SDS-PAGE蛋白凝胶电泳
sds-page电泳的基本原理
SDS-PAGE电泳是一种常用的蛋白质分析技术,通过电泳分离蛋白质样品的方法得到了广泛的应用。
本文将着重介绍SDS-PAGE电泳的基本原理。
一、SDS-PAGE电泳的概念SDS-PAGE是一种已经被广泛应用的蛋白质分离技术,它的全称是聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamide gel electrophoresis)。
这种电泳技术利用聚丙烯酰胺凝胶作为分离介质,通过直流电场将蛋白质样品分离出不同电荷和大小的蛋白质成分。
二、SDS-PAGE电泳的原理1. 聚丙烯酰胺凝胶SDS-PAGE电泳中所使用的凝胶是由聚丙烯酰胺构成的。
聚丙烯酰胺凝胶具有一定的孔隙结构,可以根据蛋白质的大小和电荷来调整孔隙的大小,从而实现不同大小的蛋白质的分离。
2. SDS处理SDS是指月桂基硫酸钠,它是一种阴离子表面活性剂。
在SDS-PAGE 电泳中,将样品中的蛋白质经过SDS处理后,蛋白质表面都会均匀地吸附一定数量的SDS分子,并且使蛋白质呈负电荷。
这样,所有的蛋白质分子都会带有类似的电荷密度,可以消除蛋白质的本身的电荷特性,使蛋白质在电场作用下只受到电场力的作用,而不受到其他因素干扰。
3. 蛋白质分离将经过SDS处理的蛋白质样品加载到聚丙烯酰胺凝胶上,然后通过电泳进行分离。
经电泳分离后,蛋白质会根据其大小和电荷迁移到不同位置,从而使不同的蛋白质分离开来。
三、SDS-PAGE电泳的应用SDS-PAGE电泳技术在生物化学和分子生物学研究领域应用广泛。
它可以用于研究蛋白质的分子量、纯度和比例,也可以用于检测蛋白质的存在和表达水平,同时还可以用于鉴定蛋白质的异构体等。
四、SDS-PAGE电泳的发展SDS-PAGE电泳技术自问世以来,经过不断的改进和完善,在蛋白质分离和分析领域一直处于领先地位。
未来,随着科学技术的不断进步,SDS-PAGE电泳技术也将会迎来新的发展,并在更广泛的领域得到应用。
SDS-聚丙烯酰胺凝胶电泳PAGE测定蛋白质分子量
02 实验材料
所需的试剂和溶液
丙烯酰胺(AA):用于制备凝胶,是聚合反应 的单体。
甲叉双丙烯酰胺(MBA):交联剂,增加凝胶 的交联度。
N,N,N',N'-四甲基乙二胺(TEMED):催化剂, 加速交联聚合反应。
所需的试剂和溶液
过硫酸铵(APS)
引发剂,产生自由基,引发聚合反应。
SDS
十二烷基硫酸钠,用于变性蛋白质并促使其 带负电荷。
发展新型分离技术
随着生物技术的不断发展,可以发展新型的蛋白质分离技术, 如二维电泳、毛细管电泳等,以提高蛋白质分离的分辨率和准
确性。
应用多维度分析
在后续实验中,可以将SDS-PAGE与其他蛋白质分析技术相结 合,如质谱技术、免疫学检测等,进行多维度分析,更全面地
了解蛋白质的性质和功能。
THANKS FOR WATCHING
白质带负电荷,从而在电场中向正极移动。
聚丙烯酰胺凝胶作为支持介质,能够根据蛋白质分子量的不同
03
对其进行分离。
蛋白质的分子量测定
通过比较标准蛋白的迁移率和已知分 子量的标准蛋白,可以大致测定出待 测蛋白质的分子量。
蛋白质的迁移率与其分子量的对数成 反比,因此可以通过计算待测蛋白与 标准蛋白的相对迁移率来推算其分子 量。
甘氨酸
作为分子量标准品。
Tris-HCl缓冲液
维持电泳过程中的pH值稳定。
所需的仪器和设备
电源
为电泳提供电力。
凝胶板
放置凝胶的框架。
垂直电泳槽
提供电泳所需的基 本结构。
移液器
精确添加试剂和溶 液。
紫外透射仪
检测蛋白质条带。
实验前的准备事项
清洗电泳槽和相关器具,确保无残留物。 准备好所需的试剂和溶液,并确保其在有效期内。
SDS-PAGE-蛋白电泳分析
SDS-PAGE 蛋白电泳分析一、目的掌握SDS-PAGE 电泳原理与方法二、电泳原理聚丙烯酰胺凝胶是由丙烯酰胺(简称Acr) 和交联剂N,N’—亚甲基双丙烯酰胺(简称Bis)在催化剂作用下,聚合交联而成的具有网状立体结构的凝胶,并以此为支持物进行电泳。
聚丙烯酰胺凝胶电泳可根据不同蛋白质分子所带电荷的差异及分子大小的不同所产生的不同迁移率将蛋白质分离成若干条带,如果分离纯化的样品中只含有同一种蛋白质,蛋白质样品电泳后,就应只分离出一条区带。
SDS 是一种阴离子表面活性剂能打断蛋白质的氢键和疏水键,并按一定的比例和蛋白质分子结合成复合物,使蛋白质带负电荷的量远远超过其本身原有的电荷,掩盖了各种蛋白分子间天然的电荷差异。
因此,各种蛋白质-SDS 复合物在电泳时的迁移率,不再受原有电荷和分子形状的影响,而只是棒长的函数。
这种电泳方法称为SDS-聚丙烯酰胺凝胶电泳(简称SDS—PAGE)。
由于SDS-PAGE 可设法将电泳时蛋白质电荷差异这一因素除去或减小到可以略而不计的程度,因此常用来鉴定蛋白质分离样品的纯化程度,如果被鉴定的蛋白质样品很纯,只含有一种具三级结构的蛋白质或含有相同分子量亚基的具四级结构的蛋白质,那么SDS—PAGE 后,就只出现一条蛋白质区带。
三、试剂配制1.30% 丙烯酰胺:将29g 丙烯酰胺和1g N,N’-亚甲双丙烯酰胺溶于总体积为60ml 的水中。
加热至37℃溶解之,补加水至终体积为100ml。
用过滤器(0.45μm 孔径)过滤除菌,查证该溶液的pH值应不大于7.0,置棕色瓶中保存于室温(丙烯酰胺具有很强的神经毒性并可以通过皮肤吸收,其作用具累积性。
称量丙烯酰胺和亚甲双丙烯酰胺时应戴手套和面具。
可认为聚丙烯酰胺无毒,但也应谨慎操作,因为它还可能会含有少量未聚合材料)。
2.1M Tris-Cl: 称取12.191g Tris 碱溶于80ml 蒸馏水中,用浓HCl 调到所需pH 值,定容至100ml。
蛋白质sds-page凝胶电泳实验步骤
蛋白质sds-page凝胶电泳实验步骤嘿,朋友们!今天咱就来讲讲蛋白质 SDS-PAGE 凝胶电泳实验那些事儿。
首先呢,得准备好各种材料和试剂,这就好比要出门得先把鞋穿好一样重要。
什么电泳槽啦、玻璃板啦、丙烯酰胺溶液啦等等,一个都不能少。
然后就是配胶啦!这就像做菜,得把各种材料按照一定的比例调好。
先配分离胶,小心翼翼地把各种溶液倒在一起,搅拌均匀,可别搅出气泡来哟,不然就像蛋糕里有了疙瘩,可不好看啦。
接着让它静置一会儿,等它凝固得差不多了,再倒上浓缩胶,这浓缩胶就像是给蛋糕加上一层漂亮的奶油。
胶配好啦,接下来就是上样啦!把处理好的蛋白质样品加到孔里,就好像是给小格子里放上宝贝。
这时候可得细心点,别把样品洒出来啦。
接着就是电泳啦!通上电,让蛋白质在电场里欢快地奔跑起来。
它们就像一群小朋友在赛跑,跑得快慢不一样,最后就分开啦。
在这个过程中,可别闲着呀,要时刻盯着,就像看着自己的宝贝在比赛一样。
看看电泳液有没有变少呀,电泳的情况怎么样呀。
等电泳结束啦,就可以染色啦!把胶放到染色液里泡一泡,就像给它洗个彩色的澡。
等染上颜色了,就能清楚地看到蛋白质的条带啦。
哎呀,你说这蛋白质 SDS-PAGE 凝胶电泳实验是不是很有趣呀?就像一场小小的冒险,每一步都充满了惊喜和挑战。
虽然过程可能有点繁琐,但当你看到那清晰的条带时,就会觉得一切都值得啦!就好像辛苦种的花儿终于开了一样开心。
所以呀,别害怕,大胆地去尝试吧!只要按照步骤一步一步来,肯定能做出漂亮的结果。
就像学走路一样,一开始可能会跌跌撞撞,但只要坚持,总会走得稳稳当当的。
加油哦,朋友们!相信你们一定能在蛋白质 SDS-PAGE 凝胶电泳实验中找到属于自己的乐趣和成就感!。
SDS-PAGE电泳测定蛋白质相对分子质量
SDS-PAGE电泳测定蛋白质相对分子质量SDS-PAGE电泳是现代生物学和生物化学研究中最常用的方法之一,可用于测定蛋白质的相对分子质量、纯度和数量等指标。
下面将就SDS-PAGE电泳测定蛋白质相对分子质量进行介绍。
SDS-PAGE电泳的原理:SDS-PAGE电泳是一种基于PAG(聚丙烯酰胺凝胶板)的矩阵上运行的直流凝胶电泳。
相对分子质量(MW)是以电泳迁移距离为单位来表示的。
蛋白质在PAG上被限制在孔道中运动,因此,蛋白质分子迁移距离与分子大小成正比。
通过使用外部标准,可以精确地将样品的迁移距离转换为分子量。
这种分离方法受到电荷和大小作用的影响,电势梯度使带电的蛋白质分子在凝胶中迁移。
SDS-PAGE电泳的过程:SDS-PAGE电泳的过程主要包括:样品加载、电泳和染色步骤。
(1)样品加载:样品的制备:蛋白质样品通常经过还原和变性,以便将所有蛋白质中的二硫键断裂并且在孔道中呈现线性的多聚蛋白质结构。
这需要在治疗过程中对样品添加SDS缓冲液,然后在热水浴或高压下暴露于还原剂,例如2-硫代乙酸(DTT)或β-巯基乙酸(MEA)。
(2)电泳:将处理过的样品通过凝胶基质中的丝状孔道。
随着电场的施加,蛋白质会在SDS凝胶板上自由迁移,从而分离出蛋白系列。
(3)染色:电泳结束后,将凝胶板进行染色。
目前较常用的方法是银染、共染和Coomassie Brilliant Blue染色法。
SDS-PAGE电泳的应用:SDS-PAGE电泳广泛应用于研究蛋白质相对分子质量、活性定量、纯度评估、亚基分离等方面。
其中,蛋白质相对分子质量的测定是SDS-PAGE电泳的最主要应用之一。
通过将未知蛋白与已知分子质量蛋白一起电泳,可以通过线性回归计算未知标本的分子大小。
SDS-PAGE(SDS聚丙烯酰胺凝胶电泳)原理
甘氨酸
最广泛使用的不连续缓冲系统最早是由Ornstein(1964) 和 Davis(1964) 设计的, 样品和浓缩胶中含 Tris-HCl(pH 6.8), 上下槽缓冲 液含Tris-甘氨酸(pH 8.3), 分离胶中含Tris-HCl(pH 8.8)。系统中所有组 分都含有0.1% 的 SDS(Laemmli, 1970)。样品和浓缩胶中的氯离子形 成移动界面的先导边界而甘氨酸分子则组成尾随边界,在移动界面的两 边界之间是一电导较低而电位滴度较陡的区域, 它推动样品中的蛋白质 前移并在分离胶前沿积聚。此处pH值较高, 有利于甘氨酸的离子化, 所形成的甘氨酸离子穿过堆集的蛋白质并紧随氯离子之后,沿分离胶泳 动。从移动界面中解脱后,SDS-蛋白质复合物成一电位和pH值均匀的 区带泳动穿过分离胶,并被筛分而依各自的大小得到分离。
Ø 加入加速剂TEMED后聚合马上开始,应立即将凝胶混匀,迅速灌胶。
保存条件: 4℃保存。
注意事项:
Ø 易燃,有腐蚀性,请注意防护。
Ø为了您的安全和健康,请穿实验服并戴一次性手套操作。
.
过硫酸铵 分子式: (NH4)2S2O8 分子量: 228.20
性状:过硫酸铵是一种白色、无味晶体,常作强氧化剂使用,也可用作单体聚合引发 剂。它几乎不吸潮,由于能达到很高的纯度而具有特别好的稳定性,便于储存。另外, 它还具有使用方便、安全等优点。 储存及使用注意事项:
.
浓缩效应:凝胶由两种不同的凝胶层组成。上层为浓缩胶,下层为分离 胶。浓缩胶为大孔胶,缓冲液pH6.7,分离胶为小孔胶,缓冲液pH8.9。 在上下电泳槽内充以Tris—甘氨酸缓冲液(pH8.3),这样便形成了凝胶孔 径和缓冲液pH值的不连续性。在浓缩胶中 HCl几乎全部解离为Cl-,但只 有极少部分甘氨酸解离为H2NCH2COO-。蛋白质的等电点一般在pH5左 右,在此条件下其解离度在HCl和甘氨酸之间。当电泳系统通电后,这3 种离子同向阳极移动。其有效泳动率依次为Cl->蛋白质> H2NCH2COO-,故C1-称为快离子,而H2NCH2COO- 称为慢离子。电 泳开始后,快离子在前,在它后面形成离子浓度低的区域即低电导区。 电导与电压梯度成反比,所以低电导区有较高的电压梯度。这种高电压 梯度使蛋白质和慢离子在快离子后面加速移动。在快离子和慢离子之间 形成—个稳定而不断向阳极移动的界面。由于蛋白质的有效移动率恰好 介于快慢离子之间,因此蛋白质离子就集聚在快慢离子之间被浓缩成— 条狭窄带。这种浓缩效应可使蛋白质浓缩数百倍。
《中国药典》(2020版)SDS-聚丙烯酰胺凝胶电泳
第五法SDS-聚丙烯酰胺凝胶电泳法(SDS-PAGE法)SDS-PAGE法是一种变性的聚丙烯酰胺凝胶电泳方法。
本法分离蛋白质的原理是根据大多数蛋白质都能与阴离子表面活性剂十二烷基硫酸钠(SDS)按重量比结合成复合物,使蛋白质分子所带的负电荷远远超过天然蛋白质分子的净电荷,消除了不同蛋白质分子的电荷效应,使蛋白质按分子大小分离。
本法用于蛋白质的定性鉴别、纯度和杂质控制以及定量测定。
1.仪器装置恒压或恒流电源、垂直板电泳槽和制胶模具。
2.试剂(1)水。
(2)分离胶缓冲液(4×,A液) 1.5moL/L三羟甲基氨基甲烷-盐酸缓冲液称取三羟甲基氨基甲烷18.15g,加适量水溶解,用盐酸调节pH值至8.8,加水稀释至100mL。
(3)30%丙烯酰胺溶液(B液)称取丙烯酰胺58.0g、N,N-亚甲基双丙烯酰胺2.0g,加温水溶解并稀释至200mL,滤纸过滤(避光保存)。
(4)10%SDS溶液(C液)称取十二烷基硫酸钠10g,加水溶解并稀释至100mL。
(5)四甲基乙二胺溶液(TEMED,D液)商品化试剂。
(6)10%过硫酸铵溶液(E液)称取过硫酸铵10g,加水溶解并稀释至100mL。
建议临用前配制,或分装于-20℃可贮存2周。
(7)浓缩胶缓冲液(4×,F液)0.5moL/L三羟甲基氨基甲烷-盐酸缓冲液称取三羟甲基氨基甲烷6.05g,加适量水使溶解,用盐酸调pH值至6.8,加水稀释至100mL。
(8)电极缓冲液(10×)称取三羟甲基氨基甲烷30g、甘氨酸144g、十二烷基硫酸钠10g,加水溶解并稀释至约800mL,用盐酸调节pH值至8.1~8.8之间,加水稀释至1000mL。
(9)非还原型供试品缓冲液(4×)称取三羟甲基氨基甲烷3.03g、溴酚蓝20mg、十二烷基硫酸钠8.0g,量取甘油40m1,加水溶解并稀释至约80mL,用盐酸调节pH值至6.8,加水稀释至100mL。
实验十聚丙烯酰胺凝胶电泳(SDS-PAGE)分离蛋白质
实验⼗聚丙烯酰胺凝胶电泳(SDS-PAGE)分离蛋⽩质实验⼗聚丙烯酰胺凝胶电泳(SDS-PAGE)分离蛋⽩质【实验⽬的】1. 了解和掌握聚丙烯酰胺凝胶电泳的技术和原理;2. 掌握⽤此法分离蛋⽩质组分的操作⽅法。
【实验原理】在⽣物化学、分⼦⽣物学和基因(遗传)⼯程实验中,常常要进⾏蛋⽩质和核酸的分离⼯作。
聚丙烯酰胺凝胶电泳(Polyacrylamide Gel Electrophoresis, PAGE)是以聚丙烯酰胺凝胶作为⽀持介质进⾏蛋⽩质或核酸分离的⼀种电泳⽅法。
聚丙烯酰胺凝胶是由丙烯酰胺单体(acrylamide,简称ACR)和交联剂N,N-甲叉双丙烯酰胺(N,N-methylene bisacrylsmide 简称BIS)在催化剂的作⽤下聚合交联⽽成的三维⽹状结构的凝胶。
通过改变单体浓度与交联剂的⽐例,可以得到不同孔径的凝胶,⽤于分离分⼦量⼤⼩不同的物质。
聚丙烯酰胺凝胶聚合的催化体系有两种:(1)化学聚合:催化剂采⽤过硫酸铵,加速剂为N,N,N,N-四甲基⼄⼆胺(简称TEMED)。
通常控制这⼆种溶液的⽤量,使聚合在1⼩时内完成。
(2)光聚合:通常⽤核黄素为催化剂,通过控制光照时间、强度控制聚合时间,也可加⼊TEMED 加速反应。
聚丙烯酰胺凝电泳常分为⼆⼤类:第⼀类为连续的凝胶(仅有分离胶)电泳;第⼆类为不连续的凝胶(浓缩胶和分离胶)电泳。
⼀般地,不连续聚丙烯酰胺凝胶电泳有三种效应:①电荷效应(电泳物所带电荷的差异性);②凝胶的分⼦筛效应(凝胶的⽹状结构及电泳物的⼤⼩形状不同所致)。
③浓缩效应(浓缩胶与分离胶中聚丙烯酰胺的浓度及pH的不同,即不连续性所致)。
因此,样品分离效果好,分辨率⾼。
SDS即⼗⼆烷基硫酸钠(Sodium Dodecyl Sulfate,简称SDS)是阴离⼦表⾯活性剂,它能以⼀定⽐例和蛋⽩质结合,形成⼀种SDS-蛋⽩质复合物。
这时,蛋⽩质即带有⼤量的负电荷,并远远超过了其原来的电荷,从⽽使天然蛋⽩质分⼦间的电荷差别降低仍⾄消除。
sds-page蛋白凝胶电泳原理
sds-page蛋白凝胶电泳原理
SDS-PAGE(聚丙烯酰胺凝胶电泳)是一种常用的蛋白质分离
和分析技术。
其原理基于蛋白质的电荷密度和分子质量。
1. SDS(十二烷基硫酸钠):在SDS-PAGE中,SDS被用作
溶胀剂。
SDS能够与蛋白质中的氢键和疏水作用相互作用,
使蛋白质的二级、三级结构被破坏并线性展开。
SDS与蛋白
质发生作用后,每个蛋白质分子上的SDS数量差不多是相同的,即每个氨基酸上有约2.7个SDS分子。
2. 聚丙烯酰胺凝胶:SDS处理后的蛋白质在凝胶中呈均匀线
性状。
聚丙烯酰胺是一种电泳凝胶,可形成细小的孔隙结构。
这些孔隙可以分离不同分子质量的蛋白质。
3. 电泳过程:在凝胶上形成一个电场,蛋白质带有负电荷,向阳极迁移。
溶胶中的离子也会随之迁移,以维持电中性。
由于SDS已经使蛋白质的结构线性化,其迁移速度主要取决于分
子质量。
较大分子所需的孔隙更大,迁移速度更慢,较小分子则迁移更快。
4. 可视化和测量:分离结束后,可以通过染色剂(如Coomassie Brilliant Blue)将蛋白质染色。
染色剂与蛋白质结合,形成蓝色或紫色的带状条纹,使蛋白质带的位置可见。
在染色后,可以使用图像分析软件测量带的强度和相对迁移距离,从而推断蛋白质的分子质量。
通过SDS-PAGE,可以将不同分子质量的蛋白质分离开来,
并进行定量分析。
它是一种常用的蛋白质研究技术,在生物化学、生命科学和临床诊断等领域得到广泛应用。
SDS-PAGE凝胶电泳操作
SDS-PAGE凝胶电泳操作一、常规试剂的配制1. 30% 聚丙烯酰胺贮液:丙烯酰胺 150g,甲叉双丙烯酰胺4g,双蒸水500ml,滤纸过滤后,棕色瓶避光4℃保存;2.1.5mol/L,pH 8.8 Tris-HCl分离胶缓冲液:18.15g Tris,用1mol/L HCl定容至100ml,棕色瓶避光4℃保存;3. 1.0mol/L,pH 6.8 Tris-HCl分离胶缓冲液:12g Tris,用1mol/L 调pH至100ml,棕色瓶避光4℃保存;4. 10% SDS溶液:10g SDS加水定容至100ml,完全溶解室温保存;5. 10% AP溶液:0.1g AP(过硫酸铵)加水定容至1ml,用前新鲜配制;6. 1×SDS-PAGE电泳缓冲液:25mM Tris(3.0285g/L),192mM甘氨酸(14.41g/L),0.1%SDS (1g/L),pH 8.30;7. 染色液:0.25g 考马斯亮蓝R-250溶解于45ml甲醇,45ml水,10ml冰醋酸,过滤除去杂质;8. 脱色液:45ml甲醇,45ml水,10ml冰醋酸;9. 固定液:50ml甲醇,40ml水,10ml冰醋酸;10. 2×SDS-PAGE上样缓冲液:10% SDS 0.4ml,0.375M Tris-HCl(pH 6.8)0.333ml,甘油0.2ml,1% 溴酚兰10μL,β-疏基乙醇100μL,加水定容至1ml,分装后-20℃保存。
二、样品的处理1. 蛋白含量较低的酶制剂或原料样品(1)粉剂(或颗粒)样品称取样品1g,加入3-5ml蒸馏水进行搅拌溶解1h(搅拌时间可根据实际情况进行增减),4000rpm离心10min,取离心上清液等体积加入20%的三氯乙酸聚沉30min,离心,弃去离心上清液,用70%的丙酮溶液洗涤沉淀,4000rpm离心10min,重复洗涤3-5次,将丙酮洗涤液吹干,加入适量(1-3ml)PBS溶解沉淀,溶解液即可用于电泳实验。
sds-page测定蛋白质纯度
百泰派克生物科技
sds-page测定蛋白质纯度
SDS-PAGE是一种根据分子量分离蛋白质的凝胶电泳分析技术。
当蛋白质通过凝胶
基质电泳分离时,较小分子量的蛋白质受到来自凝胶基质的阻力更小,电泳时迁移速度更快。
影响蛋白质在凝胶基质中的迁移速率的其他因素还包括蛋白质的结构和电荷,在SDS-PAGE中,十二烷基硫酸钠(SDS,又称十二烷基硫酸钠)和聚丙烯酰胺凝胶的使用很大程度上消除了结构和电荷的影响,蛋白质的分离完全基于多肽链的长度。
蛋白质经SDS-PAGE电泳后按分子量大小分离开来,如果蛋白样品只含有一种蛋白质,那么其电泳后只会显现一个唯一的蛋白条带;但如果一个蛋白样品中含有多种大小不同的蛋白,那么电泳后不同的蛋白质会被分离成大小不同的蛋白条带。
于是,可以据此利用SDS-PAGE的分离作用进行蛋白纯度的鉴定,不仅可以分析一个未知
蛋白样品的纯度,还可以验证蛋白样品纯化后的效果。
百泰派克生物科技使用Bio-Rad Mini-PROTEAN® Tetra凝胶系统,提供基于1D和
2D的 SDS-PAGE分析服务技术包裹,用于多种蛋白质组学分析,包括蛋白质样品纯度分析、分子量测定、蛋白质鉴定、二硫键鉴定以及蛋白质定量等,欢迎免费咨询。
sds-page蛋白凝胶电泳原理
在进行SDS-PAGE蛋白凝胶电泳原理的讨论之前,我们首先需要了解蛋白质和电泳技术的基本概念。
蛋白质是生物体内功能最丰富的大分子化合物,它们参与了生命的方方面面,包括结构、酶活性、信号传导等。
而电泳技术则是一种基于电场作用将带电粒子分离的方法,它在生命科学研究中有着广泛的应用。
SDS-PAGE蛋白凝胶电泳原理是一种常用于分离和鉴定蛋白质的技术,其原理基于蛋白质在电场中的迁移速度与其分子质量成反比的关系。
现在让我们深入探讨SDS-PAGE蛋白凝胶电泳的原理和相关细节。
1. SDS-PAGE蛋白凝胶电泳的基本步骤在进行SDS-PAGE蛋白凝胶电泳实验时,首先需要将待测样品中的蛋白质在含有SDS(十二烷基硫酸钠)的缓冲液中进行变性处理,使得蛋白质呈线性结构并且带有负电荷。
之后,将处理过的蛋白样品加载到聚丙烯酰胺凝胶中,并施加电场使得蛋白质开始迁移。
根据蛋白质的分子质量,它们将在凝胶中以不同的速率迁移,最终实现分离。
2. SDS的作用原理SDS是一种带有负电荷的表面活性剂,它的主要作用是使得蛋白质呈线性构象,并且使得蛋白质的带电量与其分子质量成正比。
这样一来,不同分子质量的蛋白质在电场中受到的阻力相对应也会不同,从而实现蛋白质的分离。
3. 凝胶电泳的原理凝胶电泳是利用凝胶作为分离介质的电泳方法。
凝胶可以是聚丙烯酰胺凝胶、琼脂糖凝胶或者琼脂糖琼脂糖凝胶。
在SDS-PAGE蛋白凝胶电泳中,聚丙烯酰胺凝胶是最常用的分离介质。
它的基本原理是利用凝胶的孔隙大小来实现对蛋白质的分离,分子质量较大的蛋白质会受到较大的阻力从而迁移较慢,分子质量较小的蛋白质则会迁移得更快。
4. 电泳条件的影响在进行SDS-PAGE蛋白凝胶电泳实验时,电泳条件的设定对分离结果有着重要影响。
电场强度的大小、电泳时间的长短、凝胶浓度等都会影响蛋白质的迁移速度和分离效果。
总结而言,SDS-PAGE蛋白凝胶电泳原理基于蛋白质在电场中的迁移速度与其分子质量成反比的关系,通过SDS的作用使得蛋白质呈现线性构象并且带有负电荷,再利用凝胶电泳对不同分子质量的蛋白质进行分离。
sds page凝胶电泳步骤
sds page凝胶电泳步骤以SDS-PAGE凝胶电泳步骤为标题的文章SDS-PAGE凝胶电泳是一种常用的蛋白质分离和测量方法,其步骤包括蛋白质样品的制备、样品加载、电泳运行、染色和图像分析等。
本文将详细介绍SDS-PAGE凝胶电泳的步骤及相关注意事项。
一、蛋白质样品的制备准备要分离的蛋白质样品,并将其加入样品缓冲液中,以使蛋白质溶解并保持其天然构象。
样品缓冲液通常包含Tris-HCl缓冲液、甘油、SDS和β-巯基乙醇等成分,用于维持样品的pH值和还原环境,使蛋白质完全展开。
二、样品加载将制备好的蛋白质样品加载到凝胶孔中。
通常使用微量吸管或微量注射器将样品缓冲液缓慢地注入凝胶孔中,确保样品完全进入凝胶中。
三、电泳运行将已加载样品的凝胶板放置在电泳槽中,确保凝胶完全浸泡在电泳缓冲液中。
然后将电泳槽连接到电源,并设置合适的电压和电流参数。
根据需要,可以选择常规电泳或快速电泳。
在电泳过程中,蛋白质样品会在凝胶中被电场推动,根据其分子大小和电荷不同,被分离成不同的带状条带。
较小的蛋白质分子迁移速度较快,而较大的蛋白质分子迁移速度较慢。
四、染色电泳结束后,需要对凝胶进行染色以可视化蛋白质带状条带。
常用的染色方法有银染色和Coomassie蓝染色。
银染色对蛋白质敏感性高,但操作繁琐;而Coomassie蓝染色操作简单,但对蛋白质敏感性相对较低。
五、图像分析通过使用分析软件或图像扫描仪,将染色后的凝胶图像数字化,并进行分析。
可以测量蛋白质带状条带的相对迁移距离和相对强度,进而确定蛋白质的分子大小和相对丰度。
在进行SDS-PAGE凝胶电泳实验时,还需要注意以下事项:1. 准备工作确保操作台和仪器干净,并准备好所需的试剂和设备。
避免在实验过程中发生交叉污染。
2. 样品加载在加载样品时,应避免空气泡和溢出。
确保样品均匀地加载到凝胶孔中,以获得清晰的带状条带。
3. 电泳运行条件根据蛋白质样品的大小和分离需求,选择合适的电压和电流参数。
蛋白质的SDSPAGE电泳
无法分析疏水性蛋白质
02
SDS-PAGE电泳主要适用于分析带有强负电荷的蛋白质,对于疏
水性蛋白质,其分离效果可能不佳。
对样品要求高
03
为了获得准确的电泳结果,需要确保样品的纯度和浓度,这可
能需要耗费较多的时间和精力。
感谢您的观看
THANKS
01
02
03
丙烯酰胺和甲叉双丙烯酰胺: 用于制备凝胶的交联剂。
过硫酸铵和TEMED (N,N,N',N'-四甲基乙二 胺):促进凝胶聚合。
04
05
考马斯亮蓝染料:用于染色 蛋白质条带。
03 电泳技术
聚丙烯酰胺凝胶的制备
制备凝胶前的准备
配制凝胶溶液
清洗玻璃板、准备试剂和工具,确保实验 环境干净整洁。
脱色
染色完成后,将凝胶从染色液中取出 ,进行脱色处理,以去除背景颜色, 使蛋白质条带更清晰可见。常用的脱 色液有乙醇和醋酸。
结果观察与解读
观察
通过观察凝胶上的蛋白质条带,可以判断蛋白质的大小、数量和浓度等信息。
解读
根据蛋白质条带的颜色深浅、迁移率和电泳行为等特征,可以对蛋白质的性质 进行初步判断。
根据所需的浓度和孔径大小,准确称量丙 烯酰胺和甲叉双丙烯酰胺,加入适量的水 和缓冲液,混合均匀。
灌制凝胶
聚合凝胶
将凝胶溶液倒入玻璃板间的凹槽中,确保 没有气泡和缝隙,然后插入梳子以固定凝 胶。
将灌制好的凝胶放入恒温箱中,保持一定 的温度和时间,使凝胶聚合。
样品处理与加样
01
02
03
样品准备
根据实验需求,将蛋白质 样品进行适当的稀释和变 性处理。
实验步骤
样品制备
将待测蛋白质样品与SDS和β-巯基乙 醇混合,使蛋白质完全变性并带上等 量的负电荷。
sds聚丙酰胺凝胶电泳法
sds聚丙酰胺凝胶电泳法一、原理SDS聚丙酰胺凝胶电泳法(Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis,简称SDS-PAGE)是一种常用的蛋白质分离和定量分析方法。
它基于蛋白质在电场作用下的电泳迁移性质,利用聚丙酰胺凝胶作为分离介质,通过SDS对蛋白质进行表面带负电荷的包被,使其在电场中按照分子质量大小进行分离。
二、步骤1. 制备凝胶:将聚丙酰胺和交联剂加入缓冲液中,搅拌均匀后,倒入凝胶模具中,插入梳子,待凝胶凝固。
2. 样品处理:将待分析的蛋白质样品与SDS-PAGE样品缓冲液混合,再加热至95℃,使样品中的蛋白质与SDS充分结合。
3. 蛋白质分离:将凝固的凝胶取出,放入电泳槽中,注入电泳缓冲液,将样品注入样品孔中,通电进行电泳分离。
4. 染色与成像:电泳结束后,将凝胶取出,进行染色处理,常用的染色剂有Coomassie蓝染液和银染液,然后进行成像。
三、应用SDS-PAGE广泛应用于生物化学和分子生物学领域,具有以下几个方面的应用:1. 蛋白质分离与纯化:SDS-PAGE可将复杂的蛋白质混合物按照分子质量大小进行分离,进而可进行纯化和提取目标蛋白质。
2. 蛋白质定量:通过与蛋白质质量标准品进行比较,可以估算待测蛋白质的相对分子质量。
3. 蛋白质组学研究:SDS-PAGE是蛋白质组学研究中最基本的技术手段之一,用于分析复杂蛋白质混合物中的不同蛋白质。
4. 蛋白质结构分析:通过SDS-PAGE与其他技术手段的结合,可以研究蛋白质的结构、功能和相互作用。
总结:SDS-PAGE作为一种常用的蛋白质分离和定量分析方法,在生物化学和分子生物学领域发挥着重要作用。
通过该方法,可以分离、纯化和定量各种蛋白质,为后续的研究提供基础数据。
同时,SDS-PAGE也为蛋白质组学研究和蛋白质结构分析等提供了重要的技术支持。
SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)
• 温度 聚合速度与温度有关,一般是高温聚合快, 聚合速度与温度有关,一般是高温聚合快, 而聚合的速度影响交联孔径的大小, 而聚合的速度影响交联孔径的大小,所以凝胶聚 合时必须保持温度恒定, 合时必须保持温度恒定,通常用与电泳相同的温 度。 分子氧的存在会阻止碳链的延长, • • 分子氧 分子氧的存在会阻止碳链的延长,妨 碍聚合作用,在聚合过程中要尽量避免接触空气。 碍聚合作用,在聚合过程中要尽量避免接触空气。 • • 杂质 某些金属离子或其它杂质也会影响凝胶 的化学聚合,所以应选择高纯度的Acr、Bis和 的化学聚合,所以应选择高纯度的 、 和 AP。 。
化学聚合的凝胶孔径较小,常用于制备分离胶, 化学聚合的凝胶孔径较小,常用于制备分离胶, 重复性好。聚合反应受各种因素的影响: 重复性好。聚合反应受各种因素的影响: 应选择合适的AP和 • 催化剂和加速剂的浓度 应选择合适的 和 TEMED浓度使聚合时间控制在 浓度使聚合时间控制在30—60min内较好, 内较好, 浓度使聚合时间控制在 内较好 过量的催化剂和加速剂会引起烧胶和蛋白质条带的 畸变。 畸变。 • pH TEMED只能以游离碱的形式发挥作用,在 只能以游离碱的形式发挥作用, 只能以游离碱的形式发挥作用 酸性条件下,叔胺缺少自由碱基,引发AP产生自由 酸性条件下,叔胺缺少自由碱基,引发 产生自由 基的过程会被延迟,聚合时间延长。 基的过程会被延迟,聚合时间延长。 •
凝胶总浓度及交联度对凝胶的影响
• 凝胶溶液中单体和交联剂的总浓度和两者的比例是决定聚 丙烯酰胺凝胶特性包括其机械性能、弹性、透明度、 丙烯酰胺凝胶特性包括其机械性能、弹性、透明度、粘着 度及孔径大小的主要因素。 为凝胶溶液中单体和交联剂的 度及孔径大小的主要因素。T为凝胶溶液中单体和交联剂的 总质量浓度, 为凝胶溶液中交联剂占单体和交联剂总量的 总质量浓度,C为凝胶溶液中交联剂占单体和交联剂总量的 质量分数。 质量分数。
SDS-PAGE蛋白电泳试剂
十二烷基硫酸钠(SDS)-聚丙烯酰胺凝胶电泳(PAGE)是一种常用的蛋白电泳。
经典SDS-PAGE蛋白电泳凝胶,由两种不同浓度的丙烯酰胺溶液形成的不连续凝胶(浓缩胶和分离胶)。
1、凝胶材质聚丙烯酰胺是由丙烯酰胺单体聚合而成的聚合物,通常与双丙烯酰胺或N,N'-亚甲基双丙烯酰胺结合使用。
交联剂双丙烯酰胺含有两个单位通过亚甲基桥连的丙烯酰胺。
聚合是被TEMED催化(N,N,N,N-四甲基乙二胺)的自由基反应-通常由过硫酸铵(APS)引发。
在既定温度下,APS和/或TEMED的浓度决定了聚合速率。
蛋白电泳,通常采用30%或30%+(%T)的聚丙烯酰胺凝胶。
通过改变基质的百分比来调整孔径大小,从而有效分离不同大小的蛋白。
聚丙烯酰胺凝胶的含量与蛋白大小成反比。
分离胶中丙烯酰胺比例和分离蛋白大小的关系2、变性剂SDS是一种阴离子去污剂。
SDS-PAGE蛋白电泳中,SDS与蛋白质紧密集合,将蛋白质的氢键、疏水键打开,引起蛋白质构想的改变,其所带的电荷与蛋白质有大大的差异,因此消除或掩盖了蛋白质本身的电荷。
电泳时的蛋白的迁移率就不在受蛋白质原有的电荷和形状的影响,而只与蛋白质大小有关。
常用SDS-PAGE蛋白电泳分离胶和浓缩胶配置表凝胶配置试剂3、电泳缓冲液经典SDS-PAGE蛋白电泳缓冲体系(Tris Glycine)工作原理:上层浓缩胶,由较低浓度丙烯酰胺溶液形成(一般丙烯酰胺浓度为4-6%)。
浓缩胶体系中的氯离子(Cl-)作为先导离子,以较快的速度向正极迁移。
在其后面形成一个电导较低、电位梯度较陡的区域,加快了蛋白质和甘氨酸离子(Gly)的迁移。
由于浓缩胶中的pH较低(一般pH=6.8),甘氨酸的负离子效应不明显,作为尾随离子,迁移较慢。
所以,进入分离胶之前,蛋白堆积在氯离子、甘氨酸离子之间,有利于提高电泳的分辨率。
进入下层分离胶后,pH升高(分离胶通常pH=8.8),使甘氨酸解离成负离子效应增加,使甘氨酸的迁移超过蛋白质。
SDSPAGE凝胶电泳
谢谢
THANKS
04 SDS-PAGE凝胶电泳优缺点
CHAPTER
优点
高分辨率
SDS-PAGE凝胶电泳能够将蛋 白质样品进行高分辨率分离, 清晰地显示出不同蛋白质的分
子量和带型。
操作简便
SDS-PAGE凝胶电泳操作相对 简单,易于标准化,适合于大 量样本处理。
广泛适用性
SDS-PAGE凝胶电泳适用于各 种蛋白质样品的分析,包括纯 化样品和复杂生物样本。
生物医药研究
SDS-PAGE凝胶电泳在生物医药领域具有广泛的应用前景,可用于 药物靶点发现、药物作用机制研究以及疾病标志物筛选等。
生物技术产业
SDS-PAGE凝胶电泳在生物技术产业中也有广泛应用,如蛋白质药 物研发、疫苗生产和细胞治疗等领域。
食品安全与环境监测
SDS-PAGE凝胶电泳可用于食品安全和环境监测领域,检测食品和环 境中的有害物质和污染物。
上样前确保样品与loading buffer混合均匀,避免出现条
带不清晰或拖尾现象。
控制电泳时间和电流强度,避 免过度电泳导致蛋白质降解。
电泳结束后及时取出凝胶,避 免长时间浸泡在电极缓冲液中 导致染色不均或条带消失。
03 SDS-PAGE凝胶电泳结果分析
CHAPTER
分离效果评估
分辨率
01
评估凝胶中蛋白质的分离程度,分辨率越高,分离效果越好。
灵敏度高
通过染色和显影,SDS-PAGE 凝胶电泳能够检测到微量的蛋
白质,具有较高的灵敏度。
缺点
样品损失
在电泳过程中,部分蛋白质可能会吸 附在玻璃纤维滤纸或凝胶中,导致样 品损失。
局限性
对于一些大分子量或特殊性质的蛋白 质,SDS-PAGE凝胶电泳可能会出现 分离效果不佳的情况。
SDS—PAGE凝胶电泳(细致分析)
SDS-PAGE电泳的基础原理和实验步骤1.名称:SDS-PAGE(sodium dodecyl sulfate polyacrylamide gel electrophoresis)十二烷基硫酸钠聚丙烯酰胺凝胶电泳2.原理:此项技术的原理,是根据样品中蛋白质分子量大小的不同,使其在电泳胶中分离。
不同的蛋白质在不同的pH值下表现出不同的电荷,同时蛋白质具有不同的大小和形状。
为了使蛋白在电泳中的迁移率只与分子量有关,我们在上样前,通常会进行一些处理。
上样缓冲液由Tris-HCl (pH6.8)、甘油,10%SDS、β-巯基乙醇、0.1%溴酚蓝以及蒸馏水组成。
其各自的作用如下述:SDS 即十二烷基硫酸钠,是一种阴离子表面活性剂,它可以断开分子内和分子间的氢键,破坏蛋白质分子的二级和三级结构;β-巯基乙醇是强还原剂,它可以断开半胱氨酸残基之间的二硫键。
由于SDS和巯基乙醇的作用,蛋白质完全变性和解聚,解离成亚基或者单个肽链,因此测定结果只是亚基或者单个肽链的分子量。
同时,SDS与蛋白质结合引起蛋白质的构象改变,形成长椭圆棒状,不同蛋白质短轴长度都一样,长轴随蛋白分子量不同而不同,这样就消除了性状的影响。
另外,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。
甘油用以增大样品液密度,使加样时样品溶液可以快速沉入样品凹槽底部。
样品处理液中通常还加入溴酚蓝染料,用于监控整个电泳过程。
SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。
浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。
样品液和浓缩胶中Tris-HCl均为pH6.8,上下槽缓冲液含Tris-甘氨酸(pH8.3),分离胶含Tris-HCl(Ph8.8).电泳启动时,蛋白样品处于pH6.8 的上层,pH8.8 的分离胶层在下层,上槽为负极,下槽为正极。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pH6.8
5%
Gly- Gly-
Gly- Gly-
Gly- Gly-
蛋白质离子
Cl- Cl- Cl-
Cl- Cl- Cl-
Cl- Cl-Cl-
快慢离子的产生 高的电压梯度
pH8.8
10%
Pr-运动加速 浓缩效应
实验原理
• 分子筛效应
主要离子
氯离子 甘氨酸离子(pI5.97)
pH6.8
5% Gly- Gly- - Gly Gly Cl Cl- -Gly Cl- -
蛋白质离子
Gly-GlyGly-Gly-
甘氨酸解离增加 无快慢离子 Pr-根据分子量运动
- - - Cl - Cl -Cl Gly Cl Cl- -Cl Gly Gly Gly Gly Gly
pH8.8
10%
分子筛效应
实验原理
• 分子筛效应
主要离子
氯离子 甘氨酸蛋白质离子 甘氨酸解离增加
加入分离胶溶 液 pH 8.8
封水的目的是使分离胶上表面平直,并排除气泡。 凝胶聚合好的标志是胶与水层之间形成清晰的界面。
制备浓缩胶(浓缩胶)
样梳需一次平稳插入,梳 口处不得有气泡,梳底需 水平。
插入样品梳
加入浓缩胶溶 液 pH 6.8
分离胶 pH 8.8
样品处理
Sample buffer
SDS-聚丙烯酰胺凝胶电泳 (SDS-PAGE)
实验流程
配胶
配分离胶(下胶)
配浓缩胶(上胶)
样品制备
电泳(1.5~2h) 染色(20min) 脱色(30min~2h) 分析
实验过程
1.装配装置
BG-verMINI型迷你垂直电泳槽 (北京百晶)
实验过程
2.凝胶配制
下胶(分离胶)10% H2O 30%Acr-Bis Buffer (含SDS) 10%APS TEMED 3.9ml 3.3ml (1.5M Tris-Cl pH8.8) 2.6ml 200ml 10ml
氯离子 甘氨酸离子(pI5.97) 蛋白质离子
PH6.8
Cl-
Gly-
Cl-
GlyCl-
PH8.8
Pr为什么带负电
加样缓冲液
巯基乙醇 断二硫键 断化学键
C N
H3C
SDS
SO4Na
带负电荷
SDS:Pr=1.4:1 促沉 甘油
二硫键
溴酚兰 Tris
氨基酸侧链
盐键
疏水作用 氢键
?
实验原理
• 浓缩效应
分离胶 pH 8.8
Staking gel
Separating gel
电流路径
负极 凝胶 正极
外槽
——
内槽
——
外槽
实验过程
5. 染色、脱色 A. 染色20分钟
考马斯亮兰R250
B. 脱色30分钟至2小时
蛋白质的染色方法
• 氨基黑
血清蛋白醋酸纤维薄膜电泳
• 考马斯亮兰R-250,G250
G250测定蛋白含量
6-2 整块胶分离的条带太宽
主要是未浓缩好的原因
处理办法: • 适当增加浓缩胶的长度; • 保证浓缩胶贮液的 pH 正确 (6.7) ; • 适当降低电压;
7. “鬼带”
“鬼带”就是在跑大分子、构象复杂的蛋白质分子时,常会 出现在泳道顶端(有时在浓缩胶中)的一些大分子未知 条带或加样孔底部有沉淀,主要由于还原剂在加热的过 程中被氧化而失去活性,致使原来被解离的蛋白质分子 重新折叠结合和亚基重新缔合,聚合成大分子,其分子 量要比目标条带大,有时不能进入分离胶。但它却与目 标条带有相同的免疫学活性, WB 反应中可见其能与目 标条带对应的抗体作用。
Bradford法
• 考马斯亮蓝G250染色法
• 此法根据蛋白质与染料相结合的原理设计 的。
• 与蛋白质结合后,产生蓝色化合物,反应 迅速而稳定。 • 反应化合物在595nm处有最大光吸收值 • 灵敏度25 mg/ml~200 mg/ml
注意各方法适用条件—范围
SDS Triton Tween -X100 20,60,80
Aprotinin 抑肽酶
丝氨酸和半胱氨酸蛋白酶
胰蛋白酶及糜蛋白酶
Pepstatin 抑肽素
天冬氨酸蛋白酶
定量方法
• • • • 紫外吸收法 BCA法 Lowry法 Bradford法
以双缩脲为基础的方法
1. BCA法 bicinchoninic acid 二奎啉甲酸法
以双缩脲为基础的方法
2. lowry法 folin酚法 磷钨酸和磷钼酸 钨蓝、钼蓝 BCA和Lowry法比双缩脲灵敏高100倍 0.005 - 0.10 mg/ml
*Acr有神经毒 性
上胶(浓缩胶)5% 3.4ml 0.83ml (1M Tris-Cl pH6.8) 0.68ml 100ml 10ml
TOTAL
10ml
5ml
制备分离胶(下胶)
出现明显界面时, 分离胶凝聚完成 ( 10~20min)
倒出水或正丁醇, 并用加样枪/滤纸 吸干
封水或饱和 正丁醇溶液
实验原理
迁移率=
蛋白质移动的距离 脱色后的胶长 染色前胶长 指示剂移动的距离
pH6.8
5%
pH8.8
10%
• 分子筛效应
实验原理
染色前
迁移率=
“蛋白质移动的距离”
指示剂移动的距离
L1 X L3
L2 X L4
染色后
L1
Lx
L4
蛋白质的带在哪呢? L3
L2
PageRuler Prestained Protein Ladder A prestained SDS-PAGE MW marker with contrasting colored reference bands at 10 and 70kDa.
处理办法: 在加热煮沸后, 再添加适量的 DTT 或 Beta 巯基乙醇, 以补充不足的还原剂;或可加适量 EDTA 来 阻止还原剂的氧化。
谢谢!
附:蛋白质的提取与定量方法
• 蛋白质提取
• 不同来源,不同的方法
提 取 原 则
• 细胞的破碎 • 合适的裂解液 • 一般在冰上进行 • 加入适当的蛋白酶抑制剂
5% 5%
EDTA
DTT -巯基 乙醇
1mM 1mM
BCA
5%
10mM
Bradf 0.1% ord
0.1%
0.06%
5mM 1M
选择蛋白质定量方法时应考虑
• 实验对测定所要求的灵敏度和精确度;
• 蛋白质的性质;
• 溶液中存在的干扰物质;
• 测定所花费的时间等。
+
HN CH2 NH C O H2C CH
H2C
CH C O HN CH2 NH C O
H2C
CH
(
H2C
CH )n C O
H2C
CH C O HN CH2
(
H2C
CH )n C O NH2
H2C
CH C O HN CH2 NH C O
(
H2C
CH )n C O NH2
n决定了交联度 与浓度一起决定孔径的大小 蛋白质是29:1 核酸是19:1
• 银染
敏感度最高,常应用于蛋白质双向电泳
H2C H2C CH C O NH2
CH C O
过硫酸铵是催化剂
TEMED是加速剂
H2C
聚 合 原 理
*Acr有神经毒 性
CH C O NH2 H2C CH C O NH2 H2C CH C O NH2 H2C CH C O NH2
H2C CH C O HN CH2 NH C O H2C CH
Marker 97 66 44 29 20
14
Tanon-1600数码凝胶图像分析系统
GIS 1D 图像分析软件(Ver. 4.00)
诱导前后蛋白表达差异
IPTG诱导表达His-GFP融和蛋白(31.9kD)。
1为诱导前,2~6分别为诱导0.5, 1, 1.5, 2, 2.5hrs。
电泳过程中的不正常现象 1 “微笑”现象
主要离子
PrGly- Gly-
PrGly- GlyCl- Cl- Cl-
PrGly- GlyCl- Cl-Cl-
氯离子 甘氨酸离子(pI5.97) 蛋白质离子
pH6.8
Cl- Cl- Cl-
快慢离子的产生 高的电压梯度
pH8.8
Pr-运动加速
实验原理
• 浓缩效应
主要离子
氯离子 甘氨酸离子 (pI 5.97)
哺乳类细胞的裂解液-RIPA
• 50 mM Tris-HCl (pH 7.4), • 150 mM NaCl, • 1% NP-40(乙基苯基聚乙二醇,常用非离 子性去垢剂 ), • 0.1% SDS
蛋白酶抑制剂
抑制剂 靶蛋白酶
PMSF 苯甲基磺酰氟
EDTA
丝氨酸蛋白酶
金属蛋白酶
Leupeptin 亮肽素
指示剂前沿呈现两边向上的曲线形,主要是由于凝胶的中
间部分凝固不均匀所致,多出现于较厚的凝胶中。
处理办法:待其充分凝固再作后续实验。
2 皱眉现象
由于垂直电泳槽的装置不合适引起的,特别是当明胶 和玻璃板组成的“三明治底部有气泡”或靠近隔片的 凝胶聚合不完全 处理办法:可在两板间加入适量缓冲液,以排除气泡。
(
H2C
NH2
NH C O
CH )n C O NH2
H2C
CH
(
H2C
CH )n C O NH2
H2C
CH
实验原理