一次函数的定义练习题及答案

合集下载

一次函数经典题及答案

一次函数经典题及答案

一次函数经典题一.定义型是一次函数,求其解析式。

已知函数1. 例解:由一次函数定义知,。

y=-6x+3,故一次函数的解析式为。

0≠m-3。

如本例中应保证0≠k解析式时,要保证y=kx+b 注意:利用定义求一次函数 . 二点斜型,求这个函数的解析式。

(2, -1)的图像过点y=kx-3已知一次函数2. 例,(2, -1)解:一次函数的图像过点。

y=x-3。

故这个一次函数的解析式为k=1,即,求这个函数的解析式。

y=-1时,x=2,当y=kx-3 变式问法:已知一次函数两点型. 三3.例,则这个函数的(0, 4)、(-2, 0)轴的交点坐标分别是y轴、x已知某个一次函数的图像与。

_____解析式为,由题意得y=kx+b 解:设一次函数解析式为 y=2x+4 故这个一次函数的解析式为,图像型. 四。

__________已知某个一次函数的图像如图所示,则该函数的解析式为4. 例y=kx+b解:设一次函数解析式为(0, 2) 、(1, 0)由图可知一次函数的图像过点 y=-2x+2 故这个一次函数的解析式为有斜截型. 五,则直线的解析式为2轴上的截距为y平行,且在y=-2x与直线y=kx+b已知直线5. 例。

___________时,b≠b,=kk。

当;解析:两条直线2121平行,y=-2x与直线y=kx+b直线。

y=-2x+2 ,故直线的解析式为2轴上的截距为y在y=kx+b直线又平移型. 六。

___________个单位得到的图像解析式为2向下平移y=2x+1把直线6. 例,y=kx+b 解析:设函数解析式为y=2x+1直线平行y=2x+1与直线y=kx+b个单位得到的直线2向下平移,故图像解析式为b=1-2=-1 轴上的截距为y在y=kx+b直线七实际应用型. (升)Q则油箱中剩油量分钟,/升流速为油从管道中匀速流出,升,20某油箱中存油7. 例。

___________(分钟)的函数关系式为t与流出时间 Q=+20 ,即Q= 解:由题意得)(Q=+20 故所求函数的解析式为注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

八年级一次函数练习题及答案

八年级一次函数练习题及答案

八年级一次函数练习题及答案八年级一次函数练习题及答案一次函数是初中数学中的重要内容之一,也是学生们在数学学习过程中需要掌握的知识点。

通过练习一次函数的题目,可以帮助学生更好地理解和掌握一次函数的概念和性质。

下面将给大家提供一些八年级一次函数的练习题及答案,供大家参考。

题目一:已知函数y=2x+3,求当x=5时,函数的值y为多少?解答:将x=5代入函数中,得到y=2(5)+3=13。

所以当x=5时,函数的值y为13。

题目二:已知函数y=3x-2,求当y=7时,函数的自变量x为多少?解答:将y=7代入函数中,得到7=3x-2。

解这个方程,可以得到x=3。

所以当y=7时,函数的自变量x为3。

题目三:已知函数y=4x-5,求函数的图象与y轴的交点坐标。

解答:当函数与y轴的交点坐标为(x,0)时,代入函数中可以得到0=4x-5。

解这个方程,可以得到x=5/4。

所以函数的图象与y轴的交点坐标为(5/4,0)。

题目四:已知函数y=-2x+6,求函数的图象与x轴的交点坐标。

解答:当函数与x轴的交点坐标为(0,y)时,代入函数中可以得到y=-2(0)+6=6。

所以函数的图象与x轴的交点坐标为(0,6)。

题目五:已知函数y=3x+2和函数y=-x+4,求这两个函数的交点坐标。

解答:将这两个函数相等,得到3x+2=-x+4。

解这个方程,可以得到x=1。

将x=1代入其中一个函数中,可以得到y=3(1)+2=5。

所以这两个函数的交点坐标为(1,5)。

通过以上的练习题,我们可以看到一次函数的基本形式为y=kx+b,其中k为斜率,b为截距。

通过计算和解方程,可以求得函数在不同条件下的值和交点坐标。

掌握了一次函数的基本性质和运算规则,我们可以更好地理解和应用一次函数。

除了以上的练习题,还有许多其他类型的一次函数题目,如求函数的定义域、值域、最值等。

在学习中,我们可以通过大量的练习来巩固和提高对一次函数的理解和应用能力。

同时,也可以通过实际问题来应用一次函数,如通过函数来描述物体的运动、经济问题等。

一次函数经典题及答案

一次函数经典题及答案

一次函数经典题一.定义型例1. 已知函数是一次函数,求其解析式。

解:由一次函数定义知,,故一次函数的解析式为y=-6x+3。

注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。

如本例中应保证m-3≠0。

二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。

解:一次函数的图像过点(2, -1),,即k=1。

故这个一次函数的解析式为y=x-3。

变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。

三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。

解:设一次函数解析式为y=kx+b,由题意得,故这个一次函数的解析式为y=2x+4四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2)有故这个一次函数的解析式为y=-2x+2五. 斜截型例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。

解析:两条直线;。

当k1=k2,b1≠b2时,直线y=kx+b与直线y=-2x平行,。

又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2六. 平移型例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。

解析:设函数解析式为y=kx+b,直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行直线y=kx+b在y轴上的截距为b=1-2=-1,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。

解:由题意得Q=20-0.2t ,即Q=-0.2t+20故所求函数的解析式为Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

一次函数练习题(附答案)

一次函数练习题(附答案)

一次函数练习题(附答案)一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题 1.函数y=中,自变量某的取值范围是()某(ab的图象如图所示,那么a的取值范围是()A.a1C.a07.(上海市)如果一次函数yb的图象经过第一象限,且与y轴负半轴相交,那么()A.k0B.k0C.k0D.k08.(陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为()A.y某某某2)9.(浙江湖州)将直线y=2某向右平移2个单位所得的直线的解析式是(。

CA、y=2某+2B、y=2某-2C、y=2(某-2)D、y=2(某+2)10.已知两点M(3,5),N(1,-1),点P是某轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0)3C.(4,0)3D.(3,0)2二、填空题11.若点A(2,,-4)在正比例函数y=k某的图像上,则k=_____。

12.某一次函数的图像经过点(-1,2),且经过第一、二、三象限,请你写出一个符合上述条件的函数关系式_________。

13.在平面直角坐标系中,把直线y=2某向下平移3个单位,所得直线的解析式_14.(福建晋江)若正比例函数y1,2),则该正比例函数的解析式为y36(kPa)时,ya某b1200某y某y2(某5(2)设函数解析式为y=k某,则图像过点(1,1.6),故y=1.6某(某≥0).(3)方案一:80元。

方案二:y=6某60-2=70(元).方案三:y=1.6某60=96(元)5∴选方案二最好。

22解:(1)小李3月份工资=2000+2%某14000=2280(元)小张3月份工资=1600+4%某11000=2040(元)(2)设y2b,取表中的两对数(1,7400),(2,9200)代入解析式,得kk=1800 解得1800某9200b,b=5600(3)小李的工资w12%(1200某24某16005600)1824当小李的工资w218242208,解得,某8答:从9月份起,小张的工资高于小李的工资。

必修一函数的概念练习题(含答案)

必修一函数的概念练习题(含答案)

函数的概念一、选择题1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( ) A .f (x )→y =12x B .f (x )→y =13x C .f (x )→y =23x D .f (x )→y =x2.某物体一天中的温度是时间t 的函数:T (t )=t 3-3t +60,时间单位是小时,温度单位为℃,t =0表示12:00,其后t 的取值为正,则上午8时的温度为( )A .8℃B .112℃C .58℃D .18℃3.函数y =1-x 2+x 2-1的定义域是( ) A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}4.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]5.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( ) A .[1,3] B .[2,4] C .[2,8]D .[3,9]6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上7.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( )A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}8.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .79.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12等于( ) A .15B .1C .3D .3010.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题11.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.12.函数y =x +1+12-x的定义域是(用区间表示)________.三、解答题13.求一次函数f (x ),使f [f (x )]=9x +1.14.将进货单价为8元的商品按10元一个销售时,每天可卖出100个,若这种商品的销售单价每涨1元,日销售量就减少10个,为了获得最大利润,销售单价应定为多少元?15.求下列函数的定义域. (1)y =x +1x 2-4; (2)y =1|x |-2;(3)y =x 2+x +1+(x -1)0.16.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.17.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域; (2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;(3)已知f (x )的定义域为[0,1],求函数y =f (x +a )+f (x -a )(其中0<a <12)的定义域.18.用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩 形底边长为2x ,求此框架的面积y 与x 的函数关系式及其定义域.1.2.1 函数的概念答案一、选择题1.[答案] C [解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.2.[答案] A [解析] 12:00时,t =0,12:00以后的t 为正,则12:00以前的时间负,上午8时对应的t =-4,故T (-4)=(-4)3-3(-4)+60=8.3.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满足⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1.4.[答案] C [解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.5.[答案] C [解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

一次函数练习题及答案

一次函数练习题及答案

一次函数练习题及答案一、选择题(每题2分,共10分)1. 一次函数y=kx+b的斜率k表示什么?A. 函数的截距B. 函数的增长速度C. 函数的对称轴D. 函数的顶点2. 下列哪个选项不是一次函数?A. y = 3x + 5B. y = x^2 + 1C. y = -2x - 3D. y = 53. 一次函数y=kx+b中,当k>0时,函数的图像在坐标平面内如何变化?A. 从左下角向右上角延伸B. 从左上角向右下角延伸C. 从右上角向左下角延伸D. 从左上角向右上角延伸4. 已知一次函数y=2x-4,当x=3时,y的值是多少?A. 2B. -2C. 0D. 55. 如果一次函数y=kx+b的图像经过点(1,1)和(2,4),那么k和b的值分别是多少?A. k=3, b=-2B. k=2, b=-1C. k=1, b=2D. k=4, b=-3二、填空题(每题2分,共10分)6. 一次函数y=kx+b的图像是一条______。

7. 当k<0时,一次函数y=kx+b的图像会经过第______象限。

8. 一次函数y=kx+b中,如果b>0,则函数的图像与y轴的交点在y轴的______半轴。

9. 已知一次函数y=kx+b的图像经过点(-1,5),且与x轴相交于点(3,0),则k=______。

10. 一次函数y=kx+b的图像与x轴相交于点(x,0),则x=______。

三、解答题(每题5分,共20分)11. 已知一次函数y=kx+b的图像经过点(2,-3)和(-1,6),请求出k和b的值。

12. 一次函数y=kx+b的图像与x轴相交于点(a,0),与y轴相交于点(0,b),若a=4,b=-1,请写出该一次函数的解析式。

13. 已知一次函数y=kx+b的图像经过点(0,5)和(1,10),求出该一次函数的解析式,并判断其增减性。

14. 一次函数y=kx+b的图像与反比例函数y=1/x的图像在第一象限相交于点(2,m),求m的值。

一次函数专题练习题含答案

一次函数专题练习题含答案

一次函数专题练习题含答案一次函数知识点专题练题一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()A.y=2-x。

B.y=1/x。

C.y=4-x^2.D.y=x+2/(x-2)答案:D5.若函数y=(2m+1)x^2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>1/2.B.m=1/2.C.0<m<1/2.D.m<0答案:D11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_______答案:m=1,y=x+1二、相信你也能找到正确答案!(每小题6分,共36分)2.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(-2,1)C.(2,3)D.(-2,-1)答案:A15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.答案:a+b=818.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.答案:a=0,b=717.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组x-y-3=02x-y+2=0的解是________.答案:(-1,-2)4.一次函数y=-5x+3的图象经过的象限是()A.一、二、三。

B.二、三、四。

C.一、二、四。

D.一、三、四答案:B6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3.B.0<k≤3.C.-1≤k<3.D.0<k<3答案:-1≤k<3三、最后,再来几道大题吧!(每小题12分,共54分)7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()答案:y=-x+1010.一次函数y=kx+b的图象经过点(2,-1)和(4,3),那么这个一次函数的解析式为()答案:y=2x-512.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为()答案:y=3x1.农民卖土豆一位农民带了一些土豆去卖。

第1讲 一次函数的概念及图像(练习)解析版

第1讲 一次函数的概念及图像(练习)解析版

第1讲 一次函数的概念及图像(练习)夯实基础一、单选题1.(2019·上海黄浦区·)下列函数中,是一次函数的是( )A .21y x =+B .12y x =-C .23y x =+D .y kx b =+(k 、b 是常数)【答案】C【分析】根据一次函数的定义逐项分析即可.【详解】A . 21y x =+中自变量的次数是2,故不是一次函数; B . 12y x=-中自变量在分母上,故不是一次函数; C . 23y x =+是一次函数;D . 当k=0时,y kx b =+(k 、b 是常数)不是一次函数.故选C .【点睛】本题考查了一次函数的定义,一般地,形如y =kx +b ,(k 为常数,k ≠0)的函数叫做一次函数.2.(2019·上海市敬业初级中学)下列命题错误的是( )A .正比例函数是一次函数B .反比例函数不是一次函数C .如果1y -和x 成正比例,那么y 是x 的一次函数D .一次函数也是正比例函数【答案】D【分析】直接利用正比例函数与一次函数的定义判断得出即可.【详解】解:A 、正比例函数是一次函数,此选项正确;B 、反比例函数不是一次函数,故此选项正确;C 、如果1y -和x 成正比例,则y-1=kx ,即y=kx+1,那么y 是x 的一次函数,故此选项正确;D 、一次函数可能是正比例函数,也可能不是正比例函数,故此选项错误;故选:D .【点睛】此题主要考查了正比例函数与一次函数的定义,正确把握它们的区别与联系是解题关键.3.(2020·上海市奉贤区弘文学校八年级期末)正比例函数的图像在第二、四象限内,则点(--1m m ,)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据一次函数图象与系数的关系由正比例函数y =mx 的图象在第二、四象限内得到m <0,则﹣m>0,m −1<0,于是得到点(−m ,m −1)在第四象限.【详解】解:∵正比例函数y =mx 的图象在第二、四象限内,∴m <0,∴-m>0,m −1<0,∴点(-m ,m −1)在第四象限.故选:D .【点睛】本题考查了一次函数图象与系数的关系:一次函数y =kx +b (k ≠0),当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限;当b >0,图象与y 轴的交点在x 轴上方;b =0,图象过原点;当b <0,图象与y 轴的交点在x 轴下方.4.(2018·上海全国·八年级期中)一次函数y kx k =+的图象可能是( )A .B .C .D . 【答案】A【分析】根据一次函数的图象与系数的关系进行解答即可【详解】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故A 正确.故选A.【点睛】本题考查的是一次函数的图象,熟知一次函数y=kx+b (k ≠0)中,当k<0,b<0时,函数图像经过二、三、四象限是解答此题的关键.5.(2020·上海徐汇区·八年级期末)若一次函数的图像不经过第三象限,则k b 、的取值范围是( ).A .k ﹤0,0b ≥;B .k ﹥0,b ﹥0;C .k ﹤0,b ﹥0;D .k ﹥0,b ﹤0;【答案】A【分析】根据一次函数的图象与系数的关系即可得出结论.【详解】∵一次函数y kx b =+的图象不经过第三象限,∴直线y kx b =+经过第一、二、四象限或第二、四象限,∴0k <,0b ≥.故选:A .【点睛】本题考查的是一次函数的图象与系数的关系,熟知一次函数一次函数y kx b=+(0k ≠)的图象与系数k ,b 的关系是解答此题的关键.6.(2018·上海松江区·八年级期中)如图,一次函数y kx b =+的图像经过,两点,那么当3y >时,x 的取值范围是( )A .0x <B .2x <C .1x >D .1x <【答案】D【分析】根据一次函数的图象可直接进行解答.【详解】由函数图象可知,此函数是减函数,当y=3时x=1,故当y>3时,x<1,故选:D.【点睛】此题考查一次函数的性质,一次函数图象上点的坐标特点.7.(2019·上海市闵行区明星学校)在一次函数y=ax-a 中,y 随x 的增大而减小,则其图像可能是( )A .B .C .D .【答案】B 【分析】根据y 随x 的增大而减小可得a <0,−a >0,然后判断函数图象即可.【详解】解:∵一次函数y =ax-a 中,y 随x 的增大而减小,∴a <0,−a >0, ∴其图象过一、二、四象限,故选:B .【点睛】本题考查了一次函数的图象和性质,根据增减性判断出a <0,−a >0是解题的关键.8.(2020·上海市南汇第四中学八年级月考)一次函数y mx n =+的图像如图所示,那么下列说法正确的是( )A .当0x >时,2y >-B .当1x ≥时,0y ≤C .当1x <时,0y >D .当0x <时,20y -<<【答案】A【分析】根据图像,结合一次函数的性质逐项分析即可.【详解】A . 由图像可知,当0x >时,2y >-,故正确;B . 由图像可知, 当1x ≥时,0y ≥,故不正确;C . 由图像可知, 当1x <时,0y <,故不正确;D . 由图像可知,当0x <时,2y <-,故不正确;故选A .【点睛】本题主要考查函数和不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.9.(2019·青浦东方中学八年级期中)在函数y =kx (k >0)的图象上有三点A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3),已知x 1<x 2<0<x 3,则下列各式中正确的是( )A .y 1<0<y 3B .y 3<0<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2【答案】A【分析】根据正比例函数的图象性质.【详解】k >0,正比例函数,y 随x 增大而增大.【点睛】正比例函数y=kx (k 图象性质: 0,k >,正比例函数图象过一、三象限和原点,y 随x 增大而增大;0,k <,正比例函数图象过二、四象限和原点,y 随x 增大而减小.二、填空题10.(2020·上海嘉定区·八年级期末)已知一次函数,那么()1f -=______.【答案】1-【分析】代入1x =-,即可求出()1f -的值.【详解】当1x =-时,.故答案为:1-.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y kx b =+是解题的关键.11.(2019·上海市闵行区明星学校)如果y关于x 的函数y=(k-1)x+1是一次函数,那么k 的取值范围是______.【答案】k ≠1【分析】根据一次函数的定义条件求解即可.【详解】解:∵y =(k -1)x+1是一次函数,∴k -1≠0,即k ≠1,故答案为:k ≠1.【点睛】本题主要考查了一次函数的定义,属于基础题,注意掌握一次函数y =kx +b 的定义条件是:k 、b 为常数,k ≠0.12.(2020·上海市静安区实验中学八年级期中)已知点(,)P a b 在一次函数21y x =+的图象上,则21a b --=_____.【答案】【分析】根据点在函数图像上,即将点代入函数解析式,能够使解析式成立,将本题中P 点的坐标代入解析式,变形即可解决.【详解】解:将(,)P a b 代入函数解析式得:b=2a+1,将此式变形即可得到:210a b -+=,两边同时减去2,得:21a b --=-2,故答案为:.【点睛】本题考查了通过函数上点的坐标,求相关代数式的值,解决本题的关键要熟练掌握一次函数的性质,明白函数上的点都能使函数解析式成立.13.(2019·上海).已知函数y=(k+2)x+k 2﹣4,当k _________ 时,它是一次函数.【答案】﹣2【分析】根据一次函数的定义可知自变量的系数不为零.【详解】解:∵函数y=(k+2)x+k 2﹣4是一次函数,∴k+2≠0,即k ≠﹣2.故答案为:≠﹣2.【点睛】本题考点:一次函数的定义,正确把握定义是解题的关键.14.(2019·上海)根据图中的程序,当输入x=-3时,输出结果y =________.【答案】1【分析】根据题意可知当x=-3≤1时,应代入函数y=x+4,然后求解即可.【详解】解:∵x=-3≤1,∴当x=-3时,y= x+4=﹣3+4=﹣1.故答案为:﹣1.【点睛】本题主要考查一次函数,解此题的关键在于理解题意,根据自变量的取值范围选择正确的函数进行求解.15.(2019·上海)若298y m x x =-+表示一次函数,则m 满足的条件是__________________。

一次函数的定义专项练习30题(有答案)

一次函数的定义专项练习30题(有答案)

一次函数的定义专项练习30题(有答案)1.下列五个式子,①,②,③y=﹣x+1,④,⑤y=2x2+1,其中表示y是x的一次函数的有()A.5个B.4个C.3个D.2个2.下列函数中,y是x的一次函数的是()A.y=﹣3x2﹣1 B.y=x﹣1+2 C. y=2(x﹣1)2D.3.下列问题中,变量y与x成一次函数关系的是()A.路程一定时,时间y和速度x的关系B.长10米的铁丝折成长为y,宽为x的长方形C.圆的面积y与它的半径xD.斜边长为5的直角三角形的直角边y和x4.下列函数:①y=﹣x+2;②y=﹣x2+2;③y=﹣3x;④;⑤,其中不是一次函数的有()A.1个B.2个C.3个D.4个5.下列函数(1)y=2x﹣1;(2)y=πx;(3)y=;(4)y=;(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.一次函数不可能是正比例函数7.已知函数y=3x+1,当自变量增加3时,相应的函数值增加()A.10 B.9C.3D.88.对于函数y=2x﹣1,当自变量增加m时,相应的函数值增加()A.2m B.2m﹣1 C.m D.2m+1az9.若+5是一次函数,则a=()A.±3 B.3C.﹣3 D.10.若函数y=(m﹣1)x|m|+2是一次函数,则m的值为()A.m=±1 B.m=﹣1 C.m=1 D.m≠﹣111.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=012.下列说法正确的是()A.y=kx+b(k、b为任意常数)一定是一次函数B.(常数k≠0)不是正比例函数C.正比例函数一定是一次函数D.一次函数一定是正比例函数13.已知y+2与x成正比例,则y是x的()A.一次函数B.正比例函数C.反比例函数D.无法判断14.设圆的面积为S,半径为R,那么下列说法确的是()A.S是R的一次函数B.S是R的正比例函数C.S是R2的正比例函数D.以上说法都不正确15.已知函数y=(k+2)x+k2﹣4,当k_________时,它是一次函数.16.如果函数y=(a﹣2)x+3是一次函数,那么a_________.17.当m=_________时,函数y=(m+5)x2m﹣1+7x﹣3(x≠0)是一个一次函数.18.已知一次函数y=(k﹣1)x|k|+3,则k=_________.19.已知:y=(m﹣1)x|m|+4,当m=_________时,图象是一条直线.20.把2x﹣y=3写成y是x的函数的形式为_________.21.在函数y=﹣2x﹣5中,k=_________,b=_________.22.一次函数y=﹣2x﹣1,当x=﹣5时,y=_________,当y=﹣7时,x=_________.23.一次函数y=kx+b中,k、b都是_________,且k_________,自变量x的取值范围是_________;当k_________,b_________时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有_________,属正比例函数的有_________(只填序号)25.若y=mx|m|+2是一次函数的解析式且y随x的增大而减小,则m的值等于_________.26.已知函数y=(m﹣3)x|m|﹣2+3是一次函数,求解析式.27.已知函数y=(m﹣10)x+1﹣2m.(1)m为何值时,这个函数是一次函数;(2)m为何值时,这个函数是正比例函数.28.已知函数y=(m+1)x+(m2﹣1)当m取什么值时,y是x的一次函数?当m取什么值是,y是x的正比例函数.29.x为何值时,函数的值分别满足下列条件:(1)y=3;(2)y>2.30.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s(千米)与时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数.参考答案:1.①是反比例函数,故本选项错误;②符合一次函数的定义;故本选项正确;③y=﹣x+1符合一次函数的定义;故本选项正确;④=x ﹣,符合一次函数的定义;故本选项正确;⑤y=2x2+1,是二次函数;故本选项错误;综上所述,表示y是x的一次函数的有3个;故选C2.A、自变量次数不为1,故不是一次函数;B、自变量次数不为1,故不是一次函数;C、自变量次数不为1,故不是一次函数;D、是一次函数.故选D.3.A、设路程是s,则根据题意知,y=,是反比例函数关系.故本选项错误;B、根据题意,知10=2(x+y),即y=﹣x+5,符合一次函数的定义.故本选项正确;C、根据题意,知y=πx2,这是二次函数,故本选项错误;D、根据题意,知x2+y2=25,这是双曲线方程,故本选项错误.故选B.4.①y=﹣x+2是一次函数;②y=﹣x2+2是二次函数;③y=﹣3x是一次函数;④y=﹣x是一次函数;⑤y=﹣是反比例函数;所以,不是一次函数的有②⑤共2个.故选B5.(1)y=2x﹣1是一次函数;(2)y=πx是一次函数;(3)y=,自变量次数不为1,故不是一次函数;(4)y==,自变量次数不为1,故不是一次函数;(5)y=x2﹣1自变量次数不为1,故不是一次函数;综上所述,一次函数有2个.故选C.6.A、一次函数不一定是正比例函数,故本选项错误;B、正比例函数一定是一次函数,故本选项正确;C、正比例函数一定是一次函数,故本选项错误;D、一次函数可能是正比例函数,故本选项错误.故选B.7.因为y=3x+1,所以当自变量增加3时,y1=3(x+3)+1=3x+1+9,相应的函数值增加9.故选B.8.当自变量增加m时,y=2(x+m)﹣1,即y=2x+2m ﹣1,故函数值相应增加2m.故选A.9.根据一次函数的定义可知:a2﹣8=1,a+3≠0,解得:a=3.故选B.10.根据题意得:,解得:m=﹣1.故选B.11.∵函数y=(m﹣2)x n﹣1+n是一次函数,∴,解得,.故选C.12.A、y=kx+b(k、b为任意常数),当k=0时,不是一次函数,故本选项错误;B 、(常数k≠0)是正比例函数,故本选项错误;C、正比例函数一定是一次函数,故本选项正确;D、一次函数不一定是正比例函数,故本选项错误.故选C.13.y+2与x成正比例,则y+2=kx,即y=kx﹣2,符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.故选A.14.由题意得,S=πR2,所以S是R2的正比例函数.故选C.15.根据一次函数定义得,k+2≠0,解得k≠﹣2.故答案为:≠﹣2.16.∵y=(a﹣2)x+3是一次函数,∴a﹣2≠0,∴a≠2.故答案为:a≠﹣2.17. ①,解得:m=1根据题意得:2m﹣1=1,解得:m=1,此时函数化简为y=13x﹣3.②2m﹣1=0,解得:m=,此时函数化简为y=7x﹣2.5;③m+5=0,解得:m=﹣5,此时函数化简为y=7x﹣3.故答案为:1或﹣5或18.根据题意得k﹣1≠0,|k|=1则k≠1,k=±1,即k=﹣1.19.∵y=(m﹣1)x|m|+4的图象是一条直线,∴①当该图象是一次函数图象时,|m|=1,且m﹣1≠0,解得m=﹣1.②当该直线是平行于x轴的直线时,m﹣1=0,即m=1;综上所述,当m=±1时,y=(m﹣1)x|m|+4的图象是一条直线.故答案是:±120.2x﹣y=3写成y是x的函数的形式为y=2x﹣3.故答案为:y=2x﹣3.21.根据一次函数的定义,在函数y=﹣2x﹣5中,k=﹣2,b=﹣5.22.把x、y的值分别代入一次函数y=﹣2x﹣1,当x=﹣5时,y=﹣2×(﹣5)﹣1=9;当y=﹣7时,﹣7=﹣2x﹣1,解得x=3.故填9、3.23.一次函数y=kx+b中,k、b都是常数,且k≠0,自变量x的取值范围是任意实数;当k≠0,b =0时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有①②⑥,属正比例函数的有⑥(只填序号)25.∵y=mx|m|+2是一次函数,∴|m|=1,∴m=±1,∵y随x的增大而减小,∴m=﹣1.故答案为:﹣126.∵m﹣3≠0且|m|﹣2=1,∴m=﹣3,∴函数解析式为:y=﹣6x+3 27.(1)根据一次函数的定义可得:m﹣10≠0,∴m≠10,这个函数是一次函数;(2)根据正比例函数的定义,可得:m﹣10≠0且1﹣2m=0,∴m=时,这个函数是正比例函数.28.由函数是一次函数可得,m+1≠0,解得m≠﹣1,所以,m≠﹣1时,y是x的一次函数;函数为正比例函数时,m+1≠0且m2﹣1=0,解得m=1,所以,当m=1时,y是x的正比例函数.29.(1)当y=3时,可得:1.5x+6=3,解得x=﹣2;(2)当y>2时,1.5x+6>2,解得30.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,则汽车离开A站的距离s=40t,它是正比例函数;故两空应分别填s=40t,正比例;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,则汽车离开A站的距离s=40t+4,它是一次函数;故两空应分别填s=40t+4,一次.。

一次函数练习题及答案

一次函数练习题及答案

一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。

一次函数,也叫线性函数,是初中数学中的重要知识点之一。

希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。

一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。

答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。

答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。

答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。

解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。

因此,交点坐标为(4,7)。

2.已知函数y=3x+b经过点(2,−1),求b的值。

解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。

3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。

如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。

解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。

2. 一次函数的图像:是不经过原点的一条直线。

3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。

专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。

一次函数的概念及图象(答案版)

一次函数的概念及图象(答案版)

第07讲:一次函数的概念及图象题型一:函数的判定1下列关于变量x,y的关系,其中y不是x的函数的是(B)A. B. C. D.2在下列等式中,y是x的函数的有(C)3x-2y=0,x2-y2=1,y=x,y=x ,x=y .A.1个B.2个C.3个D.4个3下列函数中与y=x表示相同的函数关系式的是(D)A.y=|x|B.y=x2x C.y=x2 D.y=3x34下列各曲线中表示y是x的函数的是(D)A. B. C. D.题型二:函数的表示5下表为某旅游景点旺季时的售票量、售票收入的变化情况,在该变化过程中,常量是(A)日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日售票量x(张)3154222452385048746564262761512714售票收入y(元)3154200224520038540004874600564260027615001271400 A.票价 B.售票量 C.日期 D.售票收入6变量x,y的一些对应值如下表:x⋯-2-10123⋯y⋯-8-101827⋯根据表格中的数据规律,当x=-5时,y的值是(D)A.75B.-75C.125D.-1257弹簧挂重物会伸长,测得弹簧长度y cm最长为20cm,与所挂物体重量x kg间有下面的关系.x01234⋯⋯y88.599.510⋯⋯下列说法不正确的是(D)A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6kg,弹簧长度为11cmC.物体每增加1kg,弹簧长度就增加0.5cmD.挂30kg物体时一定比原长增加15cm8王涵准备测量食用油的沸点(液体沸腾时的温度),已知食食用油的沸点温度高于水的沸点温度(100℃),王涵家只有刻度不超过100度的温度计;她的方法是在锅中导入一些食用油,用媒气灶均匀加热,并每隔10s,测量一下锅中的油温,测量得到的数据如表所示,王涵发现,加热110s时,油沸腾了,则下列判断不正确的是(C)时间t/s010203040油温1030507090A.没有加热时,油的温度是10°CB.每加热10s.油的温度升富20°CC.如热50s时,油的温度是100°CD.这种食用油的沸点温度是230°C9铅笔每支售价0.20元,在平面直角坐标系内表示小明买1支到10支铅笔需要花费的钱数的图像是(D) A.一条直线 B.一条射线 C.一条线段 D.10个不同的点10八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是(B)A.列表法B.图象法C.解析式法D.以上三种方法均可11函数y=(x-a)2(x-b)(0<a<b),则函数的图象大致为(C)A. B. C. D.题型三:函数自变量的取值范围12函数y=11-3x+(x+2)0的自变量x的取值范围是(C)A.x>13B.x<13C.x<13且x≠-2 D.x≠1313下列函数中,自变量取值范围错误的是(D)A.y=12x-1(x≠12) B.y=1-x(x≤1)C.y=x2-1(x为任意实数)D.y=1x-1(x≥1)题型四:一次函数的图象特征14一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是(C)A. B. C. D.15已知如图是函数y=kx+b的图象,则函数y=kbx+k的大致图象是(C)A. B. C. D.16若直线y=(m+5)x+(m-1)经过第一、三、四象限,则常数m的取值范围是-5<m<1答案【答案】-5<m<1题型五:函数图象的判定17“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉. 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点⋯⋯. 用s1、s2分别表示乌龟和兔子所行的路程,t为时间,则下列图像中与故事情节相吻合的是(A)A. B.C. D.18一天早上小明步行上学,他离开家后不远便发现有东西忘在了家里,马上以相同的速度回家去拿,到家后因事耽误一会,忙完后才离开,为了不迟到,小明跑步到了学校,则小明离学校的距离y与离家的时间t之间的函数关系的大致图象是(B)A. B. C. D.19向一个垂直放置的容器内匀速注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化情况如图所示.则这个容器的形状可能是(D)A. B. C. D.20如图,向一个半径为R、容积为V的球形容器内注水,则能反映容积内水的体积y与容器内水深x之间的关系的图象可能为(A)A. B. C. D.题型六:通过图象信息求解行程问题21在徐州全民健身越野赛中,甲、乙两选手的行程y(干米)随时间(时)变化的图象(全程)如图所示.下列四种说法:①起跑后1小时内,甲最多领先乙5千米;②第1小时两人都跑了10千米;③起跑1小时后,甲在乙的前面;④两人都跑了20千米.正确的个数有(B)A.1个B.2个C.3个D.4个22如图表示一艘船从甲地航行到乙地,到达乙地后旋即返回.横坐标表示航行的时间,纵坐标表示船与甲地的距离.下列说法错误的是(D )A.船从甲地到乙地航行的速度比返航的速度更快B.船从甲地航行到乙地的路程为s 1,时间为t 1C.船往返的平均速度为v =2s1t 2D.t 2表示船在返航时所用的时间23重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s (米),小欢行走的时间为t (分钟),s 关于t 的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.题型七:通过图象求解动点问题24如图1,在长方形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,三角形ABP 的面积为y ,如果y 关于x 的图象如图2所示,则长方形ABCD 的周长是(C )A.13B.17C.18D.2625如图①.在正方形ABCD的边BC上有一点E,连接AE.点P从正方形的顶点A出发,沿A→D→C以1cm/s的速度匀速运动到点C.图②是点P运动时,△APE的面积y(cm2)随时间x(s)变化的函数图象.当x=7时,y的值为(C)A.7B.6C.132D.1121.变量x、y有如下的关系,其中y是x的函数的是(C)A.y2=8xB.|y|=xC.y=1x D.x=12y42.下列曲线中表示y是x的函数的是(C)A. B. C. D.3.某销售商对某品牌豆浆机的销量与定价的关系进行了调查,结果如下表所示,则(C)定价(元)100110120130140150销量(台)801001101008060A.定价是常量B.销量是自变量C.定价是自变量D.定价是因变量4.变量x,y的一些对应值如下表:x⋯-2-10123⋯y⋯-8-16132027⋯根据表格中的数据规律,当x=-5时,y的值是(B)A.75B.-29C.41D.755.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据温度/℃-20-100102030声速/m/s318324330336342348下列说法错误的是(B)A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快6.某游泳池水深20dm,现需换水,每小时水位下降5dm,那么剩下的高度h dm与时间t(小时)的关系图象表示为(D)A. B. C. D.7.在函数y=1-xx-2中,自变量x的取值范围是(C)A.x≥0B.x≠2C.x≥0且x≠2D.0≤x≤28.关于函数y=-3x-1,下列说法正确的是(D)A.它的图像过点2,-9B.y值随着x值的增大而增大C.它的图像不经过第三象限D.当x<-13时,y>09.如图所示,直线l1:y=ax+b和l2:y=-bx+a在同一坐标系中的图象大致是(B)A. B.C. D.10.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,则y与x的函数图象大致是(A)A. B. C. D.11.成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,体息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是(D)A. B. C. D.12.已知A、B两地相距600米,甲、乙两人同时从A地出发前往B地,所走路程y(米)与行驶时间x(分)之间的函数关系如图所示,则下列说法中:①甲每分钟走100米;②两分钟后乙每分钟走50米;③甲比乙提前3分钟到达B地;④当x=2或6时,甲乙两人相距100米.正确的有①②④(在横线上填写正确的序号).13.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度大于乙的速度;(5)甲、乙两人同时到达目的地.其中,符合图象描述的说法有(C)A.2个B.4个C.3个D.5个14.如图,在平面直角坐标系中,矩形ABCD的顶点A(6,0),C(0,4)点D与坐标原点O重合,动点P从点O 出发,以每秒2个单位的速度沿O-A-B-C的路线向终点C运动,连接OP、CP,设点P运动的时间为t秒,△CPO的面积为S,下列图象能表示t与S之间函数关系的是(B)A. B.C. D.。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

一次函数性质练习题及答案

一次函数性质练习题及答案

一次函数性质练习题及答案一次函数性质练习题及答案一次函数是数学中的基础概念,也是我们在日常生活中经常遇到的数学问题的解决方法之一。

它的形式可以表示为y = mx + c,其中m和c分别代表斜率和截距。

在本篇文章中,我将为大家提供一些一次函数性质的练习题,并附上答案,希望能够帮助大家更好地理解和掌握一次函数的相关知识。

练习题一:已知一次函数y = 2x + 3,求该函数的斜率和截距。

解答一:根据一次函数的一般形式y = mx + c,可以得知该函数的斜率m为2,截距c 为3。

练习题二:已知一次函数的斜率为3,截距为-5,写出该函数的表达式。

解答二:根据一次函数的一般形式y = mx + c,可以得知该函数的表达式为y = 3x - 5。

练习题三:已知一次函数过点(2, 7),求该函数的表达式。

解答三:设该函数的表达式为y = mx + c,代入已知点的坐标(2, 7),得到7 = 2m + c。

另外,根据一次函数的性质,该函数的斜率m为函数的变化率,即为通过两个点的纵坐标之差与横坐标之差的比值。

因此,可以得到m = (7 - c) / 2。

将这个表达式代入7 = 2m + c中,可以解得c = 3。

因此,该函数的表达式为y = 2x +3。

练习题四:已知两个点A(1, 4)和B(3, 10),求通过这两个点的一次函数的表达式。

解答四:设该函数的表达式为y = mx + c。

根据一次函数的性质,可以得到m = (10 - 4) / (3 - 1) = 3。

将这个斜率代入其中一个点的坐标,例如A(1, 4),可以得到4 = 3(1) + c,解得c = 1。

因此,通过点A和B的一次函数的表达式为y = 3x + 1。

练习题五:已知一次函数的斜率为0.5,截距为-2,求该函数与x轴和y轴的交点坐标。

解答五:当一次函数与x轴相交时,y = 0,代入一次函数的表达式y = 0.5x - 2,可以解得x = 4。

一次函数练习题和参考答案

一次函数练习题和参考答案

一次函数练习题和参考答案第1题. 某工厂加工一批产品,为了提前完成任务,规定每个工人完成150个以内,按每个产品3元付报酬,超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分出按上述规定外,每个产品付酬增加0.3元,求一个工人:①完成150个以内产品得到的报酬y元与产品数x个之间的函数关系式;②完成150个以上,但不超过250个产品得到的报酬y元与产品数量x个的函数关系式;③完成250个以上产品得到的报酬y元与产品数量x个的函数关系式.答案:① 0② 150③ x250第2题. 商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y件与衬衣价格x元销售之间的函数关系式为_________.答案:第3题. 写出下列函数关系式,并指出自变量的取值范围:油箱中有油60升,每小时耗油2升,求耗油量M与时间t小时的关系.答案: 030第4题. 写出下列函数关系式,并指出自变量的取值范围:轮子每分钟转60圈,求轮子旋转的转数N与时间t分的关系答案: t0第5题. 下列关于函数的说法中,正确的是A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.不是正比例函数的就不是一次函数答案:B第6题. 等腰三角形的周长为20cm,腰长为y cm,底边长为xcm,则y与x的函数关系式为______.答案:第7题. 若函数y=m-3xm-1+x+3是一次函数,且x0,则m的值为______.答案:2或1第8题. 一次函数y=kx+b中,k、b都是,且k ,自变量x的取值范围是,当k ,b 时,它是正比例函数.答案:常数,0,全体实数,0,=0第9题. 观察图形上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y根与小正方形的个数n的’关系为 .答案:. y=3n+1n为1、2、3、4、.第10题. △ABC中,一边长为x cm,这边上的高为4cm,面积为y cm2,那么y与x 之间的函数关系式为 .答案:y=2x第11题. 出租车收费按路程计算,2km内包括2km收费3元,超过2km,每增加1km 加收1元,则路程x2km时,车费y元与x之间的函数关系为____.答案:第12题. 拖拉机开始工作时,油箱中有油36L,如果每小时耗油4L,那么油箱中剩余油量yL,与工作时间xh之间的函数关系式是____,自变量x的取值范围是____.答案:第13题. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必交税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累计进行计算:全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%某合资企业一工人工资在1400元-2000元之间变化,求他应交税金y元与其工资x元之间的函数关系.答案:第14题. 出租车收费按路程计算,2km内包括2km收费3元,超过2km,每增加1 km 加收1元,则路程x2 km时,车费y元与路程xkm之间的函数关系为______.答案:第15题. 将长为30cm,宽为10cm的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为3cm,则5张白纸粘合后的长度是多少?设x张白纸粘合后的总长度为ycm,y与x之间的函数关系式是什么?答案:138cm,y=30x-3x-1=27x+3.第16题. 已知y+a与x-b成正比例其中a、b都是常数,试说明:y是x的一次函数答案:设y+a=kx-bx0y=kx-a+bk第17题. 已知y+a与x-b成正比例其中a、b都是常数1试说明y是x的一次函数;2如果x=-1时,y=-15;x=7时,y=1,求这个一次函数的解析式.答案:1因为y+a与x-b成正比例,所以y+a=kx-bk0,即y=kx-bk+a因为k不等于0,a、b为常数,所以y是x的一次函数;2代入解得k=2,bk+a=13, 所以y=2x-13.第18题. 下列关于函数的说法中,正确的是A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.不是正比例函数的就不是一次函数答案:B第19题. 汽车由天津开往相距120km的北京,若它的平均速度为60km/h,则汽车距北京的路程Skm与行驶时间th之间的函数关系式是______.答案:S=120-60t第20题. 两港相距640千米,轮船以15千米/时的速度航行,t小时后剩下的距离y 与t的函数关系式为________.答案:第21题. 某种国库卷的年利率为9.18%,则存满三年的本息和y与本金x之间的函数关系式为 .答案:y=x+39.18%xx0第22题. 一个长为120m,宽为100m的矩形场地要扩建成一个正方形场地,设长增加x米,宽增加y米,则y与x的函数关系式是,自变量的取值范围是,且y是x的函数.答案:y=x+20,x0,一次感谢您的阅读,祝您生活愉快。

一次函数练习题及答案

一次函数练习题及答案

一次函数练习题及答案一、选择题1. 一次函数y = 2x - 3的斜率是:A. 2B. -3C. -2D. 3答案:A2. 如果一次函数y = kx + b的图象经过点(1, 0)和(0, -1),那么k 的值是:A. 1B. -1C. 0D. 2答案:A3. 函数y = 3x + 5与x轴的交点坐标是:A. (-5/3, 0)B. (0, 5)C. (1, 0)D. (-1, 0)答案:A二、填空题4. 已知一次函数y = 4x + 1,当x = 2时,y的值为________。

答案:95. 一次函数y = -2x + 4的图象与y轴的交点坐标是________。

答案:(0, 4)三、解答题6. 已知直线y = 3x + 2与直线y = -x + 4相交于点P,求点P的坐标。

解:将两个方程联立求解:\[ \begin{cases} y = 3x + 2 \\ y = -x + 4 \end{cases} \]解得:\[ x = \frac{2}{4}, y = 3 \times \frac{2}{4} + 2 \] 所以点P的坐标为(\(\frac{1}{2}\), 3)。

7. 一次函数y = kx + b的图象经过点A(-1, -2)和点B(2, 6),求k 和b的值。

解:将点A和点B的坐标代入一次函数方程得:\[ \begin{cases} -k + b = -2 \\ 2k + b = 6 \end{cases} \] 解得:\[ k = 2, b = 0 \]8. 已知直线y = 5x - 7在x轴上的截距为a,在y轴上的截距为b,求a和b的值。

解:当y = 0时,x = \frac{7}{5},所以a = \frac{7}{5};当x = 0时,y = -7,所以b = -7。

四、应用题9. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。

已知当生产x件时,利润为y元,且利润函数为y = 20x - 30。

一次函数练习题(超经典含答案)

一次函数练习题(超经典含答案)

第十九章一次函数19.2 一次函数19.3 课题学习选择方案1.下列四个实际问题中的两个变量之间关系中,属于正比例函数关系的是A.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系B.某梯形的下底5 cm,高3 cm,上底x cm(0<x<5),则梯形的面积S与上底x之间的函数关系C.一个质量为100 kg的物体,静止放在桌面上,则该物体对桌面的压强P与受力面面积S之间的函数关系D.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒增加2 m/s,则小球速度v 与时间t之间的函数关系2.已知y=(m+1)2m x,如果y是x的正比例函数,则m的值为A.1 B.-1 C.1,-1 D.03.若点P(-1,3)在正比例函数y=kx(k≠0)的图象上,则k的值是A.3 B.13C.-3 D.-134.下列函数关系式:(1)y=-x;(2)y=2x+11;(3)y=x2;(4)y=1x,其中一次函数的个数是A.1 B.2 C.3 D.4 5.一次函数y=2x-1的图象大致是A.B.C.D .6.设点(-1,m )和点(12,n )是直线y =(k -1)x +b (0<k <1)上的两个点,则m ,n 的大小关系为 A .m >nB .m ≥nC .m ≤nD .m <n7.已知y =(m -1)x +m +3的图象经过一、二、四象限,则m 的取值范围是 A .-3<m <1B .m >1C .m <-3D .m >-38.若y =(m -1)x |m |是正比例函数,则m 的值为__________.9.直线y =-x +1向上平移5个单位后,得到的直线的解析式是__________. 10.已知y 与x +2成正比例,且当x =1时,y =-6.(1)求y 与x 的函数关系式.(2)若点(a ,2)在此函数图象上,求a 的值.11.已知函数y =231()2k k x-+(k 为常数).(1)k 为何值时,该函数是正比例函数;(2)k 为何值时,正比例函数过第一、三象限,写出正比例函数解析式; (3)k 为何值时,正比例函数y 随x 的增大而减小,写出正比例函数的解析式.12.已知函数y =(m -2)x 3-|m|+m +7,当m 为何值时,y 是x 的一次函数.13.已知y =(k -1)x |k |+(k 2-4)是一次函数.(1)求k 的值; (2)求x =3时,y 的值; (3)当y =0时,x 的值.14.设一次函数y kx b =+(k ,b 是常数,0k ≠)的图象过(12)A -,,(04)B -,两点.(1)求该一次函数表达式;(2)已知存在另一直线CD ,其表达式为:3y x m =+,若直线AB CD ,交于点E ,且E 在第四象限,求此时m 的取值范围.15.下列函数①y =2x -1,②y =πx ,③y =1x,④y =x 2中,一次函数的个数是 A .1B .2C .3D .416.已知点12(4)(2)y y -,,,都在直线23y x b =-+上,则1y 与2y 的大小关系是 A .12y y >B .12y y =C .12y y <D .不能确定17.一次函数y =-x 的图象平分A .第一、三象限B .第一、二象限C .第二、三象限D .第二、四象限18.已知一函数y =kx +3和y =-kx +2,则两个一次函数图象的交点在A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限19.已知一次函数y =(a +1)x +b 的图象如图所示,那么a ,b 的取值范围分别是A .a >-1,b >0B .a >-1,b <0C .a <-1,b >0D .a <-1,b <020.一次函数y =mx +|m -1|的图象过点(0,2),且y 随x 的增大而增大,则m 的值为A .1-B .1C .3D .1-或321.一次函数y =-5x -3的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限22.已知k >0,则一次函数y =kx -k 的图象大致是A .B .C .D .23.对于一次函数y =-2x +4,下列结论错误的是A .函数值随自变量的增大而减小B.当x<0时,y<4C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与y轴的交点坐标是(0,4)24.若y=kx-4的函数值y随着x的增大而减小,则k的值可能是下列的A.0 B.-4 C.πD.1 225.已知某一次函数的图象与直线y=-3x平行,且与函数y=3x+5的图象交y轴上于同一点,那么这个一次函数的解析式是A.y=3x+5 B.y=3x-5C.y=-3x+5 D.y=-3x-526.如图表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn≠0)的图象的是A.B.C.D.27.已知正比例函数y=(5m-3)x,如果y随着x的增大而减小,那么m的取值范围为__________.28.已知一次函数图象交x轴于点(-2,0),与y轴的交点到原点的距离为5,则该一次函数解析式为__________.29.已知y与x+2成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.30.已知点(2,-4)在正比例函数y=kx的图象上.(1)求k的值;(2)若点(-1,m)在函数y=kx的图象上,试求出m的值;(3)若A(12,y1),B(-2,y2),C(1,y3)都在此函数图象上,试比较y1,y2,y3的大小.31.如图,直线OA的解析式为y=3x,点A的横坐标是-1,OB OB与x轴所夹锐角是45°.(1)求B点坐标;(2)求直线AB的函数表达式;(3)若直线AB与y轴的交点为点D,求△AOD的面积;(4)在直线AB上存在异于点A的另一点P,使得△ODP与△ODA的面积相等,请直接写出点P的坐标.32.如图,在平面直角坐标系xOy 中,一直线111(0)y k x b k =+≠与x 轴相交于点A ,与y 轴相交于点(02)B ,,与正比例函数222(0)y k x k =≠的图象交于点(11)P ,.(1)求直线1y 的解析式. (2)求AOP △的面积.(3)直接写出12k x b k x +>的解集.33.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A 县10辆,调往B 县8辆,已知调运一辆农用车的费用如表:(1)设从乙仓库调往A 县农用车x 辆,求总运费y 关于x 的函数关系式. (2)若要求总运费不超过900元.共有哪几种调运方案? (3)求出总运费最低的调运方案,最低运费是多少元?34.(2018·江苏常州)一个正比例函数的图象经过(2,-1),则它的表达式为A .y =-2xB .y =2xC .12y x =-D .12y x =35.(2018·四川南充)直线y =2x 向下平移2个单位长度得到的直线是A .y =2(x +2)B .y =2(x -2)C .y =2x -2D .y =2x +236.(2018·辽宁抚顺)一次函数y =-x -2的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三,四象限D .第二、三、四象限37.(2018·湖南常德)若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则A .2k <B .2k >C .0k >D .0k <38.(2018·山东枣庄)如图,直线l 是一次函数y =kx +b 的图象,若点A (3,m )在直线l上,则m 的值是A .-5B .32C .52D .739.(2018·贵州遵义)如图,直线y =kx +3经过点(2,0),则关于x 的不等式kx +3>0的解集是A .x >2B .x <2C .x ≥2D .x ≤240.(2018·辽宁省辽阳)如图,直线y =ax +b (a ≠0)过点A (0,4),B (-3,0),则方程ax +b =0的解是A .x =-3B .x =4C .x =43-D .x =34-41.(2018·湖北荆州)已知:将直线y =x -1向上平移2个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法正确的是 A .经过第一、二、四象限 B .与x 轴交于(1,0) C .与y 轴交于(0,1)D .y 随x 的增大而减小42.(2018·湖南娄底)将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为 A .24y x =-B .24y x =+C .22y x =+D .22y x =-43.(2018·浙江义乌)如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(12)A -,,(13)B ,,(21)C ,,(65)D ,,则此函数A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而减小D .当1x >时,y 随x 的增大而减小44.(2018·四川甘孜州)一次函数y =kx -2的函数值y 随自变量x 的增大而减小,则k 的取值范围是__________.45.(2018·内蒙古巴彦淖尔)已知点A (-5,a ),B (4,b )在直线y =-3x +2上,则a __________b .(填“>”“<”或“=”)46.(2018·海南)如图,在平面直角坐标系中,点M 是直线y =-x 上的动点,过点M 作MN ⊥x 轴,交直线y =x 于点N ,当MN ≤8时,设点M 的横坐标为m ,则m 的取值范围为__________.47.(2018·辽宁辽阳)如图,直线142y x=+与坐标轴交于A,B两点,在射线AO上有一点P,当△APB是以AP为腰的等腰三角形时,点P的坐标是__________.48.(2018·甘肃陇南)如图,一次函数y=-x-2与y=2x+m的图象相交于点P(n,-4),则关于x的不等式组2220x m xx+<--⎧⎨--<⎩的解集为__________.49.(2018·辽宁锦州)如图,直线y1=-x+a与y2=bx-4相交于点P,已知点P的坐标为(1,-3),则关于x的不等式-x+a<bx-4的解集是__________.50.(2018·吉林长春)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为__________.(写出一个即可)51.(2018·湖南邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是__________.52.(2018·黑龙江牡丹江)某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.53.(2018·四川巴中)学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.54.(2018·湖南益阳)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:(1)求每次运输的农产品中A,B产品各有多少件?(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?55.(2018·广西梧州)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y 元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?56.(2018·重庆)如图,在平面直角坐标系中,直线l1:y=12x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y轴交于点B,与直线l2交于点C,点C的纵坐标为-2.直线l2与y轴交于点D.(1)求直线l2的解析式;(2)求△BDC的面积.57.(2018·黑龙江省龙东地区)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B 城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?58.(2018·云南曲靖)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?1.【答案】D【解析】A、正方形的表面积S=6x2,不是正比例函数,故本选项错误;B、梯形的面积S与上底x之间的函数关系:s=3(5)2x,不是正比例函数,故本选项错误;C、物体对桌面的压强P与受力面面积S之间的函数关系:P=100S,不是正比例函数,故本选项错误;D、小球速度v与时间t之间的函数关系:v=2t,是正比例函数,故本选项正确.故选D.2.【答案】A【解析】由题意得:m2=1且m+1≠0,解得m=1,故选A.3.【答案】C【解析】∵点P(-1,3)在正比例函数y=kx(k≠0)的图象上,∴k×(-1)=3,解得k=-3,故选C.4.【答案】B【解析】(1)y=-x是正比例函数,是特殊的一次函数,故正确;(2)y=2x+11符合一次函数的定义,故正确;(3)y=x2属于二次函数,故错误;(4)y=1x属于反比例函数,故错误.综上所述,一次函数的个数是2个.故选B.5.【答案】B【解析】由题意知,k=2>0,b=-1<0时,函数图象经过一、三、四象限.故选B.6.【答案】A【解析】∵0<k<1,∴k-1<0,∴直线y值随x的增大而减小,∵-1<12,∴m>n,故选A.7.【答案】A【解析】由题意得,1030m m -<⎧⎨+>⎩,解得-3<m <1,故选A .8.【答案】-1【解析】由题意得:m −1≠0,|m |=1,解得:m =−1,故答案为:−1. 9.【答案】y =-x +6【解析】直线y =-x +1向上平移5个单位后,得到的直线的解析式是y =-x +1+5,即y =-x +6.故答案为:y =-x +6.10.【解析】(1)∵y 与x +2成正比例,∴可设y =k (x +2),把当x =1时,y =-6代入得-6=k (1+2). 解得:k =-2.故y 与x 的函数关系式为y =-2x -4. (2)把点(a ,2)代入得:2=-2a -4, 解得:a =-3.11.【解析】(1)由题意得:k +12≠0,k 2-3=1,解得k =±2. ∴当k =±2时,这个函数是正比例函数. (2)当k =2时,正比例函数过第一、三象限,解析式为y =52x . (3)当k =-2时,正比例函数y 随x 的增大而减小,解析式为y =-32x . 12.【解析】当函数y =(m -2)x 3-|m|+m +7是一次函数,则满足:3-|m |=1,且m -2≠0, 解得m =-2. 故答案是:m =-2.13.【解析】(1)由题意可得:|k |=1,k -1≠0,解得:k =-1.(2)当x =3时,y =-2x -3=-9. (3)当y =0时,0=-2x -3, 解得:x =32-. 14.【解析】(1)∵一次函数y kx b =+(k ,b 是常数,0k ≠)的图象过(12)A -,,(04)B -,两点,∴24k b b -=+⎧⎨=-⎩,解得24k b =⎧⎨=-⎩,∴一次函数的解析式为24y x =-. (2)∵24y x =-经过第一、三、四象限, ∴与x 、y 轴交点坐标为(2,0)、(0,-4), ∵3y x m =+中k =3,∴y 随x 的增大而增大,减小而减小,∴直线AB CD ,交于点E ,且E 在第四象限时,m 的最小值为经过点(2,0),m 的最大值为经过(0,-4),∴当x =2,y =0时,m =-6;当x =0,y =-4时,m =-4, ∴m 的取值范围64m -<<-. 15.【答案】B【解析】①②是一次函数;③是反比例函数;④最高次数是2次,是二次函数.则一次函数的个数是2.故选B . 16.【答案】A【解析】因为k =23-<0,所以y 随着x 的增大而减小,因为-4<2,所以y 1>y 2,故选A . 17.【答案】D【解析】y =-x 的图象平分第二、四象限,故选D . 18.【答案】A【解析】由32y kx y kx =+⎧⎨=-+⎩可得1252x ky ⎧=-⎪⎪⎨⎪=⎪⎩,分两种情况讨论:①当k >0时,交点的横坐标为负,纵坐标为正,即交点在第二象限; ②当k <0时,交点的横坐标为正,纵坐标为正,即交点在第一象限.故选A . 19.【答案】A【解析】根据图示知:一次函数y =(a +1)x +b 的图象经过第一、二、三象限,∴a +1>0,即a >-1,且b >0,故选A . 20.【答案】C【解析】∵一次函数y=mx+|m-1|的图象过点(0,2),∴把x=0,y=2代入y=mx+|m-1|得:|m-1|=2,解得:m=3或-1,∵y随x的增大而增大,所以m>0,所以m=3,故选C.21.【答案】A【解析】∵一次函数y=-5x-3中的-5<0,∴该函数图象经过第二、四象限;又∵一次函数y=-5x-3中的-3<0,∴该函数图象与y轴交于负半轴,∴该函数图象经过第二、三、四象限,即不经过第一象限,故选A.22.【答案】B【解析】∵k>0,∴一次函数经过第一、三象限,∴-k<0,则一次函数经过y轴的负半轴,故选B.23.【答案】B【解析】A、在y=-2x+4中k=-2<0,∴y随x的增大而减小,即A正确;B、令y=-2x+4中x=0,则y=4,∴当x<0时,y>4,即B不正确;C、函数的图象向下平移4个单位长度后得到的图象的解析式为y=-2x+4-4=-2x,∴C正确;D、令y=-2x+4中x=0,则y=4,∴函数的图象与y轴的交点坐标是(0,4),即D正确.故选B.24.【答案】B【解析】∵y随着x的增大而减小,∴0k<,所以B选项是正确的,故选B.25.【答案】C【解析】∵函数y=3x+5的图象交y轴于(0,5),∴设函数解析式为y=-3x+k,代入(0,5)得,k=5,∴一次函数的解析式是y=-3x+5,故选C.26.【答案】C【解析】①当mn>0,m,n同号,同正时y=mx+n过1,2,3象限,同负时过2,3,4象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或1,2,4象限.故选C.27.【答案】m<3 5【解析】当5m-3<0时,y随着x的增大而减小,解得35m<,故答案为:35m<.28.【答案】y=52x+5或y=-52x-5【解析】由题意可知:一次函数与x轴的交点坐标为(-2,0),与y轴的交点坐标为(0,5)或(0,-5),设一次函数解析式为y=kx+b,当一次函数图象过点(-2,0),(0,5)时,则205k bb-+=⎧⎨=⎩,解得525kb⎧=⎪⎨⎪=⎩,此时一次函数解析式为y=52x+5;当一次函数图象过点(-2,0),(0,-5)时,则205k bb-+=⎧⎨=-⎩,解得525kb⎧=-⎪⎨⎪=-⎩,此时一次函数解析式为y=-52x-5,综上所述,该函数的解析式为y=52x+5或y=-52x-5,故答案为:y=52x+5或y=-52x-5.29.【解析】(1)设y=k(x+2).∵x=4,y=12,∴6k=12,解得k=2.∴y=2(x+2)=2x+4.(2)当y=36时,2x+4=36,解得x=16.(3)当x=-7时,y=2×(-7)+4=-10,∴点(-7,-10)是函数图象上的点.30.【解析】(1)把点(2,-4)的坐标代入正比例函数y=kx得-4=2k,解得k=-2.(2)把点(-1,m)的坐标代入y=-2x得m=2.(3)方法1:因为函数y=-2x中,y随x的增大而减小,-2<12<1,所以y3<y1<y2.方法2:y1=(-2)×12=-1,y2=(-2)×(-2)=4,y3=(-2)×1=-2,所以y3<y1<y2.31.【解析】(1)过点B作BE⊥x轴于点E,如图所示.∵∠BOE =45°,BE ⊥OE , ∴△BOE 为等腰直角三角形, ∴OE =BE ,OBOE . ∵OB, ∴OE =BE =1,∴点B 的坐标为(1,-1). (2)当x =-1时,y =-3, ∴点A 的坐标为(-1,-3).设直线AB 的表达式为y =kx +b (k ≠0), 将(-1,-3)、(1,-1)代入y =kx +b ,31k b k b -+=-⎧⎨+=-⎩,解得12k b =⎧⎨=-⎩, ∴直线AB 的函数表达式为y =x -2. (3)当x =0时,y =-2, ∴点D 的坐标为(0,-2), ∴S △AOD =12OD ·|x A |=12×2×1=1. (4)∵△ODP 与△ODA 的面积相等, ∴x P =-x A =1,当x =1时,y =1-2=-1, ∴点P 的坐标为(1,-1).32.【解析】(1)将(02)B ,、(11)P ,代入11y k x b =+, 121b k b =⎧⎨+=⎩,解得112k b =-⎧⎨=⎩,∴直线1y 的解析式为12y x =-+.(2)当10y =时,有20x -+=,∴2x =,∴点A 的坐标为()2,0. ∴1121122AOP P S AO y =⋅=⨯⨯=△. (3)观察函数图象,可知:当1x <时,直线11y k x b =+在直线22y k x =的上方, ∴12k x b k x +>的解集为1x <.33.【解析】(1)若乙仓库调往A 县农用车x 辆(x ≤6),则乙仓库调往B 县农用车6-x辆,A 县需10辆车,故甲给A 县调农用车10-x 辆,那么甲仓库给B 县调车8-(6-x )=x +2辆,根据各个调用方式的运费可以列出方程如下:y =40(10-x )+80(x +2)+30x +50(6-x ),化简得:y =20x +860(0≤x ≤6).(2)总运费不超过900,即y ≤900,代入函数关系式得20x +860≤900,解得x ≤2,所以x =0,1,2,即如下三种方案:甲往A :10辆;乙往A :0辆;甲往B :2辆;乙往B :6辆,甲往A :9;乙往A :1甲往B :3;乙往B :5,甲往A :8;乙往A :2甲往B :4;乙往B :4.(3)要使得总运费最低,由y =20x +860(0≤x ≤6)知,x =0时y 值最小为860,即上面(2)的第一种方案:甲往A :10辆;乙往A :0辆;甲往B :2辆;乙往B :6辆,总运费最少为860元.34.【答案】C【解析】设该正比例函数的解析式为(0)y kx k =≠,因为正比例函数的图象经过点(21)-,,则12k -=,解得12k =-,所以这个正比例函数的表达式是12y x =-.故选C . 35.【答案】C【解析】直线y=2x向下平移2个单位得到的函数解析式为y=2x-2.故选C.36.【答案】D【解析】∵-1<0,∴一次函数y=-x-2的图象一定经过第二、四象限,又∵-2<0,∴一次函数y=-x-2的图象与y轴交于负半轴,∴一次函数y=-x-2的图象经过第二、三、四象限,故选D.37.【答案】B【解析】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.38.【答案】C【解析】把(-2,0)和(0,1)代入y=kx+b,得201k bb-+=⎧⎨=⎩,解得121kb⎧=⎪⎨⎪=⎩,所以一次函数解析式为y=12x+1,再将A(3,m)代入,得m=12×3+1=52,故选C.39.【答案】B【解析】由一次函数图象可知关于x的不等式kx+3>0的解集是x<2,故选B.40.【答案】A【解析】方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(-3,0),∴方程ax+b=0的解是x=-3,故选A.41.【答案】C【解析】将直线y=x-1向上平移2个单位长度后得到直线y=x-1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(-1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误,故选C.42.【答案】A【解析】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.43.【答案】A【解析】由点(12)A -,,(13)B ,可知,当1x <时,y 随x 的增大而增大,故A 正确;由(13)B ,,(21)C ,知,当1<x <2时,y 随x 的增大而减小,故B 错误; 由(21)C ,,(65)D ,知,当2x >时,y 随x 的增大而增大,故C 、D 错误,故选A .44.【答案】k <0【解析】∵一次函数y =kx -2的函数值y 随自变量x 的增大而减小,∴k <0,故答案为:k <0.45.【答案】>【解析】∵直线y =-3x +2中,k =-3<0,∴此函数是减函数,∵-5<4,∴a >b ,故答案为:>.46.【答案】-4≤m ≤4【解析】∵点M 在直线y =-x 上,∴M (m ,-m ),∵MN ⊥x 轴,且点N 在直线y =x 上,∴N (m ,m ),∴MN =|-m -m |=|2m |,∵MN ≤8,∴|2m |≤8,∴-4≤m ≤4,故答案为:-4≤m ≤4.47.【答案】(30)80)--,,,【解析】当y =0时,x =-8,即A (-8,0),当x =0时,y =4,即B (0,4),∴OA =8,OB =4,在Rt △ABO 中,AB =若AP =AB OP =AP -AO 8,∴点P (8,0),若AP '=BP ',在Rt △BP 'O 中,BP '2=BO 2+P 'O 2=16+(AO -BP ')2.∴BP '=AP '=5,∴OP '=3,∴P '(-3,0),综上所述:点P (-3,0),(-8,0),故答案为:(-3,0),(8,0).48.【答案】-2<x <2【解析】∵一次函数y =-x -2的图象过点P (n ,-4),∴-4=-n -2,解得n =2,∴P (2,-4),又∵y =-x -2与x 轴的交点是(-2,0),∴关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为22x -<<.故答案为:22x -<<.49.【答案】1x >【解析】∵直线y 1=-x +a 与y 2=bx -4相交于点P ,已知点P 的坐标为(1,-3),∴关于x 的不等式-x +a <bx -4的解集是x >1,故答案为:x >1.50.【答案】2【解析】∵直线y =2x 与线段AB 有公共点,∴2n ≥3,∴n ≥32,故答案为:2. 51.【答案】x =2【解析】∵一次函数y =ax +b 的图象与x 轴相交于点(2,0),∴关于x 的方程ax +b =0的解是x =2,故答案为:x =2.52.【解析】(1)根据题意得购进丙种图书(20-x -y )套,则有500x +400y +250(20-x -y )=7700, 所以解析式为:y =-53x +18. (2)根据题意得:51813x -+≥, 解得1105x x ≤, 又∵x ≥1, ∴11105x x ≤≤, 因为x ,y ,(20-x -y )为整数,∴x =3,6,9,即有三种购买方案:①甲、乙、丙三种图书分别为3套,13套,4套,②甲、乙、丙三种图书分别为6套,8套,6套,③甲、乙、丙三种图书分别为9套,3套,8套,(3)若按方案一:则有13a -4a =20,解得a =209(不是正整数,不符合题意), 若按方案二:则有8a -6a =20,解得a =10(符合题意),若按方案三:则有3a -8a =20,解得a =-4(不是正整数,不符合题意),所以购买方案是:甲种图书6套,乙种图书8套,丙种图书6套,a =10.53.【解析】(1)设A 型桌椅的单价为a 元,B 型桌椅的单价为b 元,根据题意知,2200033000a ba b+=⎧⎨+=⎩,解得600800 ab=⎧⎨=⎩,即:A,B两型桌椅的单价分别为600元,800元.(2)根据题意知,y=600x+800(200-x)+200×10=-200x+162000(120≤x≤140).(3)由(2)知,y=-200x+162000(120≤x≤140),∴当x=140时,总费用最少,即:购买A型桌椅140套,购买B型桌椅60套,总费用最少,最少费用为134000元.54.【解析】(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y 件,根据题意得,45251200 30201200300x yx y+=⎧⎨+=-⎩,解得1030 xy=⎧⎨=⎩,答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件.(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W 元,增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,根据题意得:W=30(10+m)+20(38-m)=10m+790,由题意得:38-m≤2(10+m),解得:m≥6,即6≤m≤8,∵一次函数W随m的增大而增大,∴当m=6时,W最小=850,答:产品件数增加后,每次运费最少需要850元.55.【解析】(1)设A、B两种型号电动自行车的进货单价分别为x元、(x+500)元,由题意:50000x=60000+500x,解得:x=2500,经检验:x=2500是分式方程的解,答:A、B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30-m)=-200m+15000(20≤m≤30).(3)∵y=300m+500(30-m)=-200m+15000,∵-200<0,20≤m≤30,∴m=20时,y有最大值,最大值为11000元.56.【解析】(1)把x=2代入y=12x,得y=1,∴A的坐标为(2,1).∵将直线l1沿y轴向下平移4个单位长度,得到直线l3,∴直线l3的解析式为y=12x-4,∴x=0时,y=-4,∴B(0,-4).将y=-2代入y=12x-4,得x=4,∴点C的坐标为(4,-2).设直线l2的解析式为y=kx+b,∵直线l2过A(2,1)、C(4,-2),∴2142k bk b+=⎧⎨+=-⎩,解得324kb⎧=-⎪⎨⎪=⎩,∴直线l2的解析式为y=-32x+4.(2)∵y=-32x+4,∴x=0时,y=4,∴D(0,4).∵B(0,-4),∴BD=8,∴△BDC的面积=12×8×4=16.57.【解析】(1)设A城有化肥a吨,B城有化肥b吨,根据题意得,500100 b ab a+=⎧⎨-=⎩,解得200300 ab=⎧⎨=⎩,答:A城和B城分别有200吨和300吨肥料.(2)设从A城运往C乡肥料x吨,则运往D乡(200-x)吨,从B城运往C乡肥料(240-x)吨,则运往D乡(60+x)吨,设总运费为y元,根据题意,则:y=20x+25(200-x)+15(240-x)+24(60+x)=4x+10040,∵20002400600xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩,∴0≤x≤200,由于函数是一次函数,k=4>0,所以当x=0时,运费最少,最少运费是10040元.(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=(20-a)x+25(200-x)+15(240-x)+24(60+x)=(4-a)x+10040,当4-a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;当4-a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.58.【解析】(1)由题意得,0.6x+0.4×(35-x)=y,整理得,y=0.2x+14(0<x<35).(2)由题意得,35-x≤2x,解得,x≥353,则x的最小整数为12,∵k=0.2>0,∴y随x的增大而增大,∴当x=12时,y有最小值16.4,答:该公司至少需要投入资金16.4万元.。

一次函数性质练习题及答案

一次函数性质练习题及答案

一次函数性质练习题及答案一次函数性质练习题及答案一次函数是数学中的基础概念,它在实际问题中有着广泛的应用。

掌握一次函数的性质和解题方法对于学好数学非常重要。

本文将给出一些一次函数的性质练习题及答案,希望能帮助读者更好地理解和掌握一次函数的知识。

练习题1:已知一次函数y = ax + b,其中a和b为常数,若函数的图像经过点(2, 3)和(-1, 4),求函数的解析式。

解答:将点(2, 3)和(-1, 4)代入函数解析式,得到两个方程:3 = 2a + b (1)4 = -a + b (2)解方程组(1)和(2),可以得到a = -1,b = 1。

因此,函数的解析式为y = -x + 1。

练习题2:已知一次函数y = kx + m,其中k和m为常数,若函数的图像经过点(-3, 2)和(1, 6),求函数的解析式。

解答:将点(-3, 2)和(1, 6)代入函数解析式,得到两个方程:2 = -3k + m (3)6 = k + m (4)解方程组(3)和(4),可以得到k = 2,m = 4。

因此,函数的解析式为y = 2x + 4。

练习题3:已知一次函数y = px + q,其中p和q为常数,若函数的图像经过点(1, 3)和(2, 5),求函数的解析式。

解答:将点(1, 3)和(2, 5)代入函数解析式,得到两个方程:3 = p + q (5)5 = 2p + q (6)解方程组(5)和(6),可以得到p = 2,q = 1。

因此,函数的解析式为y = 2x + 1。

通过以上三个练习题,我们可以看出,已知一次函数的两个点,可以通过解方程组的方法求得函数的解析式。

这是因为一次函数的图像是一条直线,两个点可以确定一条直线,而一次函数的解析式就是直线的方程。

除了求解函数的解析式,我们还可以通过一次函数的性质来解决一些问题。

练习题4:已知一次函数的图像经过点(1, 2)和(3, 4),求函数的斜率。

解答:一次函数的斜率等于函数图像上任意两点的纵坐标之差与横坐标之差的比值。

一次函数练习题与答案

一次函数练习题与答案

一次函数练习题与答案一次函数练习题与答案一次函数是初中数学中的重要知识点,也是解决实际问题中常用的数学模型。

它的一般形式为y=ax+b,其中a和b为常数,x为自变量,y为因变量。

一次函数的图像是一条直线,具有许多有趣的性质和应用。

下面,我们将通过一些练习题来加深对一次函数的理解,并给出详细的答案解析。

练习题1:已知一次函数y=2x+1,求当x=3时的函数值。

解析:将x=3代入函数中,得到y=2×3+1=7。

所以当x=3时,函数值为7。

练习题2:已知一次函数y=-3x+5,求使得函数值等于0的x的值。

解析:当函数值等于0时,即-3x+5=0。

解这个方程得到x=5/3。

所以使得函数值等于0的x的值为5/3。

练习题3:已知一次函数y=4x-2和y=-2x+6,求它们的交点坐标。

解析:当两个函数的函数值相等时,即4x-2=-2x+6。

解这个方程得到x=1。

将x=1代入其中一个函数中,得到y=4×1-2=2。

所以它们的交点坐标为(1, 2)。

练习题4:已知一次函数的图像通过点(2, 3)和(-1, 1),求这个函数的解析式。

解析:设这个函数的解析式为y=ax+b。

将点(2, 3)代入函数中,得到3=2a+b;将点(-1, 1)代入函数中,得到1=-a+b。

解这个方程组,得到a=2,b=-1。

所以这个函数的解析式为y=2x-1。

练习题5:已知一次函数的图像与x轴交于点(3, 0),求这个函数的解析式。

解析:当函数与x轴交于点(3, 0)时,即y=a×3+b=0。

解这个方程得到a=-b/3。

所以这个函数的解析式为y=(-b/3)x+b。

通过以上练习题,我们可以看到一次函数的一些基本特点和求解方法。

一次函数的图像是一条直线,它的斜率决定了直线的倾斜程度。

当斜率为正数时,直线向上倾斜;当斜率为负数时,直线向下倾斜;当斜率为零时,直线平行于x 轴。

截距则决定了直线与y轴的交点。

一次函数的应用非常广泛,可以用来解决许多实际问题。

(完整版)一次函数的定义练习题及答案

(完整版)一次函数的定义练习题及答案

一次函数的定义1、判断正误:(1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( ) (3)x +2y =5是一次函数; ( )(4)2y -x=0是正比例函数. ( )2、选择题(1)下列说法不正确的是( ) A .一次函数不一定是正比例函数。

B .不是一次函数就不一定是正比例函数。

C .正比例函数是特殊的一次函数。

D .不是正比例函数就一定不是一次函数。

(2)下列函数中一次函数的个数为( )①y=2x;②y=3+4x;③y=;④y=ax(a≠0的常数);⑤xy=3;⑥2x+3y-1=0;21A .3个B 4个C 5个D 6个3、填空题(1)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。

(2)当m=__________时,函数y=3x 2m+1+3 是一次函数。

(3 )关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。

4、已知函数y=当m 取什么值时,y 是x 的一次函数?当m 取什么值是,()()112-++m x m y 是x 的正比例函数。

5、函数:①y=-2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x 中,属一1+x 221x次函数的有 ,属正比例函数的有 (只填序号)(2)当m= 时,y=是一次函数。

()()m x m x m +-+-1122(3)请写出一个正比例函数,且x =2时,y= -6请写出一个一次函数,且x=-6时,y=2(4) 我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x 小时后水龙头滴了y 毫升水.则y 与x 之间的函数关系式是 (5)设圆的面积为s ,半径为R,那么下列说法正确的是( )A S 是R 的一次函数 B S 是R 的正比例函数C S 是的正比例函数 D 以上说法都不正确2R 6、说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的定义1、判断正误:(1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( ) (3)x +2y =5是一次函数; ( ) (4)2y -x=0是正比例函数. ( ) 2、选择题(1)下列说法不正确的是( ) A .一次函数不一定是正比例函数。

B .不是一次函数就不一定是正比例函数。

C .正比例函数是特殊的一次函数。

D .不是正比例函数就一定不是一次函数。

(2)下列函数中一次函数的个数为( )①y=2x ;②y=3+4x ;③y=21;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y-1=0;A .3个B 4个C 5个D 6个3、填空题(1)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。

(2)当m=__________时,函数y=3x2m+1+3 是一次函数。

(3 )关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。

4、已知函数y=()()112-++m x m 当m 取什么值时,y 是x 的一次函数?当m 取什么值是,y 是x 的正比例函数。

5、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y=221x+1;⑥y=0.5x 中,属一次函数的有 ,属正比例函数的有 (只填序号) (2)当m= 时,y=()()m x m x m +-+-1122是一次函数。

(3)请写出一个正比例函数,且x =2时,y= -6请写出一个一次函数,且x=-6时,y=2(4) 我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x小时后水龙头滴了y毫升水.则y与x之间的函数关系式是(5)设圆的面积为s,半径为R,那么下列说法正确的是()A S是R的一次函数B S是R的正比例函数R的正比例函数 D 以上说法都不正确C S是26、说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数。

①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系式为,它是函数②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A 站的距离s(千米)与时间t(小时)之间的函数关系式为,它是函数7、曾子伟叔叔的庄园里已有50棵树,,他决定今后每年栽2棵树,则曾叔叔庄园树木的总数y(棵)与年数x的函数关系式为它是函数8、圆柱底面半径为5cm,则圆柱的体积V(cm3)与圆柱的高h(cm)之间的函数关系式为,它是函数9、甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资。

10、.在拖拉机油箱中,盛满56千克油,拖拉机工作时,每小时平均耗油6千克,求邮箱里剩下Q(千克)与拖拉机的工作时间t(小时)之间的函数解析式。

一次函数的图象1、 在同一平面直角坐标系中画出下列每组函数的图象. (1) y =2x 与y =2x +3 x y =2x y =2x +3解2、说出直线y =3x +2与221+=x y ;y =5x -1与y =5x -4的相同之处. 解 :直线y =3x +2与221+=x y 的 ,相同,所以这两条直线 ,同一点,且交点坐标 ,;直线y =5x -1与y =5x -4的 相同,所以这两条直线 ,. 3.(1)直线521,321--=+-=x y x y 和x y 21-=的位置关系是 ,直线521,321--=+-=x y x y 可以看作是直线x y 21-=向 平移 个单位得到的;; 向 平移 个单位得到的(2)将直线y =-2x +3向下平移5个单位,得到直线 .(3).函数y =kx -4的图象平行于直线y =-2x ,求直线4y kx =-的解析式为 ;(4)直线y=2x-3可以由直线y=2x 经过 单位而得到;直线y=-3x+2 可以由直线y=-3x 经过 而得到;直线y=x+2可以由直线y=x-3经过 而得到.(5)直线y=2x +5与直线521+=x y ,都经过y 轴上的同一点( 、 )4、写出一条与直线y=2x -3平行的直线5、写出一条与直线y=2x -3平行,且经过点(2,7)的直线6、直线y=-5x +7可以看作是由直线y=-5x -1向 平移 个单位得到的1、(1)一次函数y=kx+b 当x=0时,y= ,横坐标为0点在 上,在y kx b =+中,;当y=0时,x= 纵坐标为0点在 上。

画一次函数的图象,常选取(0, )、( ,0)两点连线。

(2)直线y =4x -3过点(_____,0)、(0, ); (3)直线231+-=x y 过点( ,0)、(0, ). 2、 分别在同一直角坐标系内画出下列直线,写出各直线分别与x 轴、y 轴的交点坐标,并指出每一小题中两条直线的位置关系.(1)y =-x +2 ; y =-x -1. (2)y =3x -2 ; y =232-x .3、直线y =-x +2与x 轴的交点坐标是 ,与y 轴的交点坐标是4、直线y =-x -1与x 轴的交点坐标是 ,与y 轴的交点坐标是5、直线y =4x -2与x 轴的交点坐标是 ,与y 轴的交点坐标是6、直线y =232-x 与x 轴的交点坐标是 ,与y 轴的交点坐标是7、 画出函数y =-2x +3的图象,借助图象找出: (1) 直线上横坐标是2的点,它的坐标是( , )(2) 线上纵坐标是-3的点,它的坐标是( , )(3) 直线上到y 轴距离等于2的点,它的坐标是( , )(4)点(2、7)是否在此图象上;( ) (5)找出横坐标是-2的点,并标出其坐标;( , )(6)找出到x 轴的距离等于1的点,并标出其坐标;( , ) (7)找出图象与x 轴和y 轴的交点,并标出其坐标。

( , ) 9、求函数323-=x y 与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.10、一次函数y =3x +b 的图象与两坐标轴围成的三角形面积是24,求b .一次函数的性质1、 做一做,画出函数y =-2x +2的图象,结合图象 回答下列问题。

函数y =-2x +2的图象中: (1) 随着x 的增大,y 将 (填“增大”或“减小”) (2) 它的图象从左到右 (填“上升”或“下降”) (3)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 (4) 这个函数中,随着x 的增大,y 将增大还是减小?它的图象从左到右怎样变化? (5) 当x 取何值时,y =0? (6) 当x 取何值时,y >0?2、函数y =3x -6的图象中:(1)随着x 的增大,y 将 (填“增大”或“减小”) (2)它的图象从左到右 (填“上升”或“下降”) (3)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 3、已知函数y =(m -3)x -32. (1) 当m 取何值时,y 随x 的增大而增大? (2) 当m 取何值时,y 随x 的增大而减小?[B 组]1、 写出一个y 随x 的增大而减少的一次函数2、 写出一个图象与x 轴交点坐标为(3,0)的一次函数3、写出一个图象与y轴交点坐标为(0,-3)的一次函数1.一次函数y=5x+4的图象经过___________象限,y随x的增大而________,它的图象与x轴.Y轴的坐标分别为________________ (2).函数y=(k-1)x+2,当k>1时,y随x的增大而______,当k<1时,y随x的增大而_____。

2、函数y=-7x-6的图象中:(1)随着x的增大,y将(填“增大”或“减小”)(2)它的图象从左到右(填“上升”或“下降”)(3)图象与x轴的交点坐标是,与y轴的交点坐标是(4)x 取何值时,y=2? 当x=1时,y=3.某个一次函数的图象位置大致如下图所示,试分别确定k、b的符号,并说出函数的性质.(k 0, b 0) (k 0, b 0)4、已知一次函数y=(2m-1)x+m+5,当m 取何值时,y 随x 的增大而增大? 当m 取何值时,y 随x 的增大而减小?5.已知点(x1, y1)和(x2, y2)都在直线 y=43x-1上, 若x1 < x2, 则 y 1__________y 26. 已知一次函数y =(1-2m)x +m-1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围.7.已知函数m x m y m m +-=--12)1(,当m 为何值时,这个函数是一次函数.并且图象经过第二、三、四象限?8.已知一次函数y =(1-2k ) x +(2k +1). ①当k 取何值时,y 随x 的增大而增大? ②当k 取何值时,函数图象经过坐标系原点? ③当k 取何值时,函数图象不经过第四象限?9.已知函数y =2x -4. (1)作出它的图象;(2)标出图象与x 轴、y 轴的交点坐标;(3) 由图象观察,当-2≤x ≤4时,函数值y 的变化范围.10.若 a 是非零实数 , 则直线 y=ax-a 一 定( )A.第一、二象限B. 第二、三象限C.第三、四象限D. 第一、四象限 11.已知关于x 的一次函数y =(-2m +1)x +2m 2+m-3.(1)若一次函数为正比例函数,且图象经过第一、第三象限,求m 的值; (2)若一次函数的图象经过点(1,-2),求m 的值.12. 已知一次函数y =(3m-8)x +1-m 图象与y 轴交点在x 轴下方,且y 随x 的增大而减小,其中m 为整数.(1)求m 的值;(2)当x 取何值时,0<y <4?一次函数图象和性质第1题. 将直线13y x =-向上平移3个单位得到的函数解析式是 .第2题. 直线y mx n =+如图所示,化简:m n -= .第3题. 已知函数y kx b y =+的图象与轴交点的纵坐标为5-,且当12x y ==时,,则此函数的解析式为 .第4题. 在函数2y x b =-中,函数y 随着x 的增大而 ,此函数的图象经过点(21)-,,则b = .第5题. 如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn0≠)图象的是( )A.B.C .D .(第7题)第6题. 在下列四个函数中,y 的值随x 值的增大而减小的是( ) A.2y x =B.36y x =-C.25y x =-+D.37y x =+第7题. 已知一次函数y kx k =+,其在直角坐标系中的图象大体是( )第8题. 在下列函数中,( )的函数值先达到100. A.26y x =+B.5y x =C.51y x =-D.42y x =+第9题. 已知一次函数35y x =+与一次函数6y ax =-,若它们的图象是两条互相平等的直线,则a = .第10题. 一次函数3y x =+与2y x b =-+的图象交于y 轴上一点,则b = . 第11题. 作出函数41y x =-的图象,并回答下列问题: (1)y 的值随x 值的增大怎样变化? (2)图象与x 轴、y 轴的交点坐标是什么?第12题. 已知一次函数2(3)16y m x m =++-,且y 的值随x 值的增大而增大. (1)m 的范围;(2)若此一次函数又是正比例函数,试求m 的值.第13题. 已知一次函数y kx b =+的图象不经过第三象限,也不经过原点,那么k b 、的取值范围是( ) A.0k >且0b <B.0k >且0b < C.0k <且0b >D.0k <且0b <D.C. B . A .第14题. 如图所示,已知正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =--的图象大致是( )第15题. 若函数2(1)2y m x m =++-与y 轴的交点在x 轴的上方,且10m m <,为整数,则符合条件的m 有( ) A.8个B.7个C.9个D.10个第16题. 函数34y x =-,y 随x 的增大而 .第17题. 已知一次函数(3)21y m x m =-+-的图象经过一、二、四象限,求m 的取值范围.一次函数的定义参考答案: 1.判断正误(1)-(4)×√√√ 2.选择题 (1)-(2)BB 3.填空题 (1)m ≠2 (2)0 (3)1xxxxD .C.B .A .4.m≠-1,m=15.(1)①②⑥,⑥(2)-1(3)y=-3x,y=x+8(4)y=360x(5)C6.①s=40t正比例②s=4-40t,一次7.y=2x+50,一次8.V=25πh,正比例9.y=0.9x+0.2,4.710.Q=56-6t一次函数的图像1.略2.b,相交,(0,2),k,平行3.(1)平行,上,3,下,5(2)y=-2x-2(3)y=-2x-4(4)向下平移3个,向上平移2个单位,向下平移5个单位(5)0,54.y=2x(不唯一,k为2即可)5.y=2x+36.下,81.(1)b,y轴,-b/k,x轴,b,-b/k(2)3/4,-3(3)6,22.图略3.(2,0),(0,2)4.(-1,0),(0,-1)5.(½,0),(0,-2)6.(3,0),(0,-2)7.(1)(2,-1)(2)3,-3(3)(2,-1)或(-2,7)(4)不在(5)-2,7(6)(1,1)或(2,-1)(7)(1.5,0),(0,3)9.(2,0)(0,-3)面积是310.±12一次函数的性质1.(1)减小(2)下降(3)(1,0),(0,2)(4)减小,下降(5)1(6)x<12.(1)增大(2)上升(3)(2,0),(0,-6)3.(1)m>3(2)m<3[B组]1.y=-2x+1(k<0,b≠0)2.y=2x-63.y=2x-31.一二三,增大,(-4/5,0)(0,4)(2)增大,减小2.(1)减小(2)下降(3)(-6/7,0),(0,-6)(4)=-8/7,-133.(1)<,>(2)>,>4.m>½,m<½5.<6.½<m<17.-18.①k<½②k=-½③-½≤k<½9.(1)略(2)(2,0),(0,-4)(3)-8≤y≤410.D11.(1)-1.5(2)012.(1)2(2)-2.5<x<-0.5一次函数图像和性质参考答案1.y=-1/3x+32.n3.y=7x-54.增大,55.A6.C7.A8.B9.310.311.(1)y随x的增大而增大(2)(¼,0),(0,-1)12.(1)m>-3(2)±413.C 14.B 15.B 16.减小 17.½<m<3。

相关文档
最新文档