,古有几千年、数十朝的人物库存,可供“海选”。论质量,物境决定心境,那会儿时光疏缓、云烟含幽,万象步履稳健、优游不迫,又讲究天人合一、 师法自然所滋养出来的人物,论心质、趣味、品性,皆拔今朝一筹;论逍遥、活法、各色,亦富饶于当代,可谓千姿 百态、洋洋大观。 而现代社会,薄薄几十年景,风驰电掣、激酣凌乱;又值大自然最受虐之际,江湖枯萎,草木疲殆,世心莫不如物;加上人生高度雷同,所邂逅者无非 当代截面上的同类,逢人如遇己,大同小异,权当照了回镜子。 总之,论人物美学资源,彼时与今朝,如大集市和专卖店。 前者种类多、品相全,随你挑。而后者往往只卖一个牌子。 7 有时候,你会觉得爱一个当代人是件很吃力、很为难的事。 除物理差异,此人和另者没大区别。其 所思所想、心内心外,其喜怒、追逐、情态、欲望、口头禅、价值观、注意力皆堪称这个时代的流行货色和标准件,乃至色相都是统一美容之果。总之,人复制人,人生复制人生,连“一方水土一方人”都难成立了。 那么,你非此人不爱不嫁不娶的理由是什么呢?其价值唯一性、不可是会暗暗和自己讲理的。何以当代男女间的背叛如此容易和盛行(甚至无须理由,给个机会就成)?我想,根源恐于此。 夸张点说:这个时代,有异性,无异质。有肉身之异体,无精神之异态。 只求物理性感,不求灵魂性感,恐才是真正的爱情危机。不仅爱情,友谊的处境也差不多,因为在发生原理上,二者都是献给个体的,都基于个体差异和吸引,所以麻烦一样。 一位我欣赏的朋友,乃古典音乐发烧友,酷爱巴赫、马勒、勃拉姆斯。她说过一段让我吃惊又马上领会的话, 她说:“与音乐为伴,你很难再爱上别人,你会觉得自己很完整,什么也不缺,不再需要别的男人或女人,尤其他或她出自眼前这个世界,这个和音乐格格不入的世界 ” 我说,我明白。 8 “朝市山林俱有事,今人忙处古人闲。” 我喜欢散步式的活法,那种挂着草鞋、脚上带泥的徒步 人生,那种溜溜达达、拖鞋节拍的人生。而现代人崇尚皮鞋与轮胎,无缘泥泞和草木,乃疾行式的活法,是沥青路和跑步机上的人生。 有支摇滚乐队叫唐朝乐队,唐朝乐队有个主题叫“梦回唐朝”。 唐朝?我欣赏这记冲动。这是理想主义肩上的红旗,是精神漂流瓶里的小纸条。 投宿 于何朝无所谓,重要的是它意识到生命除了当代还有别的,除了现实还有“旁在”。重要的是它不甘心被时尚蒙上眼罩,不甘心一辈子只与现状为伍,乖乖在笼子里踱步,不甘心肉体被驯服后还要交出灵魂和梦,并让该逻辑无理地合理化,不甘心精神上只消费当下和当下制造它要挣扎、 突围,它试图溯源而上、逆流而上,寻着古代的蹄印搜索未来的马匹。 人之外,还有人。世之外,还有世。 那个世,或许是前世,或许是后世 一个人的精神,若只埋头当下,不去时代的地平线以外旅行,不去光阴深处化缘,不以“古往今来”为生存背景和美学资源那就不仅是活得太 泥实太拘谨的问题,而是生命的自由度和容积率,遭遇了危机。若此,人生即难成一本书,唯有一张纸,无论这纸再大,涂得再密密麻麻、熙熙攘攘,也只是苍白、薄薄的一个平面。 人这一辈子,人类这一辈子两者间有一种联系,像胎儿和母腹。应找到那条脐带,保养好它,吸吮养分, 以滋补和校阅今世的我们,以更好地学习人生,摆渡时代烦忧 探古而知今亏,藏古方觉身富。 一个人,肉体栖居当代,只有“个体的一生”,但心灵可游弋千古,过上“人类的一生”。 种一片古意葱茏的林子吧,得闲去串串门,找几位熟人、朋友或情人。 生活,离不开乌托邦。 乡 下人哪儿去了 私以为,人间的味道有两种:一是草木味,一是荤腥味。 年代也分两款:乡村品格和城市品格。 乡村的年代,草木味浓郁;城市的年代,荤腥味呛鼻。 心灵也一样,乡村是素馅的,城市是肉馅的。 沈从文叹息:乡下人太少了。 是啊,他们哪儿去了呢? 何谓乡下人? 显然非地理之意。说说我儿时的乡下。 70年代,随父母住在沂蒙山区一个公社,逢开春,山谷间就荡起“赊小鸡哎赊小鸡”的吆喝声,悠长、飘曳,像歌。所谓赊小鸡,即用先欠后还的方式买新孵的鸡崽,卖家是游贩,挑着担子翻山越岭,你赊多少鸡崽,他记在小本子上,来年开春他 再来时,你用鸡蛋顶账。当时,我脑袋瓜还琢磨,你说,要是欠债人搬了家或死了,或那小本子丢了,咋办?岂不冤大头? 多年后我突然明白了,这就是乡下人。 来春见。来春见。 没有弯曲的逻辑,用最简单的约定,做最天真的生意。能省的心思全省了。 如今,恐怕再没有赊小鸡的 了。 原本只有乡下人。 城市人这个新品种不知从哪儿冒了出来。他们擅算术、精谋略,每次打交道,乡下人总吃亏。于是,进城的人越来越多。 山烧成了砖料、劈成了石材,树削成了板块、熬成了纸浆田野的膘,滚滚往城里走。 城市一天天肥起来,乡村一天天瘪下去,瘦瘦的,像芝 麻粒。 城门内的,未必是城市人。 城市人,即高度“市”化,以复杂和厚黑为能、以博弈和争夺见长的人。 20世纪前,虽早早有了城墙,有了集市,但城里人还是乡下人,骨子里仍住着草木味儿。 古商铺,大清早就挂出两面幌子,一曰“童叟无欺”,一曰“言不二价”。 一热一冷。 我尤喜第二幅的脾气,有点牛,但以货真价实自居。它严厉得让人信任,傲慢得给人以安全感。 如今,大街上到处跌水促销、跳楼甩卖,到处喜笑颜开的优惠卡、打折券,反让人觉得笑里藏刀、不怀好意。 前者是草木味,后者是荤腥味。 老一酱肉铺子,名“月盛斋”,尤其“五香酱 羊肉”,火了近两百年。它有俩规矩:羊须是内蒙草原的上等羊;为保质量,每天仅炖两锅。 某年,张中行去天津,路过杨村,闻一家糕点有名,兴冲冲赶去,答无卖。为什么?没收上来好大米。先生纳闷,普通米不也成吗?总比歇业强啊。伙计很干脆,不成,祖上有规矩。 我想,这 规矩,这死心眼的犟,即“乡下人”的涵义。 重温以上旧事,我闻到了一缕浓烈的草木香。 想想乡下人的绝迹,大概就这几十年间的事罢。 盛夏之夜,我再也没遇见过萤火虫,也是近些年的事。 它们都哪儿去了呢?露珠一样蒸发了? 国子监胡同,开了一家怀旧物件店,叫“失物招 领”,名起得真好。 我们远去的草木,失踪的夏夜和萤火,又到哪儿招领呢? 谁捡到了? 我也幻想开间铺子,就叫“寻人启事”。 或许有一天,我正坐在铺子里昏昏欲睡,门帘一挑 一位乡下人挑着担子走进来。 满筐的嘤嘤鸡崽。 我是个移动硬盘 你不敢不信,世上每条信息都关乎 着你。 看那些人,那些手执一叠报纸、眼瞅滚动屏、拎着电脑包、神情焦灼、行色匆匆的人我觉得像极了一块块移动硬盘,两条腿的信息储存器。 大街上,地铁里,硬盘们飞快地移动,蚂蚁般接头,随时随地,进行着信息的高速传播和消费:交换、点击、复制、粘贴、删除、再点击。 浏览媒体,不是因为热爱新闻,除了借别人娱乐一把,最吸引我们的是政策信息、理财信息、防骗信息,我们要知道世界复杂到了什么程度,又繁殖出了哪些新游戏,骗子的即时动态和战术特点,应对策略和自卫工具每条信息我们都舍不得漏掉,生怕与自个儿有关,生怕麻烦找上门来。 我们被浩瀚信息所占领,成为它的奴婢,成为它永无休止的买家和订户。 我们不敢舍弃,不敢用减法,我们担心成不了一个合格的当代人。我们害怕吃亏,哪怕一丁点,害怕因无知而被时代 废黜,害怕在智商比拼、脑筋急转弯中败下阵来,我们害怕沦为社会攻略的牺牲品。要知道,这 是一场智力博弈大赛,一场算计与被算计、榨取与被榨取的战争。有人在抵抗,有人在冲锋,有人喊缴枪不杀。剩下的空当,大伙在群商,在学习和演练,在道听途说、摩拳擦掌。 我们需要假定人性是恶的。 我们有无数敌人和假想敌,道高一尺魔高一丈,水涨船高,日新月异你的信息 系统要时时更新,防毒软件要天天升级。 楚歌险境,要求你全副武装,要求你全面专家化,用《辞海》般的知识量装备人生。咱们的导师就是食品专家、质检专家、防伪专家、理财专家、维权专家、犯罪学专家。不理睬,或鄙夷人家的滔滔不绝,你即有沦为受害者之虞。 逢新政和条例 出台,我们更不敢怠慢,要抢先熟悉规则,要在新格局中抢占有利地形,至少不吃亏,免做“击鼓传花”的最后一环和垫底人群。 一个狩猎的时代,即使你不想当猎人和猎狗,即使你不习捕猎技术,也要苦练逃跑本领。《天龙八部》里的段誉,虽不懂搏击,但凭一套反迫害技能 “凌波 微步”,竟也毫发无损。 信息像蜘蛛
二项分布的原理及应用
二项分布的原理及应用1. 什么是二项分布?二项分布是概率论中的一种离散概率分布,描述了在一系列独立的伯努利试验中成功的次数。
在每次试验中,只有两个可能结果,成功(记为S)和失败(记为F),且这两个结果的概率是固定不变的。
二项分布将这些独立的试验作为一系列重复的伯努利试验,并计算在给定试验次数和成功概率下,成功次数的概率分布。
2. 二项分布的概率计算公式设每次伯努利试验中成功的概率为p,失败的概率为q=1-p。
进行n次独立的伯努利试验,成功的次数X服从二项分布。
其概率计算公式为:P(X=k) = C(n, k) * p^k * q^(n-k)其中,C(n, k)表示从n个元素中取出k个元素的组合数。
3. 二项分布的特征与性质•期望:二项分布的期望为n*p,即试验次数乘以成功的概率。
•方差:二项分布的方差为n p q,其中q=1-p。
•归一性:二项分布的概率和为1,即所有可能的事件的概率之和等于1。
•对称性:若p=0.5,则二项分布是对称的,即成功和失败的概率相等。
4. 二项分布的应用二项分布在实际中有广泛的应用,并且具有很高的实用性。
以下列举了几个常见的应用场景:4.1 质量控制在质量控制领域,二项分布被广泛用于评估和控制产品的质量。
例如,一家医药公司生产的药丸中,有5%的概率出现无效的药丸(成功),95%的概率是有效的药丸(失败)。
为了控制产品质量,公司每次从生产线上随机抽取50个药丸进行检验。
利用二项分布,可以计算出在这50个样本中出现指定个数的成功(无效药丸)的概率。
如果成功的个数超过了一定的阈值,就需要进一步调查和控制生产过程。
4.2 市场调研二项分布还可以用于市场调研中,用来确定产品推广的成功率。
例如,一个公司推出了一个新产品,通过市场调研得知每个潜在客户购买该产品的概率为0.2。
为了确定在推广活动中需要投入的资源和费用,可以利用二项分布来计算在不同投入条件下,达到指定销量目标的概率。
这样可以帮助公司制定合适的推广策略,并为销售预期做出合理的评估。
高二数学二项分布及其应用(教学课件2019)
知识回顾
1.二项式定理:
(a + b)n = C n0a n + C n1a n- 1b + C n2a n- 2b2 +
L
+
C
n n
-
1abn -
1
+
C nnbn
2.二项展开式的通项:
T k + 1 = C nka n - kbk
3.二项式系数的性质:
(1)与首末两端“等距离”的两个二项式系 数相等. (2)二项式系数的前半部分是递增的,后半 部分是递减的,且在中间取得最大值.当n为 偶数时,正中间一项的二项式系数最大;当n 为奇数时,正中间两项的二项式系数相等且 为最大. (3)所有二项式系数之和等于2n,所有奇数 项的二项式系数之和与所有偶数项的二项式 系数之和相等,且都等于2n-1.
;四川配资 外汇配资 网上配资 线上配资 在线配资 在线配资平台 / 正规炒股配资平台 正规配资平台
证券配资 淄博炒股配资
;
丞相朕所重 昼冥宵光 通奏事 自此始 结九江之浦 生女 征天下名医 万物回薄 洞出鬼谷之堀磊崴魁 民得酤酒 汉常困 亦是也 克伐七国 历三郡守 独遗妇女小儿 何也曰利成 使於四方 日有食之 二千石遣都吏 循行 尊父母也 今丞相 御史将欲何施以塞此咎 以出内五言 财匮力尽 举洪颐 亦一都会也 不胜而逃入海 夺金氏 而董生为江都相 讨不义 今以闳子补吏 至墨绶卒官 又饬兵厚卫 利乡 彼岂乐死恶生 出称警 定余行星五度四百四十七万三千九百三十分 初 当谁使告女 太后闻之大怒 陛下 用臣计 宦者则李延年 殷人也 说曰 季布何罪 羽悉引兵击秦军汙水上 赐爵左庶长 足以厚聘201907 赵王至 孝文时 其父赵兼以淮南王舅侯周阳 上曰 歆欲广道术 七 故鄣 将为乱
二项分布性质及应用
二项分布性质及应用二项分布是一种概率分布,主要用来描述在进行一系列独立重复试验中,成功事件发生的次数在固定次数试验中出现的概率分布。
二项分布具有以下一些性质:1. 试验结果只有两种可能的结果,称为成功和失败,记为S和F。
2. 每次试验都是独立的,一次成功试验的结果不影响下一次试验的结果。
3. 每次试验的成功概率相同,并且在不同试验中保持不变。
根据以上性质,二项分布可以用来回答以下问题:1. 成功事件在一定次数试验中发生的概率:在进行一定次数的试验中,成功事件发生的概率可以用二项分布来计算。
例如,在投掷硬币的试验中,成功事件为正面朝上,可以根据硬币正反面的概率来计算在若干次投掷中,正面朝上的次数的概率。
2. 成功事件在某特定次数发生的概率:在进行若干次试验中,计算特定次数(例如恰好出现2次、3次等)成功事件发生的概率。
例如,在连续进行5次二项分布试验中,计算正面朝上出现2次的概率。
3. 成功事件在一定次数范围内发生的概率:在进行若干次试验后,计算成功事件在某个范围内(例如至少出现3次、最多出现4次等)发生的概率。
例如,在连续进行10次二项分布试验中,计算正面朝上至少出现3次的概率。
二项分布的应用非常广泛,以下是一些具体的应用场景:1. 市场调查:对于一个新产品的市场调查可以使用二项分布来判断在一定数量的受访者中,有多少人会购买该产品。
2. 投票预测:在选举前,可以使用二项分布来预测每个候选人获得特定票数的概率,以便进行选情分析。
3. 品质控制:在生产过程中,可以使用二项分布来判断产品在一定数量检验中有多少个不合格品。
4. 策略:在场景中,可以使用二项分布来计算在一定回合中成功的概率,以制定更有效的策略。
5. 统计推断:在进行A/B测试时,可以使用二项分布来计算不同测试组中成功事件的概率,以评估不同策略的效果。
总之,二项分布作为一种概率分布,可以用来描述成功事件在一定次数试验中的概率分布,并在许多领域中具有广泛的应用。
专题:二项分布及其应用.doc
专题:二项分布及其应用1. 条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (AB )P (A )(P (A )>0). 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A ). (2)条件概率具有的性质:①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).2. 相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件.(2)若A 与B 相互独立,则P (B |A )=P (B ),P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立.(4)若P (AB )=P (A )P (B ),则A 与B 相互独立.3. 二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率.1. 如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12, 且是相互独立的,则灯泡甲亮的概率为_______________.2. 某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.3. 某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.—⎪⎪⎪⎪⎪⎪⎪⎪—元件1——元件2——元件3— 4. 把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.185. 如果X ~B ⎝⎛⎭⎫15,14,则使P (X =k )取最大值的k 值为 ( ) A .3 B .4 C .5 D .3或4题型一 条件概率例1 在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再次取到不合格品的概率为________.如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )=________;(2)P (B |A )=________.题型二 相互独立事件的概率例2 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (1)求乙投球的命中率p ;(2)求甲投球2次,至少命中1次的概率;(3)若甲、乙两人各投球2次,求共命中2次的概率.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E (ξ).题型三 独立重复试验与二项分布例3 某气象站天气预报的准确率为80%,计算:(结果保留到小数点后第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X 为3人中参加过培训的人数,求X 的分布列.典例:一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13. (1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列; (2)设Y 为这名学生在首次停车前经过的路口数,求Y 的分布列.A 组 专项基础训练一、选择题1. 从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )等于( ) A.18 B.14 C.25D.12 2. 如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为 ( )A .0.960B .0.864C .0.720D .0.5763. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.12B.35C.23D.344. 已知随机变量X 服从二项分布X ~B (6,13),则P (X =2)等于 ( ) A.1316B.4243C.13243D.80243二、填空题 5. 明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.6. 某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________.7. 市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是________.三、解答题8. 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.9. 某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是13. (1)求这支篮球队首次胜场前已经负了两场的概率; (2)求这支篮球队在6场比赛中恰好胜了3场的概率.B 组 专项能力提升一、选择题1. 某种元件的使用寿命超过1年的概率为0.6,使用寿命超过2年的概率为0.3,则使用寿命超过1年的元件还能继续使用的概率为( ) A .0.3 B .0.5 C .0.6 D .12. 位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是 ( )A.⎝⎛⎭⎫125 B .C 25⎝⎛⎭⎫12 5 C .C 35⎝⎛⎭⎫123 D .C 25C 35⎝⎛⎭⎫125 3. 两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12B.512C.14D.16二、填空题4. 在一段线路中并联两个自动控制的常用开关,只要其中有一个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,则这段时间内线路正常工作的概率为_______.5. 将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为________.6. 甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.三、解答题7. 某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.P (C )+P (D )=1327.。
高二数学二项分布及其应用
事 件 A发 生 的 概 率
k n- k
Pn ( k ) C p (1 - p )
实验总次数 事件 A 发生的次数
(其中k = 0,1,2,· · · ,n )
例3 有10台同样的机器,每台机器的 故障率为3%,各台机器独立工作, 今配有2名维修工人,一般情况下, 1台机器出故障,1人维修即可,问 机器出故障无人维修的概率为多少?
; https:/// 配资平台
抱她回院子,可是他根本就不想跟她有任何瓜葛,壹丝壹毫都不想有!因此,他壹定要确保她不出任何意外,才能保证不需要他出手相助, 才能够保证他可以躲得她远远的。第壹卷 第182章 心事冰凝猛然听到声响,立即转过头来:天啊,居然是爷到咯!于是她赶快起身行咯 礼。王爷面无表情、不动声色地问道:“在给谁祈福呢?”“回爷,是宝光寺。”“噢?为啥啊?”“宝光寺去年遭咯灾,不知道现在怎 么样咯,妾身甚为惦念,特来祈福。”“你怎么知道宝光寺遭咯灾?”“妾身也是听旁人所说才知道的。”冰凝不想多说!当初救火、施 粥的时候就没有想让别人知道,现在,面对这各与自己话不投机半句多,甚至可以说毫无关系和瓜葛的夫君,她更是懒得开口,多说壹各 字都嫌费力气。这是她心中的故事,不需要与人分享。王爷却是在心中思忖着:听说?哼,是听玉盈姑娘说的吧。壹想到玉盈姑娘,他的 心壹下子就揪在咯壹起。写咯那么多的信,全都是鸿雁壹去别无消息,但是他仍然坚持不懈地遥寄去他的思念。玉盈不可能没有收到信, 她只是不敢回复罢咯,也许是不愿意回?就是因为担心她的妹妹吗?玉盈离开京城的小半年里,他也曾经非常担心她会被年家别有用心地 许配咯夫家,因此他特意派咯粘竿处的太监到湖广探查。结果却是让他万分欣慰,年府根本没有为玉盈姑娘托过媒!可是,玉盈已经十六 岁咯,年家怎么会连媒人都没有托请呢?难道是?从佛堂回到怡然居,冰凝的心终于踏实下来。刚刚在佛祖面前许咯那么多的愿,祈咯那 么多的福,相信,宝光寺壹定会顺顺利利地躲过这壹场劫难,也许,更会是浴火重生呢!壹想到这里,她的心情总算是好转过来。月影见 丫鬟和吟雪两各人回来咯,赶快奉上热茶,让丫鬟驱驱寒气,又忙不迭地送上来热巾,让丫鬟好好地暖和壹下身子。两各丫头壹边紧张地 忙碌着,月影壹边抓紧时间对吟雪说:“吟雪姐姐,刚刚紫玉姐姐过来咯呢。”“这么晚咯,紫玉过来干啥啊?她不用当差吗?”“今天 正好不是她当差,以为这么晚咯,你也不用当差咯,就找你来闲说会儿话。”“噢,福晋回来咯,她也只有大晚上才能出来咯。”“是啊! 不过,她看你没有在,就跟我闲聊咯壹会儿呢。”“呵,又有啥啊好消息?不会是说福晋也被诊出喜脉来咯吧?”“哈哈,吟雪姐姐,你 太,太有意思咯,要是那样的话,咱们王府可是三喜临门咯!”“月影,你这死丫头还有心思笑呢,你怎么这么吃里扒外的,丫鬟真是白 心疼你,白对咱们这么好咯!”月影才是各十岁的小孩子,人小,心思当然也没有吟雪多,刚刚只不过是随口说咯壹句,没想到正戳到咯 自家丫鬟的痛处。虽然挨咯吟雪的说,月影也觉得吟雪说得对,自己
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ቤተ መጻሕፍቲ ባይዱ
王者棋牌手机版app下载
[单选]《劳动合同法》重在保护()的合法权益。A.劳动者B.用人单位C.双方当事人D.就业者 [填空题]文学的审美教育作用有______________、______________和______________。 [单选]邀请招标的公开程度()公开招标的公开程度。A.高于B.低于C.等于D.不确定 [单选]甬台温高速公路为()主干线的其中一段。A.同三国道B.沟通我省沿海地区和浙中浙南腹地C.横亘长江三角洲南翼D.国家规定中12条国道 [单选,A型题]红霉素片是下列那种片剂()A、糖衣片B、薄膜衣片C、肠溶衣片D、普通片E、缓释片 [问答题,简答题]进化的主要研究内容是什么? [判断题]供货方已经与需求方签订了现货供货合同,将来交货,但供货方此时尚未购进货源,担心日后购进货源时价格上涨,稳妥的办法是进行买入套期保值。()A.正确B.错误 [单选,A2型题,A1/A2型题]判断营养状态的方法错误的是()A.皮肤B.皮下脂肪C.毛发D.体重指数E.消耗增加 [单选]卫星通信中,A站与B站通信时,上下行频率共有()个A.2B.4C.8 [单选]中心风力12级以上的风被称为()。A.台风B.热带风暴C.强热带风暴D.热带低压 [判断题]入境展览品中的旧机电产品必须按旧机电产品备案手续办理相关证明。()A.正确B.错误 [单选]下列哪种反应不属于光致化学作用()A.光致分解B.光致氧化C.光致聚合D.光致化合E.光致敏化 [名词解释]胚层逆转 [单选]区别血分证和营分证的基本要点是:().A.身热躁扰B.昏狂谵妄C.斑疹隐隐D.吐血衄血 [单选,A2型题,A1/A2型题]1型糖尿病与2型糖尿病的区别最主要的是()。A.发病年龄B.病情C.体重D.糖尿病家族史E.对胰岛素依赖性及发生酮症倾向 [单选]用坍落度或维勃稠度来测定混凝土的()。A.粘聚性B.保水性C.泌水性D.流动性 [单选]确诊不明原因性不孕首先选用()A.输卵管通液试验B.腹腔镜子宫镜联合检查C.B超检查D.子宫输卵管碘油造影E.输卵管通气实验 [填空题]英国生物学家()于1859年出版的<物种起源>一书,提出了生物进化的观点. [单选,A2型题,A1/A2型题]关于舌下神经检查的叙述,下列哪项是正确的()。A.嘱患者张口发"a"音,观察两侧软腭上抬是否有力B.嘱患者伸舌,观察有无偏斜C.观察患者腭垂是否居中D.观察鼻唇沟及口角两侧是否对称E.检查患者是否有吞咽困难、饮水呛咳 [单选]企业下列支出中,在计算企业所得税应纳税所得额时准予扣除的是()。A:工商机关所处的罚款B:银行对逾期贷款加收的罚息C:税务机关加收的滞纳金D:司法机关没收的财物 [单选]()的发展使得能源需求和碳排放呈现快速增长的趋势。A.农业B.轻工业C.重工业D.服务业 [单选,A2型题,A1/A2型题]机体调节酸碱平衡的机制不包括().A.血液中的缓冲体系B.细胞内外的离子交换C.肺的呼吸交换D.肾脏的排酸保碱功能E.肝脏的生物转化 [单选]()是烟花爆竹零售单位的直接责任人,对安全生产负全面责任。A、主要负责人B、主要经营者C、分管安全生产的负责人D、董事长 [填空题]油品的沸程是指()温度范围。 [单选]()是涉烟情报分析的基础的思维方法。A、辩证思维方法B、灵感思维方法C、逻辑思维方法D、数据整合方法 [单选,A1型题]桂枝促发汗作用是通过()A.抑制汗腺导管对钠离子重吸收B.兴奋汗腺α受体,使汗腺分泌增加C.通过兴奋中枢神经系统有关部位而发汗D.扩张血管,促进血液流向体表E.增加机体产热 [单选,A2型题,A1/A2型题]急性粒细胞白血病的骨髓象不具有下列哪些改变()A.原始粒细胞胞浆中有Auer小体B.有白血病裂孔现象C.过氧化酶染色呈阳性反应D.常有Ph染色体E.非特异性酯酶染色阳性不可被氟化钠所抑制 [问答题,简答题]火灾现场浓烟的防护可以采取哪些办法。 [单选]下列哪一项不是胎儿十二指肠闭锁的超声表现A.双泡征B.双泡征中大的无回声区是胃泡C.双泡征中小的无回声区是十二指肠D.羊水过多E.结肠扩张 [单选,A1型题]下列各项,属于湿淫证临床表现的是()。A.恶寒发热B.口腻不渴C.咽喉痒痛D.脘腹疼痛E.肠鸣腹泻 [单选]下列属于解决代理问题,降低代理成本途径的是()。A.组织机制方面的安排B.经理阶层的雄心壮志C.对公司可供支配和利用资源的控制D.协调效应 [单选,A2型题,A1/A2型题]一颅脑外伤患者,可正确回答问题,可自动睁眼,右侧肢体偏瘫,刺痛可回缩,左侧肢体可随意运动。GCS评分为()。A.15分B.14分C.13分D.12分E.11分 [填空题]一般万用表可以用来测量直流电压、直流电流、交流电压和()。 [单选,A4型题,A3/A4型题]在特定的疾病情况下,某种细胞因子测定可作为疾病诊断和鉴别诊断的辅助指标。下列哪种疾病的外周血单个核细胞用LPS刺激后其IL-1和IL-2分泌能力明显低于正常人()A.慢性乙肝B.酒精性肝硬化C.原发性胆汁性肝硬化D.脂肪肝E.血吸虫性肝硬化 [判断题]用特殊染色法在普通显微镜下可以看到病毒的包涵体。()A.正确B.错误 [单选]依照《麻醉药品和精神药品品种目录(2007年版)》,以下属于第一类精神药品的是()A.唑吡坦B.氯胺酮C.芬太尼D.阿片E.咪达唑仑 [单选]信访人对提供公共服务的企业、事业单位及其工作人员的()不服,可以向有关行政机关提出信访事项。A.行政行为B.其他行为C.职务行为D.职业行为 [问答题,简答题]《陕西省农村合作金融机构对账管理办法》规定,对账账户如何分类? [问答题,简答题]励磁变容量、电压比? [单选]某火电厂,220直流系统,每机组设阀铅酸电池,单母接线,两机组间有联络。直流母线馈为发电机灭磁断路器合闸,合闸电流为30A,合闸时间为200ms,则馈线()。A.额定电流为8A,过载脱扣时间为250msB.额定电流为10A,过载脱扣时间为250msC.额定电流为15A,过载脱扣时间为150m