人教版初二数学上册《全等三角形的判定》课件
合集下载
人教版八年级数学上册1全等三角形判定(SAS)课件
第十二章 全等三角形
12.2 全等三角形的判定(SAS)
人教版 八年级上册
学习目标
1.知道三角形全等“边角边”的内容; 2.经历探索三角形全等条件的过程,体会利
用操作、归纳获得数学结论的过程; 3.能运用“SAS”证明简单的三角形全等问题
知识回顾
“边边边”公理
文字叙述:三边对应相等的两个三角形全等.
(1)求证:△AOB≌△COD (2)说明线段AB与CD的关系
A
B
0
D
C
两个三角形满足三个条件对应相等时是否全等
①三个角对应相等;Ⅹ
②三条边对应相等;√ ③一个角和两条边对应相等?
昨天探究了前两种情 况,今天看看第三种情 况会怎样?源自④两个角和一条边对应相等;
动手操作
1.用三角板画∠MAN=30°;
其它满足两边一夹角 对应相等的两个三角
形是否全等呢?
2.在AM上截取AB=2cm;在AN上截取AC=3cm;
∴ △ABC ≌△ DEF(SAS) E
F
跟踪练习
1.下列图形中有没有全等三角形,并说明全等的理由
30°
甲
乙
30° 图甲与图丙全等,依据就是“SAS”.
30° 丙
变式训练
图甲和图乙也满足俩边一角分别相等,从图上 直接看出这俩个三角形不全等.
30°
甲
乙
30°
注意:两边和它们的 夹角分别相等的两个
三角形全等.
例题分析
证明:在△ABC和△DEC中, CA=CD(已知) ∠ACB=∠DCE(对顶角相等) CB=CE(已知)
∴△ABC≌△DEC(SAS)
∴AB=DE(全等三角形对应边相等)
跟踪练习 如图,点B、E、C、F在一条直线上, BE=CF,AB=DE,∠B=∠1.求证:∠A=∠D
12.2 全等三角形的判定(SAS)
人教版 八年级上册
学习目标
1.知道三角形全等“边角边”的内容; 2.经历探索三角形全等条件的过程,体会利
用操作、归纳获得数学结论的过程; 3.能运用“SAS”证明简单的三角形全等问题
知识回顾
“边边边”公理
文字叙述:三边对应相等的两个三角形全等.
(1)求证:△AOB≌△COD (2)说明线段AB与CD的关系
A
B
0
D
C
两个三角形满足三个条件对应相等时是否全等
①三个角对应相等;Ⅹ
②三条边对应相等;√ ③一个角和两条边对应相等?
昨天探究了前两种情 况,今天看看第三种情 况会怎样?源自④两个角和一条边对应相等;
动手操作
1.用三角板画∠MAN=30°;
其它满足两边一夹角 对应相等的两个三角
形是否全等呢?
2.在AM上截取AB=2cm;在AN上截取AC=3cm;
∴ △ABC ≌△ DEF(SAS) E
F
跟踪练习
1.下列图形中有没有全等三角形,并说明全等的理由
30°
甲
乙
30° 图甲与图丙全等,依据就是“SAS”.
30° 丙
变式训练
图甲和图乙也满足俩边一角分别相等,从图上 直接看出这俩个三角形不全等.
30°
甲
乙
30°
注意:两边和它们的 夹角分别相等的两个
三角形全等.
例题分析
证明:在△ABC和△DEC中, CA=CD(已知) ∠ACB=∠DCE(对顶角相等) CB=CE(已知)
∴△ABC≌△DEC(SAS)
∴AB=DE(全等三角形对应边相等)
跟踪练习 如图,点B、E、C、F在一条直线上, BE=CF,AB=DE,∠B=∠1.求证:∠A=∠D
新人教版八年级上册《三角形全等的判定》(边角边)ppt
小明做了一个如图所示的风筝,其中 ∠EDH=∠FDH, ED=FD ,将上述条件标注在图 中,小明不用测量就能知道EH=FH吗?与同桌进 行交流。
D E F
△EDH≌△FDH 根据“SAS”, 所以EH=FH
H
探究3
以2.5cm,3.5cm为三角形的两边,长度为 2.5cm的边所对的角为40° ,情况又怎样? 动手画一画,你发现了什么?
△ADC≌△CBA 根据“SAS”
△ABC≌△EFD 根据“SAS”
例一 已知:如图, AB=CB ,∠ ABD= ∠ CBD
△ ABD 和△ CBD 全等吗? 分析: △ ABD ≌△ CBD (SAS) 边: AB=CB(已知)
B A
D
角: ∠ABD= ∠CBD(已知) 边:
C
?
现在例1的已知条件不改变,而问题改变成:
1. 三角形全等的条件,两边和它们的夹角对应相等的两 个三角形全等 (边角边或SAS) 2. 用尺规作图:已知两边及其夹角的三角形画三角形 3、会判定三角形全等
作业布置
1.已知:如图,AB=AC,F、E分别是AB、AC的中点. 求证:△ABE≌△ACF. 2.已知:点A、F、E、C在同一条直线上, AF=CE, BE∥DF,BE=DF. 求证:△ABE≌△CDF.
C F
A
40°
B
D
40°
E
结论:两边及其一边所对的角相等,两
个三角形不一定全等
猜一猜: 是不是二条边和一个角对应相等,这样的 两个三角形一定全等吗?你能举例说明吗? 如图△ABC与△ABD中, AB=AB,AC=BD, ∠B=∠B 他们全等吗?
B C
A
பைடு நூலகம்
D
D E F
△EDH≌△FDH 根据“SAS”, 所以EH=FH
H
探究3
以2.5cm,3.5cm为三角形的两边,长度为 2.5cm的边所对的角为40° ,情况又怎样? 动手画一画,你发现了什么?
△ADC≌△CBA 根据“SAS”
△ABC≌△EFD 根据“SAS”
例一 已知:如图, AB=CB ,∠ ABD= ∠ CBD
△ ABD 和△ CBD 全等吗? 分析: △ ABD ≌△ CBD (SAS) 边: AB=CB(已知)
B A
D
角: ∠ABD= ∠CBD(已知) 边:
C
?
现在例1的已知条件不改变,而问题改变成:
1. 三角形全等的条件,两边和它们的夹角对应相等的两 个三角形全等 (边角边或SAS) 2. 用尺规作图:已知两边及其夹角的三角形画三角形 3、会判定三角形全等
作业布置
1.已知:如图,AB=AC,F、E分别是AB、AC的中点. 求证:△ABE≌△ACF. 2.已知:点A、F、E、C在同一条直线上, AF=CE, BE∥DF,BE=DF. 求证:△ABE≌△CDF.
C F
A
40°
B
D
40°
E
结论:两边及其一边所对的角相等,两
个三角形不一定全等
猜一猜: 是不是二条边和一个角对应相等,这样的 两个三角形一定全等吗?你能举例说明吗? 如图△ABC与△ABD中, AB=AB,AC=BD, ∠B=∠B 他们全等吗?
B C
A
பைடு நூலகம்
D
人教版《三角形全等的判定》PPT全文课件
知识回顾
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.
∥
∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).
问题探究
课堂小结
随堂检测
活动2
0
探究一:探索三角形全等的条件
建立模型,探索发现
只给定一条边相等:
只给定一个角相等:
3cm
3cm
3cm
30°
30°
30°
满足一个条件相等时,两个三角形不一定全等.
知识回顾
问题探究
课堂小结
随堂检测
活动3
0
探究一:探索三角形全等的条件
问题:两个三角形满足六个条件中的两个条件,两个三角形全等吗?两个条件有几种情况?
证明:连接AC,
【解题过程】
如图, 在四边形ABCD中, AB=AD, CB=CD, 求证:∠B=∠D.
∴∠B=∠D.(全等三角形对应角相等)
【思路点拨】先连接AC, 由于AB=AD, CB=CD, AC=AC, 利用SSS可证△ABC≌△ADC, 于是∠B=∠D. 要求学生从“形”思维到“质”的思维飞跃, 实现将“文字语言”, “图形语言”转化为“符号语言”.
∥
∵BC=DE, ∴BC+CD=DE+CD. 即BD=CE.
【数学思想】 数形结合思想,分类讨论思想.
∴ ∠ADB=∠FEC,AD=EF (全等三角形对应角相等) ∴AD∥EF(同位角相等,两直线平行)
在△ABD和△FCE中
∴△ABD≌△FCE (SSS).
知识回顾
问题探究
课堂小结
随堂检测
例4
0
探究三:利用三角形全等的判定“SSS”解决问题
△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,请问AD⊥BC吗?请说明理由.
在△ABD和△ADC中,
∴△ABD≌△ACD (SSS).
人教版八年级上册数学课件 12.2《三角形全等的判定》SAS (共19张PPT)
(2) BC=BD, ∠ABC=∠ABD.
活动四:
自学课本38页例题2:思考以下问题
1、 ∠1=∠2的根据是什么? 2、 AB=DE的根据是什么? 3、体会如何将实际问题转化成几何问题。
活动五
1、如图,AB∥CD,且AB=CD, 求证: AD= CB
追问:AD∥CB吗?为什么?
2、如图,点E,F在BC上,BE=CF, AB=DC, ∠B= ∠C,求证: ∠A= ∠D
活动二
2.如图,已知AC=AD, 在△ABC和 △ABD中, 对应相等的边有:_A_B__=_A_B_,_A_C_=_AD 相等的角有:_____∠__B_=__∠__B______
它们全等吗?______不__全__等______
讨论:
两边和一个角分别相等的 两个三角形全等吗?
△ABC与A/B/C/全等
B
D C⁄
A⁄
B⁄
E
画法
1. 画∠DA/ E=∠A ;
2. 在射线A/ D上截取A/B/=AB,在射线 A/ E上截取A/C/=AC; 3. 连结B/C/. △A/B/C/就是所要画的三角形.
问:△ABC与A/B/C/是否全等?
这节课有什么收获呢
仔 细 比 较 你 有 什 么 发 现 ? △ABC和 △ABD不全等
结论
全等三角形的判定方法二:
两边和它们的夹角分 别相等的两个三角形全等
(简写成“边角边”或“SAS”)
用符AS)
活动三:
如图所示, 根据题目条件,判断下面的 三角形是否全等. (1) AB=DE, BC=EF, ∠C=∠F;
第2题
思考
如图,AC、BD相交于点O,AO=BO、 DO=CO,图中有几对全等的三角形?你 能说出为什么吗?
活动四:
自学课本38页例题2:思考以下问题
1、 ∠1=∠2的根据是什么? 2、 AB=DE的根据是什么? 3、体会如何将实际问题转化成几何问题。
活动五
1、如图,AB∥CD,且AB=CD, 求证: AD= CB
追问:AD∥CB吗?为什么?
2、如图,点E,F在BC上,BE=CF, AB=DC, ∠B= ∠C,求证: ∠A= ∠D
活动二
2.如图,已知AC=AD, 在△ABC和 △ABD中, 对应相等的边有:_A_B__=_A_B_,_A_C_=_AD 相等的角有:_____∠__B_=__∠__B______
它们全等吗?______不__全__等______
讨论:
两边和一个角分别相等的 两个三角形全等吗?
△ABC与A/B/C/全等
B
D C⁄
A⁄
B⁄
E
画法
1. 画∠DA/ E=∠A ;
2. 在射线A/ D上截取A/B/=AB,在射线 A/ E上截取A/C/=AC; 3. 连结B/C/. △A/B/C/就是所要画的三角形.
问:△ABC与A/B/C/是否全等?
这节课有什么收获呢
仔 细 比 较 你 有 什 么 发 现 ? △ABC和 △ABD不全等
结论
全等三角形的判定方法二:
两边和它们的夹角分 别相等的两个三角形全等
(简写成“边角边”或“SAS”)
用符AS)
活动三:
如图所示, 根据题目条件,判断下面的 三角形是否全等. (1) AB=DE, BC=EF, ∠C=∠F;
第2题
思考
如图,AC、BD相交于点O,AO=BO、 DO=CO,图中有几对全等的三角形?你 能说出为什么吗?
人教版八年级数学上册12.2全等三角形判定 (SSS) 课件
归纳:只有一个角对应相等的两 个三角形不一定全等.
观察思考
两个三角形如果满足两个条件对应相等,这两个三 角形是否全等: 第一种情况:
3cm 5cm
3cm 5cm
归纳:两条边对应相等的两个三角形不一定全等.
观察思考
第二种情况:
老师的这个含300,600的三
角尺和你们的含300,600的 三角尺能重合吗
三边对应相等的两个三角形全等
总结归纳
“边边边”公理
文字叙述:三边对应相等的两个三角形全等.
(简写为“边边边”或“SSS”)
A
几何语言: 在△ABC和△DEF中, AB=DE,
B
C
D
BC=EF,
CA=FD, ∴
如图,有一个三角形钢架,AB=AC,AD是连接点A
当堂检测
4.若干个正六边形拼成的图形中,下列三角形 与△ACD全等的有( )
A.△BCE B.△ADF C.△ADE D.△CDE
当堂检测
5.如图,点A,D,B,E在同一条直线上,AC=EF, AD=BE,BC=DF,BC与DF交于点O.(1)求证: △ABC≌△EDF.(2)若∠CBE=125°,求∠BOD的 度数.
与BC中点D的支架。求证:AD平分∠BAC
A
解题技巧: ①先找已知条件AB=AC
②再找隐含条件公共边AD
B
D
C
③最后找由已知条件推出的结论BD=CD
例题分析
证明:∵D是BC中点(已知)
∴ BD=DC(线段中点定义) A
在△ABD与△ACD中
AB=AC(已知)
B
BD=CD(已证)
D
C
AD=AD(公共边) ∴ △ABD≌△ACD(SSS)
八年级数学上册三角形全等的判定课件
画法:(1)画∠MC′N=90°; (2)在射线C′M上截取B′C′=BC; (3)以点B′为圆心,AB为半径画弧, 交射线C′N于点A′; (4)连接A′B′.
A
B
C
N
A′
M B′
C′
新知探究
知识点1
判定5:斜边和一条直角边分别相等的两个直角三角形全等.(可以简写成“斜
边、直角边”或者“HL”) A
∴△ABC≌△A′B′C′(AAS).
学习目标
1、理解并掌握直角三角形全等判定“斜边、直角边”条件的内容. (重点) 2、熟练利用“斜边、直角边”条件证明两个直角三角形全等.(难 点) 3、通过探究判定三角形全等条件的过程,提高分析和解决问题的 能力.
课堂导入
思考:两个直角三角形中,已经有一对相等的直角,还需要满足几个条件就可 以说明两个三角形全等?
知识回顾
3、两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或 者“SAS”).
符号语言表示:在△ABC和△A′B′C′中, AB=A′B′, ∠B=∠B′, BC=B′C′,
∴△ABC≌△A′B′C′(SAS).
知识回顾
4、两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或 者“ASA”).
符号语言表示:在△ABC和△A′B′C′中, ∠B=∠B′, BC=B′C′, ∠C=∠C′,
∴△ABC≌△A′B′C′(ASA).
知识回顾
5、两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角 边”或者“AAS”).
符号语言表示:在△ABC和△A′B′C′中, ∠A=∠A′, ∠B=∠B′, BC=B′C′,
A
B┐
C
A′
人教版八年级上册1三角形全等的判定课件
解:∵CE=BF,∴CE-EF=BF-EF,∴CF=BE.
= ,
在△AEB 和△CFD 中, ∠ = ∠,
= ,
∴△AEB≌△DFC( SAS ),
∴CD=AB,∠C=∠B,∴CD∥AB.
综合能力提
升练
12.如图,AO是∠BAC和∠DAE的平分线,AD=AE,AB=AC,线段BD和CE是
∴ ΔABC≌ΔADE(SAS) ∴
2
B
D
证明: ∵∠1=∠2 (已知)
∴ ∠1+∠DAC
= ∠2+ ∠DAC,
即∠BAC=∠DAE
C
E
∠B=∠D(全等三角形的对应
角相等)
思考
如下图,把一长一短的两根木棍的一端固定在一起,
摆出△ABC .固定住长木棍,转动短木棍,得到△ABD.
这个实验说明了什么?
求证:( 1 )△ABC≌△DEF;
( 2 )∠CBF=∠FEC.
解:( 1 )∵AF=DC,∴AC=DF.
∵AB∥DE,∴∠A=∠D,
= ,
在△ABC 和△DEF 中, ∠ = ∠,
= ,
∴△ABC≌△DEF( SAS ).
( 2 )∵△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE.
= ,
在△BCF 和△EFC 中, ∠ = ∠,
= ,
∴△BCF≌△EFC( SAS ),∴∠CBF=∠FEC.
拓展探究突
破练
1
2
14.如图,在△ABC 中,AD 是中线,求证:AD< ( AB+AC ).
证明:延长 AD 到点 E,使 DE=AD,连接 BE,
∴AE=2AD.
= ,
人教版八年级数学上册《全等三角形的判定(SAS)》课件
广东省怀集县梁村镇中心初级中学
周恒
三、三研、学研教学材教材
知识证点明三:∵BE=CF ∴BE+EF=CF+EF, ∴BE=CE 在∆ABF和∆DCE中, BF=CE ∠B=∠C AB=DC ∴△ABF≌△DCE( SAS ) ∴∠A=∠D( 全等三角形的 对应角相等 )
广东省怀集县梁村镇中心初级中学
发,分别向东、向西的行进相同的距离,得
AD=AC,∠BAD=∠BAC,
因此得,在△BAD和△BAC中:
AD=AC
DA
C
∠BAD=∠BAC
AB=AB( 公共边 ) ∴△BAD≌△BAC( SAS ) ∴CB=DB(全等三角形的对应边相等 )
三、三研、学研教学材教材
知识点二 2、如图,点E,F在BC上, BE=CF,AB=DC,∠B=∠C. 求证∠A=∠D.
1
过池塘可以直接到达点A和点B.
2
连接AC并延长到点D,使
CD=CA,连接BC并延长到点
E,CB=CE.连接DE,那么量出DE
的长就是A、B的距离.为什么?
三、研学教材
分析:问题实际是:在△ABC
与△DEC中,CA=CD, CB=CE.求证:AB=DE.只要证
1
得△ABC ____________ ≌__△_D__E_C,就可以得
(第1题)
2、如图,已知,AC=AE,
∠BAC=∠DAE,AB=AD若 D
∠D=25°,则∠B的度数为( A)
A. 25°
B.30°
B
C. 15°
D. 15° 或30°
CE
A (第2题)
三、研学教材
知识点二 全等三角形的判定“SAS”的应用
人教版数学八年级上册1 三角形全等的判定 第一课时 课件
△ABD≌△ACD(SSS)
△ABH≌△ACH(SSS)
B
△BDH≌△CDH(SSS)
A
D HC
(3)以点C′为圆心,CD 长为半径画弧,与第2 步中 所画的弧交于点D′;
(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
依据是 什么?
典例精析
例1 如图,有一个三角形钢架,AB =AC ,AD 是 连接点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD .
A
B
D
C
2.已知:如图 ,AC=FE,AD=FB,BC=DE.
求证:(1)△ABC≌△FDE;
(2) 求证∠A = ∠F.
A
(3)DE∥BC吗
D
E
C
B F
• 证明三角形全等的应用 • 1.得到角相等 • 2.可以证明垂直 • 3.可以证明平行 • 4......
• 找等边的常用途径
1.公共边相等
2.中线的定义得出线段相等
3.等边加(或减)等边,其和(或差)仍相等
C′ 两弧相交于点A';
(3)连接线段A'B',A 'C '.
用尺规作图作一个角等于已知角
已知:∠AOB.求作:∠A′O′B′=∠AOB.
B
O
A
作法:
(1)以点O 为圆心,任意长为半径画弧,分别交OA, OB 于点C、D;
(2)画一条射线O′A′,以点O′为圆心,OC 长为半 径画弧,交O′A′于点C′;
先 任 意 画 出 一 个 △ ABC , 再 画 出 一 个
△A′B′C′ ,使A′B′= AB ,B′C′ =BC, A′ C′ =AC.把画好的
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.在Rt△ABC中,BD平分∠ABC, DE⊥AB于E,则:
⑴图中相等的线段有哪些?相等的角呢? ⑵哪条线段与DE相等?为什么? ⑶若AB=10,BC=8,AC=6, 求BE,AE的长和△AED的周长。
A D
B
E
C
4、已知:BD⊥AM于点D,CE⊥AN于点E,BD,CE 交点F,CF=BF,求证:点F在∠A的平分线上.
拓展与延伸
2、直线表示三条相互交叉的公路,现要建 一个货物中转站,要求它到三条公路的距 离相等,则可供选择的地址有:( ) A.一处 B. 两处 C.三处 D.四处
分析:由于没有限制在 何处选址,故要求的地 址共有四处。
在角的内部,到角的两边的距离相 等的点在角的平分线上。
用数学语言表示为:
∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
在角的内部,到角的两边的距离 相等的点在角的平分线上。
用数学语言表示为:
∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
角的平分线上的点到角的两边的距离相等. ∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上 ∴ QD=QE
如图, △ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB、BC、CA的距离相等 证明:过点P作PD⊥AB于D, PE⊥BC于E,PF⊥AC于F ∵BM是△ABC的角平分线,点P 在BM上,
角的平分线上的点到角的两边的距离相等. ∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上 ∴ QD=QE
拓展与延伸
1.如图,OC是∠AOB的平分线, ∵ PD⊥OA,PE⊥OB
∴PD=PE
C
A
D
P
B
·
E
O
A
E
C
B
D
2.如图,在△ABC中, AC⊥BC,AD为∠BAC的平 分线,DE⊥AB,AB=7㎝, AC=3㎝,求BE的长。
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
证明: ∵ QD⊥OA,QE⊥OB(已知), ∴ ∠QDO=∠QEO=90°(垂直的定义) 在Rt△QDO和Rt△QEO中 QO=QO(公共边) QD=QE ∴ Rt△QDO≌Rt△QEO(HL) ∴ ∠ QOD=∠QOE ∴点Q在∠AOB的平分线上
1、会用尺规作角的平分线.
2、角的平分线的性质: 角的平分线上的点到角的两边的距离相等
用数学语言表述: ∵ OC是∠AOB的平分线 PD⊥OA,PE⊥OB ∴ PD=PE
A D O 1 2 E B P C的点 是否一定在这个角的平分线上呢?
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
M D C F A E B N
如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F,且BE=CF。 求证:AD是△ABC的角平分线。
A
E
F D
B
C
利用结论,解决问题
练一练 1、如图,为了促进当 地旅游发展,某地要在 三条公路围成的一块平 地上修建一个度假村.要 使这个度假村到三条公 路的距离相等,应在何处 修建? 在确定度假村的位置时,一定要画 想一想 出三个角的平分线吗?你是怎样思考 的?你是如何证明的?
B A ND P M F
∴PD=PE (角平分线上的点到这个角的两边距离相等). 同理,PE=PF. ∴PD=PE=PF. 即点P到三边AB、BC、CA的距离相等
E
C
如图,已知△ABC的外角∠CBD和 ∠BCE的平分线相交于点F, 求证:点F在∠DAE的平分线上.
证明: 过点F作FG⊥AE于G, G FH⊥AD于H,FM⊥BC于M ∵点F在∠BCE的平分线上, M FG⊥AE, FM⊥BC ∴FG=FM H 又∵点F在∠CBD的平分线上, FH⊥AD, FM⊥BC ∴FM=FH ∴FG=FH ∴点F在∠DAE的平分线上