初二下数学分式方程经典例题及练习
八年级数学下分式方程练习题含答案
八年级数学下分式方程练习1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( )①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数 C .5m <-时,方程的解为负数 D .无法确定3.方程x x x-=++-1315112的根是( )A.x =1 B.x =-1 C.x =83D.x =2 4.,04412=+-x x 那么x2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( )A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-x x x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( )A.21140140-+x x =14B.21280280++x x =14C.21140140++x x =14D.211010++x x =1 7.若关于x 的方程0111=----x xx m ,有增根,则m 的值是( )A.3 B.2 C.1 D.-1 8.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-19.如果,0,1≠≠=b b a x 那么=+-b a b a ( )A.1-x 1 B.11+-x x C.x x 1- D.11+-x x10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( )A.-4B.-3C.1D.10二、填空题(每小题3分,共30分) 11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x =________时,分式x x ++51的值等于21. 13.分式方程0222=--x xx 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222y x y x .17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 . 19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 . 三、解答题(共5大题,共60分) 21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?分式方程实际问题专题1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
分式方程的计算题
分式方程的计算题一、简单分式方程求解1. 解方程:(2)/(x + 1)=(1)/(x - 1)- 解析:- 首先给方程两边同时乘以最简公分母(x + 1)(x - 1),得到:- 2(x - 1)=x + 1。
- 然后去括号:- 2x-2=x + 1。
- 接着移项:- 将含x的项移到左边,常数项移到右边,得到2x - x=1 + 2。
- 最后合并同类项并求解:- 解得x = 3。
- 检验:当x = 3时,(x + 1)(x - 1)=(3 + 1)(3 - 1)=4×2 = 8≠0,所以x = 3是原分式方程的解。
2. 解方程:(3)/(x)-(4)/(x - 1)=0- 解析:- 方程两边同时乘以最简公分母x(x - 1),得到:- 3(x - 1)-4x = 0。
- 去括号:- 3x-3 - 4x=0。
- 移项:- 3x-4x = 3。
- 合并同类项:- -x = 3,解得x=-3。
- 检验:当x = - 3时,x(x - 1)=(-3)×(-3 - 1)=(-3)×(-4)=12≠0,所以x=-3是原分式方程的解。
二、有增根情况的分式方程1. 解方程:(x)/(x - 1)-(2)/(x)=1- 解析:- 方程两边同时乘以最简公分母x(x - 1),得到:- x^2-2(x - 1)=x(x - 1)。
- 去括号:- x^2-2x + 2=x^2-x。
- 移项:- x^2-x^2-2x+x=-2。
- 合并同类项:- -x=-2,解得x = 2。
- 检验:当x = 2时,x(x - 1)=2×(2 - 1)=2≠0,所以x = 2是原方程的解。
2. 若关于x的分式方程(m)/(x - 1)+(3)/(1 - x)=1有增根,求m的值。
- 解析:- 先将方程化为同分母:(m)/(x - 1)-(3)/(x - 1)=1。
- 方程两边同时乘以x - 1,得到:- m-3=x - 1。
分式方程计算30题(附答案、讲解)
分式方程计算30题(附答案、讲解)郭氏数学公益教学博客中考分式方程计算30题(附答案、讲解)一.解答题(共30小题)1.(2011•自贡)解方程:3.(2011•咸宁)解方程5.(2011•海)解方程:7.(2011•台州)解方程:9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:..8.(2011•随州)解方程:..6.(2011•潼南县)解分式方程:..4.(2011•乌鲁木齐)解方程:=+1..2.(2011•孝感)解关于的方程:.[键入文字]11.(2011•攀枝花)解方程:13.(2011•茂名)解分式方程:15.(2011•菏泽)解方程:17.(2011•常州)解分式方程;18.(2011•巴中)解方程:.20.(2010•遵义)解方程:[键入笔墨].12.(2011•宁夏)解方程:..14.(2011•昆明)解方程:.16.(2011•大连)解方程:.(2)解分式方程:=+1.21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:24.(2010•恩施州)解方程:26.(2009•聊城)解方程:28.(2009•南平)解方程:30.(2007•孝感)解分式方程:+.23.(2010•西宁)解分式方程:25.(2009•乌鲁木齐)解方程:=127.(2009•南昌)解方程:29.(2008•昆明)解方程:.[键入笔墨]答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。
专题:计算题。
分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检修:当y=时,y(y﹣1)=×(﹣1)=﹣≠,∴y=是原方程的解,∴原方程的解为y=.点评:此题考察相识分式方程,(1)解分式方程的根本头脑是“转化头脑”,把分式方程转化为整式方程求解.(2)解分式方程肯定留意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。
初中数学:分式方程习题精选(附参考答案)
初中数学:分式方程习题精选(附参考答案)1.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动,已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵。
求七年级年级平均每小时植树多少棵?设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x2.若关于x 的方程2x =m2x+1无解,则m 的值为( ) A .0 B .4或6 C .6D .0或43.解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是_____________. 4.分式方程3−x x−4+14−x=1的解是________.5.甲、乙两人做某种机器零件,甲每小时比乙每小时多做10个,甲做160个所用时间与乙做140个所用时间相等,甲、乙两人每小时分别做多少个?设甲每小时做x 个,则可列分式方程为__________. 6.(1)解方程:xx+1=2x 2−1(2)解方程:1x−1+1=32x−27.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动。
甲、乙两班在一次体验挖土豆的活动中,甲班挖1 500千克土豆与乙班挖1 200千克土豆所用的时间相同。
已知甲班平均每小时比乙班多挖100千克土豆,问:乙班平均每小时挖多少千克土豆?8.已知点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程x+1x−a =2的解是( ) A .x =5 B .x =1 C .x =3D .不能确定9.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个。
设原计划每天生产x 个,根据题意可列分式方程为( ) A .20x+10x+4=15 B .20x−10x+4=15 C .20x+10x−4=15 D .20x−10x−4=1510.照相机成像应用了一个重要原理,用公式1f =1u +1v (v ≠f )表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离。
八年级数学下分式方程练习题含答案
八年级数学下分式方程练习题含答案1.在下列方程中,关于x的分式方程的个数(a为常数)有()2个。
2.关于x的分式方程m/(x-5)=1,下列说法正确的是()B.m>−5时,方程的解是正数。
3.方程1-153/(1-x^2)+ (x+1)/(x-1)=1-x的根是()D.x=2.4.1-4/x+42/x^2=0,那么x的值是()A.2.5.下列分式方程去分母后所得结果正确的是()C。
(x-2)^2/x-4= x(x+2)。
6.XXX同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读70页。
7.若关于x的方程(m-1)/(x-1)-x/(x-1)=0,有增根,则m的值是()B.2.8.若方程A/(x-3)+B/(x+4)=(2x+1)/[(x-3)(x+4)],那么A、B 的值为()A.2,1.9.如果x=a/b,且a-b≠0,那么(a-b)/(a+b) =()D.x-1.10.使分式43/(x^2-4)与(x^2+x-6)/(x^2+5x+6)+2/(x^2-4)的值相等的x等于()B.-3.1.满足方程 $\frac{1}{x-1}=\frac{2}{x-2}$ 的 $x$ 的值是________。
2.当 $x=$________ 时,分式 $\frac{1+x}{5+x}$ 的值等于$\frac{2}{1}$。
3.分式方程 $\frac{x^2-2x}{x-2}=\sqrt{x-1}$ 的增根是________。
4.一辆车从甲地开往乙地,每小时行驶 $v_1$ 千米,$t$ 小时可到达,如果每小时多行驶 $v_2$ 千米,那么可提前到达________小时。
5.农机厂职工到距工厂 $15$ 千米的某地检修农机,一部分人骑自行车先走 $40$ 分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的 $3$ 倍,若设自行车的速度为 $x$ 千米/时,则所列方程为$\frac{15}{x}+\frac{4}{3}\sqrt{x^2+225}=\frac{5}{2}x$。
分式方程计算题50道及答案
分式方程计算题50道及答案1、计算:1/2 + 1/3答案:5/62、计算:2/3 + 3/6答案:13、计算:3/6 + 2/6答案:1/24、计算:3/5 - 2/5答案:1/55、计算:1/2 - 1/4答案:1/46、计算:3/8 - 1/4答案:1/47、计算:2/9 - 1/9答案:1/98、计算:3/4 x 1/3答案:1/49、计算:2/3 x 2/3答案:4/910、计算:5/6 x 1/5答案:1/611、计算:3/7 x 1/5答案:3/3512、计算:2/3 ÷ 1/2答案:4/313、计算:3/4 ÷ 1/2答案:3/214、计算:2/9 ÷ 2/3答案:1/315、计算:1/6 ÷ 1/2答案:1/316、计算:1/3 + 1/3 - 1/3答案:1/317、计算:2/3 x 2/3 - 2/3答案:2/918、计算:1/4 x 2/3 ÷ 1/2答案:1/319、计算:1/3 + 1/4 ÷ 2/3答案:7/1220、计算:2/5 - 1/5 ÷ 1/3答案:3/1521、计算:1/5 x 1/5 ÷ 1/2答案:1/2022、计算:1/3 x 1/3 - 1/3答案:1/923、计算:2/3 - 3/6 + 1/6答案:1/224、计算:1/4 + 2/3 - 1/3答案:3/425、计算:1/3 - 1/4 + 1/4答案:1/426、计算:1/2 x 3/4 ÷ 1/3答案:127、计算:1/2 ÷ 1/5 + 5/6答案:11/628、计算:2/3 x 2/3 ÷ 1/3答案:4/329、计算:1/6 + 2/3 - 1/2答案:1/330、计算:2/5 - 3/4 + 1/4答案:-3/2031、计算:1/4 x 1/5 ÷ 2/3答案:2/1532、计算:1/3 - 1/4 + 2/9答案:1/1233、计算:2/3 x 3/4 - 1/3答案:5/1234、计算:1/6 + 1/6 - 2/6答案:1/635、计算:1/5 x 5/6 ÷ 1/3答案:5/636、计算:2/3 - 1/5 + 5/6答案:11/1537、计算:1/4 x 1/4 ÷ 4/3答案:1/1238、计算:1/2 - 2/3 + 3/4答案:1/439、计算:2/3 x 3/4 ÷ 1/3答案:4/340、计算:2/9 - 1/4 + 3/4答案:5/641、计算:1/5 x 5/6 - 1/3答案:1/6答案:3/243、计算:1/8 - 1/4 + 1/2答案:3/844、计算:2/3 x 1/2 ÷ 5/6答案:2/945、计算:1/6 + 2/3 ÷ 1/2答案:5/346、计算:2/5 - 1/5 ÷ 3/4答案:5/1247、计算:1/5 x 1/5 ÷ 4/3答案:1/2048、计算:1/3 x 1/3 - 1/4答案:1/1249、计算:1/2 - 1/3 + 2/3答案:1/2答案:4/9。
初二数学分式方程精华题(含答案)
初二数学分式方程精华题(含答案)1.分式方程解:本题考查分式方程的解法,根据题意可列出方程:frac{x}{x+12}=\frac{1}{2}$$化简后得到:2x=x+12$$解得$x=6$,因此选项C正确。
2.若分式方程 $\frac{x}{a}=\frac{2}{x-4}$ 有增根,则a的值为()解:根据题意,可列出方程:frac{x}{a}=\frac{2}{x-4}$$移项化简得到:x^2-4ax-8=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:4a)^2-4\times 1\times (-8)<0$$化简得到 $a^2+2>0$,因此 $a$ 可以取任意实数,选项中没有正确答案。
3.解关于x的方程 $\frac{x-3m}{x-1}=\frac{1}{x-1}$ 产生增根,则常数m的值等于()解:根据题意,可列出方程:frac{x-3m}{x-1}=\frac{1}{x-1}$$移项化简得到:x^2-4mx+3m=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:16m^2-12m<0$$化简得到 $0<m<\frac{3}{4}$,因此选项C正确。
4.求 $\frac{1-x}{2-xx}=3$,去分母后的结果,其中正确的是()解:根据题意,可列出方程:frac{1-x}{2-xx}=3$$移项化简得到:x^2+3x-5=0$$解得$x=1$或$x=-5$,代入原式可知$x=-5$不合法,因此$x=1$是方程的唯一解。
将$x=1$代入原式得到:frac{1-x}{2-xx}=\frac{0}{1}=0$$因此选项A正确。
5.计算:$\frac{b^2+2b+2a}{2b^3-7a^2b}=?$解:根据题意,可将分子分母同时除以$b$,得到:frac{b^2+2b+2a}{2b^3-7a^2b}=\frac{\frac{b^2}{b}+\frac{2b}{b}+\frac{2a}{b}}{\frac{2 b^3}{b}-\frac{7a^2b}{b}}=\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$$因此答案为$\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$。
分式方程计算题40道及答案
分式方程计算题40道(1)2x+xx+3=1。
方程两边都乘以x(3+3),去分母,得2(x+3)+x2=x2+3x,即2x-3x=-6所以x =6。
检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
(2)15x=2×15 x+12。
方程两边都乘以x(x+12),约去分母,得15(x+12)=30x.解这个整式方程,得x =12.检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根。
(3)2(1x+1x+3)+x-2x+3=1。
整理,得2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,即2x+xx+3=1.方程两边都乘以x(x+3),去分母,得2(x+3)+x2=x(x+3),即2x+6+x2=x2+3x,亦即2x-3x=-6.解这个整式方程,得x=6.检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根。
(4)2x-3+1/(x-5)=x+2+1/(x-5) 。
两边同时减1/(x-5),得x=5 代入原方程,使分母为0,所以x=5是增根所以方程无解!检验格式:把x=a 带入最简公分母,若x=a使最简公分母为0,则a 是原方程的增根.若x=a使最简公分母不为零,则a是原方程的根。
(5)x/(x+1)=2x/(3x+3)+1。
两边乘3(x+1) 3x=2x+(3x+3) 3x=5x+3 -2x=3 x=3/-2 经检验,x=-3/2是方程的解。
(6)2/(x-1)=4/(x^2-1)。
2(x+1)=4、2x+2=4 、2x=2 、x=1把x=1代入原方程,分母为0,所以x=1是增根。
所以原方程无解。
(7)3x/1-x-1/x-1=1。
方程两边同时乘以(1-x),得3x+1=1-xx=0检验:x=0是原方程的解。
(8)2/1+x-3/1-x=4/x^2-1。
方程两边同时乘以(x^2-1),得2(x-1)+3(x+1)=4x=3/5经检验的:x =3/5是原方程的解。
初二下数学分式方程经典例题及练习
初二数学分式方程专题一、考点、热点回顾分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
(验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
)分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.应用题有几种类型;基本公式是什么?基本上有四种:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.(2)数字问题在数字问题中要掌握十进制数的表示法.(3)工程问题基本公式:工作量=工时×工效.(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.即时知识梳理1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.(验根的方法:将所求得的未知数的知数的值代入)3.列方程解决实际问题的步骤(1)审;找出 (2)设; (3)列;(4)解;检验:是否是原方程的根;这个根在实际问题中是否有实际意义; (5)答;二、典型例题题型一:分式方程题型 【例1】解下列分式方程 (1)114112=---+x x x ; (2)x x x x -+=++4535;(3)4441=+++x x x x ; (4)61244444402222y y y y y y y y +++---++-=2例2、 解方程x x x x x x x x +++++=+++++12672356练习:(1)11115674x x x x +=+++++(2)121043323489242387161945x x x x x x x x --+--=--+--(3)【例2】(1)若关于x 的方程211333x x kx x x x ++-=-- 有增根,求增根和k 的值(2)、m 为何值时,关于x 的方程22432x m x x x -+-=+2会产生增根? 解:方程两边都乘以x 24-,得2436x m x x ++=- 整理,得()m x -=-110242401111x x x xx x x x+++=-+++当时,如果方程产生增根,那么,即或()若,则()若,则()综上所述,当或时,原方程产生增根m x m x x x x m m x m m m ≠=---===-=--=∴=-=---=-∴==-11014022121012422101263462 说明:分式方程的增根,一定是使最简公分母为零的根 练习: 1.若解分式方程2111x x m x x x x+-++=+产生增根,则m 的值是( ) A. --12或B. -12或C. 12或D. 12或-分析:分式方程产生的增根,是使分母为零的未知数的值。
初二数学分式方程练习试题包括答案
分式方程姓名——1. 在以下方程中,对于x 的分式方程的个数( a 为常数)有()① 1x22 x 4 0② . x 4③ . 2 3a⑥ x 1 x 12 . 个个个个aaa 4; ④ .x 29 1; ⑤ 1 6; xx3 x 22. 方程15 3 的根是()x 2x 111 xA. x =1B.x =-1C.x =3D.x =24 40, 那么283. 1的值是()xx 2x4 以下分式方程去分母后所得结果正确的选项是( )A.1x 2去分母得, x1(x 1)( x 2) 1 ;1x1x 1B.x51 ,去分母得, x 52 x 5 ;52x2x 5C.x2 x 2 x x ,去分母得, ( x 2)2 x 2 x(x2) ;x2 x 2 42D.21 , 去分母得,2 ( x 1)x 3 ;x3x 15 . 赵强同学借了一本书,共280 页,要在两周借期内读完 . 当他读了一半书时,发现均匀每日要多读21 页才能在借期内读完 . 他读前一半时,均匀每日读多少页假如设读前一半时,均匀每日读 x 页,则下边所列方程中,正确的是 ()A. 140140 =14B. 280280 =14 xx 21xx 21 C. 140140 =14 D.1010 =1xx 21xx 216. 对于 x 的方程m1 x x 10 ,有增根,则 m 的值是() A3x 17 若方程AB2 x 1, 那么 A 、 B 的值为()x 3x 4( x 3)( x4), 1 , 2, 1, -18 假如 xa 1,b 0, 那么ab ( )1B.x1 C. x 1 D.x 1b3a b 2xx1xx19 使分式4与的值相等的 x 等于()x 2x 6 x 24 x 2 5x 6二、填空题(每题 3 分,共 30 分)10 知足方程:12的 x 的值是 ________.x 1 x 211当 x=________时,分式1x的值等于1. 5x212分式方程x22x0 的增根是. x213一汽车从甲地开往乙地,每小时行驶v1千米, t 小时可抵达,假如每小时多行驶v2千米,可提早抵达__小时 . 14农机厂员工到距工厂15 千米的某地检修农机,一部分人骑自行车先走40 分钟后,其他人乘汽车出发,结果他们同时抵达,已知汽车速度为自行车速度的 3 倍,若设自行车的速度为x 千米/时,则所列方程为.15 已知x4 ,则x2y 2. y5x 2y 216 a时,对于 x 的方程x12a3的解为零 . x2a517飞机从 A 到 B 的速度是v1,,返回的速度是v2,来回一次的均匀速度是.18当 m时,对于 x 的方程m21有增根 . x29x 3x 319某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实质工作效率比原计划提升了20%,结果提早8 小时达成任务.求原计划每小时修路的长度.若设原计划每小时修路x m,则依据题意可得方程.三、解答题(共 5 大题,共 60 分)20.解以下方程(1)14x4x 3x 1(3)x1.23(2)x2 4 x 2x 21x2x 3x x 2421 有一项工程,若甲队独自做,恰幸亏规定日期达成,若乙队独自做要超出规定日期 3 天达成;此刻先由甲、乙两队合做 2 天后,剩下的工程再由乙队独自做,也恰幸亏规定日期达成,问规定日期多少天22 小兰的妈妈在供销大厦用元买了若干瓶酸奶,但她在百货商场食品自选室内发现,相同的酸奶,这里要比供销大厦每瓶廉价元钱,所以,当第二次买酸奶时,便到百货商场去买,结果用去元钱,买的瓶数比第一次买的瓶数多35倍,问她第一次在供销大厦买了几瓶酸奶第一讲分式的运算(一)、分式定义及相关题型题型一:考察分式的定义b , x2y21【例 1】以下代数式中:x ,1x y,a, x y ,是分式的有:.2a b x y x y 题型二:考察分式存心义的条件【例 2】当x有何值时,以下分式存心义( 1)x4(2)3x( 3)2(4)6x( 5)1 x 4x22x21| x | 31xx题型三:考察分式的值为0 的条件【例 3】当x取何值时,以下分式的值为0.( 1)x1(2) | x | 2(3) x 22x 3 x3x24x 2 5 x6题型四:考察分式的值为正、负的条件【例 4】( 1)当x为什么值时,分式4为正;8x( 2)当x 为什么值时,分式5x3(x1)2 为负;( 3)当x为什么值时,分式x 2为非负数 .x3练习:1.当x取何值时,以下分式存心义:( 1)1(2)3x( 3)16 | x | 3( x 1) 2111x2.当x为什么值时,以下分式的值为零:( 1)5| x 1 |(2)25x2 x 4x26x 53.解以下不等式( 1)| x | 20(2)x2x50x12x3(二)分式的基天性质及相关题型1.分式的基天性质:A A M A MB B M B M2.分式的变号法例:a a a a bbbb题型一:化分数系数、小数系数为整数系数【例 1】不改变分式的值,把分子、分母的系数化为整数.12xy( 1) 23(2)1 x 1 yb34题型二:分数的系数变号【例 2】不改变分式的值,把以下分式的分子、分母的首项的符号变成正号 .( 1)x y ( 2)a ( 3)ax ya bb题型三:化简求值题【例 3】已知:11 5,求 2x3xy 2y的值 .xyx2xyy提示:整体代入,①x y5xy ,②转变出11 .xy【例 4】已知: x1 2 ,求 x 2 1的值 .xx 2【例 5】若 | x y1 | (2x3)2 0 ,求1 2y 的值 .4x练习:1.不改变分式的值,把以下分式的分子、分母的系数化为整数.0.2 y3 b( 1)(2) 50.5 y11ab4 102.已知: x 13 ,求 x 21的值 .x3.已知:11 3 ,求2a3ab2b的值 .a bb ab a4.若a 22 a b 26 10 0,求 2a b 的值 .b 3a 5b5.假如 1x 2 ,试化简| x 2 |x 1 | x | 2x| x 1 |.x(三)分式的运算题型一:通分【例 1】将以下各式分别通分 .( 1)cb a;( 2)ab;2ab,3a 2 c ,5b 2c,a b 2b 2a( 3)1 x2;( 4) a2, 1 2x,1 2x x2 ,x 2x 2 2 ax题型二:约分【例 2】约分:( 1) 16 x 2y ;( 3) n2m 2;(3) x2x 2 .20xy 3m nx 2x 6题型三:分式的混淆运算【例 3】计算:( 1) ( a 2b )3 (c 2)2( bc ) 4 ;( 2) ( 3a3)3 ( x2y 2)(yx ) 2 ;c abaxyy x( 3)m2 nn2 m ;( 4)a 2a 1 ;m nn1n m m a ( 5) ( 2 x 24x 1) ( x 22x )x 4x 42x 1题型四:化简求值题【例 4】先化简后求值( 1)已知: x1 ,求分子 1x 284[( x24 1) ( 1 1)] 的值;4x 2 x( 2)已知:xy z ,求 xy2 yz 3xz 的值;234x 2y 2 z 2( 3)已知:23 1 02 11a,试求 (aa 2 )(aa ) 的值 .a题型五:求待定字母的值【例 5】若13x MN ,试求 M , N 的值 .x 2 1x 1 x 1练习:1.计算( 1)2a 5a 12a 3 ; ( 2) a 2b b 2 2ab ;2( a 1)2(a 1)2(a 1)a b a( 4) a b2b 2 ;(5)(ab4abb4ab ) ;aa)( aa b bb2.先化简后求值( 1) a 1 a 241,此中 a1a 2 a22a 1 a231( 2)已知 x : y2 :3 ,求 ( x2y 2) [( xy) (xy )3 ] x 的值 .xyxy 23.已知:5x 4AB ,试求 A 、 B 的值 .1)( 2x 1)x 12x1( x(四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例 1】计算:(1) (a2 ) 3(bc 1) 3 ( 2) (3x 3 y 2 z 1) 2 (5xy 2 z 3 ) 2 ( 3) [ ( a b) 3( ab)5 ] 2( 4) [( x y)3 ( x y) 2 ] 2 (x y) 624(a b) ( a b)题型二:化简求值题【例 2】已知 xx 1 5 ,求( 1) x 2 x 2 的值;( 2)求 x 4 x 4 的值 .题型三:科学记数法的计算【例 3】计算:(1) (310 3 )102 )2;( 2) (4 10 3 ) 2 (2 10 2 ) 3 .练习 :1.计算:( 1) (11) ( 1) 2|1 | (1 3 )0 ( 0.25)2007 420083 553( 2) (3 1 m 3n 2 ) 2 (m 2 n) 3( 3)(2ab 2 ) 2 (a 2b) 2(3a 3 b 2 ) (ab 3 ) 22.已知 x 25x 1 0 ,求( 1) x x 1 ,( 2) x 2x 2 的值 .二讲 分式方程题型一:用惯例方法解分式方程【例 1】解以下分式方程( 1) 13;( 2) 21 0 ;(3)x 1x 241 ;( 4)5 x x 5x 1 xx 3xx 1 1x 3 4 x提示易犯错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘掉验根 .题型二:求待定字母的值【例 4】若对于 x 的分式方程2 1 m有增根,求 m 的值 .x 3x3【例 5】若分式方程2 x a 1的解是正数,求a 的取值范围 .x2提示: 2 a 0 且 x2 ,a 2 且 a4 .x3题型三:解含有字母系数的方程【例 6】解对于 x 的方程x a c (c d0)b xd提示:( 1) a, b, c, d 是已知数;( 2) c d0 .题型四:列分式方程解应用题(略)练习:1.解以下方程: ( 1)x 12 x 0 ; (2)x 24 ;x 11 2xx 3x 3( 3)2x32 ; (4)7 37 x 2x 2 x 2x2x x x212 1x 2.解对于 x 的方程:( 1)11 2(b 2a) ;( 2)1a 1 b(ab) .a xb a x b x3.假如解对于 x 的方程k 2x会产生增根,求 k 的值 .x 2x24.当 k 为什么值时,对于x 的方程x3k1的解为非负数 . x2(x 1)( x2)5.已知对于x的分式方程2a1 a 无解,试求 a 的值. x1。
初二数学分式方程经典应用题(含答案)
分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:92天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价) 12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时. 1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.⨯= 9分 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+x x . 3分去分母,得 1200+4200=18x (或18x =5400)5分解得 300x =. 6分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x=1 解这个方程,得x =25 ………………6分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分 80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、20。
初二分式方程练习题及答案
初二分式方程练习题及答案分式方程是代数学中的重要概念之一,它是由分数组成的等式或不等式。
初二是学习代数的关键年级,通过练习分式方程,学生们能够加深对于代数的理解,并提高解决实际问题的能力。
本文将为初二学生们提供一些分式方程的练习题及其答案,供大家参考和练习。
练习题一:求下列分式方程的解:1. (x+1)/3 + (2x-1)/4 = 1/22. (3x-4)/5 - (2x-1)/2 = 2/33. (3x+2)/4 + (5x-1)/6 = (2x+5)/3解答一:1. 将等式两边的分式通分,得到:4(x+1) + 3(2x-1) = 6/2化简得:4x + 4 + 6x - 3 = 3整理得:10x + 1 = 3再整理得:10x = 2解得:x = 2/10 = 1/52. 将等式两边的分式通分,得到:2(3x-4) - 5(2x-1) = 2/3 * 10化简得:6x - 8 - 10x + 5 = 20/3整理得:-4x - 3 = 20/3再整理得:-4x = 20/3 + 3解得:x = (20/3 + 3) / -43. 将等式两边的分式通分,得到:3(3x+2) + 2(5x-1) = 4(2x+5)化简得:9x + 6 + 10x - 2 = 8x + 20整理得:9x + 10x - 8x = 20 - 6 + 2解得:x = 16/11练习题二:解下列分式方程组:1. { (x+1)/3 = (2y-1)/4, (x-y)/2 = (3x+2y)/10 }2. { (3x-1)/2 + (2y+1)/3 = 1, (4x-2)/5 - (y-3)/4 = 2 }解答二:1. 针对第一个方程:将等式两边的分式通分,得到:4(x+1) = 3(2y-1)化简得:4x + 4 = 6y - 3针对第二个方程:将等式两边的分式通分,得到:5(x-y) = 2(3x+2y)化简得:5x - 5y = 6x + 4y将两个方程整合:4x + 4 = 6y - 35x - 5y = 6x + 4y接下来,通过解方程组得到变量的值,再代入检验:解出:x = -19/21, y = 5/21将x、y代入原方程组,检验是否成立。
分式方程20道例题
分式方程20道例题一、基础题型例1:解方程(2)/(x + 1)=(1)/(x - 1)解析:1. 首先去分母,给方程两边同时乘以(x + 1)(x-1)(最简公分母),得到: - 2(x - 1)=x + 1。
2. 然后展开括号:- 2x-2=x + 1。
3. 接着移项:- 2x-x=1 + 2。
- 解得x = 3。
4. 最后检验:- 当x = 3时,(x + 1)(x - 1)=(3+1)×(3 - 1)=4×2 = 8≠0。
- 所以x = 3是原分式方程的解。
例2:解方程(x)/(x - 2)-1=(4)/(x^2)-4解析:1. 先将方程右边的分母因式分解,x^2-4=(x + 2)(x - 2)。
2. 去分母,方程两边同时乘以(x + 2)(x - 2),得到:- x(x + 2)-(x + 2)(x - 2)=4。
3. 展开括号:- x^2+2x-(x^2-4)=4。
- x^2+2x - x^2+4 = 4。
4. 化简得:- 2x=0,解得x = 0。
5. 检验:- 当x = 0时,(x + 2)(x - 2)=(0 + 2)×(0 - 2)=-4≠0。
- 所以x = 0是原分式方程的解。
例3:解方程(3)/(x)+(6)/(x - 1)=(x + 5)/(x(x - 1))解析:1. 去分母,方程两边同时乘以x(x - 1),得到:- 3(x - 1)+6x=x + 5。
2. 展开括号:- 3x-3+6x=x + 5。
3. 移项合并同类项:- 3x+6x - x=5 + 3。
- 8x=8,解得x = 1。
4. 检验:- 当x = 1时,x(x - 1)=1×(1 - 1)=0。
- 所以x = 1是增根,原分式方程无解。
二、有增根问题的分式方程例4:若关于x的分式方程(2)/(x - 2)+(mx)/(x^2)-4=(3)/(x + 2)会产生增根,求m的值。
八年级数学下册10.5分式方程《分式方程》典型例题2素材苏科版
《分式方程》典型例题例1.甲、乙二人同时从A 地前往距A 地30千米的B 地,甲比乙每小时快2千米,结果比乙先到半小时,若设乙的速度为x 千米/小时,则可列出的方程为( )A .2123030=--x x B .2123030=+-x x C .2130230=-+x x D .2130230=--x x例2.某校学生进行急行军,预计行60千米的路程可在下午5点钟到达,后来由于每小时加快速度的51,结果于4点钟到达,这时的速度是多少?例3.甲、乙两人合做某项工作,如果先由两人合作3天,剩下的由乙单独来做,那么再有1天便可完成. 已知乙单独做全部工作所需天数是单独做所需天数的2倍. 求甲、乙单独做这项工作各需多少天?例4.某工人现在平均每天比计划多做20个零件,已知现在做4000个 零件和原计划做3000个零件所用的时间相同,问现在平均每天做多少个?例5. A 、B 两地相距7千米,甲由A 地走向B 地,刚走完了1千米到达C ,在A 地的乙发现甲有物遗忘,为送物追甲,乙在D 处追上甲后又立即返回,当乙回到A 地时,甲正好到了B 地,求C 、D 间的距离.例6.编一道可化为一元一次方程的分式方程应用题,并解答,编写要求。
(1)要联系实际生活,其解符合实际。
(2)根据题意列出的分式方程只含有两项分式,不含常数项,分式的分母均含有未知数,并且可化为一元一次方程.(3)题目完整,题意清楚.参考答案例1.分析1 比较分母的大小判断分式的值的大小,知A 、C 左边均为负数,不可能与右边相等,故应排除A 、C. 又,根据题设,甲的速度为)2(+x 千米/小时,在D 式中没出现2+x ,故排除D 。
分析2 按列方程解应用题的常规办法列方程得B 式(详细分析过程从略)解答 B例2.分析 此为行程问题. 基本关系式为:路程=速度×时间. 本题欲求速度,则设原计划速度为x 千米/时,而实际速度为x )511(+千米/时,所以,计划时间x 60时,实际时间x )511(60+时,以时间关系为相等关系来列方程. 解答 设原计划速度为x 千米/时, (务必写明意义和单位) 则实际速度为x )511(+千米/时,依题意,得 1)511(6060=+-x x 化为整式方程,得 1256=x ∴ 10=x经检验:10=x 是原方程的根。
八年级下册数学34道分式方程应用题及答案
八年级数学下分式方程应用练习去买,结果用去元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了1、甲、乙两人准备整理一批新到的实验器械,甲独自整理需要几瓶酸奶40 分竣工;若甲、乙共同整理 20 分钟后,乙需要再独自整理20 分才能竣工。
问:乙独自整理需多少分钟竣工5、某商铺经销一种纪念品, 4 月份的营业额为 2000 元,为扩大销售, 5 月份该商铺对这类纪念品打九折销售,结果销售量增添20 件,营业额增添 700 元。
2、有两块面积相同的试验田,分别收获蔬菜⑴求这类纪念品 4 月份的销售价钱。
900 千克和 1500 千克,已知第一块试验⑵若 4 月份销售这类纪念品赢利800 元,问: 5 月份销售这类纪念品赢利多少元田每亩收获蔬菜比第二块少300 千克,求第一块试验田每亩收获蔬菜多少千克3、甲、乙两地相距 19 千米,某人从甲地去乙地,先步行 7 千米,而后改骑自行车,共用了 2 小时抵达乙地。
已知这个人骑自行车的速度是步行速度的 4 倍。
求步行的速6、一个分数的分母比分子大7,假如把此分数的分子加17,分母减 4,所得新分数是度和骑自行车的速度。
原分数的倒数,求原分数。
4、小兰的妈妈在供销大厦用元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶廉价元,所以,当第二次买酸奶时,便到百货商场7、某一项工程在招标时,接到甲、乙两个工程队的招标书,施工一天,需付甲工程队1 / 10款万元,乙工程队款万元,工程领导小组依据甲、乙两队的招标书测算,可有三种施拨11000元资本购进该品种苹果,但此次的进价比试销时的进价每千克多了元,购进工方案:苹果数目是试销时的 2 倍。
⑴试销时该品种苹果的进价是每千克多少元方案一:甲队独自达成这项工程恰巧按期达成;⑵假如商场将该品种苹果按每千克7 元的订价销售,当大多数苹果售出后,余下的 400 方案二:乙队独自达成这项工程要比规定日期多用 5 天;千克按订价的七折售完,那么商场在这两次苹果销售中共盈余多少元方案三:若甲、乙两队合做 4 天,余下的工程由乙队独自达成,也正好按期达成。
八年级数学分式方程题目
八年级数学分式方程题目一、分式方程题目。
1. 解方程:(1)/(x - 2)=(3)/(x)- 解析:- 方程两边同乘x(x - 2)(这是x-2与x的最简公分母)得:x=3(x - 2)。
- 展开括号得x = 3x-6。
- 移项得3x - x=6,即2x = 6。
- 解得x = 3。
- 检验:当x = 3时,x(x - 2)=3×(3 - 2)=3≠0,所以x = 3是原分式方程的解。
2. 解方程:(2)/(x+1)+(3)/(x - 1)=(6)/(x^2)-1- 解析:- x^2-1=(x + 1)(x - 1),方程两边同乘(x + 1)(x - 1)得:2(x - 1)+3(x + 1)=6。
- 展开括号得2x-2 + 3x+3 = 6。
- 合并同类项得5x+1 = 6。
- 移项得5x=6 - 1,即5x = 5。
- 解得x = 1。
- 检验:当x = 1时,(x + 1)(x - 1)=(1 + 1)×(1 - 1)=0,所以x = 1是增根,原分式方程无解。
3. 若关于x的分式方程(x)/(x - 3)-2=(m)/(x - 3)有增根,求m的值。
- 解析:- 方程两边同乘(x - 3)得x-2(x - 3)=m。
- 展开括号得x-2x + 6=m,即-x+6 = m。
- 因为分式方程有增根,所以x - 3 = 0,即x = 3。
- 把x = 3代入-x + 6=m得m=-3 + 6 = 3。
4. 解方程:(3)/(x - 1)-(x + 3)/(x^2)-1=0- 解析:- 方程两边同乘(x + 1)(x - 1)(x^2-1=(x + 1)(x - 1))得:3(x + 1)-(x + 3)=0。
- 展开括号得3x+3 - x - 3 = 0。
- 合并同类项得2x = 0。
- 解得x = 0。
- 检验:当x = 0时,(x + 1)(x - 1)=(0 + 1)×(0 - 1)= - 1≠0,所以x = 0是原分式方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学分式方程专题一、考点、热点回顾分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
(验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
)分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.应用题有几种类型;基本公式是什么?基本上有四种:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.(2)数字问题在数字问题中要掌握十进制数的表示法.(3)工程问题基本公式:工作量=工时×工效.(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.即时知识梳理1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.(验根的方法:将所求得的未知数的知数的值代入)3.列方程解决实际问题的步骤(1)审;找出 (2)设; (3)列;(4)解;检验:是否是原方程的根;这个根在实际问题中是否有实际意义; (5)答;二、典型例题题型一:分式方程题型 【例1】解下列分式方程 (1)114112=---+x x x ; (2)x x x x -+=++4535;(3)4441=+++x x x x ; (4)61244444402222y y y y y y y y +++---++-=2例2、 解方程x x x x x x x x +++++=+++++12672356练习:(1)11115674x x x x +=+++++(2)121043323489242387161945x x x x x x x x --+--=--+--(3)【例2】(1)若关于x 的方程211333x x kx x x x ++-=-- 有增根,求增根和k 的值(2)、m 为何值时,关于x 的方程22432x m x x x -+-=+2会产生增根? 解:方程两边都乘以x 24-,得2436x m x x ++=- 整理,得()m x -=-110242401111x x x xx x x x+++=-+++当时,如果方程产生增根,那么,即或()若,则()若,则()综上所述,当或时,原方程产生增根m x m x x x x m m x m m m ≠=---===-=--=∴=-=---=-∴==-11014022121012422101263462 说明:分式方程的增根,一定是使最简公分母为零的根 练习: 1.若解分式方程2111x x m x x x x+-++=+产生增根,则m 的值是( ) A. --12或B. -12或C. 12或D. 12或-分析:分式方程产生的增根,是使分母为零的未知数的值。
由题意得增根是:x x ==-01或,化简原方程为:21122x m x -+=+()(),把x x ==-01或代入解得m =-12或,故选择D 。
【例3】1、当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数.2、若分式方程122-=-+x ax 的解是正数,求a 的取值范围.【例4】1、已知关于x 的分式方程a x a =++112无解,试求a 的值.2、若关于的x 的分式方程111132=--+--xmxx x 无解,求m 的值【例5】列分式方程解应用题:为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.请求原计划每小时植树多少棵?例6、 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元,问混合后的单价每千克是多少元?分析:市场经济中,常遇到营销类应用性问题,与价格有关的是:单价、总价、平均价等,要了解它们的意义,建立它们之间的关系式.解:设混合后的单价为每千克 x 元,则甲种原料的单价为每千克(3)x +元,混合后的总价值为(2000+4800)元,混合后的重量为x48002000+斤,甲种原料的重量为32000+x ,乙种原料的重量为14800-x ,依题意,得: 总价值 价格 数量 甲 2000元 乙4800元混合X 元32000+x +14800-x =x48002000+,解得17x =, 经检验,17x =是原方程的根,所以17x =. 即混合后的单价为每千克17元.评析:营销类应用性问题,涉及进货价、售货价、利润率、单价、混合价、赢利、亏损等概念,要结合实际问题对它们表述的意义有所了解,同时,要掌握好基本公式,巧妙建立关系式.随着市场经济体制的建立,这类问题具有较强的时代气息,因而成为中考常考不衰的热点问题.练习 A 、B 两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同.其中,采购员A 每次购买1000千克,采购员B 每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算?解: 两次购买的饲料单价分别为每1千克m 元和n 元(m>0,n>0,m ≠n),依题意,得:采购员A 两次购买饲料的平均单价为 (元/千克),采购员B 两次购买饲料的平均单价为 (元/千克).而 >0.也就是说,采购员A 所购饲料的平均单价高于采购员B 所购饲料的平均单价,所以选用采购员B 的购买方式合算.例5、 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为x 天,y 天,z 天,可列出分式方程组.解:⑴设甲队单独做需x 天完成,乙队单独做需y 天完成,丙队单独做需z 天完成,依题意可得:116()11110()11125()3x y y z x z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩,①,②.③①×61+②×101+③×51,得x 1+y1+z 1=51.④④-①×61,得z 1=301,即z = 30, ④-②×101,得x 1=101,即x = 10,④-③×51,得y 1=151,即y = 15. 经检验,x = 10,y = 15,z = 30是原方程组的解.⑵设甲队做一天厂家需付a 元,乙队做一天厂家需付b 元,丙队做一天厂家需付c 元,根据题意,得6()870010()95005()5500a b b c c a +=⎧⎪+=⎨⎪+=⎩,,.⇒800650300a b c =⎧⎪=⎨⎪=⎩,,. 由⑴可知完成此工程不超过工期只有两个队:甲队和乙队.此工程由甲队单独完成需花钱108000a =元;此工程由乙队单独完成需花钱159750b =元.所以,由甲队单独完成此工程花钱最少. 评析:在求解时,把x 1,y1,z 1分别看成一个整体,就可把分式方程组转化为整式方程组来解.练习:今年某大学在招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩?解: 设教师乙每分钟能输入x 名学生的成绩,则教师甲每分钟能输入2x 名学生的成绩,依题意,得:, 解得 x =11经检验,x =11是原方程的解,且当x =11时,2x =22,符合题意.即教师甲每分钟能输入22名学生的成绩,教师乙每分钟能输入11名学生的成绩.例5、轮船顺流、逆流各走48千米,共需5小时,如果水流速度是4千米/小时,求轮船在静水中的速度。
分析:顺流速度=轮船在静水中的速度+水流的速度逆流速度=轮船在静水中的速度-水流的速度等量关系:顺流用时+逆流用时=5(小时)练习:轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度。
分析:此题的等量关系很明显:顺水航行30千米的时间= 逆水中航行20千米的时间,即顺水航行速度千米30=逆水航行速度千米20.设船在静水中的速度为x 千米/时,又知水流速度,于是顺水航行速度、逆水航行速度可用未知数表示,问题可解决.解: 设船在静水中速度为x 千米/时,则顺水航行速度为(2)x +千米/时,逆水航行速度为(2)x -千米/时,依题意,得路程 速度时间 顺流48千米(x+4)千米/小时逆流48千米(x-4)千米/小时484x +484x -230+x =220-x ,解得10x =. 经检验,10x =是所列方程的根. 即船在静水中的速度是10千米/时.三、实战训练选择题⒈下列约分正确的是( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy2、下列各式中,从左到右的变形正确的是( ) A 、y x y x y x y x ---=--+- B 、y x yx y x y x +-=--+-C 、yx y x y x y x -+=--+- D 、y x yx y x y x +--=--+-3、甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( )A.Sa b+ B.S a v b - C. S a v a b-+ D. 2S a b +4 如果关于x 的方程2313x mx m -=--有增根,则的值等于()A. -3B. -2C. -1D. 35、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =-C .9001500300x x =+D .9001500300x x=-填空1. 当x 时,分式x-31有意义. 2. 化简1(1)(1)1m m -++的结果是 .3. 化简:(2x x+2-x x-2)÷xx 2-4的结果为 。