一次函数的定义及经典习题

合集下载

第01讲 一次函数的概念、图像与性质(考点与练习)(原卷版)

第01讲 一次函数的概念、图像与性质(考点与练习)(原卷版)

第01讲 一次函数的概念、图像与性质一、一次函数的概念1、概念:一般地,解析式形如y kx b =+(k 、b 是常数,且0k ≠)的函数叫做一次函数。

定义域:一切实数。

2、一次函数与正比例函数的关系:正比例函数一定是一次函数,但一次函数不一定是正比例函数。

3、常值函数一般的,我们把函数()y c c =为常数叫做常值函数。

二、一次函数的图像与性质1、 一次函数的图像:一般地,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图像是一条直线.一次函数y kx b =+的图像也称为直线y kx b =+,这时,我们把一次函数的解析式y kx b =+称为这一直线的表达式.画一次函数y kx b =+的图像时,只需描出图像上的两个点,然后过这两点作一条直线. 2、 一次函数的截距:一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距,一般地,直线y kx b =+(0k ≠)与y 轴的交点坐标是(0)b ,,直线y kx b =+(0k ≠)的截距是b .3、 一次函数图像的平移:一般地,一次函数y kx b =+(0b ≠)的图像可由正比例函数y kx =的图像平移得到.当0b >时,向上平移b 个单位;当0b <时,向下平移b 个单位.(函数平移口诀简记为:“上加下减,左加右减”) 4、 直线位置关系:如果12b b ≠,那么直线1y kx b =+与直线2y kx b =+平行.反过来,如果直线11y k x b =+与直线22y k x b =+平行,那么12k k =,12b b ≠.5、一次函数的增减性:一般地,一次函数y kx b =+(,k b 为常数,0k ≠)具有以下性质:当0k >时,函数值y 随自变量x 的值增大而增大,图像为上升; 当0k <时,函数值y 随自变量x 的值增大而减小,图像为下降. 6、一次函数图像的位置情况:直线y kx b =+(0k ≠,0b ≠)过(0,)b 且与直线y kx =平行,由直线y kx =在平面直角坐标系内的位置情况可知:(要用图像的平移推导可得) 当0k >,且0b >时,直线y kx b =+经过一、二、三象限; 当0k >,且0b <时,直线y kx b =+经过一、三、四象限; 当0k <,且0b >时,直线y kx b =+经过一、二、四象限; 当0k <,且0b <时,直线y kx b =+经过二、三、四象限.考点一:一次函数识别【例题1】(2021·上海普陀·八年级期中)下列四个函数中,一次函数是( ) A .y =x 2﹣2xB .y =x ﹣2C .11y x=+D .y x +1【变式训练1】(2021·上海奉贤·八年级期中)下列函数中是一次函数的是( ) A .y =2x B .2y x=C .y =x 2D .y =kx +b (k ,b 为常数)考点二:根据一次函数的定义求参数【例题2】(2021·上海市川沙中学南校八年级期中)当k ______时,y kx x =+是一次函数.【变式训练1】(2021·上海普陀·八年级期中)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________.【变式训练2】(2021·上海民办华二宝山实验学校八年级阶段练习)已知关于x 函数224(5)1m y m x m -=-++,若它是一次函数,则m =______.考点三:求一次函数的自变量与值域【例题3】(2021·上海杨浦·八年级期末)如果点A(3,)a 在一次函数31yx 的图像上,则a =__________.【变式训练1】(2021·上海市川沙中学南校八年级期中)已知一次函数24y x =+的图象经过点(),8A m ,那么m 的值等于______. 考点四:列一次函数的解析式并求值【例题4】(2021·上海市松江区新桥中学八年级期中)汽车油箱中现有汽油60升,若每小时耗油10升,则油箱中剩余油量y (升)与燃烧的时间x (小时)之间的函数关系式是______.【变式训练1】(2020·上海浦东新·八年级期末)汽车以60千米/时的平均速度,由A 地驶往相距420千米的上海,汽车距上海的路程s (千米)与行驶时间t (时)的函数关系式是_____.考点五:一次函数平移【例题5】(2021·上海市松江区新桥中学八年级期中)将直线112y x =--向上平移4个单位所得的直线表达式为______.【变式训练1】(2021·上海杨浦·八年级期中)将一次函数y =2x ﹣3的图象向上平移___个单位后,图象过原点.【变式训练2】(2021·上海浦东新·八年级期末)如果将函数31y x =-的图象向上平移3个单位,那么所得图象的函数解析式是________. 考点六:一次函数与坐标轴交点【例题6】(2021·上海普陀·八年级期末)将平面直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标轴三角形.如图中的一次函数图像与,x y 轴分别交于点,,A B 那么ABO 为此一次函数的坐标轴三角形.一次函数142y x =-+的坐标轴三角形的面积是_____.【变式训练1】(2021·上海杨浦·八年级期中)一次函数y =﹣2x ﹣3的截距是_____. 【变式训练2】(2021·上海·八年级期中)直线36y x =-与坐标轴所围成的三角形的面积是_____.【变式训练3】(2021·上海奉贤·八年级期末)直线21y x =-与x 轴交点坐标为_____________.考点七:根据一次函数解析式判断其经过象限【例题7】(2021·上海·上外附中八年级期末)一次函数y =2(x +1)﹣1不经过第( )象限 A .一B .二C .三D .四【变式训练1】(2021·上海徐汇·八年级期末)一次函数21y x =-+的图象经过哪几个象限( )A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限 【变式训练2】(2021·上海崇明·八年级期末)一次函数53y x =-+的图象不经过( ). A .第一象限B .第二象限C .第三象限D .第四象限【变式训练3】(2021·上海金山·八年级期末)在直角坐标系中,一次函数y =12x ﹣1的图像不经过第____象限.考点八:已知函数经过的象限求参数范围【例题8】(2019·上海市西延安中学八年级期中)在同一真角坐标平面中表示两个一次函数y 1=kx +b ,y 2=−bx +k ,正确的图像为( )A .B .C .D .【变式训练1】(2020·上海市奉贤区弘文学校八年级期末)正比例函数()0y mx m =≠的图像在第二、四象限内,则点(--1m m ,)在( ) A .第一象限B .第二象限C .第三象限D .第四象限【变式训练2】(2020·上海金山·八年级阶段练习)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0【变式训练3】(2019·上海市闵行区七宝第二中学八年级期中)如果关于x 的一次函数(3)y m x m =-+的图像不经过第三象限,那么m 的取值范围________.【变式训练4】(2021·上海静安·八年级期末)已知一次函数y =(k ﹣1)x +1的图像经过第一、二、三象限,那么常数k 的取值范围是____.【变式训练5】(2021·上海·上外附中八年级期末)一次函数y =(2m ﹣1)x +m ﹣7的图像不经过第二象限,则m 的取值范围是 ___.【变式训练6】(2017·上海嘉定·八年级期中)若正比例函数25m m y mx +-=的图像经过第二、四象限,则m =____________【变式训练7】(2018·上海普陀·八年级期末)如果关于x 的一次函数y =mx +(4m ﹣2)的图象经过第一、三、四象限,那么m 的取值范围是_____. 考点九:已知两条直线位置关系求参数【例题9】直线2(13)(22)y k x k =-+-与已知直线21y x =-+平行,且不经过第三象限,求k 的值.1.已知一次函数21544m y x +=-与233my x =-+的图像在第四象限内交于一点,求整数m 的值.2.已知两个一次函数144b y x =--和212y x a a=+;(1)a、b为何值时,两函数的图像重合?(2)a、b满足什么关系时,两函数的图像相互平行?(3)a、b取何值时,两函数图像交于x轴上同一点,并求这一点的坐标.3.(1)一次函数3y x b=+的图象与两坐标轴围成的三角形的面积为48,求b的值;(2)一次函数y kx b=+的图像与两坐标围成的三角形的面积是105,求一次函数的解析式.4.1)求直线14222y x y x=-=+和与y轴所围成的三角形的面积;(2)求直线24y x=-与直线31y x=-+与x轴所围成的三角形的面积.5.如图,已知由x轴、一次函数4(0)y kx k=+<的图像及分别过点C(1,0)、D(4,0)两点作平行于y轴的两条直线所围成的图形ABDC的面积为7,试求这个一次函数的解析式.6.在式子()y kx b k b =+,为常数中,3119x y -≤≤≤≤当时,,kb 求的值.7.已知一次函数1121y x k =+-中y 随x 的增大而增大,它的图像与两坐标轴构成的直角三 角形的面积不超过32,反比例函数23k y x-=的图像在第二、四象限,求满足以上条件的k 的 整数值.8.如图,已知函数1y x=+的图象与y轴交于点A,一次函数y kx b=+的图象经过点B(0,1-),并且与x轴以及1y x=+的图象分别交于点C、D;(1)若点D的横坐标为1,求四边形AOCD的面积(即图中阴影部分的面积);(2)在第(1)小题的条件下,在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形;如果存在,求出点P坐标;如果不存在,说明理由;(3)若一次函数y kx b=+的图象与函数1y x=+的图象的交点D始终在第一象限,则系数k 的取值范围是________(请直接写出结果)题组A 基础过关练一、单选题1.下列关于x的函数中,是一次函数的是()222211.3(1) (3)A y xB y xC y xD y x xx x=-=+=-=+-2.正比例函数y=(1-2m)x的图象经过点(x1,y1)和点(x2,y2)当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<12D.m>123.(2018·上海金山·八年级期中)一次函数51y x=-的图像经过的象限是()A.一、二、三B.一、三、四C.二、三、四D.一、二、四分层提分4.(2018·上海金山·八年级期中)一次函数图像如图所示,当2y >时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <5.(2020·上海浦东新·八年级期末)直线y =2x ﹣1在y 轴上的截距是( ) A .1 B .﹣1C .2D .﹣2二、填空题6.(2019·上海普陀·八年级期中)如果将直线22y x =-向上平移3个单位,那么所得直线的表达式是___________.7.(2019·上海普陀·八年级期末)已知直线(2)3y k x =-+与直线32y x =-平行,那么k =_______.题组B 能力提升练1.一次函数(2)3y k x k =-+-的图像能否可以不经过第三象限?为什么?2.已知直线26x y k -=-+和341x y k +=+,若它们的交点第四象限,那么k 的取值范围是______________.3.如图,据函数y kx b =+的图像,填空:(1) 当1x =-时,y =____________;(2) 图像与坐标轴的交点坐标是_________________; (3) 当24x -≤≤时,y 的取值范围是______________.4.根据下列条件求解相应函数解析式: (1)直线经过点(45),且与y=2x +3轴无交点; (2)直线的截距为3(123).5.已知函数1y x =+与3y x =-+,求: (1)两个函数图象交点P 的坐标.(2)这两条直线与x 轴围成的三角形面积.6.把一次函数的图像向上平移323y x =-,求平移前的函数图像与函数23y x =--题组C 培优拔尖练1.直线31y =+和x 轴、y 轴分别相交于点A 、点B ,以线段AB 为边在第一象限内作等边三角形ABC ,如果在第一象限内有一点P (12m ,)且△ABP 的面积与△ABC 的面积相等,求m 的值.2.函数12y y y =+且12y x m =+,2131y x m =+-. (1)若12y y 与图像的交点的纵坐标为4,求y 关于x 的函数解析式;(2)若(1)中函数y 的图像与x 轴、y 轴交于A 、B 两点,若将此函数绕A 点顺时针旋转90°后交y 轴于C 点,求直线AC 的解析式.3.如图所示,直线323y x =-+与x 轴、y 轴分别交于点A 和点B ,D 是y 轴上的一点,若将DAB ∆沿直线DA 折叠,点B 恰好落在x 轴正半轴上的点C 处,求直线CD 的解析式.4.直线31y =+与x 轴、y 轴分别交于点A 、点B ,以线段AB 为直角边在第一象限内作等腰Rt ABC ∆,且90BAC ∠=,如果在第二象限内有一点P (a ,12),且ABP ∆的面积与Rt ABC∆的面积相等,求a 的值.。

一次函数概念及习题

一次函数概念及习题

一次函数 一、函数1.定义(1)在变化过程中有两个变量;(2)一个变量的数值随着另一个变量的数值的变化而发生变化;(3)自变量的每一个确定值,函数有且只有一个值与之对应,即单值对应。

2.自变量的取值范围(1)整式时,自变量取全体实数; (2)分式时,自变量使分母不为零;(3)有偶次根式时,自变量必须使被开方数是非负数; (4)实际问题中,要使实际问题有意义;(5)在有些函数关系式中,自变量的取值范围应是其公共解。

二、一次函数(——正比例函数)1.定义(1)函数为一次函数⇔其解析式可化为y kx b =+(,k b 为常数,0k ≠)的形式。

(2)一次函数y kx b =+结构特征:0k ≠;自变量x 次数为1;常数b 可为任意实数。

(3)一般情况下,一次函数中自变量的取值范围是全体实数。

(4)若0k =,则y b =(b 为常数),这样的函数叫做常函数,它不是一次函数; 若0b =,则y=kx (k 为常数),这样的函数叫做正比例函数。

2.图像一次函数的图像是一条直线,确定两点,便能确定其图像。

3.性质(1)增减性:0k >时,y 随着x 的增大而增大;0k <时,y 随着x 的增大而减小。

(2)图像位置:直线y kx b =+过两个象限或三个象限,由,k b 的符号共同决定。

例题1. 求出下列函数中自变量x 的取值范围(1)112y x =+ (2)y = (3)y = (4)521y x -=-2.已知23(2)3my m x -=-+,当m 为何值时,y 是x 的一次函数?3. 已知一次函数(2)(1)y m x m =++-,若y 随x 的增大而减小,且该函数图象与x 轴的交点在原点右侧,求m 的取值范围。

4. 若正比例函数y =(1-2m)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则求m 的取值范围。

一次函数难题经典例题及答案

一次函数难题经典例题及答案

一次函数难题经典例题及答案知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

一次函数经典例题与习题

一次函数经典例题与习题

一次函数经典例题与习题
一次函数是指函数的最高次数为一次,即为形如y=mx+b的函数,其中m和b为常数。

以下是一些经典的一次函数例题和习题:
例题1:已知一次函数的图像经过点(2,4)和(-1,1),求函数的解析式。

解:设该函数的解析式为y=mx+b。

由题意,可得到以下两个方程:4=2m+b(1)
1=-m+b(2)
解这个方程组,可以使用常见的线性方程组的解法。

首先用(2)式减去(1)式,得到:
-3=-3m
解得m=1
将m=1代入(2)式,得到:
1=-1+b
解得b=2
因此,该函数的解析式为y=x+2
例题2:若一次函数的解析式为y=3x-2,求该函数的图像与x轴交点的横坐标。

解:将y=0代入解析式,得到:
0=3x-2
解得x=2/3
因此,该函数的图像与x轴交点的横坐标为2/3
习题1:已知一次函数图像上两点的坐标分别为(-3,4)和(1,2),求
该函数的解析式。

习题2:已知一次函数的图像与x轴的交点坐标分别为(-1,0)和
(3,0),求该函数的解析式。

习题3:设一直线上两不同点的横坐标之差为3,纵坐标之差为5,
求该直线的斜率和截距。

习题4:已知一次函数的图像与x轴的交点坐标为(1,0),截距为2,
求该函数的斜率。

以上是一些经典的一次函数例题和习题。

通过解这些问题,可以加深
对一次函数的理解,并熟练掌握解析式与图像之间的关系。

通过反复练习,可以提高解一次函数问题的能力。

一次函数186题

一次函数186题

一次函数186题一次函数,也被称为一元一次方程或线性函数,是一种形式为y=ax+b的函数,其中a和b为常数,而x是一个变量。

如此,我们可以向一次函数输入不同的x值,并通过计算来计算相应的y值。

一次函数的特点是具有类似于直线的形状,它们呈线性关系。

当x增加时,y也会按照一定比例增加或减少。

接下来,我们将介绍一些一次函数的基本概念和性质,并提供一些题目以及解析。

一次函数的一些基本概念和性质:1.斜率:斜率可以帮助我们了解线的倾斜程度或陡峭程度。

在一次函数中,斜率标识为a,决定了线的倾斜方向和强度。

当a为正数时,线会向上倾斜,反之亦然。

斜率的绝对值越大,线越陡。

2.截距:截距可以帮助我们了解线与y轴的交点,即当x=0时,所对应的y值。

在一次函数中,截距被标识为b,它决定了线和y轴的相对位置。

如果b为正数,线将位于y轴上方,反之亦然。

3.零点:零点也被称为x的解,是一次函数与x轴相交的点。

当一次函数的y值为0时,x的值就是它的零点。

4.平行和垂直线性函数:如果两个一次函数具有相同的斜率,但不同的截距,它们将是平行线。

然而,如果两个一次函数的斜率乘积为-1,则它们是垂直的。

现在,让我们来看一些一次函数的例题及解析。

例题1:一条一次函数的方程是y=2x+3、求出它的斜率、截距和零点。

解析:根据给定的方程y=2x+3,我们可以得到a=2(斜率)和b=3(截距)。

斜率:a=2截距:b=3零点:当y=0时,我们可以求解2x+3=0,得到x=-1.5、所以零点为(-1.5,0)。

例题2:两个线性函数分别为y=3x+5和y=6x+2、判断它们是否平行或垂直。

解析:根据给定的方程,我们可以得到两个线性函数的斜率。

第一个函数:a1=3第二个函数:a2=6由于两个函数的斜率不相同,因此它们不是平行线。

然后,我们计算a1和a2的乘积,即(3)(6)=18,并发现它不等于-1、所以,这两条线也不是垂直的。

例题3:一条线性函数通过点(2,4)和(3,7)。

第1讲 一次函数的概念及图像(练习)解析版

第1讲 一次函数的概念及图像(练习)解析版

第1讲 一次函数的概念及图像(练习)夯实基础一、单选题1.(2019·上海黄浦区·)下列函数中,是一次函数的是( )A .21y x =+B .12y x =-C .23y x =+D .y kx b =+(k 、b 是常数)【答案】C【分析】根据一次函数的定义逐项分析即可.【详解】A . 21y x =+中自变量的次数是2,故不是一次函数; B . 12y x=-中自变量在分母上,故不是一次函数; C . 23y x =+是一次函数;D . 当k=0时,y kx b =+(k 、b 是常数)不是一次函数.故选C .【点睛】本题考查了一次函数的定义,一般地,形如y =kx +b ,(k 为常数,k ≠0)的函数叫做一次函数.2.(2019·上海市敬业初级中学)下列命题错误的是( )A .正比例函数是一次函数B .反比例函数不是一次函数C .如果1y -和x 成正比例,那么y 是x 的一次函数D .一次函数也是正比例函数【答案】D【分析】直接利用正比例函数与一次函数的定义判断得出即可.【详解】解:A 、正比例函数是一次函数,此选项正确;B 、反比例函数不是一次函数,故此选项正确;C 、如果1y -和x 成正比例,则y-1=kx ,即y=kx+1,那么y 是x 的一次函数,故此选项正确;D 、一次函数可能是正比例函数,也可能不是正比例函数,故此选项错误;故选:D .【点睛】此题主要考查了正比例函数与一次函数的定义,正确把握它们的区别与联系是解题关键.3.(2020·上海市奉贤区弘文学校八年级期末)正比例函数的图像在第二、四象限内,则点(--1m m ,)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据一次函数图象与系数的关系由正比例函数y =mx 的图象在第二、四象限内得到m <0,则﹣m>0,m −1<0,于是得到点(−m ,m −1)在第四象限.【详解】解:∵正比例函数y =mx 的图象在第二、四象限内,∴m <0,∴-m>0,m −1<0,∴点(-m ,m −1)在第四象限.故选:D .【点睛】本题考查了一次函数图象与系数的关系:一次函数y =kx +b (k ≠0),当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限;当b >0,图象与y 轴的交点在x 轴上方;b =0,图象过原点;当b <0,图象与y 轴的交点在x 轴下方.4.(2018·上海全国·八年级期中)一次函数y kx k =+的图象可能是( )A .B .C .D . 【答案】A【分析】根据一次函数的图象与系数的关系进行解答即可【详解】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故A 正确.故选A.【点睛】本题考查的是一次函数的图象,熟知一次函数y=kx+b (k ≠0)中,当k<0,b<0时,函数图像经过二、三、四象限是解答此题的关键.5.(2020·上海徐汇区·八年级期末)若一次函数的图像不经过第三象限,则k b 、的取值范围是( ).A .k ﹤0,0b ≥;B .k ﹥0,b ﹥0;C .k ﹤0,b ﹥0;D .k ﹥0,b ﹤0;【答案】A【分析】根据一次函数的图象与系数的关系即可得出结论.【详解】∵一次函数y kx b =+的图象不经过第三象限,∴直线y kx b =+经过第一、二、四象限或第二、四象限,∴0k <,0b ≥.故选:A .【点睛】本题考查的是一次函数的图象与系数的关系,熟知一次函数一次函数y kx b=+(0k ≠)的图象与系数k ,b 的关系是解答此题的关键.6.(2018·上海松江区·八年级期中)如图,一次函数y kx b =+的图像经过,两点,那么当3y >时,x 的取值范围是( )A .0x <B .2x <C .1x >D .1x <【答案】D【分析】根据一次函数的图象可直接进行解答.【详解】由函数图象可知,此函数是减函数,当y=3时x=1,故当y>3时,x<1,故选:D.【点睛】此题考查一次函数的性质,一次函数图象上点的坐标特点.7.(2019·上海市闵行区明星学校)在一次函数y=ax-a 中,y 随x 的增大而减小,则其图像可能是( )A .B .C .D .【答案】B 【分析】根据y 随x 的增大而减小可得a <0,−a >0,然后判断函数图象即可.【详解】解:∵一次函数y =ax-a 中,y 随x 的增大而减小,∴a <0,−a >0, ∴其图象过一、二、四象限,故选:B .【点睛】本题考查了一次函数的图象和性质,根据增减性判断出a <0,−a >0是解题的关键.8.(2020·上海市南汇第四中学八年级月考)一次函数y mx n =+的图像如图所示,那么下列说法正确的是( )A .当0x >时,2y >-B .当1x ≥时,0y ≤C .当1x <时,0y >D .当0x <时,20y -<<【答案】A【分析】根据图像,结合一次函数的性质逐项分析即可.【详解】A . 由图像可知,当0x >时,2y >-,故正确;B . 由图像可知, 当1x ≥时,0y ≥,故不正确;C . 由图像可知, 当1x <时,0y <,故不正确;D . 由图像可知,当0x <时,2y <-,故不正确;故选A .【点睛】本题主要考查函数和不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.9.(2019·青浦东方中学八年级期中)在函数y =kx (k >0)的图象上有三点A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3),已知x 1<x 2<0<x 3,则下列各式中正确的是( )A .y 1<0<y 3B .y 3<0<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2【答案】A【分析】根据正比例函数的图象性质.【详解】k >0,正比例函数,y 随x 增大而增大.【点睛】正比例函数y=kx (k 图象性质: 0,k >,正比例函数图象过一、三象限和原点,y 随x 增大而增大;0,k <,正比例函数图象过二、四象限和原点,y 随x 增大而减小.二、填空题10.(2020·上海嘉定区·八年级期末)已知一次函数,那么()1f -=______.【答案】1-【分析】代入1x =-,即可求出()1f -的值.【详解】当1x =-时,.故答案为:1-.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y kx b =+是解题的关键.11.(2019·上海市闵行区明星学校)如果y关于x 的函数y=(k-1)x+1是一次函数,那么k 的取值范围是______.【答案】k ≠1【分析】根据一次函数的定义条件求解即可.【详解】解:∵y =(k -1)x+1是一次函数,∴k -1≠0,即k ≠1,故答案为:k ≠1.【点睛】本题主要考查了一次函数的定义,属于基础题,注意掌握一次函数y =kx +b 的定义条件是:k 、b 为常数,k ≠0.12.(2020·上海市静安区实验中学八年级期中)已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.【答案】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.13.(2019·上海).已知函数y=(k+2)x+k 2﹣4,当k _________ 时,它是一次函数.【答案】﹣2【分析】根据一次函数的定义可知自变量的系数不为零.【详解】解:∵函数y=(k+2)x+k 2﹣4是一次函数,∴k+2≠0,即k ≠﹣2.故答案为:≠﹣2.【点睛】本题考点:一次函数的定义,正确把握定义是解题的关键.14.(2019·上海)根据图中的程序,当输入x=-3时,输出结果y =________.【答案】1【分析】根据题意可知当x=-3≤1时,应代入函数y=x+4,然后求解即可.【详解】解:∵x=-3≤1,∴当x=-3时,y= x+4=﹣3+4=﹣1.故答案为:﹣1.【点睛】本题主要考查一次函数,解此题的关键在于理解题意,根据自变量的取值范围选择正确的函数进行求解.15.(2019·上海)若298y m x x =-+表示一次函数,则m 满足的条件是__________________。

(完整版)初中一次函数及相关典型例题

(完整版)初中一次函数及相关典型例题

一次函数复习课知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数.(4)当b=0,k=0时,它不是一次函数.知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点3 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点4 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k ≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交;当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b=0时,即-kb =0时,直线经过原点; 当k ,b 同号时,即-kb ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限;当k >0,b=0时,图象经过第一、三象限;当b >O ,b <O 时,图象经过第一、三、四象限;当k ﹤O ,b >0时,图象经过第一、二、四象限;当k ﹤O ,b=0时,图象经过第二、四象限;当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系.直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ;当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b .(3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例讲解 基本题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2. [分析] 本题主要考查对一次函数及正比例函数的概念的理解.解:(1)(3)(5)(6)是一次函数,(l )(6)是正比例函数.例2 当m 为何值时,函数y=-(m-2)x 32-m +(m-4)是一次函数?[分析] 某函数是一次函数,除应符合y=kx+b 外,还要注意条件k ≠0. 解:∵函数y=(m-2)x 32-m +(m-4)是一次函数,∴⎩⎨⎧≠--=-,0)2(,132m m ∴m=-2.∴当m=-2时,函数y=(m-2)x 32-m +(m-4)是一次函数.小结 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.基础应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.[分析] (1)弹簧每挂1kg 的物体后,伸长0.5cm ,则挂xkg 的物体后,弹簧的长度y 为(l5+0.5x )cm ,即y=15+0.5x .(2)自变量x 的取值范围就是使函数关系式有意义的x 的值,即0≤x ≤18.(3)由y=15+0.5x 可知,y 是x 的一次函数.解:(l )y=15+0.5x .(2)自变量x 的取值范围是0≤x ≤18.(3)y 是x 的一次函数.学生做一做 乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s (千米)与行驶时间t (时)之间的函数关系式是 .老师评一评 研究本题可采用线段图示法,如图11-19所示.火车从乌鲁木齐出发,t 小时所走路程为58t 千米,此时,距离库尔勒的距离为s 千米,故有58t+s=600,所以,s=600-58t .例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.[分析] 本题给出了函数关系式,欲求函数值,但没有直接给出t 的具体值.从题中可以知道,t=0表示中午12时,t=1表示下午1时,则上午10时应表示成t=-2,当t=-2时,M=(-2)3-5×(-2)+100=102(℃).答案:102例5 已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.[分析] 由y-3与x 成正比例,则可设y-3=kx ,由x=2,y=7,可求出k ,则可以写出关系式.解:(1)由于y-3与x 成正比例,所以设y-3=kx .把x=2,y=7代入y-3=kx 中,得7-3=2k ,∴k =2.∴y 与x 之间的函数关系式为y-3=2x ,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y =4时,4=2x+3,∴x=21. 学生做一做 已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 .老师评一评 由y 与x+1成正比例,可设y 与x 的函数关系式为y=k (x+1).再把x=5,y=12代入,求出k 的值,即可得出y 关于x 的函数关系式. 设y 关于x 的函数关系式为y=k (x+1).∵当x=5时,y=12,∴12=(5+1)k ,∴k=2.∴y 关于x 的函数关系式为y=2x+2.【注意】 y 与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M[分析] 本题考查正比例函数的图象和性质,因为当x 1<x 2时,y 1>y 2,说明y 随x 的增大而减小,所以1-2m ﹤O,∴m >21,故正确答案为D 项. 学生做一做 某校办工厂现在的年产值是15万元,计划今后每年增加2万元.(1)写出年产值y (万元)与年数x (年)之间的函数关系式;(2)画出函数的图象;(3)求5年后的产值.老师评一评 (1)年产值y (万元)与年数x (年)之间的函数关系式为y=15+2x .(2)画函数图象时要特别注意到该函数的自变量取值范围为x ≥0,因此,函数y=15+2x 的图象应为一条射线.画函数y=12+5x 的图象如图11-21所示.(3)当x=5时,y =15+2×5=25(万元)∴5年后的产值是25万元.例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式. [分析] 从图象上可以看出,它与x 轴交于点(-1,0),与y 轴交于点(0,-3),代入关系式中,求出k 为即可.解:由图象可知,图象经过点(-1,0)和(0,-3)两点,代入到y=kx+b 中,得⎩⎨⎧+=-+-=,03,0b b k ∴⎩⎨⎧-=-=.3,3b k ∴此函数的表达式为y=-3x-3.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.[分析]图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可.解:由题意可设所求函数表达式为y=2x+b,∴图象经过点(2,-1),∴-l=2×2+b.∴b=-5,∴所求一次函数的表达式为y=2x-5.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例8 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?[分析]判断某函数是一次函数,只要符合y=kx+b(k,b中为常数,且k≠0)即可;判断某函数是正比例函数,只要符合y=kx(k为常数,且k ≠0)即可.解:(1)y是x的一次函数.∵y+a与x+b是正比例函数,∴设y+a=k(x+b)(k为常数,且k≠0)整理得y=kx+(kb-a).∵k≠0,k,a,b为常数,∴y=kx+(kb-a)是一次函数.(2)当kb-a=0,即a=kb时,y是x的正比例函数.例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?[分析]这是一道实际生活中的应用题,解题时必须对两种不同的收费方式仔细分析、比较、计算,方可得出正确结论.解:(1)y1=50+0.4x(其中x≥0,且x是整数)y2=0.6x(其中x≥0,且x是整数)(2)∵两种通讯费用相同,∴y 1=y 2,即50+0.4x=0.6x .∴x =250.∴一个月内通话250分时,两种通讯方式的费用相同.(3)当y 1=200时,有200=50+0.4x ,∴x=375(分).∴“全球通”可通话375分.当y 2=200时,有200=0.6x ,∴x=33331(分). ∴“神州行”可通话33331分. ∵375>33331, ∴选择“全球通”较合算.例10 已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.[分析] 由已知y+2与x 成正比例,可设y+2=kx ,把x=-2,y=0代入,可求出k ,这样即可得到y 与x 之间的函数关系式,再根据函数图象及其性质进行分析,点(m ,6)在该函数的图象上,把x=m ,y=6代入即可求出m 的值.解:(1)∵y+2与x 成正比例,∴设y+2=kx (k 是常数,且k ≠0)∵当x=-2时,y=0.∴0+2=k ·(-2),∴k =-1.∴函数关系式为x+2=-x ,即y=-x-2.(2)列表;x0 -2(3)由函数图象可知,当x ≤-2时,y ≥0.∴当x ≤-2时,y ≥0.(4)∵点(m ,6)在该函数的图象上,∴6=-m-2,∴m =-8.(5)函数y=-x-2分别交x 轴、y 轴于A ,B 两点,∴A (-2,0),B (0,-2).∵S △ABP =21·|AP|·|OA|=4, ∴|BP|=428||8==OA . ∴点P 与点B 的距离为4.又∵B 点坐标为(0,-2),且P 在y 轴负半轴上,∴P 点坐标为(0,-6).例11 已知一次函数y=(3-k )x-2k 2+18.(1)k 为何值时,它的图象经过原点?(2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象平行于直线y=-x ?(4)k 为何值时,y 随x 的增大而减小?[分析] 函数图象经过某点,说明该点坐标适合方程;图象与y 轴的交点在y 轴上方,说明常数项b >O ;两函数图象平行,说明一次项系数相等;y 随x 的增大而减小,说明一次项系数小于0.解:(1)图象经过原点,则它是正比例函数.∴⎩⎨⎧≠-=+-,03,01822k k ∴k =-2. ∴当k=-3时,它的图象经过原点. (2)该一次函数的图象经过点(0,-2).∴-2=-2k 2+18,且3-k ≠0,∴k=±10∴当k=±10时,它的图象经过点(0,-2)(3)函数图象平行于直线y=-x ,∴3-k=-1,∴k =4.∴当k =4时,它的图象平行于直线x=-x .(4)∵随x 的增大而减小,∴3-k ﹤O .∴k >3.∴当k >3时,y 随x 的增大而减小.例12 判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.[分析] 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上.解:设过A ,B 两点的直线的表达式为y=kx+b .由题意可知,⎩⎨⎧+=-+=,02,31b b k ∴⎩⎨⎧-==.2,1b k ∴过A ,B 两点的直线的表达式为y=x-2.∴当x=4时,y=4-2=2.∴点C (4,2)在直线y=x-2上.∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.学生做一做 判断三点A (3,5),B (0,-1),C (1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例13 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x 从0开始逐渐增大时,y=2x+8和y=6x 哪一个的函数值先达到30?这说明了什么?(2)直线y=-x 与y=-x+6的位置关系如何?甲生说:“y=6x 的函数值先达到30,说明y=6x 比y=2x+8的值增长得快.” 乙生说:“直线y=-x 与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?[分析] (1)可先画出这两个函数的图象,从图象中发现,当x >2时,6x >2x+8,所以,y=6x 的函数值先达到30.(2)直线y=-x 与y=-x+6中的一次项系数相同,都是-1,故它们是平行的,所以这两位同学的说法都是正确的.解:这两位同学的说法都正确.例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x ,甲旅行社的收费为y 甲元,乙旅行社的收费为y 乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.[分析] 先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,再通过比较,探究结论.解:(1)甲旅行社的收费y 甲(元)与学生人数x 之间的函数关系式为 y 甲=240+21×240x=240+120x. 乙旅行社的收费y 乙(元)与学生人数x 之间的函数关系式为y 乙=240×60%×(x+1)=144x+144.(2)①当y 甲=y 乙时,有240+120x=144x+144,∴24x =96,∴x=4.∴当x=4时,两家旅行社的收费相同,去哪家都可以.②当y 甲>y 乙时,240+120x >144x+144,∴24x <96,∴x <4.∴当x ﹤4时,去乙旅行社更优惠.③当y 甲﹤y 乙时,有240+120x ﹤140x+144,∴24x >96,∴x >4.∴当x >4时,去甲旅行社更优惠.小结 此题的创新之处在于先通过计算进行讨论,再作出决策,另外,这两个函数都是一次函数,利用图象来研究本题也不失为一种很好的方法.学生做一做 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,并写出自变量X 的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由. 老师评一评 先求出两种购买方案的付款y (元)与所购买的水果量x (千克)之间的函数关系式,再通过比较,探索出结论.(1)甲方案的付款y 甲(元)与所购买的水果量x (千克)之间的函数关系式为y 甲=9x (x ≥3000);乙方案的付款y 乙(元)与所购买的水果量x (千克)之间的函数关系式为y 乙=8x+500O (x ≥3000).(2)有两种解法:解法1:①当y 甲=y 乙时,有9x=8x+5000,∴x=5000.∴当x=5000时,两种方案付款一样,按哪种方案都可以.②当y 甲﹤y 乙时,有9x ﹤8x+5000,∴x <5000.又∵x ≥3000,∴当3000≤x ≤5000时,甲方案付款少,故采用甲方案.③当y 甲>y 乙时,有9x >8x+5000,∴x >5000.∴.当x >500O 时,乙方案付款少,故采用乙方案.解法2:图象法,作出y 甲=9x 和y 乙=8x+5000的函数图象,如图11-24所示,由图象可得:当购买量大于或等于3000千克且小于5000千克时,y 甲﹤y 乙,即选择甲方案付款少;当购买量为5000千克时,y 甲﹥y 乙即两种方案付款一样;当购买量大于5000千克时,y 甲>y 乙,即选择乙方案付款最少.【说明】 图象法是解决问题的重要方法,也是考查学生读图能力的有效途径.例15 一次函数y=kx+b 的自变量x 的取值范围是-3≤x ≤6,相应函数值的取值范围是-5≤y ≤-2,则这个函数的解析式为 .[分析] 本题分两种情况讨论:①当k >0时,y 随x 的增大而增大,则有:当x=-3,y=-5;当x=6时,y=-2,把它们代入y=kx+b 中可得⎩⎨⎧+=-+-=-,62,35b k b k ∴⎪⎩⎪⎨⎧-==,4,31b k ∴函数解析式为y=-31x-4.②当k ﹤O 时则随x 的增大而减小,则有:当x=-3时,y=-2;当x=6时,y=-5,把它们代入y=kx +b 中可得⎩⎨⎧+=-+-=-,65,32b k b b ∴⎪⎩⎪⎨⎧-=-=,3,31b k ∴函数解析式为y=-31x-3. ∴函数解析式为y=31x-4,或y=-31x-3. 答案:y=31x-4或y=-31x-3. 【注意】 本题充分体现了分类讨论思想,方程思想在一次函数中的应用,切忌考虑问题不全面.中考试题预测例1 某地举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x (人)成正比例,当x=20时y=160O ;当x=3O 时,y=200O .(1)求y 与x 之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?[分析] 设举办乒乓球比赛的费用y (元)与租用比赛场地等固定不变的费用b (元)和参加比赛的人数x (人)的函数关系式为y=kx+b (k ≠0).把x=20,y=1600;x=30,y=2000代入函数关系式,求出k ,b 的值,进而求出y 与x 之间的函数关系式,当x=50时,求出y 的值,再求得y ÷50的值即可.解:(1)设y 1=b ,y 2=kx (k ≠0,x >0),∴y=kx+b .又∵当x=20时,y=1600;当x=30时,y=2000,∴⎩⎨⎧+=+=,302000,201600b k b k ∴⎩⎨⎧==.800,40b k∴y 与x 之间的函数关系式为y=40x+800(x >0).(2)当x=50时,y=40×50+800=2800(元).∴每名运动员需支付2800÷50=56(元〕答:每名运动员需支付56元.例2 已知一次函数y=kx+b ,当x=-4时,y 的值为9;当x=2时,y 的值为-3.(1)求这个函数的解析式。

一次函数经典例题20题

一次函数经典例题20题

一次函数经典例题20题(最新版)目录1.题目概述2.一次函数的基本概念3.一次函数的性质4.例题解析5.总结正文一次函数经典例题 20 题一次函数是数学中的基本概念之一,它在各个领域的数学问题中都有广泛的应用。

本文将通过 20 个经典例题,介绍一次函数的基本概念和性质,并解析如何解决一次函数的题目。

一、一次函数的基本概念一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,且 a 不等于 0。

在这个函数中,x 的次数为 1,因此称为一次函数。

其中,y 表示函数的输出,x 表示函数的输入,a 表示斜率,b 表示截距。

二、一次函数的性质1.斜率斜率是指函数图像在坐标系中的倾斜程度。

在一次函数 y=ax+b 中,斜率 a 表示函数图像的倾斜程度。

当 a>0 时,函数图像是向上倾斜的;当 a<0 时,函数图像是向下倾斜的。

2.截距截距是指函数图像与坐标轴的交点。

在一次函数 y=ax+b 中,截距 b表示函数图像与 y 轴的交点。

当 b>0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b<0 时,函数图像与 y 轴的交点在 y 轴的负半轴上。

3.函数的单调性一次函数的单调性是指函数值随着自变量的增大或减小而单调增加或单调减少的性质。

当斜率 a>0 时,函数图像是向上倾斜的,函数值随着 x 的增大而单调增加;当斜率 a<0 时,函数图像是向下倾斜的,函数值随着 x 的增大而单调减少。

三、例题解析以下是 20 个一次函数的经典例题及其解析:1.已知函数 y=2x+3,求当 x=2 时的函数值。

解:将 x=2 代入函数 y=2x+3 中,得到 y=2×2+3=7。

2.已知函数 y=-x+7,求当 x=5 时的函数值。

解:将 x=5 代入函数 y=-x+7 中,得到 y=-5+7=2。

3.已知函数 y=3x-2,求函数的斜率。

解:函数的斜率是 3。

一次函数知识点及分类练习题(绝对经典全面)

一次函数知识点及分类练习题(绝对经典全面)

一次函数知识点及分类练习题(绝对经典全面)一次函数知识点及分类练题一、一次函数的定义1.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()。

A。

0 B。

-1 C。

±1 D。

12.若函数是一次函数,则m的值为()。

A。

0 B。

-1 C。

1 D。

23.下列函数:①y=x,②y=2x-1,③y=3,④y=-x中,是一次函数的有()。

A。

4个 B。

3个 C。

2个 D。

1个4.已知函数y=(k-1)x+k2-1,当k=1时,它是一次函数,当k≠1时,它是正比例函数。

二、一次函数的性质5.已知一次函数。

若x的增大而增大,则y的取值范围是()。

A。

(负无穷,正无穷) B。

(0,正无穷) C。

(负无穷,0) D。

(0,正实数)6.已知一次函数的图象经过第二、三、四象限,则y的取值范围在数轴上表示为()。

A。

(0,正无穷) B。

(负无穷,0) C。

(负无穷,正无穷) D。

(0,正实数)7.已知(-1,y1),(1.8,y2),(2,y3)是直线y=-3x+m (m为常数)上的三个点,则y1,y2,y3的大小关系是()。

A。

y3>y1>y2 B。

y1>y3>y2 C。

y1>y2>y3 D。

y3>y2>y18.下列图象中,哪个是一次函数的大致图象()。

A。

9.在一次函数y=kx+2中,XXX随x的增大而增大,则k>0,它的图象不经过第三象限。

10.若点P(-3,y1),Q(2,y2)在一次函数的图象上,则y1与y2的大小关系是()。

三、一次函数图像的平移11.直线y=2x+2向下平移4个单位后与x轴的交点坐标是()。

A.(-1,1)B.(-1,-1)C.(-3,0)D.(1,-1)12.一次函数的图像先向下平移5个单位后再向右平移4个单位,其函数关系式为y=k(x+4)+5.13.一次函数能过平移后变为y=-5x+6,其平移过程是将原函数向上平移6个单位。

14.将一次函数y=-2x-1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=-2x+2.四、一次函数的求值15.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是()。

初中数学一次函数考点归纳及例题详解

初中数学一次函数考点归纳及例题详解

一次函数考点归纳及例题详解 考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数. 【例题】1.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 2.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.3.已知一次函数kxk y )1(-=+3,则k = .4.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.【例题】1. 直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 2. 一次函数y=6x+1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 一次函数y = -3 x + 2的图象不经过第 象限.4. 一次函数2y x =+的图象大致是( )5. 关于x 的一次函数y=kx+k 2+1的图像可能是( )6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). A.-2 B.-1 C.0 D.27.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >29.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __.10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。

一次函数知识点及其典型例题

一次函数知识点及其典型例题

一次函数知识点及其典型例题一次函数是数学中的基础概念之一。

其中,变量是在一个变化过程中可以取不同数值的量,而常量则是在一个变化过程中只能取同一数值的量。

例如,在匀速运动公式s=vt中,速度v和时间t是变量,路程s是常量。

在圆的周长公式C=2πr 中,周长C是常量,半径r是变量。

函数是指在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

判断y是否为x的函数,只需要看x取值确定的时候,y是否有唯一确定的值与之对应。

例如,y=πx、y=2x-1、y=-3x+2、y=x-1都是一次函数。

对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。

画一次函数图像的一般步骤是:第一步,列表(表中给出一些自变量的值及其对应的函数值);第二步,描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步,连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

函数的表示方法有三种:列表法、解析式法和图象法。

列表法一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法形象直观,但只能近似地表达两个变量之间的函数关系。

正比例函数是一种特殊的一次函数,其一般形式为y=kx(k是常数,k≠0)。

其中,k叫做比例系数。

当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小。

正比例函数必过点(0,0)和(1,k)。

1.若y=x+2-3b是正比例函数,则b的值是()A。

一次函数的定义专项练习30题有答案资料全

一次函数的定义专项练习30题有答案资料全

一次函数的定义专项练习30题1.下列五个式子,①,②,③y=-χ+l,④,⑤y=2χj +l,其中表示y 是X 的一次函数的有( ) A ・5个 B. 4个C. 3个D. 2个2.下列函数中,y 是X 的一次函数的是( ) Λ. y= - 3X 2- 1 B ・ y=x',+2 C ・ y=2(χ-l)? D.A.路程一定时,时间y 和速度X 的关系 B. 长10米的铁丝折成长为y,宽为X 的长方形 C. 圆的面积y 与它的半径XD.斜边长为5的直角三角形的直角边y 和X4.下列函数:①y=-χ+2;②y=-χ'+2;③y 二-3x ;④;⑤,其中不是一次函数的有( )A. 1个B. 2个C. 3个D. 4个5. 下列函数(1) y=2x - 1J (2) y=πχ; (3) y=; A. 4个 B. 3个C. 2个(4) y=; (5) y=x^- 1中,是一次函数的有(D ・1个6.下列说确的是( )Λ.一次函数是正比例函数7.已知函数y=3x÷L 当自变量增加3时,相应的函数值增加( )Λ. 10 B. 9 C. 3 D. 8 8.对于函数y=2χ- I 9当自变量増加m 时, 相应的函数值增加 ( ) Λ. 2mB. 加一 1C. InD. 2m+laz9.若+5是一次函数 ,则 a=()A. ±3B. 3C. -3D.10. 若函数y= <m- 1) X rι+2是一次函数• 则m 的值为( )A. m=± 1B. In= _ 1C. In=ID. m≠ - 111・函数 y= (m- 2) n - X '+n 是一次函数, m 1 r 应满足的条件是 ( ) A. m≠2 且 n=0B. m=2 且 n=2C. m≠2 且 n=2D. m=2 且 n=0 12・下列说确的是()A.y=kx+b (k 、b 为任意常数)一定是一次函数C. 正比例函数不是一次函数D.一次函数不可能是正比例函数3.下列问题中,变量y 与X 成一次函数关系的是( B. 正比例函数是一次函数B.(常数k≠0)不是正比例函数C.正比例函数一定是一次函数D.一次函数一定是正比例函数13・已知y+2与X成正比例,则y是X的( )A.一次函数B.正比例函数C.反比例函数D.无法判断14・设圆的面积为S,半径为R,那么下列说法确的是( )Λ.S是R的一次函数 B. S是R的正比例函数C. S是F的正比例函数 D. 以上说法都不正确15.已知函数y= (k+2) x+k2-4,当k ________________ 时,它是一次函数.16.如果函数y= (a-2) x+3是一次函数,那么a .17.当In二时,函数y= (m+5) χjπ^1÷7x - 3 (x≠0)是一个一次函数.18.已知一次函数y=(k-l)x"+3,则k= _______________ •19.已知:y= (m- 1) χπ ÷4,当∏F时,图象是一条直线・20.把2x- y=3写成y是X的函数的形式为21.在函数y=-2χ-5 中,k= , b二.22.一次函数y=-2χ-l,当X=- 5 时,y= ___________ ,当y=-7 时,x= .23. k 一次函数y=kx+b中,k、b都是,且k ,自变量X的取值围是;当________ , b ____________ 时它是正比例函数.24・函数:①y=-2x+3;②x+y=l;③Xy二1;④y=;⑤y=+l;⑥y二O. 5x中,属于一次函数的有,属正比例函数的有__________ (只填序号)25.若y二mχιτ +2是一次函数的解析式且y随X的増大而减小,则In的值等于26.已知函数y= (m-3) X n '2÷3是一次函数,求解析式.27.已知函数y= (m - 10) x+1 - 2m.(1)m为何值时,这个函数是一次函数;(2)In为何值时,这个函数是正比例函数.28.已知函数y二(m÷l) x÷ (m2-l)当m取什么值时,y是X的一次函数?当m取什么值是,y是X的正比例函数・29.X为何值时,函数的值分别满足下列条件:(1)y=3; (2) y>2.30.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数•①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离S (千米)和时间t (小时)之间的函数关系是什么?的函数关系式为 _______________ ,它是______________ 函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s (千米)与时间t (小时)之间的函数关系是什么?的函数关系式为,它是函数.DOC格式,一次函数定义30题参考答案:1.①是反比例函数,故本选项错误;②符合一次函数的定义;故本选项正确;③y=-χ+l符合一次函数的定义;故本选项正确;④=x-,符合一次函数的定义;故本选项正确;⑤y=2χ2+l,是二次函数;故本选项错误;综上所述,表示y是X的一次函数的有3个;故选C2.A、自变量次数不为1,故不是一次函数;B、自变疑次数不为1,故不是一次函数;C、自变疑次数不为1,故不是一次函数;D、是一次函数.故选D.3.A、设路程是s,则根据题意知,尸,是反比例函数关系.故本选项错误;B、根据题意,知IO=2 (x+y),即y=-χ+5,符合一次函数的定义.故本选项正确;C、根据題意,知y=Jτχ1这是二次函数,故本选项错误;D、根据题意,知子+齐25,这是双曲线方程,故本选项错误.故选B.4.①y=-χ+2是一次函数;②y=-√⅛是二次函数;③y=-3x是一次函数;④y=- X是一次函数;⑤尸-是反比例函数;所以,不是一次函数的有②©共2个.故选B5.(1) y=2x - 1 是一次函数;(2)y= π X是一次函数;(3)y=,自变量次数不为1,故不是一次函数;(4> y==t自变量次数不为1,故不是一次函数;(5) y=χ2 - 1自变量次数不为1,故不是一次函数;综上所述,一次函数有2个.故选C.6.A、一次函数不一定是正比例函数,故本选项错误;B、正比例函数一定是一次函数,故本选项正确;C、正比例函数一定是一次函数,故本选项错误;D、一次函数可能是正比例函数,故本选项错误. 故选B.7.因为y=3x+l,所以当自变量增加3时,屮=3 (x+3)+l=3x+l+9,相应的函数值增加9.故选B.8.当自变量增加m 时,y=2 (x+m) - 1,即y=2x+2m- 1, 故函数值相应増加加.故选Λ.9.根据一次函数的定义可知:a2-8=h a÷3≠0,解得: a=3. 故选B.10•根据题意得:,解得:m=- 1.故选B.11.T 函数y= (m- 2) χn^'+n 是一次函数,.∙.,解得,.故选C.12.A、y=kx+b (k、b为任意常数),当k=0时,不是一次函数,故本选项错误;B、(常数k≠0)是正比例函数,故本选项错误;C、正比例函数一定是一次函数,故本选项正确;D、一次函数不一定是正比例函数,故本选项错误. 故选C.13.y+2与X成正比例,则y+2=kx,即y=kχ-2,符合一次函数y=kx+b的定义条件:k、b为常数,k≠0, 自变量次数为1,则y是X的一次函数.故选A.14.由题意得,S=πR2,所以S是F的正比例函数.故选C.15.根据一次函数定义得,k+2≠0,解得k≠-2.故答案为:≠-2.16.Vy= (a-2) x+3 是一次函数,Λa-2≠0,Λa≠2.故答案为:a≠-2.17.①,解得:m=l根据题意得:2m- 1=1,解得:m=l,此时函数化简为y=13χ-3.②2m- 1=0,解得:m=,此时函数化简为y=7χ-2.5;③m+5=0,解得:m=-5,此时函数化简为y=7χ-3.故答案为:1或-5或18.根据题意得k-l≠0, Ikl=I则k≠l, k=±l,即k=- 1.19.Vy= (m- 1) X " +4的图象是一条直线,•;①当该图象是一次函数图象时,m∣ = l,且m- l≠0, 解得m= - 1.②当该直线是平行于X轴的直线时,m-2O,即呼1;综上所述,当m=± 1时,y= (m - 1 ) X " +4的图象是一条直线.故答案是:±120.2χ-y=3写成y是X的函数的形式为y=2χ-3. 故答案为:y=2χ-3.21.根据一次函数的定义,在函数y=-2χ-5中,k=- 2, b=-5.22.把x、y的值分别代入一次函数y=-2χ-l, 当X= - 5 时,y=-2X ( - 5) - 1=9;当y=-7 时,-7=-2χ-l,解得x=3.故填9、3.23.—次函数y=kx+b中,k、b都是常数,且k_ HO ,自变量X的取值围是任意实数;当1< HO , b二O时它是正比例函数.24.函数:φy= - 2x+3;②x+y=l;③Xy=4;④y=;⑤y=+l;@y=0. 5x中,属于一次函数的有①②© ,属正比例函数的有⑥(只填序号)25.Vy=mx " +2 是一次函数,∣m∣=l,Λm=± 1,Ty随X的增大而减小,Λm= - 1.故答案为:-126.Vm-3≠0 且m∣ -2=1,.,.m= - 3,.∙.函数解析式为:y= - 6x+327.(1)根据一次函数的定义可得:m-10H0,.∙.mH10,这个函数是一次函数;(2)根据正比例函数的定义,可得:m-10HO 且 1 -2m=0,.∙.m=时,这个函数是正比例函数.28.由函数是一次函数可得,m+l≠0,解得mH - 1,所以,mH-1时,y是X的一次函数;函数为正比例函数时,m+l≠0 且m' - 1=0,解得m=l,所以,当m二1时,y是X的正比例函数.29.(1)当y=3 时,可得:1.5x+6=3, 解得X= - 2;(2)当y>2 时,1.5x+6>2,解得30.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,则汽车离开A站的距离s=40t,它是正比例函数;故两空应分别填s=40t,正比例;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,则汽车离开A站的距离s=40t+4,它是一次函数;故两空应分别填s=40t+4, 一次.。

一次函数知识点总结及典型试题

一次函数知识点总结及典型试题

1 一次函数知识点总结及经典试题1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。

当0b =时,一次函数y kx =,又叫做正比例函数。

⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、一次函数y=kx +b 的图象 画法. 一次 函数 ()0k kx b k =+≠ k ,b符号0k > 0k < 0b > 0b < 0b = 0b > 0b < 0b = 图象性质 y 随x 的增大而增大 y 随x 的增大而减小 根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直\线,3、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.1. 正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大.2. 函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( )A.0<kB.1>kC.1≤kD.1<k3 若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )A.第一象限B. 第二象限C.第三象限D.第四象限4.若一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那( )A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <5.一次函数y =kx +b (k ,b 是常数,k ≠0)的图象如图9所示,则不等式kx +b >0的解集是( )A .x >-2B .x >0C .x <-2D .x <04 已知一次函数 的图象经过点 及点 (1,6),求此函数图象与坐标轴围成的三角形的面积.y y kx b =+ 2。

一次函数基础知识练习

一次函数基础知识练习

一次函数基础知识练习一、一次函数的定义1、下列函数(1)y=πx(2)y=2x-1 (3)y = 1x (4)y =21-3x (5)y =x 2-1中,是一次函数有( ) 2、已知一次函数k x k y )1(-=+3,则k =. 如果函数3)2(1+-=-k xk y 是一次函数,则=k 3、已知函数32)2(3--+=m x m y 是一次函数,则m =;此图象经过第象限。

4、28(3)1my m x m -=-++是一次函数,则m =二、单调性应用 1、已知点(-4,y 1),(2,y 2)都在直线y =- 12x +2上,则y 1与y 2大小关系是( ) (A )y 1>y 2 (B )y 1=y 2 (C )y 1<y 2 (D )不能比较2、已知点A (-1,a )与B (2,b )都在直线332+=x y 上,试用两种以上的方法比较a 与b 的大小; 3、若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,• 则k____0,b______0.4、点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是5、点P 1(x 1,y 1)点p 2(x 2,y 2)是一次函数=-4x+3图象上的两点,且x 1<x 2,则y 1与y 2的大小关系是6、点A (5-,1y )和B (2-,2y )都在直线112y x =-+上,则1y 与2y 的关系是 三、图像的基本识别1、已知一次函数y =kx +b 的图象如图所示,则k 、b 的符号是( )(A)k >0,b >0 (B)k >0,b <0 (C)k <0,b >0 (D)k <0,b2、已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是( )A .k ≠2B .k>2C .0<k<2D .0≤k<23、直线y=kx +b 经过一、二、四象限,则k 、b 应满足 ( )A . k>0, b<0B . k>0,b>0C . k<0, b<0;D . k<0, b>04、一次函数y=-(m 2+1)x -(m 2+2)的图象(m 为常数)不经过第象限5、已知一次函数4)2(-+-=m x m y 不经过第二象限,则m 的取值范围是6、若点P(a ,b)在第二象限内,则直线y =ax +b 不经过第_______限四、与不等式的关系1、如图,直线b kx y +=与x 轴的交点为(-3,0)则y >0时x 的取值范围是( )A.x >-3B.x >0C.x <-3D.x <02、对于一次函数32--=x y ,当x _______时,图象在x 轴下方.3、一次函数的图像交x 轴于(2,0),交y 轴于(0,3),当函数值大于0时,x 的取值范围是4、根据一次函数y=-3x-6的图像,当函数值大于零时,x 的范围是______________.5、根据函数33y x =-+的图象,回答下列问题:(1)y 的值随x 的增大而.(2)图象与x 轴的交点坐标是,与y 轴的交点坐标是.(3)当x 时,y >0;当x 时,y <0;当x 时,y =0.五、直线的平移(一)上下平移1、把直线32+-=x y 向下平移2个单位长度所得直线的解析式为2、将直线14+=x y 的图象向下平移3个单位长度,得到直线____________.3、已知一次函数b kx y +=的图象与43-=x y 的图象平行,而且经过点(1,1),则该一次函数的解析式为_________________5、若在同一坐标系中作出下列直线:①112y x =--;②21y x =-;③112y x =-+;④1y x =-.那么互相平行的直线是 7、已知直线y =(5-3m )x +32m -4与直线y =21x +6平行,求此直线的解析式. 8、直线(1)y k x b =-+与32y x =-平行,且过点(1,-2),请问直线y bx k =-不经过 象限9、若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是(二)、左右平移1、把一次函数12-=x y 沿着x 轴向左平移1个单位,得到的直线的解析式为__________.2、直线21y x =+向右平移2个单位后的解析式是;3、已知直线:y=3x -12,将直线向右平移5个单位长度得到直线,则直线的解析式. 4、已知直线:y=3x -12,将直线向左平移5个单位长度得到直线,则直线的解析式.5、直线y=-5x -12向左平移2个单位长度后得到的直线解析式是___;直线y=向右平移3个单位长度后得到的直线解析式是___.(三)、综合应用1、直线y=8x +13既可以看作直线y=8x -3向___平移(填“上”或“下”)___单位长度得到;也可以看作直线y=8x -3向___平移(填“左”或“右”)___单位长度得到.2、要由直线y=2x +12得到直线y=2x -6,可以通过平移得到:先将直线y=2x +12向___平移(填“上”或“下”)___单位长度得到直线y=2x ,再将直线y=2x 向___平移(填“上”或“下”)得到直线y=2x -6;当然也可以这样平移:先将直线y=2x +12向___平移(填“左”或“右”)___单位长度得到直线y=2x ,再将直线y=2x 向___平移(填“左”或“右”)得到直线y=2x -6;以上这两种方法是分步平移.也可以一次直接平移得到,即将直线y=2x +12向___平移(填“上”或“下”)直接得到直线y=2x -6,或者将直线y=2x +12向___平移(填“左”或“右”)直接得到直线y=2x -6.六、直线与坐标轴围成的三角形的面积1、一次函数y=-2x+4的图象与x 轴交点坐标 是,与y 轴交点坐标是 图象与坐标轴所围成的三角形面积是 .2、一次函数y=2x -4的图象与x 轴交点坐标是,与y 轴交点坐标是.3、一次函数y=2x+b 与两坐标轴围成三角形的面积为4,则b=________________.4、直线443--=x y 与两坐标轴围成的三角形面积是 5、如果一次函数4+=kx y 与两坐标轴围成的三角形面积为4,则=k _____6、函数25+-=x y 与x 轴的交点是,与y 轴的交点是,与两坐标轴围成的三角形面积是。

一次函数的概念及相关例题解析

一次函数的概念及相关例题解析

【知识要点】一.什么是函数函数就是一个数变化,另一个数跟着这个数变化。

标准地来说,函数(function )表示每个输入值对应唯一输出值的一种对应关系。

二.初中学习的函数正比例函数:y=kx(k ≠0)一次函数:y=kx+b(k ≠0)反比例函数:y=x k(x ≠0)二次函数:y=2ax +bx+c(a ≠0)三.一次函数与正比例函数1、一次函数:形如y=kx+b (k ≠0, k, b 为常数)的函数。

注意:(1)k ≠0,否则自变量x 的最高次项的系数不为1;(2)当b=0时,y=kx ,y 叫x 的正比例函数。

2、图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y 轴交于(0,b );与x 轴交于(-,0)(2)由图象可以知道,直线y=kx+b 与直线y=kx 平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x 平行。

3、性质:(1)图象的位置:(2)增减性k>0时,y 随x 增大而增大k<0时,y 随x 增大而减小【例1】下列函数中是一次函数的是( )A. B. C. D.【例2】在函数y =3x -2,y =+3,y =-2x ,y =-x 2+7是正比例函数的( )A 、0 个B 、1 个C 、2 个D 、3 个知识点2、一次函数的图象和性质1 形状:一次函数的图象是一条2 画法确定 个点就可以画一次函数图像。

一次函数与轴的交点坐标( ,0),与轴的交点坐标(0, ),正比例函数的图象必经过两点分别是(0, )、(1, )。

3 性质(1)一次函数,当 0时,的值随值得增大而增大;当 0时,的值随值得增大而减小。

(2)正比例函数,当 0时,图象经过一、三象限;当 0时,图象经过二、四象限。

强调:k,b 与 一次函数y=kx +b 的图象与性质:k 决定函数的增减性;b 决定图象与y 轴的交点位置①当k>0时,y 随着x 的增大而增大,②当k<0时,y 随着x 的增大而减小,③当b >0时,直线交于y轴的正半轴,④当b <0时,直线交于y轴的负半轴⑤当b =0时,直线交经过原点, 122-=x y x y 1-=31+=x y 1232-+=x x y xx y )0(≠+=k b kx y k y x k y x k k【例3】关于函数,下列说法中正确的是( )A.函数图象经过点(1,5)B.函数图像经过一、三象限C. 随的增大而减小D.不论取何值,总有【例4】一次函数的图象不经过( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的定义及经典习题 济宁附中李涛
1、判断正误:
(1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( )
(3)x +2y =5是一次函数; ( )(4)2y -x=0是正比例函数. ( )
2、选择题(1)下列函数中一次函数的个数为( )
①y=2x ;②y=3+4x ;③y=21
;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y-1=0;
A .3个
B 4个
C 5个
D 6个
3、填空题
(1)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。

(2)当m=__________时,函数y=3x + m 是一次函数。

(3 )关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_______。

(4)已知函数23(2)m y m x -=-是正比例函数,则m 的值为 .
(5)下列函数中,是一次函数的有 (填序号)
① 2c r π=;② 2(3)y x =-;③ 22
n m -=
; ④ (50)s x x =-;⑤ 100t v =. 4、已知函数(12)1y k x k =--+.
(1) 当k 取何值时,这个函数是正比例函数;
(2) 当k 取何值时,这个函数是一次函数.
5、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y=221x +1;⑥y=0.5x 中,属一次函数的
有 ,属正比例函数的有 (只填序号)
(2)当m= 时,y=()
()m x m x m +-+-1122是一次函数。

(3)请写出一个正比例函数,且x =2时,y= -6
请写出一个一次函数,且x=-6时,y=2
6、汽车以40千米/小时的平均速度从A 站出发,行驶了t 小时,那么汽车离开A 站的距离s(千米)和时间t(小时)之间的函数关系是什么?的函数关系式为 ,它是 函数
7、曾子伟叔叔的庄园里已有50棵树,,他决定今后每年栽2棵树,则曾叔叔庄园树木的总数y (棵)
与年数x 的函数关系式为 它是 函数
8、圆柱底面半径为5cm ,则圆柱的体积V (cm 3)与圆柱的高h (cm )之间的函数关系式为 ,它是 函数
9、甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资。

10、在拖拉机油箱中,盛满56千克油,拖拉机工作时,每小时平均耗油6千克,求邮箱里剩下Q(千克)与拖拉机的工作时间t(小时)之间的函数解析式。

函数定义经典题目
一、选择题1、下列各表达式不是表示y与x的函数的是()
A、y=3x2
B、y=错误!未找到引用源。

C、y=±错误!未找到引用源。

(x>0)
D、y=3x+1
2、下列各曲线中,不能表示y是x的函数的是()
A 、
B 、
C 、
D 、
3、在下表中,设x表示乘公共汽车的站数,y表示应付的票价(元)
根据此表,下列说法正确的是()
A、y是x的函数
B、y不是x的函数
C、x是y的函数
D、以上说法都不对
4、下列是关于变量x和y的四个关系式:①y=x;②y2=x;③2x2=y;④y2=2x.其中y是x的函数有()
A、1个
B、2个
C、3个
D、4个
5、下图中,分别给出了变量x与y之间的对应关系,y不是x的函数的是()
A 、
B 、
C 、
D 、
二、填空题
6、在关系式y=2x2+x+1中,可把看成的函数,其中是自变量,是因变量.
7、下列:①y=x2;②y=2x+1;③y2=2x(x≥0);④y=错误!未找到引用源。

(x≥0),具有函数关系(自变量为x)的是.。

相关文档
最新文档