二项分布及其应用20171014
二项分布及其应用
考向导析 规范解答系列 阅卷报告系列 限时规范训练
解法三:∵D=A+B,且 A 与 B 独立. ∴P(D)=P(A+B)=P(A)+P(B)-P(A· B)=0.8+0.9-0.8×0.9=0.98. 故目标被击中的概率是 0.98. (4)设 E={至多有 1 人击中目标}, ∵E=A·B +B·A + A ·B , 且 A 与 B 、B 与 A 、 A 与 B 独立, A·B 、B·A 、 A ·B 彼此互斥, ∴P(E)=P(A·B +B·A + A ·B )=P(A·B )+P(B·A )+P( A ·B ) =P(A)· B )+P(B)· A )+P( A )· B )=0.8×0.1+0.9×0.2+0.1×0.2=0.28. P( P( P( 故至多有 1 人击中目标的概率为 0.28.
考基联动
考向导析
规范解答系列
阅卷报告系列
限时规范训练
(2)由于 Y 表示这名学生在首次停车时经过的路口数,显然 Y 是随机变量,其取值为 0,1,2,3,4,5,6. 其中:{Y=k}(k=0,1,2,3,4,5)表示前 k 个路口没有遇上红灯,但在第 k+1 个路口遇 上红灯,故各概率应按独立事件同时发生计算. 2 1 P(Y=k)= k·(k=0,1,2,3,4,5), 3 3 而{Y=6}表示一路没有遇上红灯. 2 6 故其概率为 P(Y=6)= , 3 因此 Y 的分布列为: Y P Y P 0 1 3 1 12 · 33 4 1 24 · 3 3
考基联动
考向导析
规范解答系列
阅卷报告系列
限时规范训练
(2)设事件 C={两人中恰有 1 人击中目标},则 C=A·B +B·A ∴A·B 与 B·A 互斥,且 A 与 B 独立, ∴P(C)=P(A·B +B·A ) =P(A·B )+P(B·A ) =P(A)· B )+P(B)· A ) P( P( =P(A)· [1-P(B)]+P(B)· [1-P(A)] =0.8×0.1+0.9×0.2=0.26, 即两人中恰有 1 人击中目标的概率为 0.26. (3)设 D={目标被击中}={两人中至少有 1 人击中目标},本问有三种解题思路:
二项分布及其应用
本例0=0.01,n=400,x=1,根据题意需求最多有1例染
色体异常的概率,按二项分布的概率函数得
(3) 做出推断结论: P >0.05,按 =0.05检验水准不拒绝H0,尚 不能认为该地新生儿染色体异常率低于一般。
1、样本率与已知总体率的比较:
(2) 正态近似法: 当 n0 和 n(1-0) 均大于5时,
用n=20和x=8查附表7.2百分率的可信区间得该 法近期有效率的95%可信区间为19%64%。
由于附表7百分率的可信区间中值只列出了x n/2的部分,当x>n/2时,应以n -x查表,再从100
中减去查得的数值即为所求可信区间。
2、总体率的区间估计
三、二项分布的应用
(2)正态近似法
当样本含量足够大,且样本率p和 1-p均不太小,一般 np与 n(1-p)均大于5时,样本率的抽样分布近似正态分布,即
此时, 总体率的可信区间可按下式进行估计:
其中,
布的应用
(二)假设 检验1、样本率与已知总体率的比较:
(1)直接计算概率法: 例1 根据以往长期的实践,证明某常用药的治 愈率为65%。现在某种新药的临床试验中,随机观 察了10名用该新药的患者,治愈8人。问该新药的 疗效是否比传统的常用药好?
(1)建立假设,确定检验水准。
(2) 计算检验统计量 。
B( , n )。
例 抛硬币(正/反),患者治疗后的结局(治愈/未愈),实验 动物染毒后结局(生存/死亡),……。
一、二项分布的概念及应用条件
2、应用条件:
① n次试验相互独立 ( n 个观察单位相互独立)。 ② 每次试验只有两种可能结果中的某一种(适用
二项分布及其应用
二项分布及其应用二项分布及其应用◇条件概率◇一、条件概率的定义与性质如果事件A发生与否,会影响到事件B的发生,在知道事件A发生的条件下去研究事件B时,基本事件空间发生了变化,从而B发生的概率也随之改变,这就条件概率要研究的问题。
1.定义:一般地,设A、B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率,一般把P(B|A)读作A发生的条件下B的概率.2.性质:(1)条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即.(2)如果B和C是两个互斥事件,则P(B∪C|A)=二、典型例题1、利用定义求条件概率例1:抛掷两颗均匀的骰子,问(1)至少有一颗是6点的概率是多少?(2)在已知两颗骰子点数不同的条件下,至少有一颗是6点的概率是多少?例2:抛掷红蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”。
(1)求P(A),P(B),P(AB);(2)在已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率。
2、利用缩小基本事件空间的方法求条件概率例1:一个口袋内装有4个白球和2个黑球,若不放回地抽取3次,每次抽一个小球,求(1)第一次摸出一个白球的情况下,第二次与第三次均是白球的概率。
(2)第一次和第二次均是白球的情况下,第三次是白球的概率。
例2:设10件产品中有4件次品,从中任取2件,那么(1)在所取得产品中发现是一件次品,求另一件也是次品的概率。
(2)若每次取一件,在所得的产品中第一次取出的是次品,那么求第二件也是次品的概率。
3、条件概率的性质及应用例1:在某次考试中,要从20道中随机地抽出6道题,若考试至少答对其中4道即可通过;若至少答对其中5道就获得优秀,已知某生能答对其中10道题目,且知道他在这次考试中已经通过,求他获得优秀的概率。
例2:把一副扑克牌(不含大小王)随机均分给赵、钱、孙、李四家,A={赵家得到6张梅花},B={孙家得到3张梅花} (1)求P(B|A)(2)求P(AB)三、课堂练习1、把一颗骰子连续抛掷两次,已知在第一次抛出偶数点的情况下,第二次抛出的也是偶数点的概率是多少?2、一个盒子中装有6件合格产品和4件次品,不放回地任取两次,每次取一件。
二项分布及其应用
=
nAB nA
.
(2)条件概率具有的性质
① 0≤P(B|A)≤1 ;
②如果B和C是两个互斥事件, 则P(B∪C|A)= P(B|A)+P(C|A) .
2.相互独立事件
(1)设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B_相__互__ ——独—立—. (2)若A与B相互独立,则P(B|A)= P(B), P(AB)=P(A)P(B|A)= P(A)P(B). (3)若A与B相互独立,则A 与 B, A 与 B , A 与 B 也都相互独立.
题型一 条件概率
例1 (1)从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和
为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)等于( )
1
1
2
1
A.8
B.4
C.5
D.2
答案 解析
P(A)=C23+ C25C22=25,P(AB)=CC2225=110, P(B|A)=PPAAB=14.
(3). 将 一 枚 硬 币 连 续 抛 掷 两 次 , 记 “ 第 一 次 出 现 正 面 ” 为 事 件
A,“第二次出现反面”为事件B,则P(B|A)等于( )
A. 1 2
B. 1 4
C.1 6
D.1 8
(4).甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5, 现已知目标被击中,则它是被甲击中的概率为( )
变式训练 (2016·开封模拟)已知盒中装有3只螺口灯泡与7只卡口灯泡,
这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,
电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡
的条件下,第2次抽到的是卡口灯泡的概率为 答案 解析
高中数学选修2-3-二项分布及其应用
二项分布及其应用知识集结知识元相互独立事件知识讲解1.相互独立事件和相互独立事件的概率乘法公式【知识点的认识】1.相互独立事件:事件A(或B)是否发生,对事件B(或A)发生的概率没有影响,这样两个事件叫做相互独立事件.2.相互独立事件同时发生的概率公式:将事件A和事件B同时发生的事件即为A•B,若两个相互独立事件A、B同时发生,则事件A•B发生的概率为:P(A•B)=P(A)•P(B)推广:一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率之积,即:P(A1•A2…A n)=P(A1)•P(A2)…P(A n)3.区分互斥事件和相互独立事件是两个不同的概念:(1)互斥事件:两个事件不可能同时发生;(2)相互独立事件:一个事件的发生与否对另一个事件发生的概率没有影响.例题精讲相互独立事件例1.若甲、乙两位同学随机地从6门课程中各选修3门,则两人选修的课程中恰有1门相同的概率为__.例2.甲、乙两人依次从标有数字0,1,2的三张卡片中各抽取一张(不放回),则两人均未抽到标有数字0的卡片的概率为__.例3.'一次数学考试有4道填空题,共20分,每道题完全答对得5分,否则得0分.在试卷命题时,设计第一道题使考生都能完全答对,后三道题能得出正确答案的概率分别为P、、且每题答对与否相互独立(1)当p=时,求考生填空题得满分的概率(2)若考生填空题得10分与得15分的概率相等,求的P值.'n次独立重复试验恰好k次发生的概率知识讲解1.n次独立重复试验中恰好发生k次的概率【概念】一般地,在n次独立重复试验中,用ξ表示事件A发生的次数,如果事件发生的概率是P,则不发生的概率q=1﹣p,N次独立重复试验中发生K次的概率是P(ξ=K)=(K=1,2,3,…n)那么就说ξ服从二项分布.其中P称为成功概率.记作ξ~B(n,p),期望:Eξ=np,方差:Dξ=npq.【实例解析】例:在3次独立重复试验中,随机事件恰好发生1次的概率不大于其恰好发生两次的概率,则随机事件A在一次试验中发生的概率的范围是.解:由题设知C31p(1﹣p)2≤C32p2(1﹣p),解≤p≤1,故答案为:[,1].本题是典型的对本知识点进行考察,要求就是熟练的应用公式,理解公式的含义并准确计算就可以了,这种比较简单的题型一般出现在选择填空题中.【考点点评】这个知识点非常的重要,但相对来说也比较简单,所以大家要多花点时间把它吃透.例题精讲n次独立重复试验恰好k次发生的概率例1.随机变量X~B(6,),则P(X=2)等于()A.B.C.D.例2.如果X~B(20,p),当且P(X=k)取得最大值时,k的值是()A.8B.9C.10D.11例3.一头病猪服用某药品后被治愈的概率是90%,则服用这种药的5头病猪中恰有3头猪被治愈的概率为()A.0.93B.1-(1-0.9)3C.C53×0.93×0.12D.C53×0.13×0.92超几何分布知识讲解1.超几何分布【知识点的知识】一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则称超几何分布列.(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N,M,n上述超几何分布记作X~H(N,M,n).【典型例题分析】典例1:有N件产品,其中有M件次品,从中不放回地抽n件产品,抽到的次品数的数学期望值是()A.n B.C.D.分析:先由超几何分布的意义,确定本题中抽到次品数服从超几何分布,再由超几何分布的性质:若随机变量X~H(n,M,N),则其数学期望为,计算抽到的次品数的数学期望值即可解答:设抽到的次品数为X,则有N件产品,其中有M件次品,从中不放回地抽n件产品,抽到的次品数X服从超几何分布即X~H(n,M,N),∴抽到的次品数的数学期望值EX=故选C.题型一:抽样次品数的分布规律问题典例1:某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,(1)求取出的3件产品中恰好有一件次品的概率;(2)求取出的3件产品中次品的件数X的概率分布列与期望.解:设该批产品中次品有x件,由已知,∴x=2…(2分)(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为…(4分)(2)∵X可能为0,1,2∴…(10分)∴X的分布为:X012P则…(13分)题型二:不放回摸球游戏问题典例2:甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.解:(1)由题意,;∴,当且仅当x=y=2时“=”成立所以当红球与白球各2个时甲获胜的概率最大(2)取出的3个球中红球个数ξ=0,1,2,3,所以【解题方法点拨】超几何分布的求解步骤:(1)辨模型:结合实际情景分析所求概率分布问题是否有冥想的两部分组成,如“男生、女生”“正品、次品”“优、劣”等,或可转化为明显的两部分.(2)算概率:可以直接借助公式,也可利用排列、组合及概率知识求解.(3)列分布表:把求得的概率值通过表格表示出来.例题精讲超几何分布例1.已知超几何分布满足X~H(3,5,8),则P(X=2)=___.例2.在10件产品中有2件次品,任意抽取3件,则抽到次品个数的数学期望的值是___.例3.若X~H(2,3,5),则P(X=1)=___。
《二项分布及其应》课件
• 改进方向: a. 引入其他分布:对于样本量较小的情况,可以考虑使用泊松分布等其他分布来近似二项分布。 b. 利 用贝叶斯推断:贝叶斯推断可以用于估计未知的分布参数,提高二项分布在实际应用中的精确度。 c. 考虑其他模型: 对于某些特定问题,可以考虑使用其他模型来描述实际数据,如正态分布、泊松分布等。
贝叶斯估计法的定义和原理 贝叶斯估计法在二项分布参数估计中的应用 贝叶斯估计法的优缺点分析 贝叶斯估计法与其他参数估计方法的比较
最小二乘估计法
定义:最小二乘法是一种数学统计方法,通过最小化误差的平方和来估计参数
原理:最小二乘法通过最小化预测值与实际值之间的误差平方和来估计参数,从而得到最佳的 参数估计值
假设检验的步骤和实例
提出假设
构造检验统计量
确定临界值
做出推断
实例演示
06
二项分布在实际应用中的案例分析
实验设计和数据分析
实验设计:确 定实验目的、 设计实验方案、 选择实验样本
数据分析:对 实验数据进行 整理、分析和 解释,得出结
论
实验结果:展 示实验结果, 包括数据表格、
图表等
结论与讨论: 对实验结果进 行讨论,提出 改进意见和建
议
二项分布在实际应用中的案例介绍
案例一:医学研究计学中的 二项分布
案例四:计算机科学中的 二项分布
二项分布在实际应用中的优缺点分析
优点:适用于独立 重复试验,可以快 速准确地计算概率
缺点:不适用于连 续性随机变量,需 要满足独立同分布 的条件
第06章二项分布及其应用
二项分布概念:二项分布即重复n次独立的伯努利试验。
在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是伯努利分布。
该事件发生k次的概率为:P=C(k,n)×p^k×(1-p)^(n-k),其中C(k,n)表示组合数,即从n个事物中拿出k个的方法数.,p为事件发生的概率,k是发生的次数,其中k=1,2,3...n,Ek=np,方差:Dk=np(1-p)例6-1某种药物治疗某种非传染性疾病的有效率为0.70,无效率为0.30。
今用该药治疗该疾病患者10人,试分别计算这10人中有6人、7人、8人有效的概率(《医学统计学》,第三版,孙振球)。
#源代码例6-1:dbinom(6,10,0.7)#二项分布函数dbinom(7,10,0.7)dbinom(8,10,0.7)#其中dbinom(k,n,p)中,k是发生的次数,10是共次数,p是概率>#源代码例6-1:>dbinom(6,10,0.7)[1]0.2001209>dbinom(7,10,0.7)[1]0.2668279>dbinom(8,10,0.7)[1]0.2334744>#其中dbinom(k,n,p)中,k是发生的次数,10是共次数,p是概率例6-2在对13名输卵管结扎的育龄妇女经壶腹部-壶腹部吻合术后,观察其受孕情况,发现有6人受孕,试据此资料估计该吻合术受孕率的95%可信区间。
#源代码例6-2:binom.test(6,13,p=6/13,conf.level=0.95)>#源代码例6-2:>binom.test(6,13,p=6/13,conf.level=0.95)Exact binomial testdata:6and13number of successes=6, number of trials=13, p-value=1alternative hypothesis:true probability of success is not equal to0.461538595percent confidence interval:0.19223240.7486545sample estimates:probability of success0.4615385例6-3在观测一种药物对某种非传染性疾病的治疗效果时,用该药治疗了此种非传染性疾病患者100人,发现55人有效,试据此估计该药物治疗有效率的95%可信区间。
二项分布的应用
二项分布的应用一、二项分布的基本概念在概率论和统计学中,二项分布是一种离散概率分布,用于描述在重复进行n次独立的伯努利试验中成功次数的概率分布。
这里的伯努利试验指的是只有两种可能结果的试验,例如投硬币的正面和反面。
二项分布的概率函数可以表示为:P(X=k)=C n k⋅p k⋅(1−p)n−k其中,X表示成功的次数,k表示成功的次数的取值,n表示试验的次数,p表示每次试验成功的概率,C n k表示组合数,即从n个元素中选择k个元素的组合数。
二、二项分布的应用场景二项分布在实际生活和科学研究中有广泛的应用。
下面我们将介绍几个常见的二项分布应用场景。
2.1 针头质量检验假设一家医疗器械公司生产了10,000支注射器,每支注射器的针头都通过了质量检验的成功率为0.95。
我们可以使用二项分布来估计在10,000支注射器中,合格的注射器数量的概率分布。
2.2 投资决策假设我们正在考虑投资一家初创公司,该公司有50%的概率在第一年实现盈利,如果盈利,则投资会有2倍的回报。
我们可以使用二项分布来计算投资成功的概率以及预期回报。
2.3 产品质量控制假设一家电子产品制造商在生产过程中有5%的概率出现某一组件错误。
为了保证产品质量,制造商进行了100次独立的质量检验。
我们可以使用二项分布来估计在100次质量检验中出现不合格产品的概率。
三、二项分布的计算方法对于二项分布的计算,可以使用Excel或统计软件进行求解。
下面我们将介绍使用Excel进行二项分布计算的方法。
3.1 Excel函数BINOM.DISTExcel中的BINOM.DIST函数可以用来计算二项分布的概率。
该函数的语法如下:BINOM.DIST(x, n, p, cumulative)其中,x表示成功的次数,n表示试验的次数,p表示每次试验成功的概率,cumulative表示是否计算累积概率。
通过调整这些参数,我们可以得到相应的二项分布概率值。
3.2 Excel示例假设我们有一个包含10个硬币的袋子,每个硬币正面的概率为0.6。
二项分布性质及应用
二项分布性质及应用二项分布是一种概率分布,主要用来描述在进行一系列独立重复试验中,成功事件发生的次数在固定次数试验中出现的概率分布。
二项分布具有以下一些性质:1. 试验结果只有两种可能的结果,称为成功和失败,记为S和F。
2. 每次试验都是独立的,一次成功试验的结果不影响下一次试验的结果。
3. 每次试验的成功概率相同,并且在不同试验中保持不变。
根据以上性质,二项分布可以用来回答以下问题:1. 成功事件在一定次数试验中发生的概率:在进行一定次数的试验中,成功事件发生的概率可以用二项分布来计算。
例如,在投掷硬币的试验中,成功事件为正面朝上,可以根据硬币正反面的概率来计算在若干次投掷中,正面朝上的次数的概率。
2. 成功事件在某特定次数发生的概率:在进行若干次试验中,计算特定次数(例如恰好出现2次、3次等)成功事件发生的概率。
例如,在连续进行5次二项分布试验中,计算正面朝上出现2次的概率。
3. 成功事件在一定次数范围内发生的概率:在进行若干次试验后,计算成功事件在某个范围内(例如至少出现3次、最多出现4次等)发生的概率。
例如,在连续进行10次二项分布试验中,计算正面朝上至少出现3次的概率。
二项分布的应用非常广泛,以下是一些具体的应用场景:1. 市场调查:对于一个新产品的市场调查可以使用二项分布来判断在一定数量的受访者中,有多少人会购买该产品。
2. 投票预测:在选举前,可以使用二项分布来预测每个候选人获得特定票数的概率,以便进行选情分析。
3. 品质控制:在生产过程中,可以使用二项分布来判断产品在一定数量检验中有多少个不合格品。
4. 策略:在场景中,可以使用二项分布来计算在一定回合中成功的概率,以制定更有效的策略。
5. 统计推断:在进行A/B测试时,可以使用二项分布来计算不同测试组中成功事件的概率,以评估不同策略的效果。
总之,二项分布作为一种概率分布,可以用来描述成功事件在一定次数试验中的概率分布,并在许多领域中具有广泛的应用。
二项分布的应用
二项分布的应用二项分布是概率论中的一种离散概率分布,常用来描述二项试验中成功次数的分布情况。
在实际生活中,二项分布有着广泛的应用,涉及到多个领域,包括工程、医学、金融等。
本文将以几个典型的二项分布应用为例,介绍二项分布在实际问题中的作用。
我们来看一个简单的例子。
假设某电子产品的生产车间中有一台机器,每天生产的产品数量是固定的。
为了保证产品质量,该机器会以一定的概率产生不合格品。
现在我们想知道,在连续生产n个产品后,有多大的概率会出现m个不合格品。
这个问题可以用二项分布来解决。
二项分布的概率函数可以用来计算在n次独立重复试验中成功次数为m的概率。
在这个例子中,每次生产产品的结果都是独立的,且成功的概率是固定的。
因此,我们可以使用二项分布的概率函数来计算出在n次生产中出现m个不合格品的概率。
除了生产过程中的质量控制,二项分布还可以应用于一些金融问题。
例如,在股票市场中,我们常常关注某只股票在未来一段时间内的涨跌概率。
假设某只股票在每个交易日中以一定的概率上涨,以另一定的概率下跌。
我们可以用二项分布来模拟这个过程,并计算出在未来若干个交易日中,股票上涨次数超过某个特定值的概率。
这对于投资者来说是非常有价值的信息,可以帮助他们制定投资策略。
二项分布还可以应用于医学研究中。
例如,在进行药物临床试验时,研究人员常常需要知道某种药物对患者的治疗效果。
他们会将患者分为两组,一组服用药物,另一组不服用药物(作为对照组)。
然后,研究人员会记录每组患者的治疗结果,比较两组之间的差异。
这个比较过程可以用二项分布来描述。
假设治疗组中有一定比例的患者获得治愈,而对照组中的患者获得治愈的比例略低。
通过对两组患者进行统计分析,可以计算出治疗组的治愈率超过对照组的概率,从而判断该药物的疗效。
二项分布在实际生活中有着广泛的应用。
无论是质量控制、金融问题还是医学研究,二项分布都能提供有价值的信息。
通过对二项分布的应用,我们可以更好地理解和解决实际问题,为决策提供科学依据。
2017高考数学必考点【二项分布】整理.doc
2017高考数学必考点【二项分布】整理高考数学一直是很多考生头疼的科目,考生难以取得数学高分是因为没有掌握好考点,为了帮助大家掌握好数学考点,下面为大家带来2017高考数学必考点【二项分布】整理,希望大家用心记住这些数学考点。
二项分布:一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则,k=0,1,2,n,此时称随机变量X服从二项分布,记作X~B(n,p),并记。
独立重复试验:(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验. (2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,高考数学,事件A恰好发生k次的概率为此时称随机变量X服从二项分布,记作并称p为成功概率.(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.(4)独立重复试验概率公式的特点:是n次独立重复试验中某事件A 恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式.二项分布的判断与应用:(1)二项分布,实际是对n次独立重复试验从概率分布的角度作出的阐述,判断二项分布,关键是看某一事件是否是进行n次独立重复试验,且每次试验只有两种结果,如果不满足这两个条件,随机变量就不服从二项分布.(2)当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果时,我们可以把它看作独立重复试验,利用二项分布求其分布列.求独立重复试验的概率:(1)在n次独立重复试验中,在相同条件下等价于各次试验的结果不会受其他试验的影响,即2,,n)是第i次试验的结果.(2)独立重复试验是相互独立事件的特例,只要有恰好恰有字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。
2.2.二项分布及其应用
P(B|A)表示事件A发生条件下,B发生的概率
寓言故事新编:“一个和尚挑水吃,两个和尚抬水吃,三个和 尚没水吃” ,现在他们学会了团结与合作,为提高效率,三人 决定依次抽签选一人去扛水。 (1)第三个人去扛水的概率为 1/3 ; P(B)=1/3
(2)已知第一个人抽签结果不用扛水,则第三 1/2 P(B|A)=1/2 个人去扛水的概率为 .
符号
互斥事件A、B中 有一个发生,记作
相互独立事件A、B同 时发生记作 AB
A + B或(A∪B)) P(A∪B)=P(A)+P(B) P(AB)= P(A)P(B)
计算公式
题型一、事件相互独立性的判断
判断事件下列事件是否为互斥, 互独事件? (1)袋中有4个白球, 3个黑球, 从袋中依次取2球. 事件A:“第一次取出的是白球”.把取出的球放回盒中, 事件B:“第二次取出的是白球” (2)袋中有4个白球, 3个黑球, 从袋中依次取2球. 事件A:“第一次取出的是白球”. 取出的球不放回盒中, 事件B:“第二次取出的是白球”
比赛采用五局三胜制,即哪个球队先胜三场即可获得总
冠军,已知每一场比赛中甲队获胜的概率是0.6,乙对获
胜的概率是0.4。
(1)甲队以3:0获胜的概率;
(2)甲队以3:1获胜的概率;
(3)甲队以3:2获胜的概率;
(4)甲队获得总冠军的概率.
题型三、独立重复试验的分布列
例4、一名学生骑自行车上学,从他家道学校的途中有6个交通岗,
4 例3 某班甲、乙、丙三名同学竞选班委,甲当选的概率为 , 5 7 3 乙当选的概率为 ,丙当选的概率为 10 5
(1)求恰有一名同学当选的概率;
(2)求至多有一名同学当选的概率。
课件2:二项分布及其应用
2 9
1 9
作 业
能
所以 Eξ=1×23+2×29+3×19=193.
菜单
91淘课网 ——淘出优秀的你
自
1.解答本题关键是把所求事件包含的各种情况找出
高 考
主
体
落 实
来,从而把所求事件表示为几个事件的和事件.
验 ·
·
明
固 基
2.求相互独立事件同时发生的概率的方法主要有
考 情
础
(1)利用相互独立事件的概率乘法公式直接求解.
1
由条件概率计算公式,得 P(B|A)=P(P(A∩A)B)=140=14.
典
例
探
究 ·
【答案】 B
提
知
能
10
课 后 作 业
菜单
91淘课网 ——淘出优秀的你
高
自
主
1.利用定义,分别求P(A)和P(AB),得
考 体
落 实 · 固
P(B|A)=PP((AAB)).这是通用的求条件概率的方法.
验 · 明 考
体 验
实 · 固
篮投中,则 P(Ak)=13,P(Bk)=12(k=1,2,3).
· 明 考
基 础
(1)记“甲获胜”为事件 C,由互斥事件有一个发生的概 情
率与相互独立事件同时发生的概率计算公式知
P(C)=P(A1)+P(A1 B1A2)+P(A1 B1 A2 B2A3) =P(A1)+P(A1 )P(B1 )P(A2)+
典
S△SEOH=π2=21π.故 P(B|A)=PP((AAB))=22π=14.
例 探
π
课
后
究 · 提
【答案】 (1)π2 (2)14
数学:2.2《二项分布及其应用》课件
第十一页,编辑于星期日:十二点 十七分。
例4
❖ 一名学生骑自行车上学,从他家到学校 的路途中有6个交通岗,假设他在各个交通岗 遇到红灯的事件是相互独立的,并且概率都 是1/3。 (1)设为这名学生在路途中遇到的红灯的 次数,求的分布列。 (2)设为这名学生在首次停车前经过的路口 数,求的分布列。 (3)求这名学生在路途中遇到一次红灯的概 率。
第四页,编辑于星期日:十二点 十七分。
相互独立事件的概率
设A、B为两个事件,若事件A是否发生对事件B发生的概率
没有影响,即
则称事件A与事件B相互独立。
结论1:
结ቤተ መጻሕፍቲ ባይዱ2:
第五页,编辑于星期日:十二点 十七分。
例2
甲、乙两个人独立地破译一个密码,他们能 译出密码的概率分别为1/3和1/4。求
(1)两个人都译出密码的概率。 (2)两个人都译不出密码的概率。 (3)恰有一人译出密码的概率。 (4)至多一人译出密码的概率。 (5)至少一人译出密码的概率。
故障无人维修的概率为多少?
第九页,编辑于星期日:十二点 十七分。
在一次试验中某事件发生的概率是p,那么在n次独立重
复试验中这个事件恰发生x次,显然x是一个随机变量.
于是得到随机变量ξ的概率分布如下:
ξ0
1…
k
…
n
p
…
…
我们称这样的随机变量ξ服从二项分布,记作
,
其中n,p为参数,并记
第十页,编辑于星期日:十二点 十七分。
独立重复试验
1).公式适用的条件 2).公式的结构特征
事件 A 发生的概率
事件A发生的概率
Pn (k)
=
C
k n
pk
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X n 0 80 100 0.65 u 3.14 n 0 1 0 100 0.65 0.35
用n=20和x=8查附表7.2百分率的可信区间得该 法近期有效率的95%可信区间为19%64%。
由于附表7百分率的可信区间中值只列出了x n/2的部分,当x>n/2时,应以n -x查表,再从100 中减去查得的数值即为所求可信区间。
2、总体率的区间估计
三、二项分布的应用
(2)正态近似法 当样本含量足够大,且样本率p和 1-p均不太小,一般 np与 n(1-p)均大于5时,样本率的抽样分布近似正态分布,即
p ~ N ( ,
1
n
)
此时, 总体率的可信区间可按下式进行估计:
p u s p , p u s p 2 2
其中,
sp
p1 p n
三、二项分布的应用
(二)假设检验
1、样本率与已知总体率的比较:
(1)直接计算概率法:
例1 根据以往长期的实践,证明某常用药的治
(3) 确定P值,做出推断结论。
查表得, 0.0005<P<0.001, 按 = 0.05 水准拒绝H0,接受H1, 认为中西医结合疗法的疗效好于常规疗法。
例4 经长期临床观察, 发现胃溃疡患者发生胃出血症状 的占20%。现某医院观察了304例65岁以上的老年胃 溃疡患者,有96例发生胃出血症状,占31.58%。问老
愈率为65%。现在某种新药的临床试验中,随机观
察了10名用该新药的患者,治愈8人。问该新药的 疗效是否比传统的常用药好?
(1)建立假设,确定检验水准。 H0: = 0,即新药治愈率与传统药物相同
H1: > 0,即新药治愈率高于传统药物
= 0.05
(2)根据二项分布的分布规律,计算 P 值。
P(x) (5) 0.008 0.096
0.384 0.512 1.000
概率的乘法原理:几个相互独立的事件同时发生的概率等于各 事件发生概率的乘积。 概率的加法原理:几个互不相容的事件至少发生其一的概率等 于各事件发生概率的和。
3只小白鼠ห้องสมุดไป่ตู้亡的排列和组合方式及其概率的计算
小白鼠存亡组合方 式 生存数 死亡数 (n-X) (X ) (1) 3 0 排列方式 甲 乙 (2 ) 生 生 2 1 生 死 生 1 2 死 死 0 3 死 生 生 死 生 死 生 死 死 生 死 生 生 死 死 生 死 丙 (3) 0.2×0.2×0.2=0.008 0.2×0.2×0.8=0.032 0.2×0.8×0.2=0.032 0.2×0.8×0.2=0.032 0.2×0.8×0.8=0.128 0.8×0.2×0.8=0.128 0.8×0.8×0.2=0.128 0.8×0.8×0.8=0.512 每种排列的概率
[(1 ) ] (1 ) C (1 ) C (1 )
n n 1 n n 1 1 2 n n2
2
CnX (1 ) n X X Cnn1 (1 ) n1 n
[(1 0.8) 0.8] (1 0.8) C (1 0.8) (0.8)
3 3 1 3
31
1
C32 (1 0.8)32 (0.8) 2 (0.8)3
[(1 ) ]
0 n x n
n 0 1 n n 1
C (1 ) C (1 )
n
1 0 n
C (1 ) 1
n x
C (1 )
B( , n )。
例 抛硬币(正/反),患者治疗后的结局(治愈/未愈),实验
动物染毒后结局(生存/死亡),……。
一、二项分布的概念及应用条件
2、应用条件:
① n次试验相互独立 ( n 个观察单位相互独立)。
② 每次试验只有两种可能结果中的某一种(适用
于二分类资料)。 ③ 每次试验发生某一种结果的概率 固定不变 (要求各观察单位同质)。
0.8, n 3
每种组合的概率
P ( X ) C nX X (1 ) n X P (0) C (0.8) (1 0.8) 3 0 0.008
0 3 0 1 P (1) C 3 (0.8)1 (1 0.8) 31 0.096
(4 )
P ( 2) C 32 (0.8) 2 (1 0.8) 3 2 0.384
k2
三、二项分布的应用
(一)估计总体率的可信区间
1、率的抽样误差
p
sp
2、总体率的区间估计
1
n
(理论值)
p1 p n
(估计值)
三、二项分布的应用 2、总体率的区间估计 (1)查表法——样本量较小时(n50)
例3.6 某医院皮肤科医师用某种药物治疗20 名系统性红斑狼疮患者,其中8人近期有效,求该法 近期有效率的95%可信区间。
二、二项分布的性质
(一)均数和标准差
设从概率为的总体中随机抽取样本量为n的样本,每个样
本的事件发生数为x,则 x ~B(,n)。可以证明:
x n
x n 1
若用相对数表示,即样本率的均数和标准差分别为:
p
p 1
n
率的标准误(standard error of rate):
1、样本率与已知总体率的比较:
(2) 正态近似法:
近似
当 n0 和 n(1-0) 均大于5时,
近似
X ~ N n 0 , n 0 1 0
0 1 0 p ~ N 0 , n
可用正态近似法, 按下式计算检验统计量u值。
u
或
n 0 1 0
H0成立时,随机抽查的10人中治愈人数x 的分布
P X 8 p(8) p(9) p(10) C (1 ) C (1 ) C (1 )
8 10 8 2 9 10 9 1 10 10 10 0
45 0.65 0.35 10 0.65 0.35 0.65
(三)二项分布的图形
p
n=5, =0.5
n=10, =0.5
x x
n=20, =0.5 n=30, =0.5
n=5, =0.3
n=10, =0.3
n=20, =0.3
n=50, =0.3
=0.2, n=5
=0.2, n=10
=0.2,nn =20 =0.2, =20
=0.2, n=50
p
1
n
(理论值)
s p p(1 p) n
(实际值)
(二)二项分布的累计概率 从阳性率为 (1)最多有k例阳性的概率为
的总体中随机抽取n个观察单位,则
P( X k ) P(0) P(1) P(k )
(2)最少有k例阳性的概率为
P( X k ) P(k ) P(k 1) P(n) 1 P( X k 1)
8 2 9
10
0.17565 0.07249 0.01346 0.26160
(3) 做出推断结论。本例P >0.05,按=0. 05的检 验水准不拒绝H0,尚不能认为新药疗效较传统药物 疗效好。
例2 据以往经验,新生儿染色体异常率一般为1%, 某医生观察了当地400名新生儿,发现有1例染色体异 常,问该地新生儿染色体异常率是否低于一般?
H0成立时, 400名新生儿中染色体异常例数的概率分布
(1)建立检验假设,确定检验水准
H0: = 0,即该地新生儿染色体异常率不低于一般 H1: < 0,即该地新生儿染色体异常率低于一般 = 0.05 (2) 根据二项分布的分布规律,计算 P 值。 本例0=0.01,n=400,x=1,根据题意需求最多有1例染
(四)二项分布的特点
0.5 时,无论 n大小,其图形均呈对称分布; 2、当 0.5 ,且 且n n小时 小时 呈偏态分布;随n不断增大,逐 渐趋于对称分布;当 n 时,逼近正态分布。
1、当 实际工作中,只要n足够大,与1- 均不太小时(通常规定 n > 50 且
n 5
年胃溃疡患者是否较一般患者更易发生胃出血?
H0成立时, 304例老年胃溃疡患者中胃出血发生人数的分布
1、概念:若试验 E 只有两种相互对立的结果(A及 A ),
并且 P( A) , , 把 E 独立地重复 n
次的试验称为 n 重贝努里试验(Bernoulli trial)。
n 重贝努里试验中事件A发生的次数 x 所服从的分布
即为二项分布(binomial distribution),记为 x ~
P (3) C 33 (0.8) 3 (1 0.8) 33 0.512
该例题中各种组合的概率恰好等于该二项式展开式的各项,所以将 n次这种只具有两种互相对立结果中一种的随机实验成功次数的概 率分布称为二项分布。
该例题中各种组合的概率恰好等于该二项式展开式 的各项,所以将n次这种只具有两种互相对立结果 中一种的随机实验成功次数的概率分布称为二项分 布。
X n 0
p 0 u 0 (1 0 ) / n
例3 据报道,某常规疗法对某种疾病的治愈率为65%。现某
医生用中西医结合疗法治疗了100例该病患者,治愈了80人。 问该中西医结合疗法的疗效是否比常规疗法好?