量反常积分的局部一致收敛与连续性

合集下载

§2 含参量反常积分 一、含参量反常积分及其一致收敛的定义

§2   含参量反常积分 一、含参量反常积分及其一致收敛的定义

暨南大学数学分析精品课程
A1 , A2 M 时 , 对一切 x [a, b] 都有

c
A2
A1
f ( x, y ) dy < .

(5)
证明:(充分性) 对每个 x, (3)式成立,这说明
f ( x, y ) dy 收敛, 从而
A1
f ( x, y ) dy 收敛,
A1

M
c
f ( x, y )dy
对参量 x 在[a, b] 上一致有界, 即存在正数 G ,
暨南大学数学分析精品课程
对一切 M c 及一切 x [a, b] 都有 |
M c
f ( x, y )dy | M ;
(ii ) 对每一个 x [a, b], 函数 g g ( x, y ) 关于 y 是单调递减且当 y 时, 对参量 x , g ( x, y ) 一致地收敛于 0. 则含参量反常积分 一致收敛.
在(3)式中令 A2 得, | 故结论得证.
f ( x, y ) dy |
暨南大学数学分析精品课程
例2
证明:若 z f ( x, y ) 在[a, b] [c, ) 上连续, 又


c
f ( x, y )dy
在[a, b) 上收敛 , 但在 x b 处发散, 则


A
sin xy dy y


Ax
sin u dy 0 . u
暨南大学数学分析精品课程
sin xy 由于 dy 收敛, 对任意固定的 M 0, 0 y sin xy sin xy M 1 sin xy du M 1 y dy 0 y dy 0 y ( M 1) x sin u du : I ( x ), 0 u 则 I 在包含原点为左端点的某闭区间上连续, 于是

1905含参量反常积分一致收敛性的定义和判别

1905含参量反常积分一致收敛性的定义和判别

函数项级数.
数学分析 第十九章 含参量积分
高等教育出版社
设函数 f ( x, y)定义在无界区域 R= I ×[c, + ∞)上,
其中I是任意区间. 若∀x ∈ I , 反常积分
+∞
∫ c f ( x, y) dy
(1)
都收敛,则它的值是区间 I 上的函数.
记这个函数为 Φ ( x), 则有
+∞
= Φ ( x) ∫ c f ( x, y) dy x ∈ I
∫ A2 f ( x, y) dy < ε . A1
(3)
定理19.8
+∞
含参量反常积分 ∫c f ( x, y)dy 在I上一致收敛的充
要条件是
+∞
∫ lim F (A)= lim sup f ( x, y) dy =0.
A→∞
A→∞ x∈I A
数学分析 第十九章 含参量积分
高等教育出版社
§2 含参量反常积分
二、含参量反常积分的 性质
*点击以上标题可直接前往对应内容
§2 含参量反常积分 一致收敛性 一致收敛性的判别
性质
含参量无界函数的反常积分
第五讲
含参量反常积分 一致收敛性的定义和判别
数学分析 第十九章 含参量积分
高等教育出版社
§2 含参量反常积分
一致收敛性及其判别法
含参量反常积分的性质
一致收敛性及其判别法
(2)
称(1)为定义在 I 上的含参量 x 的无穷限反常积分,
或称含参量反常积分.
数学分析 第十九章 含参量积分
高等教育出版社
后退 前进 目录 退出
§2 含参量反常积分
一致收敛性及其判别法

含参量反常积分的一致收敛发判别法及推广汇总

含参量反常积分的一致收敛发判别法及推广汇总

含参量反常积分的一致收敛判别法及推广作者:蒋碧希 指导老师:张海摘要 本文主要介绍了含参量反常积分(含参量无穷限反常积分、含参量瑕积分)的基本概念、性质.然后参照无穷限反常积分的方法建立了相应的含参量瑕积分的一致收敛性.最后结合例题说明其在解题中的应用.关键词 含参量无穷限反常积分 含参量瑕积分 一致收敛1 引言对于含参量无穷限反常积分的基本概念、性质、一致收敛性判别法大部分教材都有详细论述.而忽视了含参量瑕积分的一致收敛性的判定,其实两者之间是同中有异的.本文主要参照无穷限反常积分的方法建立相应的含参量瑕积分的一致收敛判别法,并探究其在解题中的应用.2 含参量无穷限反常积分的一致收敛判别法 2.1 含参量无穷限反常积分的定义设函数(,)f x y 定义在无界区域{(,)|,}R x y a x b c y =≤≤≤≤+∞上,若对每一个固定的[,]x a b ∈,反常积分(,)cf x y dy +∞⎰(1)都收敛,则它的值是x 在[,]a b 上取值的函数,当这个函数为()I x 时,则有()(,),[,],cI x f x y dy x a b +∞=∈⎰(2)称(1)式为定义在[,]a b 上的含参量x 的无穷限反常积分,或简称含参量反常积分.2.2 含参量反常积分的一致收敛概念若含参量反常积分(1)与()I x 对任给的正数ε,总存在某一实数N c >,使得当M N >时,对一切[,]x a b ∈,都有(,)()Mcf x y dy I x ε-<⎰,即(,)Mf x y dy ε+∞<⎰,则称含参量反常积分(1)在],[b a 一致收敛于()I x ,或简单地说含参量积分(1)在[,]a b 上一致收敛.2.3含参量无穷限反常积分一致收敛的柯西准则含参量反常积分)1(在],[b a 上一致收敛的充要条件是:对任給的正数ε,总存在某一实数c M >,使得当M A A >21,时,对一切],[b a x ∈,都有21(,)A A f x y dy ε<⎰, )3(证明 (必要性) 由于含参量反常积分)1(在],[b a 上一致收敛,则 对0>∀ε,0>∃M ,M A A >∀21,时,使得],[b a x ∈∀时,有1(,)2A f x y dy ε+∞<⎰,且2(,)2A f x y dy ε+∞<⎰由2112(,)(,)(,)A A A A f x y dy f x y dy f x y dy+∞+∞=-⎰⎰⎰12(,)(,)A A f x y dy f x y dy +∞+∞≤+⎰⎰εεε=+<22可知:0,0>∃>∀M ε,当M A A >21,时, 有21(,)A A f x y dy ε<⎰.(充分性) 因为0ε∀>,总存在某一实数c M >,使得M A A >21,时,对一切],[b a x ∈,都有21(,)A A f x y dy ε<⎰,当+∞→2A 时,有1(,)A f x y dy ε+∞<⎰成立.故⎰+∞1),(A dy y x f在),[],[1+∞⨯A b a 上是一致收敛的. 又因为⎰⎰⎰+∞+∞+=11),(),(),(A cA cdy y x f dy y x f dy y x f ,其中⎰1),(A cdy y x f 是含参量正常积分,故一致收敛.所以⎰+∞cdy y x f ),(在),[],[+∞⨯c b a 上是一致收敛的.2.4 含参量无穷限反常积分一致收敛性与函数项级数一致收敛的联系定理2.4.1 含参量反常积分)1(在],[b a 上一致收敛的充要条件是:对任一趋于∞+的递增数列}{n A (其中c A =1),函数项级数)(),(111x u dy y x f n A A n n n n∑⎰∑∞=∞=+= )4(在],[b a 上一致收敛.证明 (必要性)由)1(在],[b a 上一致收敛,故对任给0>ε,必存在c M >,使当M A A >>'"时,对一切],[b a x ∈,总有"'(,)A A f x y dy ε<⎰. )5(又由)(∞→+∞→n A n ,所以对正数M ,存在正整数N ,只要当N n m >>时,就有M A A n m >>.由)5(对一切],[b a x ∈,就有11()()(,)(,)m n m nA A n m A A u x u x f x y dy f x y dy ++++=++⎰⎰1(,)m nA A f x y dy ε+=<⎰.这就证明了级数)4(在],[b a 上一致收敛.(充分性) 用反证法.假若)1(在],[b a 上不一致收敛,则存在某个正数0ε,使得对于任何实数c M >,存在相应的M A A >>'"和],['b a x ∈,使得"''0(,)A Af x y dy ε≥⎰,现取},1m ax {1c M =,则存在112M A A >>及],[1b a x ∈,使得2110(,)A A f x y dy ε≥⎰一般的,取)2}(,m ax {12≥=-n A n M n n ,则有n n n M A A >>-122及],[b a x n ∈,使得2210(,)nn A n A f x y dy ε-≥⎰)6(由上述所得到的数列}{n A 是递增数列,且+∞=∞→n n A lim .现在考察级数∑⎰∑∞=∞=+=111),()(n A A n n n ndy y x f x u由)6(式知存在正数0ε,对任何正整数N ,只要N n >,就有某个],[b a x n ∈,使得21220()(,)n nA n n n A u x f x y dy ε+=≥⎰这与级数)4(在],[b a 上一致收敛的假设矛盾.故含参量反常积分)1(在],[b a 上一致收敛2.5 含参量无穷限反常积分的一致收敛性判别法定理 2.5.1 (维尔斯特拉斯M 判别法)设有函数,使得(,)(),,f x y g y a x b c y ≤≤≤≤<+∞若⎰+∞cdy y g )(收敛,则⎰+∞cdy y x f ),(在],[b a 上一致收敛.定理 2.5.2 (狄利克雷判别法)设)1( 对一切实数c N >,含参量正常积分⎰Ncdy y x f ),(对参量x 在],[b a 上一致有界,即存在正数M ,对一切c N >及一切],[b a x ∈,都有(,);Ncf x y dy M ≤⎰)2( 对每一个],[b a x ∈,函数),(y x g 关于y 是单调递减且当+∞→y 时,对参量),(,y x g x 一致的收敛于0,则含参量反常积分⎰+∞cdy y x g y x f ),(),(在],[b a 上一致收敛.定理 2.5.3 (阿贝尔判别法) 设)1(⎰+∞cdy y x f ),(在],[b a 上一致收敛;)2( 对每一个],[b a x ∈,函数),(y x g 为y 的单调函数,且对参量),(,y x g x 在],[b a 上一致有界,则含参量反常积分⎰+∞cdy y x g y x f ),(),(在],[b a 上一致收敛.2.6 含参量无穷限反常积分的性质定理2.6.1 (连续性) 设(,)f x y 在[,][,)a b c ⨯+∞上连续,若反常积分()(,)cI x f x y dy +∞=⎰)7(在[,]a b 上一致收敛,则()I x 在[,]a b 上连续.证明 由定理2.4.1,对任意递增且趋于∞+的数列}{n A )(1c A =,函数项级数∑⎰∑+∞=+∞=+==111)(),()(n A A n n n nx u dy y x f x I )8(在],[b a 上一致收敛.又由于),(y x f 在),[],[+∞⨯c b a 上连续,故每个)(x u n 都在],[b a 上连续.根据函数项级数的连续性定理,函数)(x I 在],[b a 上连续.定理 2.6.2 (可微性) 设 ),(y x f 与),(y x f x 在区域),[],[+∞⨯c b a 上连续,若⎰+∞=cdy y x f x I ),()(在],[b a 上收敛,dy y x f cx ),(⎰+∞在],[b a 上一致收敛,则)(x I 在],[b a 上可微,且dy y x f x I cx ),()('⎰+∞=)9(证明 对任一递增且趋于∞+的数列)}({1c A A n =,令⎰+=1),()(n nA A n dy y x f x u则()dy y x f x u n nA A x n ),(1'⎰+=由()dy y x f cx ⎰+∞,在],[b a 上一致收敛及定理1,可得函数项级数dy y x f x u n A A x n n n n),()(11'1∑⎰∑+∞=+∞=+=在],[b a 上一致收敛,因此根据函数项级数的逐项求导定理,即得()()()()dy y x f dy y x f x u x I cx n A A x n n n n,,11''1⎰∑⎰∑∞+∞=∞====+定理2.6.3 (可积性) 设()y x f ,在),[],[+∞⨯c b a 上连续,若()()dy y x f x I c⎰+∞=,在],[b a 上一致收敛,则()x I 在],[b a 上可积,且()()⎰⎰⎰⎰+∞+∞=b accbadx y x f dy dy y x f dx ,,证明 由定理2.6.1知道()x I 在],[b a 上连续,从而()x I 在],[b a 上可积.又由定理 2.6.1的证明中可以看到,函数项级数()8在],[b a 上一致收敛,且各项()x u n 在],[b a 上连续,因此根据函数项级数逐项求积定理,有⎰∑⎰∑⎰⎰++∞=+∞===1),()()(11n nA A n ban ban bady y x f dx dx x u dx x I()∑⎰⎰+∞=+=11,n A A ban ndx y x f dy (10)这里最后一步是根据关于积分顺序的可交换性定理.(10)式又可写作()()⎰⎰⎰+∞=bacbadx y x f dy dx x I ,定理2.6.4设()y x f ,在),[),[+∞⨯+∞c a 上连续,若 (1)()⎰+∞adx y x f ,关于y 在任何闭区间],[d c 上一致收敛,()⎰+∞cdy y x f ,关于x 在任何闭区间],[b a 上一致收敛; (2)积分(),acdx f x y dy +∞+∞⎰⎰与(),cady f x y dx +∞+∞⎰⎰中有一个收敛, 则()()⎰⎰⎰⎰+∞+∞+∞+∞=accadx y x f dy dy y x f dx ,,3 含参量瑕积分一致收敛判别法 3.1 含参量瑕积分的定义设()y x f ,在区域),[],[d c b a ⨯上有定义,若对x 的某些值,d y =为函数()y x f ,的瑕点(以下的含参量瑕积分未加说明都同此)则称()⎰dcdy y x f , (11)为含参量x 的瑕积分.3.2 含参量瑕积分一致收敛定义对任给的正数ε,总存在某正数c d -<δ,使得当δη<<0时,对一切],[b a x ∈,都有(),dd f x y dy ηε-<⎰则称含参量瑕积分(11)在],[b a 上一致收敛.3.3 含参量瑕积分一致收敛性的判别法定理3.3.1(柯西收敛准则) 含参量瑕积分()⎰dcdy y x f ,在[]b a ,上一致收敛的充要条件是:对任给正数ε,存在不依赖于x 的0>δ,使得当δηη<<<'0时,对一切[]b a x ,∈,都有()',d d f x y dy ηηε--<⎰(12)证明 (必要性)由(11)在[]b a ,上一致收敛,故对任给的)(0c d -<>δε,存在0>δ,使得δηη<<<'0时,有 (),2dd f x y dy ηε-<⎰与'(,)2dd f x y dy ηε-<⎰同时成立,则有()()'',(,),d ddd d d f x y dy f x y dy f x y dy ηηηη----=-⎰⎰⎰'(,)(,)ddd d f x y dy f x y dy ηηε--≤+<⎰⎰(充分性)由所给条件知:对任给正数ε,存在不依赖于x 的)(0c d -<>δδ,使得当δηη<<<'0时,对一切],[b a x ∈,都有()',d d f x y dy ηηε--<⎰成立.令0'→η,则有(,)dd f x y dy ηε-<⎰成立.由定义知:含参量瑕积分)11(在],[b a 上一致收敛.定理3.3.2 (魏尔斯特拉斯M 判别法)设有函数)(y g ,使得(),(),,f x y g y a x b c y d ≤≤≤≤≤ (13) 若⎰dcdy y g )(收敛,则含参量瑕积分⎰dcdy y x f ),(在],[b a 上一致收敛.证明 因为⎰dcdy y g )(收敛,所以由瑕积分的柯西收敛原理知:对于任给的0>ε,存在)(0c d -<>δδ,对于任意的',ηη,且δηη<<<'0,有 ⎰--<')(ηηεd d dy y g又由)13(可得⎰⎰⎰------<≤≤''')(|),(||),(|ηηηηηηεd d d d d d dy y g dy y x f dy y x f故由定理3.3.1知:含参量瑕积分⎰dcdy y x f ),(在],[b a 上一致收敛.定理3.3.3 (海涅归结原则) 含参量瑕积分⎰dcdy y x f ),(在],[b a 上一致收敛的充要条件是:对任意递增数列)(),}({1+∞→→=n d A c A A n n 时,相应的函数项级数)(),(111x u dy y x f n n n A A n n∑∑⎰∞=∞==+ )14(在],[b a 上一致收敛.证明 (必要性)因为)11(在],[b a 上一致收敛,由定理5知:对任给的0>ε,必存在)(0c d -<>δδ,当δηη<<<'0时,对一切],[b a x ∈,总有εηη<⎰'--d d dy y x f ),( )15(成立.令n n A d -=η,由)(∞→→n d A n 且n A 递增,则)(0∞→→n n η且递减.由数列极限定义,对上述0>δ,存在正整数N ,只要N n m >>时,就有δηη<<<n m 0,于是)()()(1x u x u x u m n n ++++ ⎰⎰++++=11),(),(n n m mA A A A dy y x f dy y x f⎰+=1),(m nA A dy y x fεηη<=⎰+--1),(m nd d dy y x f根据函数项级数柯西一致收敛准则,函数项级数)14(在],[b a 上一致收敛.(充分性) 用反证法,假设)11(在],[b a 上非一致收敛,则存在某一正数00>ε,使得)(0c d -<>∀δδ,存在相应的δηη<<'<0和],[b a x ∈',有0),(εηη≥'⎰'--d d dy y x f现取},1m in{1c d -=δ,则存在1120δηη<<<及],[1b a x ∈,使得121),(εηη≥⎰--d d dy y x f一般的取)2}(,1min{1≤-=-n nn n n ηηδ,则有n n n δηη<<<+10及],[b a x n ∈,使得01),(εηη≥⎰+--n nd d dy y x f )16(令n n d A η-=,则}{n A 是递增数列,且有d A n n =∞→lim .考察级数∑∑⎰∞=∞=+=111),()(n n A A n n ndy y x f x u )17(由)16(式知存在正数00>ε,对任意正整数N ,只要N n >就有某个],[b a x n ∈,使01),()(ε≥=⎰+n nA A n n dy y x f x u这与函数项级数)14(在],[b a 上一致收敛的条件矛盾,故)1(在],[b a 上一致收敛.定理3.3.4(狄利克雷判别法)若含参量瑕积分⎰dcdy y x g y x f ),(),(满足:)1(对一切d d c <'<,含参量正常积分⎰'d cdy y x f ),(对参量x 在],[b a 上一有界,即存在正数M ,对任何d d c <'<及一切],[b a x ∈,有M y x f d c≤⎰'),()2(对每一个],[b a x ∈,函数),(y x g 关于y 单调且当d y →时,对参量),(,y x g x 一致收敛于0.则含参量瑕积分⎰dcdy y x g y x f ),(),(在],[b a 上一致收敛.定理3.3.5 (阿贝尔判别法) 若含参量瑕积分⎰dcdy y x g y x f ),(),(满足:)1(含参量瑕积分⎰dcdy y x f ),(在],[b a 上一致收敛;)2(对每一个],[b a x ∈,函数),(y x g 为y 的单调函数,且对参量),(,y x g x 在],[b a 上一致有界,则含参量瑕积分⎰dcdy y x g y x f ),(),(在],[b a 上一致收敛.定理3.3.6 设),(y x f 在),[],[d c b a ⨯上连续,对任何⎰∈dcdy y x f b a x ),(],,[收敛,且⎰dcdy y b f ),(发散,则⎰dcdy y x f ),(在),[b a 上不一致收敛.证明 用反证法.若⎰dcdy y x f ),(在),[b a 上一致收敛,由柯西收敛准则:对任给的0>ε,存在)(0c d -<>δδ,当δηη<<'<0时,对一切),[b a x ∈有εηη<⎰'--d d y x f ),(根据假设),(y x f 在],[],[ηη'--⨯d d b a 上连续,对含参量正常积分应用连续性定理,令-→b x ,有εηη≤⎰'--d d dy y b f ),(这与假设含参量瑕积分⎰dcdy y b f ),(发散矛盾.故⎰dcdy y x f ),(在),[b a 上不一致收敛.4 典型例题例4.1 证明含参量反常积分dx x xy⎰+∞+021cos )18( 在),(+∞-∞上一致收敛.证明 由于对任何实数y 有22111cos x x xy +≤+,及反常积分⎰+∞+021xdx收敛,故由魏尔斯特拉斯M 判别法,含参量反常积分)18(在),(+∞-∞上一致收敛.例4.2 证明含参量反常积分⎰+∞-0sin dx xxe xy)19( 在],0[d 上一致收敛.证明 由于反常积分dx xx⎰+∞sin 收敛(当然,对于参量y ,它在],0[d 上一致收敛),函数),(y x g xye-=对每个],0[d y ∈单调,且对任何0,0≥≤≤x d y 都有1),(≤=-xy e y x g故由阿贝尔判别法即得含参量反常积分)19(在],0[d 上一致收敛.例4.3 证明含参量瑕积分dy xy xy ⎰-1sin ))1,0((∈x在)1,0(上一致收敛.证明 因为dy xy xy dy y x xydy xy xy xx⎰⎰⎰-+-=-101sin sin sin所以对于含参量瑕积分dy yx xyx⎰-0sin , 由于⎰⎰---≤-x x xx yx xy dy y x xy ηηsin sinηη21=-≤⎰-dy yx xx 故对于任给的0>ε,取421εδ=,当10δη<<时,即有εη<-⎰-xx yx xysin 因此,对于10<<x 它是一致收敛的. 对于积分dy xy xyx⎰-1sin 由于ηηη2sin =-≤-⎰⎰++x xx xxy dydy x y xy故对于任给的0>ε,取421εδ=,当10δη<<时,即有εη<-⎰+x xdy xy xysin 因此,对于10<<x 它是一致收敛的.于是积分dy xy xy ⎰-1sin对于)1,0(∈∀x 一致收敛.例4.4 证明含参量瑕积分⎰1)ln(dy xy 在],1[b b)0(>b 上一致收敛. 证明 由条件可知y x xy ln ln )ln(+=y x ln ln +≤y b ln ln -≤ 而⎰1)ln(dy xy收敛.所以由魏尔斯特拉斯M 判别法知:⎰1)ln(dy xy在)1](,1[>b b b上一致收敛.例4.5 证明含参量瑕积分dy ye xy11⎰- 在],0[d 一致收敛.证明 由于dy y⎰11 收敛(当然,对于参量x ,它在],0[d 上一致收敛). 函数xyey x g -=),(,对每个],0[d x ∈单调,且对任何10,0≤≤≤≤y d x ,都有1),(≤=-xy e y x g ,故由阿贝尔判别法知dy ye xy11⎰- 在],0[d 上一致收敛.结束语本文首先介绍了含参量无穷限积分的定义,性质及其一致收敛性判别定理.然后参照含参量无穷限反常积分的方法建立了含参量瑕积分的一致收敛性判别定理.最后结合典型例题说明这些定理在实际解题中的运用.参考文献[1] 华东师范大学数学系编,数学分析[M],北京高等教育出版社,2001. [2] 复旦大学数学系编,数学分析[M],北京高等教育出版社,1985. [3] 钱吉林等主编,数学分析习题解精粹[M],上海崇文书局,2003. [4] 吉米多维奇数学习题集[M],北京人民教育出版社,1978.[5] 裴礼文,数学分析中典型问题与方法[M],北京高等教育出版社,1993.[6] Tom M. Apostol,Mathematical Analyses [M], Beijing China Machine Press, 2004.Uniform Convergence Criteria and Extention of the Parameter ImproperIntegralAuthor:Jiang Bixi Supervisor: Zhang HaiAbstract In this paper,we mainly show the concepts and properties of the parameter improperintegral,which contains the improper integral with parameters and the flaw integral with parameters .On the basis of improper integral with parameters,we develop the corresponding uniform convergence of the flaw integral with parameters.Finally,some typical examples are given to illuminate the applications of the theorems.Keywords improper integral with parameters flaw integral with parameters uniform convergence。

【一致收敛与收敛】

【一致收敛与收敛】

在数学中,一致收敛性(或称均匀收敛)是函数序列的一种收敛定义,它较逐点收敛更强,并能保持一些重要的分析性质(如连续性)。

定义:设为一集合,为一度量空间。

若对一函数序列,存在满足,对所有,存在,使得
,则称一致收敛到。

注意到,一致收敛和逐点收敛定义的区别在于,在一致收敛中仅与相关,而在逐点收敛中还与相关。

所以一致收敛必定逐点收敛,而反之则不然。

例子:
考虑区间上的函数序列,它逐点收敛到函数,
然而这并非一致收敛。

直观地想像:当愈靠近,使接近所需的便愈大。

可以依此想法循定义直接证明,也可以利用下节关于连续的性质证明,因为在此例中皆连续,而不连续。

性质:假设一致收敛到,此时有下述性质:
(1)连续性:若是集合的闭包中的一个元素,且每个都在上连续,则也在a上连续。

若对集合I的每个紧子集,每个都在上连续,则在上连续。

(2)与积分的交换:令为中的开集,或。

若每个都是黎曼
可积,则也是黎曼可积,而且。

注:在勒贝格积分的框架下能得到更广的结果。

(3)与微分的交换:令为中的开集,或。

若每个皆可微,且一致收敛到函数,则亦可微,且。

含参量反常积分的一致收敛发判别法及推广汇总

含参量反常积分的一致收敛发判别法及推广汇总

含参量反常积分的一致收敛判别法及推广作者:蒋碧希 指导老师:张海摘要 本文主要介绍了含参量反常积分(含参量无穷限反常积分、含参量瑕积分)的基本概念、性质.然后参照无穷限反常积分的方法建立了相应的含参量瑕积分的一致收敛性.最后结合例题说明其在解题中的应用.关键词 含参量无穷限反常积分 含参量瑕积分 一致收敛1 引言对于含参量无穷限反常积分的基本概念、性质、一致收敛性判别法大部分教材都有详细论述.而忽视了含参量瑕积分的一致收敛性的判定,其实两者之间是同中有异的.本文主要参照无穷限反常积分的方法建立相应的含参量瑕积分的一致收敛判别法,并探究其在解题中的应用.2 含参量无穷限反常积分的一致收敛判别法 2.1 含参量无穷限反常积分的定义设函数(,)f x y 定义在无界区域{(,)|,}R x y a x b c y =≤≤≤≤+∞上,若对每一个固定的[,]x a b ∈,反常积分(,)cf x y dy +∞⎰(1)都收敛,则它的值是x 在[,]a b 上取值的函数,当这个函数为()I x 时,则有()(,),[,],cI x f x y dy x a b +∞=∈⎰(2)称(1)式为定义在[,]a b 上的含参量x 的无穷限反常积分,或简称含参量反常积分.2.2 含参量反常积分的一致收敛概念若含参量反常积分(1)与()I x 对任给的正数ε,总存在某一实数N c >,使得当M N >时,对一切[,]x a b ∈,都有(,)()Mcf x y dy I x ε-<⎰,即(,)Mf x y dy ε+∞<⎰,则称含参量反常积分(1)在],[b a 一致收敛于()I x ,或简单地说含参量积分(1)在[,]a b 上一致收敛.2.3含参量无穷限反常积分一致收敛的柯西准则含参量反常积分)1(在],[b a 上一致收敛的充要条件是:对任給的正数ε,总存在某一实数c M >,使得当M A A >21,时,对一切],[b a x ∈,都有21(,)A A f x y dy ε<⎰, )3(证明 (必要性) 由于含参量反常积分)1(在],[b a 上一致收敛,则 对0>∀ε,0>∃M ,M A A >∀21,时,使得],[b a x ∈∀时,有1(,)2A f x y dy ε+∞<⎰,且2(,)2A f x y dy ε+∞<⎰由2112(,)(,)(,)A A A A f x y dy f x y dy f x y dy+∞+∞=-⎰⎰⎰12(,)(,)A A f x y dy f x y dy +∞+∞≤+⎰⎰εεε=+<22可知:0,0>∃>∀M ε,当M A A >21,时, 有21(,)A A f x y dy ε<⎰.(充分性) 因为0ε∀>,总存在某一实数c M >,使得M A A >21,时,对一切],[b a x ∈,都有21(,)A A f x y dy ε<⎰,当+∞→2A 时,有1(,)A f x y dy ε+∞<⎰成立.故⎰+∞1),(A dy y x f在),[],[1+∞⨯A b a 上是一致收敛的. 又因为⎰⎰⎰+∞+∞+=11),(),(),(A cA cdy y x f dy y x f dy y x f ,其中⎰1),(A cdy y x f 是含参量正常积分,故一致收敛.所以⎰+∞cdy y x f ),(在),[],[+∞⨯c b a 上是一致收敛的.2.4 含参量无穷限反常积分一致收敛性与函数项级数一致收敛的联系定理2.4.1 含参量反常积分)1(在],[b a 上一致收敛的充要条件是:对任一趋于∞+的递增数列}{n A (其中c A =1),函数项级数)(),(111x u dy y x f n A A n n n n∑⎰∑∞=∞=+= )4(在],[b a 上一致收敛.证明 (必要性)由)1(在],[b a 上一致收敛,故对任给0>ε,必存在c M >,使当M A A >>'"时,对一切],[b a x ∈,总有"'(,)A A f x y dy ε<⎰. )5(又由)(∞→+∞→n A n ,所以对正数M ,存在正整数N ,只要当N n m >>时,就有M A A n m >>.由)5(对一切],[b a x ∈,就有11()()(,)(,)m n m nA A n m A A u x u x f x y dy f x y dy ++++=++⎰⎰1(,)m nA A f x y dy ε+=<⎰.这就证明了级数)4(在],[b a 上一致收敛.(充分性) 用反证法.假若)1(在],[b a 上不一致收敛,则存在某个正数0ε,使得对于任何实数c M >,存在相应的M A A >>'"和],['b a x ∈,使得"''0(,)A Af x y dy ε≥⎰,现取},1m ax {1c M =,则存在112M A A >>及],[1b a x ∈,使得2110(,)A A f x y dy ε≥⎰一般的,取)2}(,m ax {12≥=-n A n M n n ,则有n n n M A A >>-122及],[b a x n ∈,使得2210(,)nn A n A f x y dy ε-≥⎰)6(由上述所得到的数列}{n A 是递增数列,且+∞=∞→n n A lim .现在考察级数∑⎰∑∞=∞=+=111),()(n A A n n n ndy y x f x u由)6(式知存在正数0ε,对任何正整数N ,只要N n >,就有某个],[b a x n ∈,使得21220()(,)n nA n n n A u x f x y dy ε+=≥⎰这与级数)4(在],[b a 上一致收敛的假设矛盾.故含参量反常积分)1(在],[b a 上一致收敛2.5 含参量无穷限反常积分的一致收敛性判别法定理 2.5.1 (维尔斯特拉斯M 判别法)设有函数,使得(,)(),,f x y g y a x b c y ≤≤≤≤<+∞若⎰+∞cdy y g )(收敛,则⎰+∞cdy y x f ),(在],[b a 上一致收敛.定理 2.5.2 (狄利克雷判别法)设)1( 对一切实数c N >,含参量正常积分⎰Ncdy y x f ),(对参量x 在],[b a 上一致有界,即存在正数M ,对一切c N >及一切],[b a x ∈,都有(,);Ncf x y dy M ≤⎰)2( 对每一个],[b a x ∈,函数),(y x g 关于y 是单调递减且当+∞→y 时,对参量),(,y x g x 一致的收敛于0,则含参量反常积分⎰+∞cdy y x g y x f ),(),(在],[b a 上一致收敛.定理 2.5.3 (阿贝尔判别法) 设)1(⎰+∞cdy y x f ),(在],[b a 上一致收敛;)2( 对每一个],[b a x ∈,函数),(y x g 为y 的单调函数,且对参量),(,y x g x 在],[b a 上一致有界,则含参量反常积分⎰+∞cdy y x g y x f ),(),(在],[b a 上一致收敛.2.6 含参量无穷限反常积分的性质定理2.6.1 (连续性) 设(,)f x y 在[,][,)a b c ⨯+∞上连续,若反常积分()(,)cI x f x y dy +∞=⎰)7(在[,]a b 上一致收敛,则()I x 在[,]a b 上连续.证明 由定理2.4.1,对任意递增且趋于∞+的数列}{n A )(1c A =,函数项级数∑⎰∑+∞=+∞=+==111)(),()(n A A n n n nx u dy y x f x I )8(在],[b a 上一致收敛.又由于),(y x f 在),[],[+∞⨯c b a 上连续,故每个)(x u n 都在],[b a 上连续.根据函数项级数的连续性定理,函数)(x I 在],[b a 上连续.定理 2.6.2 (可微性) 设 ),(y x f 与),(y x f x 在区域),[],[+∞⨯c b a 上连续,若⎰+∞=cdy y x f x I ),()(在],[b a 上收敛,dy y x f cx ),(⎰+∞在],[b a 上一致收敛,则)(x I 在],[b a 上可微,且dy y x f x I cx ),()('⎰+∞=)9(证明 对任一递增且趋于∞+的数列)}({1c A A n =,令⎰+=1),()(n nA A n dy y x f x u则()dy y x f x u n nA A x n ),(1'⎰+=由()dy y x f cx ⎰+∞,在],[b a 上一致收敛及定理1,可得函数项级数dy y x f x u n A A x n n n n),()(11'1∑⎰∑+∞=+∞=+=在],[b a 上一致收敛,因此根据函数项级数的逐项求导定理,即得()()()()dy y x f dy y x f x u x I cx n A A x n n n n,,11''1⎰∑⎰∑∞+∞=∞====+定理2.6.3 (可积性) 设()y x f ,在),[],[+∞⨯c b a 上连续,若()()dy y x f x I c⎰+∞=,在],[b a 上一致收敛,则()x I 在],[b a 上可积,且()()⎰⎰⎰⎰+∞+∞=b accbadx y x f dy dy y x f dx ,,证明 由定理2.6.1知道()x I 在],[b a 上连续,从而()x I 在],[b a 上可积.又由定理 2.6.1的证明中可以看到,函数项级数()8在],[b a 上一致收敛,且各项()x u n 在],[b a 上连续,因此根据函数项级数逐项求积定理,有⎰∑⎰∑⎰⎰++∞=+∞===1),()()(11n nA A n ban ban bady y x f dx dx x u dx x I()∑⎰⎰+∞=+=11,n A A ban ndx y x f dy (10)这里最后一步是根据关于积分顺序的可交换性定理.(10)式又可写作()()⎰⎰⎰+∞=bacbadx y x f dy dx x I ,定理2.6.4设()y x f ,在),[),[+∞⨯+∞c a 上连续,若 (1)()⎰+∞adx y x f ,关于y 在任何闭区间],[d c 上一致收敛,()⎰+∞cdy y x f ,关于x 在任何闭区间],[b a 上一致收敛; (2)积分(),acdx f x y dy +∞+∞⎰⎰与(),cady f x y dx +∞+∞⎰⎰中有一个收敛, 则()()⎰⎰⎰⎰+∞+∞+∞+∞=accadx y x f dy dy y x f dx ,,3 含参量瑕积分一致收敛判别法 3.1 含参量瑕积分的定义设()y x f ,在区域),[],[d c b a ⨯上有定义,若对x 的某些值,d y =为函数()y x f ,的瑕点(以下的含参量瑕积分未加说明都同此)则称()⎰dcdy y x f , (11)为含参量x 的瑕积分.3.2 含参量瑕积分一致收敛定义对任给的正数ε,总存在某正数c d -<δ,使得当δη<<0时,对一切],[b a x ∈,都有(),dd f x y dy ηε-<⎰则称含参量瑕积分(11)在],[b a 上一致收敛.3.3 含参量瑕积分一致收敛性的判别法定理3.3.1(柯西收敛准则) 含参量瑕积分()⎰dcdy y x f ,在[]b a ,上一致收敛的充要条件是:对任给正数ε,存在不依赖于x 的0>δ,使得当δηη<<<'0时,对一切[]b a x ,∈,都有()',d d f x y dy ηηε--<⎰(12)证明 (必要性)由(11)在[]b a ,上一致收敛,故对任给的)(0c d -<>δε,存在0>δ,使得δηη<<<'0时,有 (),2dd f x y dy ηε-<⎰与'(,)2dd f x y dy ηε-<⎰同时成立,则有()()'',(,),d ddd d d f x y dy f x y dy f x y dy ηηηη----=-⎰⎰⎰'(,)(,)ddd d f x y dy f x y dy ηηε--≤+<⎰⎰(充分性)由所给条件知:对任给正数ε,存在不依赖于x 的)(0c d -<>δδ,使得当δηη<<<'0时,对一切],[b a x ∈,都有()',d d f x y dy ηηε--<⎰成立.令0'→η,则有(,)dd f x y dy ηε-<⎰成立.由定义知:含参量瑕积分)11(在],[b a 上一致收敛.定理3.3.2 (魏尔斯特拉斯M 判别法)设有函数)(y g ,使得(),(),,f x y g y a x b c y d ≤≤≤≤≤ (13) 若⎰dcdy y g )(收敛,则含参量瑕积分⎰dcdy y x f ),(在],[b a 上一致收敛.证明 因为⎰dcdy y g )(收敛,所以由瑕积分的柯西收敛原理知:对于任给的0>ε,存在)(0c d -<>δδ,对于任意的',ηη,且δηη<<<'0,有 ⎰--<')(ηηεd d dy y g又由)13(可得⎰⎰⎰------<≤≤''')(|),(||),(|ηηηηηηεd d d d d d dy y g dy y x f dy y x f故由定理3.3.1知:含参量瑕积分⎰dcdy y x f ),(在],[b a 上一致收敛.定理3.3.3 (海涅归结原则) 含参量瑕积分⎰dcdy y x f ),(在],[b a 上一致收敛的充要条件是:对任意递增数列)(),}({1+∞→→=n d A c A A n n 时,相应的函数项级数)(),(111x u dy y x f n n n A A n n∑∑⎰∞=∞==+ )14(在],[b a 上一致收敛.证明 (必要性)因为)11(在],[b a 上一致收敛,由定理5知:对任给的0>ε,必存在)(0c d -<>δδ,当δηη<<<'0时,对一切],[b a x ∈,总有εηη<⎰'--d d dy y x f ),( )15(成立.令n n A d -=η,由)(∞→→n d A n 且n A 递增,则)(0∞→→n n η且递减.由数列极限定义,对上述0>δ,存在正整数N ,只要N n m >>时,就有δηη<<<n m 0,于是)()()(1x u x u x u m n n ++++ ⎰⎰++++=11),(),(n n m mA A A A dy y x f dy y x f⎰+=1),(m nA A dy y x fεηη<=⎰+--1),(m nd d dy y x f根据函数项级数柯西一致收敛准则,函数项级数)14(在],[b a 上一致收敛.(充分性) 用反证法,假设)11(在],[b a 上非一致收敛,则存在某一正数00>ε,使得)(0c d -<>∀δδ,存在相应的δηη<<'<0和],[b a x ∈',有0),(εηη≥'⎰'--d d dy y x f现取},1m in{1c d -=δ,则存在1120δηη<<<及],[1b a x ∈,使得121),(εηη≥⎰--d d dy y x f一般的取)2}(,1min{1≤-=-n nn n n ηηδ,则有n n n δηη<<<+10及],[b a x n ∈,使得01),(εηη≥⎰+--n nd d dy y x f )16(令n n d A η-=,则}{n A 是递增数列,且有d A n n =∞→lim .考察级数∑∑⎰∞=∞=+=111),()(n n A A n n ndy y x f x u )17(由)16(式知存在正数00>ε,对任意正整数N ,只要N n >就有某个],[b a x n ∈,使01),()(ε≥=⎰+n nA A n n dy y x f x u这与函数项级数)14(在],[b a 上一致收敛的条件矛盾,故)1(在],[b a 上一致收敛.定理3.3.4(狄利克雷判别法)若含参量瑕积分⎰dcdy y x g y x f ),(),(满足:)1(对一切d d c <'<,含参量正常积分⎰'d cdy y x f ),(对参量x 在],[b a 上一有界,即存在正数M ,对任何d d c <'<及一切],[b a x ∈,有M y x f d c≤⎰'),()2(对每一个],[b a x ∈,函数),(y x g 关于y 单调且当d y →时,对参量),(,y x g x 一致收敛于0.则含参量瑕积分⎰dcdy y x g y x f ),(),(在],[b a 上一致收敛.定理3.3.5 (阿贝尔判别法) 若含参量瑕积分⎰dcdy y x g y x f ),(),(满足:)1(含参量瑕积分⎰dcdy y x f ),(在],[b a 上一致收敛;)2(对每一个],[b a x ∈,函数),(y x g 为y 的单调函数,且对参量),(,y x g x 在],[b a 上一致有界,则含参量瑕积分⎰dcdy y x g y x f ),(),(在],[b a 上一致收敛.定理3.3.6 设),(y x f 在),[],[d c b a ⨯上连续,对任何⎰∈dcdy y x f b a x ),(],,[收敛,且⎰dcdy y b f ),(发散,则⎰dcdy y x f ),(在),[b a 上不一致收敛.证明 用反证法.若⎰dcdy y x f ),(在),[b a 上一致收敛,由柯西收敛准则:对任给的0>ε,存在)(0c d -<>δδ,当δηη<<'<0时,对一切),[b a x ∈有εηη<⎰'--d d y x f ),(根据假设),(y x f 在],[],[ηη'--⨯d d b a 上连续,对含参量正常积分应用连续性定理,令-→b x ,有εηη≤⎰'--d d dy y b f ),(这与假设含参量瑕积分⎰dcdy y b f ),(发散矛盾.故⎰dcdy y x f ),(在),[b a 上不一致收敛.4 典型例题例4.1 证明含参量反常积分dx x xy⎰+∞+021cos )18( 在),(+∞-∞上一致收敛.证明 由于对任何实数y 有22111cos x x xy +≤+,及反常积分⎰+∞+021xdx收敛,故由魏尔斯特拉斯M 判别法,含参量反常积分)18(在),(+∞-∞上一致收敛.例4.2 证明含参量反常积分⎰+∞-0sin dx xxe xy)19( 在],0[d 上一致收敛.证明 由于反常积分dx xx⎰+∞sin 收敛(当然,对于参量y ,它在],0[d 上一致收敛),函数),(y x g xye-=对每个],0[d y ∈单调,且对任何0,0≥≤≤x d y 都有1),(≤=-xy e y x g故由阿贝尔判别法即得含参量反常积分)19(在],0[d 上一致收敛.例4.3 证明含参量瑕积分dy xy xy ⎰-1sin ))1,0((∈x在)1,0(上一致收敛.证明 因为dy xy xy dy y x xydy xy xy xx⎰⎰⎰-+-=-101sin sin sin所以对于含参量瑕积分dy yx xyx⎰-0sin , 由于⎰⎰---≤-x x xx yx xy dy y x xy ηηsin sinηη21=-≤⎰-dy yx xx 故对于任给的0>ε,取421εδ=,当10δη<<时,即有εη<-⎰-xx yx xysin 因此,对于10<<x 它是一致收敛的. 对于积分dy xy xyx⎰-1sin 由于ηηη2sin =-≤-⎰⎰++x xx xxy dydy x y xy故对于任给的0>ε,取421εδ=,当10δη<<时,即有εη<-⎰+x xdy xy xysin 因此,对于10<<x 它是一致收敛的.于是积分dy xy xy ⎰-1sin对于)1,0(∈∀x 一致收敛.例4.4 证明含参量瑕积分⎰1)ln(dy xy 在],1[b b)0(>b 上一致收敛. 证明 由条件可知y x xy ln ln )ln(+=y x ln ln +≤y b ln ln -≤ 而⎰1)ln(dy xy收敛.所以由魏尔斯特拉斯M 判别法知:⎰1)ln(dy xy在)1](,1[>b b b上一致收敛.例4.5 证明含参量瑕积分dy ye xy11⎰- 在],0[d 一致收敛.证明 由于dy y⎰11 收敛(当然,对于参量x ,它在],0[d 上一致收敛). 函数xyey x g -=),(,对每个],0[d x ∈单调,且对任何10,0≤≤≤≤y d x ,都有1),(≤=-xy e y x g ,故由阿贝尔判别法知dy ye xy11⎰- 在],0[d 上一致收敛.结束语本文首先介绍了含参量无穷限积分的定义,性质及其一致收敛性判别定理.然后参照含参量无穷限反常积分的方法建立了含参量瑕积分的一致收敛性判别定理.最后结合典型例题说明这些定理在实际解题中的运用.参考文献[1] 华东师范大学数学系编,数学分析[M],北京高等教育出版社,2001. [2] 复旦大学数学系编,数学分析[M],北京高等教育出版社,1985. [3] 钱吉林等主编,数学分析习题解精粹[M],上海崇文书局,2003. [4] 吉米多维奇数学习题集[M],北京人民教育出版社,1978.[5] 裴礼文,数学分析中典型问题与方法[M],北京高等教育出版社,1993.[6] Tom M. Apostol,Mathematical Analyses [M], Beijing China Machine Press, 2004.Uniform Convergence Criteria and Extention of the Parameter ImproperIntegralAuthor:Jiang Bixi Supervisor: Zhang HaiAbstract In this paper,we mainly show the concepts and properties of the parameter improperintegral,which contains the improper integral with parameters and the flaw integral with parameters .On the basis of improper integral with parameters,we develop the corresponding uniform convergence of the flaw integral with parameters.Finally,some typical examples are given to illuminate the applications of the theorems.Keywords improper integral with parameters flaw integral with parameters uniform convergence。

含参量无穷限反常积分的一致收敛性

含参量无穷限反常积分的一致收敛性

e- t d t =
2
2 ,
.
对任意 > 0, 取 M > 0, 使得 e
- t2
dt <
2 b
此时令 t =
xy , 则有
4
+ M 2
高等数学研究
+
2011 年 1 月
x e- xy dy = 时,
2
x
xM
e- t d t.
2
但是对于不同的 x
[ 0, 3] , 反常积分 ( 2) 的 [ 0, 3] 时的
希望有助于读者加深理解与认识 . 关键词 中图分类号
一致收敛性是数学分析课程中一个非常重要的 概念 , 很多重要的结论要有一致收敛的性质作为前 提条件. 例如, 函数项级数的逐项求导、 逐项求积、 交 换求导与积分运算顺序等等都要求函数项级数为一 致收敛. 含参量的反常积分对于参数的连续性、 可微 性都需要有含参量反常积分的 一致收敛性作 为前 提. 一般而言, 在非数学专业工科的各项课程 , 特别 是 高等数学 则回避对一致收敛性的具体讨论 [ 1] . 本文针对两个具体的含参量反常积分的一致收 敛性问题 , 分析一致收敛性的一些直观特征, 以帮 助读者加深对这一抽象概念的理解与认识. 定义 1[ 2] 设函数 f ( x , y ) 定义在无界区域 E = {(x , y) | a x b, c y < + }. 若对每个固定的 x [ a, b] , 无穷限反常积分
含参量无穷限反常积分的一致收敛性
黄 慧1 , 陈 辉2
( 1 . 江西工业贸易职业技术学院 , 江西 南昌 330038 ; 摘 要 2 . 安徽商贸职业技术学院 , 安徽 芜湖 241002 )

反常积分的一致收敛(1)

反常积分的一致收敛(1)

含参量反常积分的一致收敛性王金花1 ,赵志平2(1.沧州师范学院 数学系,河北 沧州061001;2.泊头职业学院,河北 泊头062150)摘 要:通过对积分变量作变量变换将两种含参量反常积分的一致收敛性建立联系,给出了借助含参量无穷限反常积分的一致收敛性判断含参量无界函数反常积分一致收敛性的一种方法,从而在一定程度上将二者统一,加深读者的理解与认识.关键词:含参量无穷限反常积分;含参量无界函数反常积分;一致收敛现行的数学分析教材[1-4]及文献[5-6]仅给出了含参量无穷限反常积分一致收敛的判定定理,而对含参量无界函数的反常积分及其一致收敛性介绍较少[7]. 然而我们可以将含参量无穷限反常积分转化为含参量无穷限反常积分,这是判断某些反常积分的一致收敛性时行之有效且简洁的方法.1 定义1.1 设函数),(y x f 定义在无界区域}∞+<≤,≤≤),{(=y c b x a y x R 上,若对每一个固定的],[b a x ∈,反常积分)1(),(⎰+∞cdy y x f 都收敛,则它的值是x 在],[b a 上取值的函数,当记这个函数为)(x I 时,则有)2(],[,),()(b a x dy y x f x I c∈=⎰+∞,称)1(式为定义在],[b a 上的含参量x 的无穷限反常积分,或简称含参量反常积分.1.2 若含参量反常积分)1(与函数)(x I 对任给的正数ε,总存在某一实数c N >,使得当N M >时,对一切],[b a x ∈,都有ε<-⎰M cx I dy y x f )(),(,即ε<⎰+∞Mdy y x f ),(,则称含参量反常积分)1(在],[b a 上一致收敛于)(x I ,或简单地说含参量积分)1(在],[b a 上一致收敛.1.3 设),(y x f 在区域],[],[d c b a R ⨯=上有定义.若对x 的某些值,d y =为函数),(y x f 的瑕点,则称)3(),(⎰dcdy y x f 为含参量的无界函数反常积分.1.4 对任给正数ε,总存在某正数c d -<δ,使得当δη<<0时,对一切],[b a x ∈,都有εη<⎰-dd dy y x f ),(,则称含参量反常积分)3(在],[b a 上一致收敛.2 定理设),(y x f 在区域],[d c I R ⨯=上有定义(其中I 为区间),某些点I x d x ∈),,(为),(y x f 的瑕点,含参量无界函数反常积分⎰dcdy y x f ),(在I 上一致收敛的充要条件是:通过变换u y d 1=-后所得含参量无穷限反常积分du u u d x f cd 211)1,(⎰+∞--在I 上一致收敛.证 如果⎰dcdy y x f ),(在I 上一致收敛,则对于0>∀ε,),0(c d -∈∃δ,使得当δη<<0时,对于任何I x ∈,有εη<⎰-dd dy y x f ),(,取δ1=N ,则cd N ->1,当NM >时,δ<<M10,从而对于任何Ix ∈,有ε<=-⎰⎰-∞+d M d Mdy y x f du uu d x f 12),(1)1,(,即du u u d x f cd 211)1,(⎰+∞--在I 上一致收敛.反之,当du uu d x f cd 211)1,(⎰+∞--在I 上一致收敛时,完全类似地又可证明⎰d c dy y x f ),(在I上一致收敛.3 应用举例讨论含参量反常积分dx x x1sin 11⎰α的一致收敛区间. 分析 根据教材[1]第十一章第三节习题3(7)知道:反常积分dx x x 1sin 11⎰α在1<α时绝对收敛,在2<≤1α时条件收敛,在2≥α时发散.这是一个含参量的无界函数反常积分,它可以用相应的一致收敛判别法去讨论,也可以通过转化为含参量的无穷限反常积分去讨论.解 作变换x t 1=,得tdt tdx x x sin 11sin 11210⎰⎰+∞-=αα. (1)任取0>δ,先证它在]2,(δ--∞上一致收敛. 这是因为: (ⅰ)对任何]2,(δα--∞∈及1>N ,有2≤sin ∫1Ntdt ; (ⅱ)对于每一个]2,(δα--∞∈,α-21t关于t 在),1[+∞上单调递减. 又因为δαt t 1≤1-2,所以当+∞→t 时,α-21t在]2,(δ--∞上一致收敛于0. 根据狄利克雷判别法,证得tdt t sin 112⎰+∞-α在]2,(δ--∞上一致收敛. 因此dx x x1sin 11⎰α在]2,(δ--∞上一致收敛.(2)任取2<b ,再证它在)2,[b 上不一致收敛. 为此令10=ε. 对于1>∀M ,取自然数k使得Mk >π2,并取ππ)12(,221+==k A k A . 因为2))12((2lim 22=+-→-ααπk ,所以存在)2,(0b ∈α使得1))12((22>+-απk ,从而得到0-2-22-2-21))12((2sin 1≥sin sin 021210210∫∫∫επαααα=>+==k tdt A dt t t dt t t A A A A A A . 故tdt t sin 112⎰+∞-α在)2,[b 上不一致收敛,亦即dx x x1sin 110⎰α在)2,[b 上不一致收敛. 除此之外根据定义我们还有:含参量反常积分⎰+∞cdy y x f ),(在区间I 上一致收敛的充要条件是0),(suplim =⎰+∞∈+∞→MIx M dy y x f .参考文献:[1]华东师范大学数学系. 数学分析(第四版)[M]. 北京:高等教育出版社,2010. [2]陈传璋,金福临. 数学分析[M]. 北京:高等教育出版社,1983.[3]陈纪修,於崇华,金路. 数学分析[M]. 北京:高等教育出版社,2000. [4]刘玉琏,傅沛仁. 数学分析(第三版)[M]. 北京:高等教育出版社,1992. [5]黄慧,陈辉. 含参量反常积分的一致收敛性[J]. 高等数学研究,2011,14(1):3-4.[6]苏婷,周静. 含参量反常积分一致收敛法探讨[J]. 周口师范学院学报,2011,28(2):42-45. [7]宋泽成. 含参量瑕积分的一致收敛性[J]. 唐山师范学院学报,2008,30(5):12-15.The Uniform Convergence of Parameter Improper IntegralsWANG Chong(Department of Mathematics, Cangzhou Normal University, Cangzhou, Hebei 061001,China) Abstract: The paper combined the parameter improper integrals by the method of the variable transformation. Gave a method of judging the uniform convergence of parameter improper integral of unbounded function and unified the two in a certain extent in order to give the reader a deeper understanding of the knowledge point.Key words: parameter improper integral which has infinite limit; parameter improper integral of unbounded function; uniform convergence 作者简介: 王冲(1981-),女,保定清苑人,沧州师范学院数学系助教,理学硕士,主要研究方向:代数拓扑与微分拓扑。

「高等数学」反常积分的计算,并判断它的收敛性

「高等数学」反常积分的计算,并判断它的收敛性

「高等数学」反常积分的计算,并判断它的收敛性反常积分:反常积分又叫做广义积分,指含有无穷上限/下限,或者被积函数含有瑕点的积分,也就是分为无穷区间上的反常积分和无界函数的反常积分。

无穷区间上的反常积分:设f(x)在区间[a,∞)上连续,称为f(x)在[a,+∞)上的反常积分.如果右边极限存在,称此反常积分收敛;如果右边极限不存在,就称此反常积分发散。

无界函数的反常积分:设f(x)在区间[a,b)上连续,且f(x)在趋向于点b上的极限为∞,成为f(x)在区间[a,b)上的反常积分(也称瑕积分),使f(x)极限为∞的点b称为f(x)的奇点(也称瑕点),这个点上是无法积分的。

图一如图所示,给出一个反常积分,并告诉我们该反常积分收敛,则我们可以得到哪些信息。

通过反常积分的概念,可以知道这道题指的是在无穷区间的反常积分(只要一看积分区间有∞存在,即可知道该反常积分为在无穷区间上的反常积分),如果右边的极限存在,就称该反常积分收敛,这个概念说明该反常积分存在极限,这道题反常积分的瑕点为1。

那我们便可以将该反常积分分为两个区间来计算,一个区间是位于(0,1),另一个区间则是位于(1,+∞),我们可以先对第一个区间进行判断,因为要让该反常积分收敛,必须让两个区间的积分都收敛才可以。

(一个是无界函数的反常积分,另一个则是无穷区间的反常积分。

)如果说这两个反常积分有一个不存在,就说明该反常积分不存在(发散),反之,要说明该反常积分存在(收敛),说明两个反常积分都要存在才可以。

由第一个区间判断可以得到,a<1;由第二区间判断可以得到当a+b>1时,收敛。

最后得到的结果便是,a<1,a+b>1,该反常积分收敛。

最后给出解答过程:图二虽然有这道实例的支撑,但我对反常积分还是不够理解,直到我看到了瑕积分的判敛性定理:定理一,f(x)在区间(a,b]上连续并且f(x)>=0,设该区间趋向于a 的极限存在,那就可以得到当x的幂次方小于1,该反常积分收敛,根据这个定理我们就能够得到a<1这个结果的存在。

重要反常积分公式收敛发散

重要反常积分公式收敛发散

重要反常积分公式收敛发散重要反常积分公式是微积分中的重要概念之一,它在求解一些特殊函数的积分时起到了重要的作用。

在本文中,我们将探讨重要反常积分公式的收敛和发散性质,以帮助读者更好地理解和应用这一概念。

我们来了解一下什么是反常积分。

在微积分中,反常积分是指在积分区间上存在无界或间断点的积分。

正常的积分是在有限的闭区间上进行的,而反常积分则允许在无穷远处或某些特殊点处存在不连续性或无穷大的情况。

反常积分可以分为两类:第一类是无界区间上的反常积分,第二类是函数在某些点上不连续的反常积分。

接下来,我们将详细讨论这两类反常积分的收敛和发散性质。

我们来看无界区间上的反常积分。

对于一个无界区间[a, +∞),如果函数f(x)在[a, +∞)上连续且积分存在有限值,那么我们称该反常积分收敛。

反之,如果积分不存在有限值或者无界区间上的函数f(x)不连续,那么我们称该反常积分发散。

例如,对于函数f(x) = 1/x,在区间[1, +∞)上进行积分,我们可以发现积分值是无穷大。

因此,这个反常积分是发散的。

而对于函数f(x) = 1/x^2,在同样的区间上进行积分,我们可以得到一个有限的积分值为1。

因此,这个反常积分是收敛的。

接下来,我们来看函数在某些点上不连续的反常积分。

对于一个区间[a, b]上的函数f(x),如果在某些点c处不连续,那么我们需要将区间[a, b]分成多个子区间,每个子区间上的反常积分分别进行求解,然后将这些子区间上的积分值加起来。

对于这种情况,我们需要分别讨论每个子区间上的反常积分是否收敛。

如果所有子区间的反常积分都收敛,那么整个反常积分也收敛;如果存在某个子区间的反常积分发散,那么整个反常积分也发散。

例如,对于函数f(x) = 1/√x,在区间[0, 1]上进行积分,我们可以发现在x = 0处,函数不连续。

因此,我们需要将区间[0, 1]分成两个子区间:[0, ε]和[ε, 1],其中ε是一个无穷小的正数。

反常积分收敛性

反常积分收敛性

反常积分收敛性
反常积分收敛性是数学上一个重要而有趣的问题,是微积分分析理论中的重要研究内容之一。

这类调查研究涉及到可积函数的收敛性和振荡性。

其核心思想是:当被定积函数在某一端点收敛,而在另一端点振荡时,此函数的总积分会收敛;否则会出现反常积分收敛性现象,即积分值不收敛。

反常积分收敛性有着深远的理论价值和实际意义。

它可以用来分析函数模型的稳定性,检测系统稳定性以及识别函数的收敛性和振荡性等,影响着数学研究的方向和选择。

基于支距定理的近似变换是反常积分收敛性现象的理论方法之一,它设定一个闭区间概数来合理解释反常积分收敛性的出现,而积分的计算则可以通过方程求解和球势变换等方式得到。

使用基于支距定理的近似变换,可以更好地证明反常积分收敛性的存在,并为相关研究提供新思路和新手段。

另一方面,可以利用替换变量积分和积分变换等方法来研究反常积分收敛性。

这种方法依靠界定积分,计算积分的收敛范围,对可积函数的积分有一定的概率;如果函数存在振荡部分,则可能会出现反常积分收敛性的现象。

此外,另一类数学方法,如特征多项式的分析 (积分技术的必要性 x 测量) 以及其他一些分析,也能够定义反常积分收敛性并且获得更精确的结果。

总之,反常积分收敛性是数学研究中一个重要且有趣的概念,也是广义积分调查研究的重要内容之一。

它涉及到可积函数的收敛性和振荡性,影响数学的方向和选择,它的出现为我们提供了新的理论依据和实践应用,具有重要的理论意义和实际价值。

数学分析19.2含参量积分之含参量反常积分(含习题及参考答案)

数学分析19.2含参量积分之含参量反常积分(含习题及参考答案)

第十九章 含参量积分 2含参量反常积分一、一致收敛性及其判别法概念1:设函数f(x,y)定义在无界区域R={(x,y)|x ∈I, c ≤y<+∞}上,I 为一区间,若对每一个固定的x ∈I, 反常积分⎰+∞c dy y x f ),(都收敛,则它的值是x 在I 上取值的函数, 记φ(x)=⎰+∞c dy y x f ),(, x ∈I, 称⎰+∞c dy y x f ),(为定义在I 上的含参量x 的无穷限反常积分,简称含参量反常积分.定义1: 若含参量反常积分⎰+∞c dy y x f ),(与函数φ(x)对任给ε>0, 总存在某实数N>c, 使当M>N 时, 对一切x ∈I, 都有)(),(x dy y x f Mc Φ-⎰<ε, 即⎰+∞M dy y x f ),(<ε, 则称含参量反常积分在I 上一致收敛于φ(x), 简单地说含参量积分⎰+∞c dy y x f ),(在I 上一致收敛.定理19.7:(一致收敛的柯西准则)含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任给正数ε, 总存在某一实数M>c, 使得当A 1, A 2>M 时,对一切x ∈I, 都有⎰21),(A A dy y x f <ε.定理19.8:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:+∞→A lim F(A)=0, 其中F(A)=⎰+∞∈AIx dy y x f ),(sup .例1:证明含参量反常积分⎰+∞0sin dy yxy在[δ,+∞)上一致收敛(δ>0),但在(0,+∞)上不一致收敛.解:令u=xy, 则⎰+∞A dy y xysin =⎰+∞Ax du uu sin (A>0). ∵⎰+∞Axdu uusin 收敛,∴∀ε>0, ∃M>0, 使当A ’>M 时,就有⎰∞+'A du u u sin <ε. 取A δ>M, 则当A>δM时,对一切x ≥δ>0,有xA>M, ∴⎰∞+Axdu uusin <ε, 即⎰∞+Ady y xysin <ε, ∴+∞→A lim F(A)=⎰∞++∞∈+∞→A x A dy y xy sin sup lim ),(δ=0, 由定理19.8知 ⎰+∞sin dy yxy在[δ,+∞)上一致收敛. 又 F(A)=⎰∞++∞∈Ax dy yxysin sup ),0(=⎰∞++∞∈Ax x du u u sin sup ),0(≥⎰∞+0sin du u u =2π. ∴⎰+∞0sin dy yxy在(0,+∞)上不一致收敛.注:若对任意[a,b]⊂I, 含参量反常积分在[a,b]上一致收敛,则称在I 上内闭一致收敛.定理19.9:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任一趋于+∞的递增数列{A n }(其中A 1=c), 函数项级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.证:[必要性]若⎰+∞c dy y x f ),(在I 上一致收敛, 则∀ε>0, ∃M>c, 使 当A ”>A ’>M 时,对一切x ∈I, 总有⎰'''A A dy y x f ),(<ε.又A n →+∞(n →∞), ∴对正数M, ∃正整数N, 只要当m>n>N 时,就有 A m >A n >M. ∴对一切x ∈I, 就有|u n (x)+…+u m (x)|=⎰⎰+++⋯+11),(),(n nm mA A A Ady y x f dy y x f =⎰+1),(m nA Ady y x f <ε.∴∑∞=1)(n n x u 在I 上一致收敛.[充分性]若∑∞=1)(n n x u 在I 上一致收敛, 而⎰+∞c dy y x f ),(在I 上不一致收敛,则存在某正数ε0, 使对任何实数M>c, 存在相应的A ”>A ’>M 和x ’∈I, 使得⎰''''A A dy y x f ),(≥ε0; 现取M 1=max{1,c}, 则存在A 2>A 1>M 1, 及x 1∈I, 使得⎰21),(1A A dy y x f ≥ε0; 一般地, 取M n =max{n,A 2(n-1)} (n ≥2), 则有A 2n >A 2n-1>M n , 及x n ∈I, 使得⎰-nn A An dy y x f 212),(≥ε0.由上述所得数列{A n }为递增数列, 且∞→n lim A n =+∞, 而对级数∑∞=1)(n nx u=∑⎰∞=+11),(n A A n ndy y x f , 存在正数ε0, 对任何正整数N,只要n>N, 就有某个x n ∈I, 使得|u 2n (x n )|=⎰-nn A An dy y x f 212),(≥ε0,与级数∑∞=1)(n n x u 在I 上一致收敛矛盾. ∴⎰+∞c dy y x f ),(在I 上一致收敛.魏尔斯特拉斯M 判别法:设函数g(y), 使得 |f(x,y)|≤g(y), (x,y)∈I ×[c,+∞). 若⎰+∞c dy y g )(收敛, 则⎰+∞cdy y x f ),(在I 上一致收敛.狄利克雷判别法:设(1)对一切实数N>c, 含参量正常积分⎰Nc dy y x f ),(对参量x 在I 上一致有界, 即存在正数M, 对一切N>c 及一切x ∈I, 都有⎰Nc dy y x f ),(≤M. (2)对每一个x ∈I, 函数g(x,y)关于y 是单调递减且当y →+∞时, 对参量x, g(x,y)一致收敛于0.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.阿贝尔判别法:设(1)⎰+∞c dy y x f ),(在I 上一致收敛.(2)对每一个x ∈I, 函数g(x,y)为y 的单调函数, 且对参量x, g(x,y)在I 上一致有界.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.例2:证明含参量反常积分⎰+∞+021cos dx xxy在(-∞,+∞)上一致收敛. 证:∵对任何实数y, 有21cos x xy +≤211x +, 又反常积分⎰+∞+021xdx收敛. 由魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞+021cos dx x xy在(-∞,+∞)上一致收敛.例3:证明含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛. 证:∵反常积分⎰+∞sin dx xx收敛, ∴对于参量y, 在[0,+∞)上一致收敛. 又函数g(x,y)=e -xy 对每个y ∈[0,+∞)单调, 且对任何0≤y<+∞, x ≥0, 都有|g(x,y)|=|e -xy |≤1. 由阿贝尔判别法知, 含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛.例4:证明含参量积分⎰+∞+121sin dy y xyy 在(0,+∞)上内闭一致收敛.证:若[a,b]⊂(0,+∞), 则对任意x ∈[a,b],⎰Naxydy sin =Nax xycos -≤a 2. 又'⎪⎪⎭⎫ ⎝⎛+21y y =()22211yy +-≤0, 即21y y +关于y 单调减, 且当y →+∞时, 21yy+→0(对x 一致), 由狄利克雷判别法知, 含参量积分⎰+∞+121sin dy y xyy 在[a,b]上一致收敛. 由[a,b]的任意性知, ⎰+∞+121sin dy yxyy 在(0,+∞)上内闭一致收敛.二、含参量反常积分的性质定理19.10:(连续性)设f(x,y)在I ×[c,+∞)上连续,若含参量反常积分φ(x)=⎰+∞c dy y x f ),(在I 上一致收敛,则φ(x)在I 上连续. 证:由定理19.9,对任一递增且趋于+∞的数列{A n } (A 1=c), 函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.又由f(x,y)在I ×[c,+∞)上连续,∴每个u n (x)都在I 上连续. 由函数项级数的连续性定理知,函数φ(x)在I 上连续.推论:设f(x,y)在I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上连续.注:在一致收敛的条件下,极限运算与积分运算可以交换,即:⎰+∞→cx x dy y x f ),(lim0=⎰+∞c dy y x f ),(0=⎰+∞→cx x dy y x f ),(lim 0.定理19.11:(可微性)设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.证:对任一递增且趋于+∞的数列{A n } (A 1=c),令u n (x)=⎰+1),(n nA A dy y x f .由定理19.3推得u n ’(x)=⎰+1),(n nA A x dy y x f .由⎰+∞c x dy y x f ),(在I 上一致收敛及定理19.9,可得函数项级数∑∞='1)(n n x u =∑⎰∞=+11),(n A A x n ndy y x f 在I 上一致收敛.根据函数项级数的逐项求导定理,即得:φ’(x) =∑∞='1)(n nx u =∑⎰∞=+11),(n A Ax n ndy y x f =⎰+∞cx dy y x f ),(.或写作⎰+∞c dy y x f dxd ),(=⎰+∞c x dy y x f ),(.推论:设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.定理19.12:(可积性)设f(x,y)在[a,b]×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在[a,b]上一致收敛,则φ(x)在[a,b]上可积,且⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.证:由定理19.10知φ(x)在[a,b]上连续,从而在[a,b]上可积. 又函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛,且各项u n (x)在[a,b]上连续,根据函数项级数逐项求积定理,有⎰Φbadx x )(=∑⎰∞=1)(n ban dx x u =∑⎰⎰∞=+11),(n baA A n ndy y x f dx =∑⎰⎰∞=+1),(1n baA A dx y x f dy n n,即⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.定理19.13:设f(x,y)在[a,+∞)×[c,+∞)上连续,若(1)⎰+∞a dx y x f ),(关于y 在[c,+∞)上内闭一致收敛,⎰+∞c dy y x f ),(关于x 在[a,+∞)上内闭一致收敛;(2)积分⎰⎰+∞+∞c a dy y x f dx |),(|与⎰⎰+∞+∞a c dx y x f dy |),(|中有一个收敛. 则⎰⎰+∞+∞cady y x f dx ),(=⎰⎰+∞+∞acdx y x f dy ),(.证:不妨设⎰⎰+∞+∞c a dy y x f dx |),(|收敛,则⎰⎰+∞+∞c a dy y x f dx ),(收敛. 当d>c 时,记Jd =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞+∞c a dy y x f dx ),(| =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞dc a dy y x f dx ),(-⎰⎰+∞+∞d a dy y x f dx ),(|. 由条件(1)及定理19.12可推得:J d =|⎰⎰+∞+∞d a dy y x f dx ),(|≤|⎰⎰+∞d Aa dy y x f dx ),(|+⎰⎰+∞+∞d A dy y x f dx |),(|. 由条件(2),∀ε>0, ∃G>a ,使当A>G 时,有⎰⎰+∞+∞d A dy y x f dx |),(|<2ε. 选定A 后,由⎰+∞c dy y x f ),(的一致收敛性知,∃M>a ,使得当d>M 时, 有|⎰+∞d dy y x f ),(|<)(2a A -ε. ∴J d <2ε+2ε=ε,即有+∞→d lim J d =0,∴⎰⎰+∞+∞c a dy y x f dx ),(=⎰⎰+∞+∞a c dx y x f dy ),(.例5:计算:J=⎰+∞--0sin sin dx xaxbx e px (p>0,b>a). 解:∵xax bx sin sin -=⎰ba xydy cos ,∴J=⎰⎰+∞-0cos b a pxxydy dx e =⎰⎰+∞-0cos ba px xydy e dx .由|e -px cosxy|≤e -px 及反常积分⎰+∞-0dx e px 收敛, 根据魏尔斯特拉斯M 判别法知,含参量反常积分⎰+∞-0cos xydx e px 在[a,b]上一致收敛.又e -px cosxy[0,+∞)×[a,b]上连续,根据定理19.12交换积分顺序得: J=⎰⎰+∞-0cos xydx e dy px ba =⎰+bady y p p22=arctan p b - arctan p a .例6:计算:⎰+∞sin dx xax. 解:利用例5的结果,令b=0,则有F(p)=⎰+∞-0sin dx xaxe px=arctan p a (p>0).由阿贝尔判别法可知含参量反常积分F(p)在p ≥0上一致收敛, 又由定理19.10知,F(p)在p ≥0上连续,且F(0)=⎰+∞sin dx xax . 又F(0)=)(lim 0p F p +→=+→0lim p arctan p a =2πagn a. ∴⎰+∞0sin dx xax =2πagn a.例7:计算:φ(r)=⎰+∞-0.cos 2rxdx e x .解:∵|2x e -cosrx|≤2x e -对任一实数r 成立且反常积分⎰+∞-02dx e x 收敛, ∴含参量反常积分φ(r)=⎰+∞-0cos 2rxdx e x 在(-∞,+∞)上收敛. 考察含参量反常积分⎰+∞-'0)cos (2dx rx er x =⎰+∞--0sin 2rxdx xe x ,∵|-x 2x e -sinrx|≤x 2x e -对一切x ≥0, r ∈(-∞,+∞)成立且⎰+∞-02dx e x 收敛, 根据魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞-'0)cos (2dx rx er x 在(-∞,+∞)上一致收敛.由定理19.11得φ’(r)=⎰+∞--0sin 2rxdx xex =⎰-+∞→-Ax A rxdxxesin lim2=⎪⎭⎫⎝⎛-⎰--+∞→A x Ax A rxdx e r rx e 00cos 2sin 21lim 22=⎰--A x rxdx e r 0cos 22=2r -φ(r). ∴φ(r)=c 42r e -. 又φ(0)=⎰+∞-02dx e x =2π=c. ∴φ(r)=422πr e-.概念2:设f(x,y)在区域R=[a,b]×[c,d)上有定义,若对x 的某些值,y=d 为函数f(x,y)的瑕点,则称⎰dc dy y x f ),(为含参量x 的无界函数反常积分,或简称为含参量反常积分. 若对每一个x ∈[a,b],⎰dc dy y x f ),(都收敛,则其积分值是x 在[a,b]上取值的函数.定义2:对任给正数ε, 总存在某正数δ<d-c, 使得当0<η<δ时, 对一切x ∈[a,b], 都有⎰-dd dy y x f η),(<ε, 则称含参量反常积分⎰dc dy y x f ),(在[a,b]上一致收敛.习题1、证明下列各题 (1)⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛;(2)⎰+∞-02dy eyx 在[a,b] (a>0)上一致收敛;(3)⎰+∞-0sin dt tate t在0<a<+∞上一致收敛; (4)⎰+∞-0dy xe xy (i)在[a,b] (a>0)上一致收敛,(ii)在[0,b]上不一致收敛; (5)⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛;(6)⎰1px dx(i)在(-∞,b] (b<1)上一致收敛,(ii)在(-∞,1]内不一致收敛; (7)⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.证:(1)∵22222)(y x x y +-≤22222)(y x x y ++≤21x ,且⎰+∞12x dx 收敛,∴⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛. (2)∵当0<a ≤x ≤b 时,yx e2-=yx e21≤ya e21,且⎰+∞12ya edy 收敛,∴⎰+∞-02dy e y x 在[a,b] (a>0)上一致收敛.(3)对任何N>0,∵⎰-Nt atdt e 0sin ≤⎰-Nt dt e 0≤1,即⎰-Nt atdt e 0sin 一致有界. 又t1关于在(0,+∞)单调,且t1→0 (t →∞),由狄利克雷判别法知,⎰+∞-0sin dt tate t在0<a<+∞上一致收敛. (4)(i)∵当0<a ≤x ≤b 时,|xe -xy|≤be -ay,且⎰+∞0ay -be 收敛, ∴⎰+∞-0dy xe xy 在[a,b] (a>0)上一致收敛. (ii)方法一:取ε0=21e<0, 则对任何M>0, 令A 1=M, A 2=2M, x 0=M 1, 有 ⎰-2100A A y x dy e x =MM yx e 20-=21e e ->21e=ε0,∴⎰+∞-0dy xe xy 在 [0,b]上不一致收敛. 方法二:∵⎰+∞-0dy xe xy =⎩⎨⎧≤<=bx x 0,10,0,且xe -xy 在[0,b]×(0,+∞)内连续,由连续性定理知⎰+∞-0dy xe xy 在 [0,b]上不一致收敛.(5)∵在[b1,b]×(0,1] (b>1)内, |ln(xy)|=|lnx+lny|≤|lnx|+|lny|≤lnb-lny, 且⎰-10)ln (ln dy y b 收敛, ∴⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛.(6)(i)∵当p ≤b<1, x ∈(0,1]时,p x 1≤b x 1,又⎰10b xdx 收敛,∴⎰1px dx在(-∞,b] (b<1)上一致收敛.(ii)当p=1时,⎰1xdx发散,∴对任何A<1,在[A,1]内不一致收敛,即 ⎰1p xdx在(-∞,1]内不一致收敛. (7)记⎰---1011)1(dx x xq p =⎰---21011)1(dx x xq p +⎰---12111)1(dx x x q p =I 1+I 2.对I 1在0≤x ≤21, 0<p 0≤p<+∞, 0<q 0≤q<+∞上, ∵|x p-1(1-x)q-1|≤1100)1(---q p x x且⎰---210110)1(dx x x q p 收敛,∴I 1在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛; 同理可证I 2在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛. ∴⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.2、从等式⎰-ba xydy e =x e e by ay ---出发,计算积分⎰∞+---0dx xe e byay (b>a>0). 解:∵⎰-ba xy dy e=x e e by ay ---,∴⎰∞+---0dx xe e byay=⎰⎰-+∞b a xy dy e dx 0. 又 e -xy 在[0,+∞)×[a,b]内连续,由M 判别法知, ⎰+∞-0dx e xy 在[a,b]内一致收敛.∴⎰∞+---0dx x e e by ay =⎰⎰+∞-0dx e dy xyb a =⎰b a dy y 1=ln ab .3、证明函数F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续. (提示:利用⎰+∞-02dx e x =2π) 证:令x-y=u, 则F(y)=⎰+∞-yu du e2=⎰-02yu du e+⎰+∞-02du eu =⎰-02yu du e +2π. ∵关于y 的积分下限函数⎰-02y u du e 在(-∞,+∞)上连续, ∴F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续.4、求下列积分: (1)⎰∞+---022222dx x e e xb xa(提示:利用⎰+∞-02dx ex =2π); (2)⎰+∞-0sin dt t xt e t;(3)⎰+∞--02cos 1dx x xye x . 解:(1)∵22222x e e xbxa---=⎰-ba x y dy ye 222,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222bax y dy ye dx ,由M 判别法知⎰+∞-0222dx ye x y 在[a,b]内一致收敛,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222dx yedy x y ba=⎰⎰+∞-0)(222xy d edy x y ba =⎰bady π=(b-a)π.(2)利用例5结果:⎰+∞--0sin sin dt tatbt e pt=arctan p b - arctan p a . (p>0,b>a).当p=1, a=0, b=x 时,有⎰+∞-0sin dt txte t=arctanx. (3)∵2cos 1x xy e x --=⎰-y x dt x xt e 0sin ,∴⎰⎰-+∞yx dt x xt e dx 00sin . 由x xt e x x sin lim 0-→=t 知, x=0不是xxte x sin -的瑕点,又 含参量非正常积分⎰+∞-0sin dx xxte x 在t ∈[0,M]上一致收敛, ∴由(2)有2cos 1x xy e x--=⎰⎰+∞-00sin dx xxt e dt x y =⎰y tdt 0arctan =yarctany-21ln(1+y 2).5、回答下列问题: (1)对极限⎰+∞-→+0022limdy xyexy x 能否运用极限与积分运算顺序的交换求解?(2)对⎰⎰+∞--132)22(dx e xy y dy xy 能否运用积分顺序交换来求解?(3)对F(x)=⎰+∞-032dy e x y x 能否运用积分与求导运算顺序交换来求解? 解:(1)∵F(x)=⎰+∞-022dy xye xy =⎩⎨⎧=>0,00,1x x , ∴F(x)lim 0+→x =1,但⎰+∞-→+022lim dy xye xy x =0,即交换运算后不相等,∴对极限⎰+∞-→+0022limdy xyexy x 不能运用极限与积分运算顺序的交换求解.注:⎰+∞-022dy xye xy =⎰+∞-0du xe xu 在[0,b]上不一致收敛,并不符合连续性定理的条件.(2)∵⎰⎰+∞--10032)22(dx exy y dy xy =⎰∞+-122dy xyexy =⎰10dy =0;⎰⎰-+∞-1032)22(dy exy y dx xy =⎰+∞-0122dx ey xy =⎰-1dx e x =1;∴对⎰⎰+∞--10032)22(dx e xy y dy xy 不能运用积分顺序交换来求解.注:⎰+∞--032)22(dx e xy y xy =0且⎰+∞--M xy dx e xy y 2)22(3=-2My 2My e -. 对ε0=1,不论M 多大,总有y 0=M1∈[0,1],使得⎰+∞--M xy dx e xy y 2)22(3=2M e 1->1,∴⎰+∞--032)22(dx e xy y xy 在[0,1]不一致收敛,不符合可积性定理的条件. (3)∵F(x)=⎰+∞-032dy e x y x =x, x ∈(-∞,+∞),∴F ’(x)≡1. 但y x e x x23-∂∂=(3x 2-2x 4y)y x e 2-, 而当x=0时,⎰+∞--0422)23(dy e y x x y x =0. ∴对F(x)=⎰+∞-032dy e x y x 不能运用积分与求导运算顺序交换来求解. 注:∵⎰+∞--0422)23(dy ey x x yx =⎩⎨⎧=≠0,00,1x x ,∴⎰+∞--0422)23(dy ey x x yx 在[0,1]上不一致收敛,不符合可微性定理的条件.6、应用:⎰+∞-02dx e ax =212π-a (a>0),证明: (1)⎰+∞-022dt e t at=234π-a ;(2)⎰+∞-022dt e t at n =⎪⎭⎫⎝⎛+--212!)!12(2πn n a n .证:(1)方法一:∵⎰+∞-022dt e t at 在任何[c,d]上(c>0)一致收敛, ∴⎰+∞-02dt e da d at =⎰+∞-02dt e dad at =-⎰+∞-022dte t at . 又⎰+∞-02dt e da d at =⎪⎪⎭⎫ ⎝⎛-212πa da d =-234π-a . ∴⎰+∞-02dx e ax =234π-a . 方法二:⎰+∞-022dt et at =-⎰+∞-0221at tdea =-⎪⎭⎫ ⎝⎛-⎰+∞-∞+-02221dt ete a at at=⎰+∞-0221dt e aat =234π-a .(2)方法一:∵⎰+∞-022dt e t at n 在任何[c,d]上(c>0)一致收敛,∴⎰∞+-02dt eda d at nn=⎰∞+-02dt e da d at nn =(-1)n ⎰+∞-022dt e t at n . 又⎰∞+-02dt e dad atnn =⎪⎪⎭⎫ ⎝⎛-212πa dad nn=(-1)n ⎪⎭⎫⎝⎛+--212!)!12(2πn n a n . ∴⎰+∞-022dt e t atn =⎪⎭⎫⎝⎛+--212!)!12(2πn nan . 方法二:记I n =⎰+∞-022dt e t at n , n=0,1,2,…,(1)中已证I 1=⎪⎭⎫⎝⎛+--⨯2112)112(2πa=a 2)112(-⨯I 0. 可设I k =a k 2)12(-⨯I k-1,则 I k+1=⎰+∞-+0)1(22dt e t at k =-⎰+∞-+012221at k de t a =-⎪⎭⎫ ⎝⎛-⎰+∞+-∞+-+0120122221k at at k dt e e t a=⎰+∞-+022212dt e t a k at k =ak 21)1(2-+I k=2)2()12](1)1(2[a k k --+I k-1=…= 1)2(!]!1)1(2[+-+k a k I 0=211)2(!]!1)1(2[2π-+-+a a k k .当n=k+1时,有I n =⎰+∞-022dt e t at n =21)2(!)!12(2π--a a k n =⎪⎭⎫⎝⎛+--212!)!12(2πn na n . 7、应用⎰+∞+022a x dx =a2π,求()⎰+∞++0122n a x dx.解:记A=a 2, ∵()⎰+∞++012n Axdx在任何[c,d]上(c>0)一致收敛,∴⎰∞++02A x dx dA d nn =⎰∞+⎪⎭⎫ ⎝⎛+021dx A x dA d n n=(-1)nn!()⎰+∞++012n A x dx . 又⎰∞++02A x dx dAd nn =⎪⎭⎫ ⎝⎛A dA d n n 2π=(-1)n 212!)!12(2π---n n A n . ∴()⎰+∞++012n Axdx=212!!)!12(2π---n n A n n =12!)!2(!)!12(2π---n a n n .8、设f(x,y)为[a,b]×[c,+∞)上连续非负函数,I(x)=dy y x f ⎰+∞0),(在[a,b]上连续,证明:I(x)在[a,b]上一致收敛.证:任取一个趋于的∞递增数列{A n } (其中A 1=c),考察级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u .∵f(x,y)在[a,b]×[c,+∞)上非负连续, ∴u n (x)在[a,b]上非负连续. 由狄尼定理知,∑∞=1)(n n x u 在[a,b]上一致收敛,从而∑⎰∞=+11),(n A A n ndy y x f 在[a,b]上一致收敛. 又I(x)=dy y x f ⎰+∞),(在[a,b]上连续.∴I(x)=dy y x f ⎰+∞0),(=∑⎰∞=∞→+11),(lim n A An n ndy y x f [a,b]上一致收敛.9、设在[a,+∞)×[c,d]内成立不等式|f(x,y)|≤F(x,y). 若dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,证明:dx y x f ⎰+∞),(在y ∈[c,d] 上一致收敛且绝对收敛.证:∵dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,∴∀ε>0, ∃M>0,对任何A2>A1>M和一切y∈[c,d],都有⎰21) , (A AdxyxF<ε.∵|f(x,y)|≤F(x,y),∴⎰21) , (A Adxyxf≤⎰21),(AAdxyxf≤⎰21),(AAdxyxF<ε,∴dxyxf⎰+∞0),(在y∈[c,d] 上一致收敛且绝对收敛.。

数学分析19.2含参量积分之含参量反常积分(含习题及参考答案)

数学分析19.2含参量积分之含参量反常积分(含习题及参考答案)

第十九章 含参量积分 2含参量反常积分一、一致收敛性及其判别法概念1:设函数f(x,y)定义在无界区域R={(x,y)|x ∈I, c ≤y<+∞}上,I 为一区间,若对每一个固定的x ∈I, 反常积分⎰+∞c dy y x f ),(都收敛,则它的值是x 在I 上取值的函数, 记φ(x)=⎰+∞c dy y x f ),(, x ∈I, 称⎰+∞c dy y x f ),(为定义在I 上的含参量x 的无穷限反常积分,简称含参量反常积分.定义1: 若含参量反常积分⎰+∞c dy y x f ),(与函数φ(x)对任给ε>0, 总存在某实数N>c, 使当M>N 时, 对一切x ∈I, 都有)(),(x dy y x f Mc Φ-⎰<ε, 即⎰+∞M dy y x f ),(<ε, 则称含参量反常积分在I 上一致收敛于φ(x), 简单地说含参量积分⎰+∞c dy y x f ),(在I 上一致收敛.定理19.7:(一致收敛的柯西准则)含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任给正数ε, 总存在某一实数M>c, 使得当A 1, A 2>M 时,对一切x ∈I, 都有⎰21),(A A dy y x f <ε.定理19.8:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:+∞→A lim F(A)=0, 其中F(A)=⎰+∞∈AIx dy y x f ),(sup .例1:证明含参量反常积分⎰+∞0sin dy yxy在[δ,+∞)上一致收敛(δ>0),但在(0,+∞)上不一致收敛.解:令u=xy, 则⎰+∞A dy y xysin =⎰+∞Ax du uu sin (A>0). ∵⎰+∞Axdu uusin 收敛,∴∀ε>0, ∃M>0, 使当A ’>M 时,就有⎰∞+'A du u u sin <ε. 取A δ>M, 则当A>δM时,对一切x ≥δ>0,有xA>M, ∴⎰∞+Axdu uusin <ε, 即⎰∞+Ady y xysin <ε, ∴+∞→A lim F(A)=⎰∞++∞∈+∞→A x A dy y xy sin sup lim ),(δ=0, 由定理19.8知 ⎰+∞sin dy yxy在[δ,+∞)上一致收敛. 又 F(A)=⎰∞++∞∈Ax dy yxysin sup ),0(=⎰∞++∞∈Ax x du u u sin sup ),0(≥⎰∞+0sin du u u =2π. ∴⎰+∞0sin dy yxy在(0,+∞)上不一致收敛.注:若对任意[a,b]⊂I, 含参量反常积分在[a,b]上一致收敛,则称在I 上内闭一致收敛.定理19.9:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任一趋于+∞的递增数列{A n }(其中A 1=c), 函数项级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.证:[必要性]若⎰+∞c dy y x f ),(在I 上一致收敛, 则∀ε>0, ∃M>c, 使 当A ”>A ’>M 时,对一切x ∈I, 总有⎰'''A A dy y x f ),(<ε.又A n →+∞(n →∞), ∴对正数M, ∃正整数N, 只要当m>n>N 时,就有 A m >A n >M. ∴对一切x ∈I, 就有|u n (x)+…+u m (x)|=⎰⎰+++⋯+11),(),(n nm mA A A Ady y x f dy y x f =⎰+1),(m nA Ady y x f <ε.∴∑∞=1)(n n x u 在I 上一致收敛.[充分性]若∑∞=1)(n n x u 在I 上一致收敛, 而⎰+∞c dy y x f ),(在I 上不一致收敛,则存在某正数ε0, 使对任何实数M>c, 存在相应的A ”>A ’>M 和x ’∈I, 使得⎰''''A A dy y x f ),(≥ε0; 现取M 1=max{1,c}, 则存在A 2>A 1>M 1, 及x 1∈I, 使得⎰21),(1A A dy y x f ≥ε0; 一般地, 取M n =max{n,A 2(n-1)} (n ≥2), 则有A 2n >A 2n-1>M n , 及x n ∈I, 使得⎰-nn A An dy y x f 212),(≥ε0.由上述所得数列{A n }为递增数列, 且∞→n lim A n =+∞, 而对级数∑∞=1)(n nx u=∑⎰∞=+11),(n A A n ndy y x f , 存在正数ε0, 对任何正整数N,只要n>N, 就有某个x n ∈I, 使得|u 2n (x n )|=⎰-nn A An dy y x f 212),(≥ε0,与级数∑∞=1)(n n x u 在I 上一致收敛矛盾. ∴⎰+∞c dy y x f ),(在I 上一致收敛.魏尔斯特拉斯M 判别法:设函数g(y), 使得 |f(x,y)|≤g(y), (x,y)∈I ×[c,+∞). 若⎰+∞c dy y g )(收敛, 则⎰+∞cdy y x f ),(在I 上一致收敛.狄利克雷判别法:设(1)对一切实数N>c, 含参量正常积分⎰Nc dy y x f ),(对参量x 在I 上一致有界, 即存在正数M, 对一切N>c 及一切x ∈I, 都有⎰Nc dy y x f ),(≤M. (2)对每一个x ∈I, 函数g(x,y)关于y 是单调递减且当y →+∞时, 对参量x, g(x,y)一致收敛于0.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.阿贝尔判别法:设(1)⎰+∞c dy y x f ),(在I 上一致收敛.(2)对每一个x ∈I, 函数g(x,y)为y 的单调函数, 且对参量x, g(x,y)在I 上一致有界.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.例2:证明含参量反常积分⎰+∞+021cos dx xxy在(-∞,+∞)上一致收敛. 证:∵对任何实数y, 有21cos x xy +≤211x +, 又反常积分⎰+∞+021xdx收敛. 由魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞+021cos dx x xy在(-∞,+∞)上一致收敛.例3:证明含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛. 证:∵反常积分⎰+∞sin dx xx收敛, ∴对于参量y, 在[0,+∞)上一致收敛. 又函数g(x,y)=e -xy 对每个y ∈[0,+∞)单调, 且对任何0≤y<+∞, x ≥0, 都有|g(x,y)|=|e -xy |≤1. 由阿贝尔判别法知, 含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛.例4:证明含参量积分⎰+∞+121sin dy y xyy 在(0,+∞)上内闭一致收敛.证:若[a,b]⊂(0,+∞), 则对任意x ∈[a,b],⎰Naxydy sin =Nax xycos -≤a 2. 又'⎪⎪⎭⎫ ⎝⎛+21y y =()22211yy +-≤0, 即21y y +关于y 单调减, 且当y →+∞时, 21yy+→0(对x 一致), 由狄利克雷判别法知, 含参量积分⎰+∞+121sin dy y xyy 在[a,b]上一致收敛. 由[a,b]的任意性知, ⎰+∞+121sin dy yxyy 在(0,+∞)上内闭一致收敛.二、含参量反常积分的性质定理19.10:(连续性)设f(x,y)在I ×[c,+∞)上连续,若含参量反常积分φ(x)=⎰+∞c dy y x f ),(在I 上一致收敛,则φ(x)在I 上连续. 证:由定理19.9,对任一递增且趋于+∞的数列{A n } (A 1=c), 函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.又由f(x,y)在I ×[c,+∞)上连续,∴每个u n (x)都在I 上连续. 由函数项级数的连续性定理知,函数φ(x)在I 上连续.推论:设f(x,y)在I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上连续.注:在一致收敛的条件下,极限运算与积分运算可以交换,即:⎰+∞→cx x dy y x f ),(lim0=⎰+∞c dy y x f ),(0=⎰+∞→cx x dy y x f ),(lim 0.定理19.11:(可微性)设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.证:对任一递增且趋于+∞的数列{A n } (A 1=c),令u n (x)=⎰+1),(n nA A dy y x f .由定理19.3推得u n ’(x)=⎰+1),(n nA A x dy y x f .由⎰+∞c x dy y x f ),(在I 上一致收敛及定理19.9,可得函数项级数∑∞='1)(n n x u =∑⎰∞=+11),(n A A x n ndy y x f 在I 上一致收敛.根据函数项级数的逐项求导定理,即得:φ’(x) =∑∞='1)(n nx u =∑⎰∞=+11),(n A Ax n ndy y x f =⎰+∞cx dy y x f ),(.或写作⎰+∞c dy y x f dxd ),(=⎰+∞c x dy y x f ),(.推论:设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.定理19.12:(可积性)设f(x,y)在[a,b]×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在[a,b]上一致收敛,则φ(x)在[a,b]上可积,且⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.证:由定理19.10知φ(x)在[a,b]上连续,从而在[a,b]上可积. 又函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛,且各项u n (x)在[a,b]上连续,根据函数项级数逐项求积定理,有⎰Φbadx x )(=∑⎰∞=1)(n ban dx x u =∑⎰⎰∞=+11),(n baA A n ndy y x f dx =∑⎰⎰∞=+1),(1n baA A dx y x f dy n n,即⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.定理19.13:设f(x,y)在[a,+∞)×[c,+∞)上连续,若(1)⎰+∞a dx y x f ),(关于y 在[c,+∞)上内闭一致收敛,⎰+∞c dy y x f ),(关于x 在[a,+∞)上内闭一致收敛;(2)积分⎰⎰+∞+∞c a dy y x f dx |),(|与⎰⎰+∞+∞a c dx y x f dy |),(|中有一个收敛. 则⎰⎰+∞+∞cady y x f dx ),(=⎰⎰+∞+∞acdx y x f dy ),(.证:不妨设⎰⎰+∞+∞c a dy y x f dx |),(|收敛,则⎰⎰+∞+∞c a dy y x f dx ),(收敛. 当d>c 时,记Jd =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞+∞c a dy y x f dx ),(| =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞dc a dy y x f dx ),(-⎰⎰+∞+∞d a dy y x f dx ),(|. 由条件(1)及定理19.12可推得:J d =|⎰⎰+∞+∞d a dy y x f dx ),(|≤|⎰⎰+∞d Aa dy y x f dx ),(|+⎰⎰+∞+∞d A dy y x f dx |),(|. 由条件(2),∀ε>0, ∃G>a ,使当A>G 时,有⎰⎰+∞+∞d A dy y x f dx |),(|<2ε. 选定A 后,由⎰+∞c dy y x f ),(的一致收敛性知,∃M>a ,使得当d>M 时, 有|⎰+∞d dy y x f ),(|<)(2a A -ε. ∴J d <2ε+2ε=ε,即有+∞→d lim J d =0,∴⎰⎰+∞+∞c a dy y x f dx ),(=⎰⎰+∞+∞a c dx y x f dy ),(.例5:计算:J=⎰+∞--0sin sin dx xaxbx e px (p>0,b>a). 解:∵xax bx sin sin -=⎰ba xydy cos ,∴J=⎰⎰+∞-0cos b a pxxydy dx e =⎰⎰+∞-0cos ba px xydy e dx .由|e -px cosxy|≤e -px 及反常积分⎰+∞-0dx e px 收敛, 根据魏尔斯特拉斯M 判别法知,含参量反常积分⎰+∞-0cos xydx e px 在[a,b]上一致收敛.又e -px cosxy[0,+∞)×[a,b]上连续,根据定理19.12交换积分顺序得: J=⎰⎰+∞-0cos xydx e dy px ba =⎰+bady y p p22=arctan p b - arctan p a .例6:计算:⎰+∞sin dx xax. 解:利用例5的结果,令b=0,则有F(p)=⎰+∞-0sin dx xaxe px=arctan p a (p>0).由阿贝尔判别法可知含参量反常积分F(p)在p ≥0上一致收敛, 又由定理19.10知,F(p)在p ≥0上连续,且F(0)=⎰+∞sin dx xax . 又F(0)=)(lim 0p F p +→=+→0lim p arctan p a =2πagn a. ∴⎰+∞0sin dx xax =2πagn a.例7:计算:φ(r)=⎰+∞-0.cos 2rxdx e x .解:∵|2x e -cosrx|≤2x e -对任一实数r 成立且反常积分⎰+∞-02dx e x 收敛, ∴含参量反常积分φ(r)=⎰+∞-0cos 2rxdx e x 在(-∞,+∞)上收敛. 考察含参量反常积分⎰+∞-'0)cos (2dx rx er x =⎰+∞--0sin 2rxdx xe x ,∵|-x 2x e -sinrx|≤x 2x e -对一切x ≥0, r ∈(-∞,+∞)成立且⎰+∞-02dx e x 收敛, 根据魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞-'0)cos (2dx rx er x 在(-∞,+∞)上一致收敛.由定理19.11得φ’(r)=⎰+∞--0sin 2rxdx xex =⎰-+∞→-Ax A rxdxxesin lim2=⎪⎭⎫⎝⎛-⎰--+∞→A x Ax A rxdx e r rx e 00cos 2sin 21lim 22=⎰--A x rxdx e r 0cos 22=2r -φ(r). ∴φ(r)=c 42r e -. 又φ(0)=⎰+∞-02dx e x =2π=c. ∴φ(r)=422πr e-.概念2:设f(x,y)在区域R=[a,b]×[c,d)上有定义,若对x 的某些值,y=d 为函数f(x,y)的瑕点,则称⎰dc dy y x f ),(为含参量x 的无界函数反常积分,或简称为含参量反常积分. 若对每一个x ∈[a,b],⎰dc dy y x f ),(都收敛,则其积分值是x 在[a,b]上取值的函数.定义2:对任给正数ε, 总存在某正数δ<d-c, 使得当0<η<δ时, 对一切x ∈[a,b], 都有⎰-dd dy y x f η),(<ε, 则称含参量反常积分⎰dc dy y x f ),(在[a,b]上一致收敛.习题1、证明下列各题 (1)⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛;(2)⎰+∞-02dy eyx 在[a,b] (a>0)上一致收敛;(3)⎰+∞-0sin dt tate t在0<a<+∞上一致收敛; (4)⎰+∞-0dy xe xy (i)在[a,b] (a>0)上一致收敛,(ii)在[0,b]上不一致收敛; (5)⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛;(6)⎰1px dx(i)在(-∞,b] (b<1)上一致收敛,(ii)在(-∞,1]内不一致收敛; (7)⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.证:(1)∵22222)(y x x y +-≤22222)(y x x y ++≤21x ,且⎰+∞12x dx 收敛,∴⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛. (2)∵当0<a ≤x ≤b 时,yx e2-=yx e21≤ya e21,且⎰+∞12ya edy 收敛,∴⎰+∞-02dy e y x 在[a,b] (a>0)上一致收敛.(3)对任何N>0,∵⎰-Nt atdt e 0sin ≤⎰-Nt dt e 0≤1,即⎰-Nt atdt e 0sin 一致有界. 又t1关于在(0,+∞)单调,且t1→0 (t →∞),由狄利克雷判别法知,⎰+∞-0sin dt tate t在0<a<+∞上一致收敛. (4)(i)∵当0<a ≤x ≤b 时,|xe -xy|≤be -ay,且⎰+∞0ay -be 收敛, ∴⎰+∞-0dy xe xy 在[a,b] (a>0)上一致收敛. (ii)方法一:取ε0=21e<0, 则对任何M>0, 令A 1=M, A 2=2M, x 0=M 1, 有 ⎰-2100A A y x dy e x =MM yx e 20-=21e e ->21e=ε0,∴⎰+∞-0dy xe xy 在 [0,b]上不一致收敛. 方法二:∵⎰+∞-0dy xe xy =⎩⎨⎧≤<=bx x 0,10,0,且xe -xy 在[0,b]×(0,+∞)内连续,由连续性定理知⎰+∞-0dy xe xy 在 [0,b]上不一致收敛.(5)∵在[b1,b]×(0,1] (b>1)内, |ln(xy)|=|lnx+lny|≤|lnx|+|lny|≤lnb-lny, 且⎰-10)ln (ln dy y b 收敛, ∴⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛.(6)(i)∵当p ≤b<1, x ∈(0,1]时,p x 1≤b x 1,又⎰10b xdx 收敛,∴⎰1px dx在(-∞,b] (b<1)上一致收敛.(ii)当p=1时,⎰1xdx发散,∴对任何A<1,在[A,1]内不一致收敛,即 ⎰1p xdx在(-∞,1]内不一致收敛. (7)记⎰---1011)1(dx x xq p =⎰---21011)1(dx x xq p +⎰---12111)1(dx x x q p =I 1+I 2.对I 1在0≤x ≤21, 0<p 0≤p<+∞, 0<q 0≤q<+∞上, ∵|x p-1(1-x)q-1|≤1100)1(---q p x x且⎰---210110)1(dx x x q p 收敛,∴I 1在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛; 同理可证I 2在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛. ∴⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.2、从等式⎰-ba xydy e =x e e by ay ---出发,计算积分⎰∞+---0dx xe e byay (b>a>0). 解:∵⎰-ba xy dy e=x e e by ay ---,∴⎰∞+---0dx xe e byay=⎰⎰-+∞b a xy dy e dx 0. 又 e -xy 在[0,+∞)×[a,b]内连续,由M 判别法知, ⎰+∞-0dx e xy 在[a,b]内一致收敛.∴⎰∞+---0dx x e e by ay =⎰⎰+∞-0dx e dy xyb a =⎰b a dy y 1=ln ab .3、证明函数F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续. (提示:利用⎰+∞-02dx e x =2π) 证:令x-y=u, 则F(y)=⎰+∞-yu du e2=⎰-02yu du e+⎰+∞-02du eu =⎰-02yu du e +2π. ∵关于y 的积分下限函数⎰-02y u du e 在(-∞,+∞)上连续, ∴F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续.4、求下列积分: (1)⎰∞+---022222dx x e e xb xa(提示:利用⎰+∞-02dx ex =2π); (2)⎰+∞-0sin dt t xt e t;(3)⎰+∞--02cos 1dx x xye x . 解:(1)∵22222x e e xbxa---=⎰-ba x y dy ye 222,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222bax y dy ye dx ,由M 判别法知⎰+∞-0222dx ye x y 在[a,b]内一致收敛,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222dx yedy x y ba=⎰⎰+∞-0)(222xy d edy x y ba =⎰bady π=(b-a)π.(2)利用例5结果:⎰+∞--0sin sin dt tatbt e pt=arctan p b - arctan p a . (p>0,b>a).当p=1, a=0, b=x 时,有⎰+∞-0sin dt txte t=arctanx. (3)∵2cos 1x xy e x --=⎰-y x dt x xt e 0sin ,∴⎰⎰-+∞yx dt x xt e dx 00sin . 由x xt e x x sin lim 0-→=t 知, x=0不是xxte x sin -的瑕点,又 含参量非正常积分⎰+∞-0sin dx xxte x 在t ∈[0,M]上一致收敛, ∴由(2)有2cos 1x xy e x--=⎰⎰+∞-00sin dx xxt e dt x y =⎰y tdt 0arctan =yarctany-21ln(1+y 2).5、回答下列问题: (1)对极限⎰+∞-→+0022limdy xyexy x 能否运用极限与积分运算顺序的交换求解?(2)对⎰⎰+∞--132)22(dx e xy y dy xy 能否运用积分顺序交换来求解?(3)对F(x)=⎰+∞-032dy e x y x 能否运用积分与求导运算顺序交换来求解? 解:(1)∵F(x)=⎰+∞-022dy xye xy =⎩⎨⎧=>0,00,1x x , ∴F(x)lim 0+→x =1,但⎰+∞-→+022lim dy xye xy x =0,即交换运算后不相等,∴对极限⎰+∞-→+0022limdy xyexy x 不能运用极限与积分运算顺序的交换求解.注:⎰+∞-022dy xye xy =⎰+∞-0du xe xu 在[0,b]上不一致收敛,并不符合连续性定理的条件.(2)∵⎰⎰+∞--10032)22(dx exy y dy xy =⎰∞+-122dy xyexy =⎰10dy =0;⎰⎰-+∞-1032)22(dy exy y dx xy =⎰+∞-0122dx ey xy =⎰-1dx e x =1;∴对⎰⎰+∞--10032)22(dx e xy y dy xy 不能运用积分顺序交换来求解.注:⎰+∞--032)22(dx e xy y xy =0且⎰+∞--M xy dx e xy y 2)22(3=-2My 2My e -. 对ε0=1,不论M 多大,总有y 0=M1∈[0,1],使得⎰+∞--M xy dx e xy y 2)22(3=2M e 1->1,∴⎰+∞--032)22(dx e xy y xy 在[0,1]不一致收敛,不符合可积性定理的条件. (3)∵F(x)=⎰+∞-032dy e x y x =x, x ∈(-∞,+∞),∴F ’(x)≡1. 但y x e x x23-∂∂=(3x 2-2x 4y)y x e 2-, 而当x=0时,⎰+∞--0422)23(dy e y x x y x =0. ∴对F(x)=⎰+∞-032dy e x y x 不能运用积分与求导运算顺序交换来求解. 注:∵⎰+∞--0422)23(dy ey x x yx =⎩⎨⎧=≠0,00,1x x ,∴⎰+∞--0422)23(dy ey x x yx 在[0,1]上不一致收敛,不符合可微性定理的条件.6、应用:⎰+∞-02dx e ax =212π-a (a>0),证明: (1)⎰+∞-022dt e t at=234π-a ;(2)⎰+∞-022dt e t at n =⎪⎭⎫⎝⎛+--212!)!12(2πn n a n .证:(1)方法一:∵⎰+∞-022dt e t at 在任何[c,d]上(c>0)一致收敛, ∴⎰+∞-02dt e da d at =⎰+∞-02dt e dad at =-⎰+∞-022dte t at . 又⎰+∞-02dt e da d at =⎪⎪⎭⎫ ⎝⎛-212πa da d =-234π-a . ∴⎰+∞-02dx e ax =234π-a . 方法二:⎰+∞-022dt et at =-⎰+∞-0221at tdea =-⎪⎭⎫ ⎝⎛-⎰+∞-∞+-02221dt ete a at at=⎰+∞-0221dt e aat =234π-a .(2)方法一:∵⎰+∞-022dt e t at n 在任何[c,d]上(c>0)一致收敛,∴⎰∞+-02dt eda d at nn=⎰∞+-02dt e da d at nn =(-1)n ⎰+∞-022dt e t at n . 又⎰∞+-02dt e dad atnn =⎪⎪⎭⎫ ⎝⎛-212πa dad nn=(-1)n ⎪⎭⎫⎝⎛+--212!)!12(2πn n a n . ∴⎰+∞-022dt e t atn =⎪⎭⎫⎝⎛+--212!)!12(2πn nan . 方法二:记I n =⎰+∞-022dt e t at n , n=0,1,2,…,(1)中已证I 1=⎪⎭⎫⎝⎛+--⨯2112)112(2πa=a 2)112(-⨯I 0. 可设I k =a k 2)12(-⨯I k-1,则 I k+1=⎰+∞-+0)1(22dt e t at k =-⎰+∞-+012221at k de t a =-⎪⎭⎫ ⎝⎛-⎰+∞+-∞+-+0120122221k at at k dt e e t a=⎰+∞-+022212dt e t a k at k =ak 21)1(2-+I k=2)2()12](1)1(2[a k k --+I k-1=…= 1)2(!]!1)1(2[+-+k a k I 0=211)2(!]!1)1(2[2π-+-+a a k k .当n=k+1时,有I n =⎰+∞-022dt e t at n =21)2(!)!12(2π--a a k n =⎪⎭⎫⎝⎛+--212!)!12(2πn na n . 7、应用⎰+∞+022a x dx =a2π,求()⎰+∞++0122n a x dx.解:记A=a 2, ∵()⎰+∞++012n Axdx在任何[c,d]上(c>0)一致收敛,∴⎰∞++02A x dx dA d nn =⎰∞+⎪⎭⎫ ⎝⎛+021dx A x dA d n n=(-1)nn!()⎰+∞++012n A x dx . 又⎰∞++02A x dx dAd nn =⎪⎭⎫ ⎝⎛A dA d n n 2π=(-1)n 212!)!12(2π---n n A n . ∴()⎰+∞++012n Axdx=212!!)!12(2π---n n A n n =12!)!2(!)!12(2π---n a n n .8、设f(x,y)为[a,b]×[c,+∞)上连续非负函数,I(x)=dy y x f ⎰+∞0),(在[a,b]上连续,证明:I(x)在[a,b]上一致收敛.证:任取一个趋于的∞递增数列{A n } (其中A 1=c),考察级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u .∵f(x,y)在[a,b]×[c,+∞)上非负连续, ∴u n (x)在[a,b]上非负连续. 由狄尼定理知,∑∞=1)(n n x u 在[a,b]上一致收敛,从而∑⎰∞=+11),(n A A n ndy y x f 在[a,b]上一致收敛. 又I(x)=dy y x f ⎰+∞),(在[a,b]上连续.∴I(x)=dy y x f ⎰+∞0),(=∑⎰∞=∞→+11),(lim n A An n ndy y x f [a,b]上一致收敛.9、设在[a,+∞)×[c,d]内成立不等式|f(x,y)|≤F(x,y). 若dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,证明:dx y x f ⎰+∞),(在y ∈[c,d] 上一致收敛且绝对收敛.证:∵dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,∴∀ε>0, ∃M>0,对任何A2>A1>M和一切y∈[c,d],都有⎰21) , (A AdxyxF<ε.∵|f(x,y)|≤F(x,y),∴⎰21) , (A Adxyxf≤⎰21),(AAdxyxf≤⎰21),(AAdxyxF<ε,∴dxyxf⎰+∞0),(在y∈[c,d] 上一致收敛且绝对收敛.。

【高校与高等教育】反常积分收敛结论

【高校与高等教育】反常积分收敛结论

反常积分收敛结论1️⃣ 反常积分的基本概念与分类反常积分,又称广义积分,是微积分学中的一个重要概念,它突破了传统定积分对积分区间和被积函数连续性的限制。

根据积分区间或被积函数特性的不同,反常积分主要分为两类:无限区间上的反常积分和被积函数存在瑕点的反常积分。

前者涉及积分区间的一个或两个端点趋于无穷大的情况,后者则关注被积函数在积分区间内的某些点上无定义或趋于无穷大的情形。

2️⃣ 反常积分收敛性的判定方法2.1 比较判别法比较判别法是判断反常积分收敛性的常用方法之一。

它通过将待判定的反常积分与一个已知收敛或发散的积分进行比较,从而得出待判定积分的收敛性。

具体而言,若存在一个收敛的正常积分,其被积函数在积分区间内始终大于或等于待判定反常积分的被积函数,则待判定反常积分收敛;反之,若存在一个发散的正常积分,其被积函数在积分区间内始终小于或等于待判定反常积分的被积函数,则待判定反常积分发散。

2.2 极限判别法极限判别法是通过考察被积函数在积分区间端点或瑕点附近的极限行为来判断反常积分的收敛性。

对于无限区间上的反常积分,若被积函数在积分区间的一个端点趋于无穷大时,其极限趋于0且足够快(通常要求快于1x的衰减速度),则积分收敛。

对于被积函数存在瑕点的反常积分,需考察瑕点附近的函数行为,若被积函数在瑕点附近的极限存在且有限,或虽不存在但可通过适当变换转化为可积形式,则积分收敛。

2.3 柯西判别法(积分判别法)柯西判别法是一种更为一般的方法,它通过对被积函数进行适当变换,将反常积分转化为一个更容易判断收敛性的形式。

具体而言,若能找到一个正的单调递减函数g(x),使得待判定反常积分的被积函数可以被g(x)所控制(即小于或等于g(x)乘以某个正常数),且g(x)从某一点开始的积分收敛,则待判定反常积分也收敛。

3️⃣ 反常积分收敛结论的应用与意义反常积分收敛性的研究不仅在数学理论上具有重要意义,还在物理学、工程学等多个领域有着广泛的应用。

含参量反常积分的一致收敛性判别法

含参量反常积分的一致收敛性判别法

3. 含参量的反常积分一致收敛性判别法 Weierstrass 判别法 设函数(,)f x t 定义在{}(,):,D x t a x t T =≤<+∞∈⊂R中,若(a ) 对于每个A a >,(,)f x t 在[,]x a A ∈上为R-可积的;(b ) 存在()x ϕ,使得()ax dx ϕ+∞⎰收敛,且(,)(),[,)f x t x x a ϕ≤∈+∞;则反常积分(,)af x t dx +∞⎰关于t T ∈绝对一致收敛,亦即,反常积分(,)af x t dx +∞⎰关于t T ∈一致收敛.我们称定理中的()x ϕ为(,)f x t 的优函数.Abel 判别法 设函数(,)f x t 、(,)g x t 定义在{}(,):,D x t a x t T =≤<+∞∈⊂R中,若(a ) 若反常积分(,)af x t dx +∞⎰关于t T ∈一致收敛;(b ) (,)g x t 是x 的单调函数,且存在常数0L >(与[,)x a ∈+∞、t T ∈无关),使得(,)g x t L ≤;则反常积分(,)(,)af x tg x t dx +∞⎰关于t T ∈一致收敛.Dirichlet 判别法 设函数(,)f x t 、(,)g x t 定义在{}(,):,D x t a x t T =≤<+∞∈⊂R中,若(a ) 对于每个A a >,(,)f x t 在[,]x a A ∈上为R-可积的,且积分(,)Aaf x t dx ⎰关于t T ∈一致有界,亦即,0M∃>(与A 、t 无关),使得(,)Aaf x t dx M ≤⎰;(b ) (,)g x t 是x 的单调函数,且lim (,)0x g x t →+∞=关于t T ∈一致成立;则反常积分(,)(,)af x tg x t dx +∞⎰关于t T ∈一致收敛.补充例9 试证反常积分 ()20sin u xex dx α+∞-+⎰,0α>为常数,关于[)0,u ∈+∞一致收敛.证 0α>,由()2sin u xx ex e αα-+-≤, [),0,x u ∀∈+∞, (*)而11xxedx eαααα+∞+∞--=-=⎰收敛,故由Weierstrass 判别法知反常积分()20sin u xex dx α+∞-+⎰关于 [)0,u ∈+∞ 一致收敛;补充例10 试证反常积分 ()20sin u xex du α+∞-+⎰,0α≥为常数,关于[)0,x ∈+∞一致收敛.证 0α≥,由()22sin sin u xxu x AAex du ex e duαα+∞+∞-+--=⎰⎰,作变量代换t x u =,上式右边成为2sin x t xAe xe dt xα+∞--⎰. ? (**)注意到00sin sin lim lim 0x x x x e x x e x x xαα--→+→+== 与222t txAedt e dt π+∞+∞--<=⎰⎰,积分22t e dt π+∞-=⎰是著名的欧拉积分,我们将在下面计算它.于是,对于(**),0ε∀>,0δ∃>,当()0,x δ∈时,有sin 2x e x x αεπ-<;进而,0A ∀>,()0,x δ∈,有()222sin sin 2u xuxxAAex du ex e du ααεπεπ+∞+∞-+--=<⋅=⎰⎰;显然,0x=上述不等式也成立,因此,对于0A ∀>、[)0,x δ∈时,()2sin u xAex du αε+∞-+<⎰.另一方面,[),x δ∀∈+∞,由()()222sin u xu uex ee ααδδ-+-+-≤≤与2u edu δ+∞-⎰收敛(欧拉型积分),故由Weierstrass 判别法,知反常积分()20sin u xex du α+∞-+⎰在[),x δ∀∈+∞中一致收敛. 联合关于[)0,x δ∈与[),x δ∈+∞的结果,补充例10得证.补充例11 试证反常积分sin x uxe dx x+∞-⎰ 关于[)0,u ∈+∞一致收敛. 证 由sin xdx x+∞⎰收敛,因此关于[)0,u ∈+∞一致收敛; 另一方面,(),x u g x u e -= 关于[)0,x ∈+∞单调递减,且在()[)[),0,0,x u ∈+∞⨯+∞中一致有界01x u e -≤≤,Abel 判别法便证明了例11.补充例12 试证反常积分sin 0sin 2x xe dx xλ+∞⎰ 关于()0,λ∈+∞一致收敛.证 由 ()1,gx x λλ=当x →+∞时单调递减且()1,0g x x λλ=→;另一方面, sin sin sin 0sin 22sin cos 2AAAxxt ex dx ex x dx t e dt ==⎰⎰⎰sin sin 2sin 16A A A e e e =⋅-+≤;Dirichlet 判别法证明了补充例12 .补充例13 设p -∞<<+∞,考虑反常积分 11sin px I dx x=⎰,试证 (1) 当 1p -∞<< 绝对收敛、当12p ≤<非绝对收敛、当2p ≤<+∞发散;(2) 当(]0,2p δ∈- 一致收敛,其中0δ>、 当 ()0,2p ∈ 非一致收敛.证 (1) 将有限区间[]0,1x ∈上的函数1sinpx x 的积分化为无限区间上的积分比较方便.① 当1p -∞<< 时,令 1t x =,21dx dt t=-,[](]0,1,1x t ∈→∈+∞,故1122011sin sin 1sin 1p p p t t x I dx dt dt x t t t+∞-+∞-===⎰⎰⎰. 于是,2211sin 1pptI dt dt t t+∞+∞--=≤⎰⎰,因此当1p <时,有21p ->,故积分211pdt t+∞-⎰的收敛性保证了反常积分I绝对收敛;因此,当 1p -∞<< 时,积分绝对收敛;② 当12p ≤<,则021p <-≤,积分21sin ptdt t+∞-⎰发散,这是因为 22sin sin 1cos 21cos 2222pt t t tt t t t t--≥==-, [)1,t ∈+∞, 112dt t+∞⎰发散,而1cos 22tdt t+∞⎰收敛;另一方面,由1sin cos1cos 2At dt A =-≤⎰,21pt-单调递减趋向于零,因此由Dirichlet 判别法知,积分I 当12p ≤<时积分I收敛;综合,当 12p ≤< 时,积分I非绝对收敛;③ 当2p ≤<+∞,对于2p =,积分211sin sin ptdt t dt t+∞+∞-=⎰⎰发散;对于2p >,积分21sin p I t t dt +∞-=⎰,故对于每个n ∈N ,有 23222211222sin sin n n p p n n tt dt t t dt πππππππππππ+∞+---⎧⎫=++++++⎨⎬⎩⎭⎰⎰⎰⎰⎰⎰ ,且()()2222222sin 2sin 22n n p p p nntt dt n t dt n ππππππππ++--->=⎰⎰()()22222sin 22sin 22n p p n tt dt n y n y dy πππππππππ---=-+-+⎰⎰ ()2222sin p n y y dy ππππ-=-+⎰()22sin p n u u du ππ-=--⎰,由()()()()2220002sin 2cos 22p p p n u u du n u n πππππ---<-<-=⎰得到()()22222sin 0p p n n u u du πππ---<--<⎰,故23222211222sin sin n n p p n n tt dt t t dt πππππππππππ+∞+---⎧⎫=++++++⎨⎬⎩⎭⎰⎰⎰⎰⎰⎰()()()()222221sin 22222222p p p p p t t dt n n πππππ----->-+--+-⎰()2111sin sin cos 1cos1p tt dt t dt t πππε-=>=-=->⎰⎰,?当2p ≤<+∞时,积分发散.(2) ① 对于0δ>,在(],2p δ∈-∞-中,由22p p δδ≤-⇒-≥,得2110pt t δ-<≤与 1tδ 单调递减趋于零;而积分1sin cos1cos 2At dt A =-≤⎰一致有界,故据Dirichlet 判别法,得到积分 11sin px Idx x=⎰在 (],2p δ∈-∞-上一致收敛;② 最后,积分 12011sinsin p p t x I dx dt x t +∞-==⎰⎰ 在 (),2p ∈-∞ 非一致收敛.我们用反证法,设积分在区间(),2-∞上一致收敛,则对01ε=,()001A A a ε∃=>=,s.t. 0'''A A A ∀>> 时,有''02'sin 1A p A tdt t ε-<=⎰, (),2p ∀∈-∞. 但这不可能,因为若取'2A k π=、()''21A k π=+,则当k 充分大时,有()()()()2121022222sin 121sin 2121k k ppp kkt dt t dt t k k ππππεππ++---=>≥=++⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰,当2p -→时,上式右边()22221pk π-→+⎡⎤⎣⎦,得到012ε=>的矛盾.补充习题1、讨论积分0sin ln xI xdx xλ+∞=⎰的收敛性,其中λ为实数. 2、讨论积分sin 0sin 2x xI e dx xλ+∞=⎰ 的收敛性,其中0λ>. 3、讨论积分0x I x e dx α+∞-=⎰在[)0,αα∈+∞上的一致收敛性,其中00α>. 4、讨论积分0sin cos xI x dx xα+∞=⎰在[)0,αα∈+∞上的一致收敛性,其中01α>. 5、讨论积分110p I x dx -=⎰ 在[)0,p p ∈+∞上的一致收敛性,其中00p >.6、讨论积分110ln p I x x dx -=⎰ 在[)0,p p ∈+∞上的一致收敛性,其中00p >.。

含参量反常积分一致收敛的判别法.

含参量反常积分一致收敛的判别法.

题目含参量反常积分一致收敛的判别法学生姓名学号系别数学系年级2010级专业数学与应用数学指导教师职称完成日期摘要含参变量的反常积分是研究和表达函数的的有力工具。

要更好的研究含参量反常积分所表达的函数,关键问题在于判断他的一致收敛性。

本文通过研究判断含参量反常积分一致收敛的判别法,以帮助研究含参量反常积分所表达的函数。

关键词:含参量反常积分;一致收敛;判别法AbstractImproper integral with variable is the study and expression tool function. To better function of parameter improper integral expression of the key problem lies in the judgment, the uniform convergence of his. Through the study of judging function discriminant method of parameter improper integral converges uniformly to help the study of parameter improper integral expression.Key words: Improper integral with variable;uniform convergence; discriminant analysis目录1引言 (1)2基本概念 (1)2.1含参量反常积分 (1)2.2含参量反常积分一致收敛 (2)3含参量反常积分一致收敛的判别方法 (2)3.1定义法 (2)3.2柯西准则法 (3)3.3变上限积分的有界性法 (3)3.4确界法 (4)3.5微分法 (5)3.6级数判别法 (6)3.7维尔斯特拉斯判别法(简称M判别法) (6)3.8狄里克莱判别法 (8)3.9阿贝尔判别法 (8)4结束语 (1)参考文献 (10)致谢 (11)含参量反常积分一致收敛的判别法柯美蓉(闽江学院数学系;福建福州350108)1.引言含参量反常积分是微积分学中一类重要的积分,是研究和表达函数,特别是非初等函数的有力工具.为了讨论含参变量反常积分的连续性、可微性和可积性,我们需要引进含参变量反常积分的一致收敛性的概念,它和函数项级数的一致收敛性的意义是相当的.现行的数学分析教材[1-3、5]给出的含参量反常积分的一致收敛的判别法主要是一致收敛定义、柯西准则、维尔斯特拉斯判别法、狄里克莱判别法及阿贝尔判别法,它们都有一定的局限性,不适用于每种含参量反常积分的一致收敛性的判别.为了更好的判别含参量反常积分的一致收敛性,本文研究、归纳了判别含参量反常积分的一致收敛性的九种方法:一致收敛定义、柯西准则法、变上限积分的有界法、确界法、微分法、级数辨别法、魏尔斯特拉斯M判别法、狄克雷判别法和阿贝尔判别法,并且给出了典型例子以说明每种判别法的特点,以便于人们的研究、理解.2.基本概念2.1 含参量反常积分设函数),(y x f 定义在无界区域},),{(I y x a y x R ∈+∞<≤=上,其中I 为区间[]d c ,,反常积分dx y x f a⎰+∞),(都收敛,则它的值是 y 在[]d c ,上取值的函数,当记这个函数为)(y Φ时,则有I y dx y x f y a∈=Φ⎰+∞,),()(, (2-1)称dx y x f a⎰+∞),(式为定义在I 上的含参量y 的无穷限反常积分,或简称含参量反常积分[1].2.2 含参量反常积分一致收敛若含参量反常积分dx y x f a⎰+∞),(与函数)(x Φ对任给的正数,存在某一实数a N >,使得当N M >时,对一切[]d c y ,∈都有ε<Φ-⎰May dx y x f )(),(, (2-2)即ε<⎰+∞Mdx y x f ),(, (2-3)则称含参量反常积分dx y x f a⎰+∞),(在I 上一致收敛于)(y Φ,或者简单的说含参量积分dx y x f a⎰+∞),(在I 上一致收敛.3.含参量反常积分一致收敛的判别方法3.1 定义法定义判别法:根据以上2.2 关于含参量反常积分一致收敛的定义进行判别. 例3-1 证明:含参量反常积分dy xe xy ⎰+∞-0在()+∞,0内不一致收敛,但是在[)+∞,α上一致收敛(其中0>α)[2].分析 由含参量反常积分一致收敛定义可知,含参量反常积分()dy y x f ⎰+∞0,在()+∞,0上不一致收敛指:存在00>ε对任何实数00>A ,总存在0A A >和()+∞∈,0x ,st()0,ε≥⎰+∞Ady y x f . (3-1)4.结束语含参量反常积分是很重要的积分,研究它的连续性、可微性和可积性的关键在于研究它的一致收敛性.本文介绍一致收敛定义、柯西准则法、变上限积分的有界法、确界法、微分法、级数辨别法、魏尔斯特拉斯M判别法、狄克雷判别法和阿贝尔判别法这九种判别方法,这些方法适用于不同含参量反常积分一致收敛的判定,每个判别法都有它的优点,同时也存在着一定的局限,选用恰当的方法能使判定过程变得方便、简单.然而,含参量反常积分一致收敛的判别法不只有这九种,还有很多方法等着人们去发现,去探讨,去挖掘.参考文献[1] 华东师范大学数学系.数学分析(第四版)[M].北京:高等教育出版社,2010.6.[2] 洪毅.数学分析[M].广州:华南理工大学出版社,2002.3.[3] 罗俊,汪名杰,高敏.数学分析习题与解析[M].北京:兵器工业出版社,2008.9.[4] 赵文强.关于含参量广义积分一致收敛性的教学研究[J].重庆工商大学学报:自然科学版,2011.28(5): 460-461.[5] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993.5.[6]张永峰.含参量反常积分局部一致收敛于连续[J].咸阳师范学院学报,2006,21( 6) : 59-60.[7]张振祺.含参量反常积分局部一致收敛的判别法[J].榆林学院学报,2010,20( 6) : 1-3.[8]张国才王恕达含参量积分的局部收敛性(I )[J]。

一致连续与一致收敛的关系

一致连续与一致收敛的关系

一致连续与一致收敛的关系由于函数项级数的收敛等价于函数序列的收敛,为简单起见,下面只对函数序列作讨论。

定理 如果函数序列 )(x F n , ,3,2,1=n 中的每一个函数都在区间 I 上一致连续,当 ∞→n 时,)(x F n 区间 I 上一致收敛于函数 )(x F ,那么 )(x F 也在区间 I 上一致连续。

证 任意给定一个 0>ε 。

因为 )(x F n 区间 I 上一致收敛于函数 )(x F ,所以对于给定的 03>ε,必有一个与 x 无关的正整数 N ,使得当 N n ≥ 时,对任何 I x x ∈21,,有 3)()(11ε<-x F x F n ,3)()(22ε<-x F x F n 。

现在取定 N n = ,因为 )(x F N 在区间 I 上一致连续,所以对于给定的 03>ε,必有一个与 x 无关的正数 0>δ ,使得对任何 I x x ∈21,,只要有 δ<-21x x ,就一定有 3)()(21ε<-x F x F N N 。

所以,对于给定的 0>ε ,可以找到与 x 无关的正整数 N 和正数 0>δ ,使得对任何 I x x ∈21,,只要有 δ<-21x x ,就一定有)()([)]()([)]()([)()(22211121x F x F x F x F x F x F x F x F N N N N -+-+-=- )()()()()()(222111x F x F x F x F x F x F N N N N -+-+-≤εεεε=++<333 。

由此可见,)(x F 在区间 I 上一致连续。

如果将上述定理的条件减弱一点,结论就不一定成立了。

(一)如果函数序列 )(x F n , ,3,2,1=n 中的每一个函数都在区间 I 上连续(但不是一致连续),当 ∞→n 时,)(x F n 区间 I 上一致收敛于函数 )(x F ,这时 )(x F 不一定在区间 I 上一致连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

"#$ ´ G ! -"* "# O P $ µ ¶ $ § ¤ ; !&$ ¨ · ¸ "!)-"#1!&*¹ $B "" # /!-"*5!-"#*/! " ! 6
µ
%

2"
!)"$#$.4$,!)"$.$ ºdLA " $ §; (&#
! %!)" #$.4$ 5!)" . ! " 6
!";
" Â$%&’( ;’ $ ÃÄ Â$ >&"### #
L
M % <=>?@ABCD:EFGHIJKLM # NO>EFGHIJP?QABC
D:RSKTU8 # VWXY>?QABCD:Z[IJ8K\2 $ NOP %?QABCD: %EFGHIJ % RS QRJST %?&>"@" UVWXY % A UZ[T %&%>"5"B&:""##%##%5##;B5#"
! %!)"#$.4$5!)". ! " 6
& ($
"% #
+ , - . !!""#$"%$&’ !!!!!!! / 0 1 2 ! !"# !!"#$% "# $ # %&’()* # +,-./01/2345 $
! !" !
!"
!"#$%&%’
( !" )
*+
!##$%&$%&, $ -."/0,12 ! "345 $"
!!!!!!!
! %!)"#$.4$5 %!)" #$.4$ ! " 6
& & $
($
($
"; #
» ! +7<=,!&$!"3 ¬ ¸ " !) )"$#!. ¹ $ ´ "; #& ":# ¥ ""# ¼ $B
!!!!!!!
% !-"#$*4$ 5!-"* !"!
&
($
¬K23 "&# ; klRXmZ !
* "& +
!""# ! $! " *%,
#$%&’(’) %&’!"#$% ()*+,-./)0/12-,3-,4/5)+6-./7,28&+92:3/!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!;).!"& 5)!%
!!"#$#%&’()* "
DEFGHIJ>3456+7&<=K
含参量反常积分的局部一致收敛与连续性
作者: 作者单位: 刊名: 英文刊名: 年,卷(期): 被引用次数: 张永锋, ZHANG Yong-feng 咸阳师范学院,数学系,陕西,咸阳,712000 咸阳师范学院学报 JOURNAL OF XIANYANG NORMAL UNIVERSITY 2006,21(6) 1次
L¿ $ 23 "&# * klRXmZr !)". ! ’ 9 : 8 ( "$ * £ R $ d£ A ¤ ; "$ ´G
%

2"
!)"$#$.4$,!)"$.$ L¿§; (&#&$ ¨·¸
( #(& ¹ $ B "6# ¼ $ µ 2 3 "&# * k l R XmZG !)". $ ºdLA " ¥ÀA (&$ §¤; !& ¥ ($#(&$ Á·dRª "!))"$#!&.$B !!!!!!!!
&
" <vB
C12 ! " ; 0/!3.:! > $/ . "#"0.’ "7
0
!!!!
*;<=>?*@’$.A&-$.
*BC301-)30%/D*E-:3(0)-$0F*G%3$73$.*>’()34*#$%,-(D%07FG%3$73$.F2133$H%*I"!JJJF+1%$3K***
*** M9$*01%D*:3:-(*N-O*.%,-*01-*5-&%$%0%’$*’&*6$%&’()*/’$,-(.-$/-*%$*01-*D)344*’&**:3(3)-0-(**%):(’:-(*%$P 0-.(34Q *R-**:(’,-**01-**-S6%,34-$/-*N%01**(-D:-/0**0’*01-**6$%&’()*/’$,-(.-$/-**%$*01-*D)344*3$5**01-*/’$0%$6%07*’&* * :3(3)-0-(*%):(’:-(*%$0-.(34*F3$5**N-**D0657**01-**(-430%’$D*’&**D’)-**/’$,-(.-$/-*’&**:3(3)-0-(**%):(’:-(**%$0-.(34* Q *M*:3(3)-0-(*%):(’:-(*%$0-.(34*U*6$%&’()*/’$,-(.-$/-*%$*01-*D)344U*/’$0%$6%07
2.
$
!!!!!! = "vByA12 ""B^2 !1" > 2 EBH $""0,12 !$ > !$ 1!"34vH $"
" "
!
’ #$"+! $ ’ & " 7
"
! ##$+&’%&2!#$’ !"% ‘ 4 i _
"
$<
4)-5#$0!$’9$" /% + 4 "h _ "/ 4 a0,7{i-’#$6+!6’96).0&(07/N " !" )*=>-! $ 96 ).0& ) 07/" < !" 1!" * v E B H
=HIJKAmq6.7rP "[\],^2_ E HIJK‘ !#$’" <a, EFpHIJK‘ !#$’" bcls: % e & = ‘ \ ] &5$ , W f &"". $ E J K ‘ - . g 2 ! #$’ ).0$ "#"0.’ h # #$%&’ )$) ,$& , W i - ) $ E-. % /=mn . P "\] #$%&’9"!$!.%"#&!.! % &5 $ ,Wf &"". $ EFpHIJK " t\] &5$ ,Wf &" ". $EoHIJK % u^E " ;12 "") )
6
$" a7{ 68.#6#7’ 34 $"’8$6+!$ ’&2" ; !$)!$ "
6 6
< !$"6!0!"7"h
! #8$+&’%&2!8$’ !" %
"
!3
!!!!!!!!!!!!!!!!!!!!!!!!!!! +,-. ?
!"# ! " # $ % & ’ $ % & ( ) ! * + , !%#$ - . ! / 0 1 2 3 ,4 "&’(" !)$ !&# 5 6 7 " 8 9 : $ ; < = % > ? = ( ) @ A ! B + , !%#$ . ! /0123,4 "&((*+
! 3456+789
:; ! )"#$* % +",-"#$./"! 1 &"$!2"3x ; # $23
#

2"
!-"#$*4$ !
"& #
¤; !"$ ¨·¸ "!))"$#!". ¹ $ B
: ; ! 23 "& # ¡ ; m Z G : ; !-"*1 ¢d£A¤; "$ £R¡ ; ( !& ¥ £ R "$$ ¦§¤; ! ¥¡; ($!( $ ¨©dR ª " !) -"$#!*$ $«B
! $)
"
3"
*$&
+%& "
&5 $
! ##$+&’%&2!#$’ !"%
"
!3
,Wf6"".7EJK‘g2
"0 $)" !8$’) .0 "!$#. h # #$%&’)$) ,$& , W i - ) $ E #$%&’9"#$#.%"#&!.! % -. " j=‘ !#$’, 6" ".7 E $/" kl-. " ?@=m n . " \] &5$ ,6"".7EoFpHIJK %
相关文档
最新文档