因式分解单元备课

合集下载

因式分解全章教案

因式分解全章教案

因式分解全章教案一、教学目标1. 让学生掌握因式分解的基本概念和方法。

2. 培养学生运用因式分解解决实际问题的能力。

3. 提高学生对数学表达式的理解和简化能力。

二、教学内容1. 因式分解的定义和意义。

2. 常用的因式分解方法:提公因式法、公式法、分组分解法等。

3. 因式分解的应用:解方程、化简表达式等。

三、教学重点与难点1. 重点:因式分解的方法和技巧。

2. 难点:灵活运用因式分解解决实际问题。

四、教学过程1. 导入:通过简单的例子引入因式分解的概念,激发学生的兴趣。

2. 讲解:详细讲解因式分解的定义、意义和各种方法。

3. 练习:让学生通过练习题加深对因式分解方法的理解。

4. 应用:结合实际问题,让学生运用因式分解解决实际问题。

5. 总结:对本节课的内容进行归纳总结,强调重点和难点。

五、课后作业1. 完成练习册上的相关题目。

2. 选取两道具有代表性的题目,进行因式分解,并写出解题思路。

3. 总结因式分解在实际问题中的应用,并与同学交流分享。

六、教学评估1. 课堂讲解:观察学生对因式分解概念和方法的理解程度,及时解答学生的疑问。

2. 练习题目:检查学生完成练习册上的题目,关注学生的解题思路和步骤。

3. 课后作业:评估学生对因式分解的掌握情况,以及运用因式分解解决实际问题的能力。

七、教学策略2. 利用多媒体教学资源,如:动画、图片等,增加课堂的趣味性,提高学生的学习兴趣。

3. 组织小组讨论,让学生相互交流解题心得,提高合作能力。

八、教学拓展1. 介绍因式分解在其他数学领域的应用,如:数论、代数方程等。

2. 引导学生关注因式分解在现实生活中的应用,提高学生的实践能力。

3. 推荐相关的数学读物和网站,让学生课后自主学习,提高综合素质。

九、教学反思在教学过程中,及时反思自己的教学方法,根据学生的反馈调整教学策略。

关注学生的学习进度,确保教学目标得以实现。

十、教学评价通过课堂讲解、练习题目、课后作业等环节,全面评价学生对因式分解的掌握程度。

因式分解数学教案优秀5篇

因式分解数学教案优秀5篇

因式分解数学教案优秀5篇更多因式分解数学教案资料,在搜索框搜索因式分解数学教案(篇1)教学目标1.学问与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,把握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探究因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养乐观的进取意识,体会数学学问的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探究:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,老师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。

因式分解数学教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

因式分解教案5篇

因式分解教案5篇

式分解教案5篇因式分解教案篇一教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。

2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。

3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。

教学重、难点:用提公因式法和公式法分解因式。

教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。

什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

(1)因式分解与整式乘法是相反方向的变形。

例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。

怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。

ma+mb+mc二m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。

例如:x2-x=x(x-l),8a2b-4ab+2a=2a(4ab-2b+1)。

探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解。

(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a 化成-(a-b),然后再提取公因式。

因式分解教案四篇

因式分解教案四篇

因式分解教案四篇因式分解教案篇1一、运用平方差公式分解因式教学目标1、使学生了解运用公式来分解因式的意义。

2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的因式分解。

3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)重点运用平方差公式分解因式难点灵活运用平方差公式分解因式教学方法比照发现法课型新授课教具投影仪教师活动学生活动情景设置:同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?(学生或许还有其他不同的解决方法,教师要给予充分的肯定) 新课讲解:从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?首先我们来做下面两题:(投影)1.计算以下各式:(1)(a+2)(a-2)=;(2)(a+b)(a-b)=;(3)(3a+2b)(3a-2b)=.2.下面请你根据上面的算式填空:(1)a2-4=;(2)a2-b2=;(3)9a2-4b2=;请同学们比照以上两题,你发现什么呢?事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的因式分解。

(投影)比方:a2–16=a2–42=(a+4)(a–4)例题1:把以下各式分解因式;(投影)(1)36–25x2;(2)16a2–9b2;(3)9(a+b)2–4(a–b)2.(让学生弄清平方差公式的形式和特点并会运用)例题2:如图,求圆环形绿化区的面积练习:第87页练一练第1、2、3题小结:这节课你学到了什么知识,掌握什么方法?教学素材:A组题:1.填空:81x2-=(9x+y)(9x-y);=利用因式分解计算:=。

2、以下多项式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把以下各式分解因式(1)1-16a2(2)9a2x2-b2y2(3).49(a-b)2-16(a+b)2B组题:1分解因式81a4-b4=2假设a+b=1,a2+b2=1,那么ab=;3假设26+28+2n是一个完全平方数,那么n=.由学生自己先做(或互相讨论),然后答复,假设有答不全的,教师(或其他学生)补充.学生答复1:992-1=99某99-1=9801-1=9800学生答复2:992-1就是(99+1)(99-1)即100某98学生答复:平方差公式学生答复:(1):a2-4(2):a2-b2(3):9a2-4b2学生轻松口答(a+2)(a-2)(a+b)(a-b)(3a+2b)(3a-2b)学生答复:把乘法公式(a+b)(a-b)=a2-b2反过来就得到a2-b2=(a+b)(a-b)学生上台板演:36–25x2=62–(5x)2=(6+5x)(6–5x)16a2–9b2=(4a)2–(3b)2=(4a+3b)(4a–3b)9(a+b)2–4(a–b)2=[3(a+b)]2–[2(a–b)]2=[3(a+b)+2(a–b)][3(a+b)–2(a–b)]=(5a+b)(a+5b)解:352π–152π=π(352–152)=(35+15)(35–15)π=50某20π=1000π(m2)这个绿化区的面积是1000πm2学生归纳总结因式分解教案篇2教学目标1、会运用因式分解进行简单的多项式除法。

因式分解教案7篇

因式分解教案7篇

因式分解教案7篇因式分解教案7篇作为一名教师,常常要写一份优秀的教案,教案是备课向课堂教学转化的关节点。

来参考自己需要的教案吧!以下是小编收集整理的因式分解教案7篇,欢迎阅读,希望大家能够喜欢。

因式分解教案篇115.1.1 整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示△ABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC 的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为 ?c?h.2.小王的平均速度是.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、 ch、是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅱ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项.3x+5y+2z的项分别是3x、5y、2z.ab-3.12r2的项分别是 ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅲ.随堂练习1.课本P162练习Ⅳ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.Ⅴ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》15.1.2 整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。

因式分解全章教案

因式分解全章教案

因式分解全章教案一、教学目标1. 让学生掌握因式分解的基本概念和方法。

2. 培养学生运用因式分解解决实际问题的能力。

3. 提高学生对数学逻辑思维和运算能力的培养。

二、教学内容1. 因式分解的定义和意义。

2. 常用的因式分解方法:提取公因式法、十字相乘法、分组分解法、公式法等。

3. 因式分解的应用:解决代数方程、不等式等问题。

三、教学重点与难点1. 教学重点:因式分解的方法和技巧。

2. 教学难点:因式分解的应用,特别是解决复杂方程和不等式。

四、教学方法1. 采用讲解法、示范法、练习法、讨论法等相结合的教学方法。

2. 通过例题讲解和练习,让学生熟练掌握因式分解的方法。

3. 组织学生进行小组讨论,培养学生的合作精神和解决问题的能力。

五、教学过程1. 导入:引导学生回顾整式的乘法,引入因式分解的概念。

2. 讲解:讲解因式分解的定义和意义,介绍常用的因式分解方法。

3. 示范:通过例题示范,让学生了解因式分解的步骤和技巧。

4. 练习:布置练习题,让学生巩固因式分解的方法。

5. 讨论:组织学生进行小组讨论,分享解题心得和方法。

7. 作业:布置作业,让学生进一步巩固因式分解的能力。

六、教学评估1. 课堂问答:通过提问学生,了解学生对因式分解概念和方法的理解程度。

2. 练习批改:对学生的练习作业进行批改,了解学生对因式分解技巧的掌握情况。

3. 小组讨论观察:观察学生在小组讨论中的表现,了解学生的合作能力和解决问题的能力。

七、教学拓展1. 邀请数学专家进行专题讲座,深入讲解因式分解的高级技巧和应用。

2. 组织学生参加因式分解竞赛,提高学生的学习兴趣和竞争意识。

3. 开展数学研究性学习,让学生探索因式分解在实际问题中的应用。

八、教学反思2. 学生反馈:收集学生对课堂教学的反馈意见,了解学生的学习需求。

九、教学资源1. 教材:选用权威的数学教材,提供丰富的例题和练习题。

2. 教学课件:制作精美的教学课件,辅助讲解和展示。

因式分解教案【借鉴8篇】

因式分解教案【借鉴8篇】

因式分解教案【优秀8篇】作为一位不辞辛劳的人民教师,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。

我们应该怎么写教案呢?读书破万卷下笔如有神,下面本文为您精心整理了8篇《因式分解教案》,如果能帮助到您,本文将不胜荣幸。

因式分解教案篇一课型复习课教法讲练结合教学目标(知识、能力、教育)1、了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数)。

2、通过乘法公式,的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力教学重点掌握用提取公因式法、公式法分解因式教学难点根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。

教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1、分解因式:把一个多项式化成的形式,这种变形叫做把这个多项式分解因式。

2、分解困式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

⑴运用公式法:平方差公式: ;完全平方公式: ;3、分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解。

(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。

4、分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准。

若有一项被全部提出,括号内的项1易漏掉。

分解不彻底,如保留中括号形式,还能继续分解等(二):【课前练习】1、下列各组多项式中没有公因式的是( )A.3x-2与6x2-4xB.3(a-b)2与11(b-a)3C.mxmy与nynxD.aba c与abbc2、下列各题中,分解因式错误的是( )3、列多项式能用平方差公式分解因式的是()4、分解因式:x2+2xy+y2-4 =_____5、分解因式:(1) ;(2);(3) ;(4);(5)以上三题用了公式二:【经典考题剖析】1、分解因式:(1);(2) ;(3) ;(4)分析:①因式分解时,无论有几项,首先考虑提取公因式。

精选因式分解教案(通用9篇)

精选因式分解教案(通用9篇)

因式分解教案精选因式分解教案(通用9篇)作为一位杰出的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的因式分解教案,供大家参考借鉴,希望可以帮助到有需要的朋友!因式分解教案篇1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2—b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。

判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)、2x(x—3y)=2x2—6xy整式乘法(3)、(5a—1)2=25a2—10a+1整式乘法(4)、x2+4x+4=(x+2)2因式分解(5)、(a—3)(a+3)=a2—9整式乘法(6)、m2—4=(m+4)(m—4)因式分解(7)、2πR+2πr=2π(R+r)因式分解2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。

分解因式要注意以下几点:(1)分解的对象必须是多项式。

(2)分解的结果一定是几个整式的乘积的形式。

(3)要分解到不能分解为止。

3、因式分解的方法提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。

《因式分解》教学设计范文(精选10篇)

《因式分解》教学设计范文(精选10篇)

《因式分解》教学设计范文(精选10篇)《因式分解》教学设计 1教学目标认知目标:(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

目标制定的思想1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。

2.课堂教学体现能力立意。

3.寓德育教学方法1采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。

2把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高能力。

3在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。

4在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。

教学过程安排一、提出问题,创设情境问题:看谁算得快?(1)若a=101,b=99,则a2-b2=(a+b)(a-b)=(101+99)(101-99)=400(2)若a=99,b=-1,则a2-2ab+b2=(a-b) 2=(99+1)2 =10000(3)若x=-3,则20x2+60x=20x(x+3)=20x(-3)(-3+3)=0二、观察分析,探究新知(1)请每题想得最快的同学谈思路,得出最佳解题方法(2)观察:a2-b2=(a+b)(a-b) ①的左边是一个什么式子?右边又是什么形式? a2-2ab+b2 =(a-b) 2 ②20x2+60x=20x(x+3) ③(3)类比小学学过的因数分解概念,(例42=2某3某7 ④)得出因式分解概念。

因式分解教案模板(10篇)

因式分解教案模板(10篇)

因式分解教案模板(10篇)因式分解教案 1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)._2-4y2=(_+2y)(_-2y)因式分解(2).2_(_-3y)=2_2-6_y整式乘法(3).(5a-1)2=25a2-10a+1整式乘法(4)._2+4_+4=(_+2)2因式分解(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解(7).2πR+2πr=2π(R+r)因式分解2、规律总结(教师讲解):分解因式与整式乘法是互逆过程.分解因式要注意以下几点:(1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6_2+6_y+3_=-3_(2_-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。

现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。

下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。

《因式分解》单元备课

《因式分解》单元备课
《因式分解》
单元备课--整体构建 系统连贯
教材地位及课标要求
教学目标及达成标志
教学重难点及突破方式
教学建议及注意事项
目 录
教材地位及课标要求
数学核心素养
数学抽象
逻辑推理
直观想象
数据分析
数学建模
数学运算
数学抽象
逻辑推理
数学建模
在整式乘除与因式分解的运算过程中形成运算能力。
通过生活中常见的数字简便运算形成数学抽象能力。
2)渗透数形结合思想——通过拼图前后面积的不变解释因式分解的合理性,以直观形象的方式促进学生理解因式分解,发展几何直观。
单元教学建议
单元教学建议--1.1因式分解
3、应用所学简便运算,解决问题
课本中呈现小明的方法,显然是要引导学生思考不一般的解决方法,变复杂运算为简单运算。
单元教学建议--1.1因式分解
单元教学建议--1.2提公因式法
(1)类比——类比公因数、得出公因式概念,明确公因式找法(2)逆向思维——逆用乘法分配律,即(3)复杂计算
①整体思想(公因式为多项式)
②添括号(相反数——相反式)教材设计了添括号的练习,以帮助学生处理提高处理符号的能力,体会添括号的方法。旨在加深学生对添括号法则的理解。
借助拼图前后面积的不变性解释整式变形的过程,体会几何直观的作用,有助于学生从几何角度认识并理解因式分解的含义。
关注学生数学核心素养的形成
数与代数


方程
函数
有理数
无理数
整式
分式
整式方程
分式方程
一次、二次函数
反比例函数
因式分解
整体建构的单元备课
二次根式
一元二次方程

因式分解教案4篇

因式分解教案4篇

因式分解教案4篇因式分解教案篇1教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.2-4=()();3.2-2y+y2=()2.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究(1)下列各式从左到右的变形是否为因式分解:①(+1)(-1)=2-1;②a2-1+b2=(a+1)(a-1)+b2;③7-7=7(-1).(2)在下列括号里,填上适当的项,使等式成立.①92(______)+y2=(3+y)(_______);②2-4y+(_______)=(-_______)2.四、随堂练习,巩固深化课本练习.计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知下列从左到右的变形是否是因式分解,为什么?(1)22+4=2(2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)2+4y-y2=(+4y)-y2;(4)m(+y)=m+my;(5)2-2y+y2=(-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式42-和y2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在42-中的公因式是,在y2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法多项式42-86,16a3b2-4a3b2-8ab4各项的公因式是什么?提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学把-42yz-12y2z+4yz分解因式.解:-42yz-12y2z+4yz=-(42yz+12y2z-4yz)=-4yz(+3y-1)分解因式,3a2(-y)3-4b2(y-)2观察所给多项式可以找出公因式(y-)2或(-y)2,于是有两种变形,(-y)3=-(y-)3和(-y)2=(y-)2,从而得到下面两种分解方法.解法1:3a2(-y)3-4b2(y-)2=-3a2(y-)3-4b2(y-)2=-[(y-)23a2(y-)+4b2(y-)2]=-(y-)2 [3a2(y-)+4b2]=-(y-)2(3a2y-3a2+4b2)解法2:3a2(-y)3-4b2(y-)2=(-y)23a2(-y)-4b2(-y)2=(-y)2 [3a2(-y)-4b2]=(-y)2(3a2-3a2y-4b2)用简便的方法计算:0.84×12+12×0.6-0.44×12.引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学把下列各式分解因式:(投影显示或板书)(1)2-9y2;(2)164-y4;(3)12a22-27b2y2;(4)(+2y)2-(-3y)2;(5)m2(16-y)+n2(y-16).在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.分四人小组,合作探究.解:(1)2-9y2=(+3y)(-3y);(2)164-y4=(42+y2)(42-y2)=(42+y2)(2+y)(2-y);(3)12a22-27b2y2=3(4a22-9b2y2)=3(2a+3by)(2a-3by);(4)(+2y)2-(-3y)2=[(+2y)+(-3y)][(+2y)-(-3y)] =5y (2-y);(5)m2(16-y)+n2(y-16)=(16-y)(m2-n2)=(16-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知1.分解因式:(1)-92+4y2;(2)(+3y)2-(-3y)2;(3) 2-0.01y2.因式分解教案篇2学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。

因式分解教案9篇

因式分解教案9篇

因式分解教案9篇因式分解教案篇1教学目标:1、理解运用平方差公式分解因式的方法。

2、掌握提公因式法和平方差公式分解因式的综合运用。

3、进一步培养学生综合、分析数学问题的能力。

教学重点:运用平方差公式分解因式。

教学难点:高次指数的转化,提公因式法,平方差公式的灵活运用。

教学案例:我们数学组的观课议课主题:1、关注学生的合作交流2、如何使学困生能积极参与课堂交流。

在精心备课过程中,我设计了这样的自学提示:1、整式乘法中的平方差公式是___,如何用语言描述把上述公式反过来就得到_____,如何用语言描述2、下列多项式能用平方差公式分解因式吗若能,请写出分解过程,若不能,说出为什么①-2+y2 ②-2-y2 ③4-92④ (+y)2-(-y)2 ⑤ a4-b43、试总结运用平方差公式因式分解的条件是什么4、仿照例4的分析及旁白你能把3y-y因式分解吗5、试总结因式分解的步骤是什么师巡回指导,生自主探究后交流合作。

生交流热情很高,但把全部问题分析完已用了30分钟。

生展示自学成果。

生1: -2+y2能用平方差公式分解,可分解为(y+)(y-)生2: -2+y2=-(2-y2)=-(+y)(-y)师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

生3:4-92 也能用平方差公式分解,可分解为(2+9)(2-9)生4:不对,应分解为(2+3)(2-3),要运用平方差公式必须化为两个数或整式的平方差的形式。

生5: a4-b4可分解为(a2+b2)(a2-b2)生6:不对,a2-b2 还能继续分解为a+b)(a-b)师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。

反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:下列多项式能用平方差公式因式分解吗为什么可能效果会更好。

精选因式分解教案3篇

精选因式分解教案3篇

精选因式分解教案3篇因式分解教案篇1教学目标1、会运用因式分解进行简单的多项式除法。

2、会运用因式分解解简单的方程。

二、教学重点与难点教学重点:教学重点因式分解在多项式除法和解方程两方面的应用。

教学难点:应用因式分解解方程涉及较多的推理过程。

三、教学过程(一)引入新课1、知识回顾(1)因式分解的几种方法:①提取公因式法: ma+mb=m(a+b)②应用平方差公式: = (a+b)(a—b)③应用完全平方公式:a 2ab+b =(ab)(2)课前热身:①分解因式:(x +4) y — 16x y(二)师生互动,讲授新课1、运用因式分解进行多项式除法例1 计算:(1)(2ab —8a b)(4a —b)(2)(4x —9)(3—2x)解:(1)(2ab —8a b)(4a—b) =—2ab (4a—b)(4a—b) =—2ab (2)(4x —9)(3—2x) =(2x+3)(2x—3)[—(2x—3)] =—(2x+3) =—2x—3一个小问题:这里的x能等于3/2吗?为什么?想一想:那么(4x —9)(3—2x)呢?练习:课本P162课内练习合作学习想一想:如果已知()()=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢?(让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B 中有一个为零,即A=0,或B=0试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、运用因式分解解简单的方程例2 解下列方程:(1) 2x +x=0 (2)(2x—1) =(x+2)解:x(x+1)=0 解:(2x—1)—(x+2) =0则x=0,或2x+1=0 (3x+1)(x —3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2等练习:课本P162课内练习2做一做!对于方程:x+2=(x+2),你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4)—16x =0解:将原方程左边分解因式,得(x +4)—(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2)(x —2) =0接着继续解方程,5、练一练①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b)—c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c)﹤0 ,因此 a —2ab+b —c 小于零。

初中数学因式分解教案6篇

初中数学因式分解教案6篇

初中数学因式分解教案6篇初中数学因式分解教案6篇初中数学因式分解教案1 教学目的1、知识与技能会应用平方差公式进展因式分解,开展学生推理才能。

2、过程与方法经历探究利用平方差公式进展因式分解的过程,开展学生的逆向思维,感受数学知识的完好性。

3、情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。

重、难点与关键1、重点:利用平方差公式分解因式。

2、难点:领会因式分解的解题步骤和分解因式的彻底性。

3、关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成可以应用公式的方面上来。

教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维。

教学过程一、观察讨论,体验新知【问题牵引】请同学们计算以下各式。

(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。

【学生活动】动笔计算出上面的两道题,并踊跃上台板演。

(1)(a+5)(a—5)=a2—52=a2—25;(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。

【老师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律。

1、分解因式:a2—25;2、分解因式16m2—9n。

【学生活动】从逆向思维入手,很快得到下面答案:(1)a2—25=a2—52=(a+5)(a—5)。

(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。

【老师活动】引导学生完成a2—b2=(a+b)(a—b)的同时,导出课题:用平方差公式因式分解。

平方差公式:a2—b2=(a+b)(a—b)。

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式)。

二、范例学习,应用所学【例1】把以下各式分解因式:(投影显示或板书)(1)x2—9y2;(2)16x4—y4;(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;(5)m2(16x—y)+n2(y—16x)。

因式分解教案(优秀9篇)

因式分解教案(优秀9篇)

因式分解教案(优秀9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!因式分解教案(优秀9篇)作为一名教师,时常会需要准备好教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

因式分解教案 优秀3篇

因式分解教案 优秀3篇

因式分解教案优秀3篇因式分解教案篇一一、教学目标【知识与技能】了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。

【过程与方法】通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。

【情感态度价值观】在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。

二、教学重难点【教学重点】运用平方差公式分解因式。

【教学难点】灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。

三、教学过程(一)引入新课我们学习了因式分解的定义,还学习了提公因式法分解因式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?大家先观察下列式子:(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-一叁a)=他们有什么共同的特点?你可以得出什么结论?(二)探索新知学生独立思考或者与同桌讨论。

引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。

提问1:能否用语言以及数学公式将其特征表述出来?初二数学因式分解教案篇二1、lie动词,意为“躺”,过去式和过去分词分别为lay和lain,现在分词为lying。

I found he was lying on the ground.我发现他躺在地上。

【拓展】(1)lie有“位于”的意思。

A temple lies on the top of the mountain.一座寺庙位于山顶之上。

(2)lie作动词时,也可意为“撒谎”,过去式和过去分词是规则的,均为lied。

lie也可用作名词,意为“谎言”。

Don’t lie to me.不要向我撒谎。

The boy told a lie to me.这个男孩向我撒了谎。

因式分解教案7篇

因式分解教案7篇

Management is about doing countless small details.同学互助一起进步(页眉可删)因式分解教案7篇因式分解教案篇1教学设计思想:本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。

第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。

第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。

教学目标知识与技能:会用平方差公式对多项式进行因式分解;会用完全平方公式对多项式进行因式分解;能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;提高全面地观察问题、分析问题和逆向思维的能力。

过程与方法:经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。

情感态度价值观:通过学习进一步理解数学知识间有着密切的联系。

教学重点和难点重点:①运用平方差公式分解因式;②运用完全平方式分解因式。

难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。

因式分解教案篇2课型复习课教法讲练结合教学目标(知识、能力、教育)1.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).2.通过乘法公式,的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力教学重点掌握用提取公因式法、公式法分解因式教学难点根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。

因式分解集体备课

因式分解集体备课

因式分解集体备课教案
一、教学目标
知识与技能:使学生掌握因式分解的基本概念和基本方法,能够进行简单的因式分解。

过程与方法:通过观察、归纳、演绎等方法,培养学生的数学思维能力。

情感态度与价值观:培养学生对数学的兴趣和爱好,培养其独立思考、勇于探索的精神。

二、教学内容与步骤
导入:通过复习整式的乘法,引出因式分解的概念。

讲解与示范:讲解因式分解的方法,如提公因式法、公式法等,并进行相应的例题示范。

学生实践:学生自己尝试进行因式分解,教师进行个别指导。

总结与归纳:总结因式分解的步骤和注意事项,强调因式分解与整式乘法的联系和区别。

作业与拓展:布置相关练习题,要求学生掌握基本的因式分解方法,同时鼓励他们尝试更高级的因式分解技巧。

三、教学方法与手段
教学方法:采用讲解与实践相结合的方法,注重学生的参与和体验。

教学手段:利用多媒体课件展示教学内容,同时结合板
书进行讲解和演示。

四、教学评价与反馈
课堂互动:通过提问、讨论等方式,了解学生对因式分解的掌握情况。

课后反馈:布置作业,要求学生完成相关练习题,并收集学生的反馈意见。

评价与调整:根据学生的反馈意见,对教学方法和手段进行调整,以提高教学效果。

五、教学反思与改进
总结本次集体备课的优点和不足之处。

探讨如何更好地激发学生的学习兴趣和提高他们的学习效果。

交流教学心得和经验,共同提高教学水平。

因式分解单元备课

因式分解单元备课

因式分解(单元):【单元分析】:分解因式主要学习:分解因式的概念、会用两种方法分解因式,即提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)进行因式分解(指数是正整数). 学习分解因式最主要的是为解高次方程作准备,另则学习对于代数式变形的能力和体会分解的思想、逆向思考的作用。

本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式的化简、解方程等——恒等变形的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用..根据《标准》的要求,本章教材介绍了最基本的常用分解因式的方法:提公因式法和应用公式法(平方差公式、完全平方公式).从全章的引入到每一节课的引入,立足渗透类比这种重要的思想方法.通过如类比因数分解的意义导入因式分解的意义等.另外本章的设计体现了以问题串的形式创设问题情境的指导思想,如观察多项式 x2- 25和9x2- y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力.本章在呈现形式上力求突出:通过因数分解与因式分解的类比,让学生体会、理解、认识因式分解的意义;对比整式的乘法设置了探索因式分解方法的相关活动,让学生感受整式乘法与因式分解之间的这种逆向恒等变形的价值;通过设置恰当的有一定梯度的题目,关注学生知识技能的发展和不同层次学生的学习需要.【单元目标】:1、经历探索分解因式方法的过程,体会数学知识之间的整体(整式乘法与因式分解)联系.2、了解因式分解的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)进行因式分解(指数是正整数). 3、通过乘法公式:(a + b)( a - b)=a2 - b2,(a±b)2= a2±2ab + b2的逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理思考及语言表达能力.【单元重点】:1、注重使学生经历探究因式分解的方法的过程,进一步发展学生的观察、发现、归纳、总结等能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学单元备课
第一章因式分解单元备课
【单元分析】:
分解因式主要学习:分解因式的概念、会用两种方法分解因式,即提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)进行因式分解(指数是正整数).学习分解因式最主要的是为解高次方程作准备,另则学习对于代数式变形的能力和体会分解的思想、逆向思考的作用。

本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式的化简、解方程等——恒等变形的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用..
根据《标准》的要求,本章教材介绍了最基本的常用分解因式的方法:提公因式法和应用公式法(平方差公式、完全平方公式).从全章的引入到每一节课的引入,立足渗透类比这种重要的思想方法.通过如类比因数分解的意义导入因式分解的意义等.另外本章的设计体现了以问题串的形式创设问题情境的指导思想,如观察多项式x2-25和9x2-y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形
关系,发展学生有条理的思考及语言表达能力.
本章在呈现形式上力求突出:通过因数分解与因式分解的类比,让学生体会、理解、认识因式分解的意义;对比整式的乘法设置了探索因式分解方法的相关活动,让学生感受整式乘法与因式分解之间的这种逆向恒等变形的价值;通过设置
恰当的有一定梯度的题目,关注学生知识技能的发展和不同层次学生的学习需要.
【单元目标】:
1、经历探索分解因式方法的过程,体会数学知识之间的整体(整
式乘法与因式分解)联系.
2、了解因式分解的意义,会用提公因式法、平方差公式和完全
平方公式(直接用公式不超过两次)进行因式分解(指数是正整数).
3、通过乘法公式:(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2的逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理思考及语言表达能力.
【单元重点】:
1、注重使学生经历探究因式分解的方法的过程,进一步发展学生的观察、发现、归纳、总结等能力。

探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给学生提供丰富有趣的问题情境,并给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程,并能用符号合理的表示出因式分解的关系式.如对“运用公式法”的学习,教师可以利用教科书中的问题串或根据需要创设一个新的具有启发性的问题情境,鼓励学生通过独立思考与讨论发现问题情境中的变形关系,并运用符号进行表示,然后再运用所学的知识去解决相关的问题.在这一过程中,学生不仅能够理解、归纳因式分解变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性.
2、保证基本的运算技能,避免繁杂的题型训练.
符号运算对于数学来说是必不可少的,运用提公因式法和公式法分解因式是
学习本章内容的一个重要目标,由于因式分解在后面几章的学习中还可以继续巩固,因此教学中要依据教材的要求,适当的分阶段进行必要的训练,使学生在具备基本的运算技能的同时,能够明白每一步的算理.
教学中要避免过多繁琐的运算,不追求试题数量和试题的难度(如直接用公式不超过两次,指数都为正整数等).
【单元难点】:
1、注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.
《标准》中要求学生“能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据,给出理由或举出反例.能清晰、有条理地表达自己的思考过程,做到言之有理,落笔有据;在与他人交流的过程中,能运用数学语言,合乎逻辑的进行讨论与质疑.”上述要求在前面的“整式的运算”等代数知识的教与学的过程中,已做了大量的落实工作,在因式分解这一章的教学中,教师仍要有意识的培养学生的推理能力,在用符号表示因式分解的公式之前,应引导学生对整式乘法与因式分解互逆变形的规律进行分析、归纳与概括,发现其中的数量关系,并将得到的因式分解的这个关系用符号一般性的表示出来.例如在P100中开始的(1)(2)两个问题中,教师应鼓励学生通过合情推理进行大胆推测,并经历利用符号间的运算验证猜测或解决问题这一重要的数学探索过程.
2、有意识的培养学生逆向思考问题的习惯.
在探索分解因式的方法的活动中,教师要通过对整式乘法与因式分解之间的互逆关系的探究过程培养学生有条理的思考、表达与交流的能力,引导学生在活动中运用类比的思想进行思考,并自觉地用语言说明变形过程.
【课时安排】:
1、分解因式:1课时
2、提公因式法:2课时
3、运用公式法:2课时
回顾与思考:1课时
第二章分式单元备课
一.教学目标
1知识与技能目标
(1)了解分式的概念,明确分式与整式的区别
(2)熟练掌握分式的基本性质,会化简分式
(3)会进行分式的约分、通分和加、减、乘、除四则运算。

(4)了解分式方程的概念,会解可化为一元一次方程的分式方程(5)能解决一些简单的与分式、分式方程有关的实际问题
(6)能够根据具体问题中的数量关系列出方程,会检验分式方程的根. 2.过程与方法目标
(1)经历用字母表示现实情境中数量关系(分式、分式方程)的过程,了解分式、分式方程的概念,体会分式、分式方程的模型思想,进一步发展符号感。

(2)经历观察、归纳、类比、猜想获得分式基本性质、分式加、减、乘、除运算法则的过程,培养学生的推理能力与代数恒等变形能力。

(3)经历“实际问题---分式方程模型----求解---解释解的合理性”的过程,发展分析问题、解决问题的能力,增强应用意识。

(4)经历从分数、整式到分式的学习过程以及从分数的加减法的探索过程,体会类比和转换的思想获取归纳、分析和总结问题的能力。

3 .情感态度与价值观目标
(1)通过学习,获得学习代数知识的常用方法,感受学习代数的价值. (2)通过分组讨论和合作交流,体会与他人合作的重要性
(3)学生通过讨论,情绪上互相感染、激励,能虚心听取他人的见解和大胆发表自己的意见,从而达到主动西,勇于探索,合作交流的目的。

二.


(3)会进行分式的约分、通分和加、减、乘、除四则运算。

(4)了解分式方程的概念,会解可化为一元一次方程的分式方程
难点:(1)能解决一些简单的与分式、分式方程有关的实际问题(2)能够根据具体问题中的数量关系列出方程,会检验分式方程的根. 四.课时安排
第一节认识分式2课时
第二节分式的乘除法2课时
第三节分式的加减法3课时
第七节分式方程4课时
回顾与思考1课时
合计15课时
第三章数据的分析单元备课
本单元教材分析:
“数据的分析”是初中代数自成体系的最后一章,主要研究如何收集、整理、计算、分析数据,既定性又定量地获取总体信息,并在这个基础上进行科学的推断.本单元主要内容分为两大部分:反映数据集中趋势的平均数、中位数、众数;反映数据波动大小的极差、方差等.基本要求是体会统计对决策的作用及在社会生活及科学领域中的应用.
在教学中,要让学生了解平均数是衡量样本和总体的平均水平的特征数.通常用样本平均数去估计总体平均数;了解众数与中位数也是描述一组数据集中趋势的特征数.了解方差与极差是衡量样本和总体的波动大小的特征数.
本单元教学的主要内容:
本单元主要学习用样本估计总体,它是统计的基本思想,学习内容有(1)收集、整理、描述和分析数据,并能用计算器处理较复杂的统计数据;(2)加权平均数,数据的收集中程度与离散程度,极差和方差等,通过本章的学习,对数据的作用有更多的认识.
教学目标(三维目标)
知识与技能:
掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数,体会算术平均数和加权平均数的联系和区别,掌握中位数和众数的概念.会求一组数据的中位数和众数;会应用极差、方差去衡量总体的波动大小.
过程与方法:
经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力;初步经历调查、统计、探讨活动,在活动中发展学生合作交流的意识与能力.体会权的差异对平均数据的影响,感悟极差、方差的波动特征数,以及在不同情境中的应用.
情感态度与价值观:
培养学生对数学积极的情感体验,认识到统计思想中的数据分析的广泛应用对制定决策的重要作用和价值.
本单元教学重点
本单元的重点是平均数、方差的概念及其计算.
本单元教学难点
本单元的难点是方差的概念.
教学关键
本单元的关键是深刻理解用样本估计总体这个统计思想方法,因为所有的问题都是围绕着找出规律、估计总体这个目的展开的.
单元课时划分
3.1 平均数 2课
3.2 中位数与众数 1课时
3.3 从统计图分析数据的集中趋势1课时
3.4数据的离散程度2课时
复习与交流 1课时。

相关文档
最新文档