复旦考研数学分析试题
数学分析习题集10复旦大学
4 − x2 ,
x −1 , x0 = 1; x +1 1+ x ⑼ ln , x0 = 0; 1− x
⑴
⑻ (1+x) ln (1-x), ⑽
e−x , x0 = 0。 1− x
1 , n2 Sn(x) = nx(1 - x)n , x x Sn(x) = ln , n n xn , Sn(x) = 1+ xn Sn(x) = (sin x)n , x2 +
1 n
(ii) x ∈ (1,+∞ ) ); (ii) x ∈ (1,+∞ ) ;
⑽ Sn(x) = (sin x) ,
1. 讨论下列函数序列在指定区间上的一致收敛性。
(i) x ∈ (0,1) , x ∈ (0,+∞ ) ; (i) x ∈ (−∞,+∞ ) , (i) x ∈ (0,1) , x ∈ ( −∞,+∞ ) ; x ∈ [0,1] ; (i) x ∈ (0,1) , (i) x ∈ (0,1) , x ∈ [0, π ] ; (i) x ∈ [0,1] ,
3n ⎛ x − 1 ⎞ ⑸ ∑ ⎜ ⎟ ; n =1 n ! ⎝ 2 ⎠
∞
n
ln 2 n n 2 ⑹ ∑ n x ; n=2 n
⑻
∞
⑺ ⑼
n! n x ; ∑ n n =1 n
∞
( n !) 2 n x ; ∑ n =1 ( 2n) !
∞
∑ (2n + 1)!!xn =1 ∞来自∞(2n )!!
n
。
2. 设 a>b>0,求下列幂级数的收敛域。
习
1. 求下列幂级数的收敛半径与收敛域。
数学分析习题集5复旦大学
习
⒈ 对于
题
5.2
x→a +
lim
f ′( x ) = +∞ 或 − ∞ g ′( x )
⒉
的情况证明 L'Hospital 法则。 求下列极限: ⑴ lim
x→0
e x − e− x ; sin x
⑶ lim π
x→ 2
ln(sin x ) ; ( π − 2 x )2
sin 3 x ; tan 5 x xm − am ; lim n ⑷ x →a x − a n
x →+∞
26. 设 f ( x ) 在 ( a , + ∞ ) 上可导,并且 lim f ′( x ) = 0 ,证明 lim
x →+∞
27.设 f ( x ) 在 [ a , b] 连续,在 ( a, b) 二阶可导,证明存在 η ∈ ( a , b ) ,成立
2
f (x) = 0。 x
a+b ⎛b−a⎞ f (b) + f (a ) − 2 f ( )=⎜ ⎟ f " (η ) 。 2 ⎝ 2 ⎠ b−a ⎡a + b ⎤ (提示:在区间 ⎢ ) )。 , b ⎥ 上考虑函数 g ( x) = f ( x) − f ( x − 2 ⎦ ⎣ 2
⑴ 1) (1 + x) ln (1 + x) < x ;
2 2
1 1 1 1 −1 < − < 。 ln 2 ln(1 + x) x 2 14. 对于每个正整数 n ( n ≥ 2 ) ,证明方程 n x + x n −1 + " + x 2 + x = 1 在 (0,1) 内必有唯一的实根 x n ,并求极限 lim x n 。
复旦数学分析习题1
2. (1) 建立区间 [ a , b ] 与 [ 0, 1 ] 之间的一一对应; (2) 建立区间 ( 0, 1 ) 与 ( −∞,+∞) 之间的一一对应。 解(1) f : [a, b] → [0,1]
x y= x−a ; b−a
(2) f : (0,1) → (−∞,+∞ )
x 1 tan( x − )π = − cot(π x) 。 2
解
12.
一玻璃杯装有汞、水、煤油三种液体,比重分别为13.6,1,0.8 上层煤油液体高度为5厘米, 中层水液体高度 克/厘米 (图1.2.9), 为4厘米,下层汞液体高度为2厘米,试求压强 P 与液体深度 x 之间 的函数关系。
3
解
⎧78.4 x ⎪ P( x) = ⎨98 x − 98 ⎪1332.8 x − 11211.2 ⎩
。
Байду номын сангаас
8
第一章
习 题
集合与映射
1.1 集合
⒈ 证明由 n 个元素组成的集合 T = { a1,a2 , ,an } 有 2 n 个子集。 解
k k 由 k 个元素组成的子集的个数为 C n , ∑ Cn = (1 + 1) n = 2 n 。
k =0 n
⒉ 证明: (1) 任意无限集必包含一个可列子集; (2) 设 A 与 B 都是可列集,证明 A ∪ B 也是可列集。 证(1) 设 T 是一个无限集, 先取 a1 ∈ T 。 由于 T 是无限集, 必存在 a 2 ∈ T ,
(2)令
9.
证明:定义于 ( −∞,+∞) 上的任何函数都可以表示成一个偶函数与一 个奇函数之和。
证
显然
f ( x) + f (− x) f ( x) − f (− x) 是偶函数, 是奇函数,而 2 2 f ( x) + f (− x) f ( x) − f (− x) 。 + f ( x) = 2 2
数学分析习题集7复旦大学
∫
a
0
f ( x)dx +
∫0
b
f −1 ( y )dy ≥ ab
( a > 0, b > 0 ) 。
lim ∫a | f h ( x ) − f ( x )| dx = 0 。
h→ 0
b
12.设 f ( x ) 和 g ( x ) 在 [a , b] 上都可积,证明不等式 (1) (Schwarz 不等式) ⎡
f ( x) g ( x)dx ⎤ ≤ ∫ f 2 ( x)dx ⋅ ∫ g 2 ( x)dx ; ⎥ a a ⎦
b b
2
2
( x)dx
} + {∫ g ( x)dx}
1 2 b 2 a
1 2
。
lim ∫ [ f ( x)] g ( x)dx
n →∞ a
{
b
} = max f ( x)
7.3
⑵ F(x) =
⑴ 6.
⑵
⎧ − 1, x为有理数, f (x) = ⎨ x为无理数; ⎩1,
x ≠ 0, ⎧ sgn(sin π x ), = ⑷ f (x) ⎨ x = 0. ⎩ 0,
1 在 f ( x)
设 f ( x ) 在 [a , b] 上可积,且在 [a , b] 上满足 | f ( x ) |≥ m > 0 ( m 为常数) ,证明
⑴ lim⎜
n→∞
8.
求下列定积分: ⑴ ⑶ (5)
∫0 cos n xdx ; ∫0 ( a 2 − x 2 ) n dx ;
1 ∫0 x
π 2
π
⑵ ⑷
∫−π sin n x dx ;
∫0 x
e
1 2
数学分析习题集9复旦大学
ln n
2
2n 2 ; ⑵ ∑ 3 n =1 n + 3n ∞ 1 ⑷ ∑ ; n =1 n ! ∞ π⎞ ⎛ ⑹ ∑ ⎜1 − cos ⎟ ; n⎠ n =1 ⎝
⑻ ⑽
∞
1
n
∑(
n =1
∞
n
n − 1) ;
n2 ; ∑ n n =1 2
∞
∑n
n =1 ∞ n =1
∞
2
e −n ;
[2 + (−1) n ]n ; ∑ 2 2 n +1 n =1 ∞ 2 n n! ⑿ ∑ n ; n =1 n
1+ 15. 利用级数的 Cauchy 乘积证明: (1)
1 ∞ (−1) n ⋅∑ = 1; ∑ n! n =0 n ! n =0
∞
(2) ⎜
⎛
∞ ⎞ n ⎞ ⎛ q qn ⎟ = ⎟ ⎜ ∑ ∑ ⎝ n =0 ⎠ ⎝ n =0 ⎠ ∞
∑ (n + 1)q
n =0
∞
n
=
1 (|q|<1 ) 。 (1 − q ) 2
12. 已知任意项级数
14. 利用
1 1 1 + + … + - ln n → γ ( n → ∞ ), 2 3 n ∞ (−1) n +1 其中 γ 是 Euler 常数(见例 2.4.8),求下述 ∑ 的更序级数的和: n n =1 1 1 1 1 1 1 1 1 1+ + + + + - + … 。 3 2 5 7 4 9 11 6
(a>0)。
2. 利用级数收敛的必要条件,证明: (1) lim
n →∞
(2)
复旦考研数学分析试题
09复旦数学分析考研试题一、 数学分析(90)1. 计算(每个6分)(1) 设∑为:2224(3)6(2)(1)36x y z -+-++≤曲面的外侧,求232x dydz ydxdz +∑⎰⎰=_______。
(2) 1320(1)(1)x dx x x ++⎰=_______。
(3)ln x -(0,)+∞上有唯一的零点,A =_______。
(4) ()f x 在原点存在二阶导数,''(0)0f ≠,'()(0)()x f x f f x θ-=,则0lim x x θ→=_______。
(填某个值或不一定存在或无法确定) (5) 1sin 2009k xk k απ∞=∑在(0,)+∞上一致收敛,则α的取值范围为_______。
2. 证明(每个15分)(1)(,)f x y 定义在[,][,]a b c d ⨯上,且(,)f x y 关于x 连续,且对于某一固定的0[,]y c d ∈, 00[,]lim sup |(,)(,)|0y y x a b f x y f x y →∈-=证明:(,)f x y 在[,][,]a b c d ⨯上连续。
(2)21sin()n n n a a a n-=-求证:lim 0n n a →∞= (3)()f x 在(,)-∞+∞上任意有限区间上可积,求证:对任意的,,,,a b c d()()bd d ba c c a dx f x t dt dt f x t dx +=+⎰⎰⎰⎰ (4)()f x 定义在区间(,)ab 上,对任一(,)x a b ∈0()()lim0y f x y f y y→+-> (注:左式可以为+∞),求证:()f x 在(,)a b 上严格单调。
二、 常微分方程(30)已知2(,)3...x y x Φ=+(这个式子都记不清楚了) 和系统[*] 3dx y dt λ=+ ...dy dt = [*](1)(,)x y C Φ=是[*]的首次积分,确定[*]中λ的值。
复旦大学数学系《数学分析》(第3版)(下册)-名校考研真题-多变量微积分学【圣才出品】
由于对任意的 y∈[c,d],有下式成立
所以有
即
.
5 / 54
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第 2 部分 多变量微分学
第 14 章 偏导数和全微分
解答题 1.已知
1 确定,且 h(x)具有所需的性质.求
所以对任意的 ε>0,取 在(0,0)处连续.
,则当
时,有
,故 f(x,y)
7 / 54
圣才电子书
十万种考研考证电子书、题库视频学习平 台
由于当(x,y)≠(0,0)时,
,故
4.讨论
在(0,0)点的连续性和可微性.[武汉大学研] 解:(1)连续性.可以令 x=ζcosθ,y=ζsinθ,因为
十万种考研考证电子书、题库视频学习平 台
故
12.
解:由
又由
得
[上海交通大学研] 得
,于是
13.设 z 由 求 [南京大学研]
解:由
得 ①式两端再对 x 求导得
定义为 x,y 的隐函数,其中 为二次连续可微,
两边对 x 求导 ①
所以 f(x,y)在(0,0)点连续. (2)可微性.由于 从而
选取特殊路径 y=kx,有 为 1,所以 f(x,y)在(0,0)点不可微.
5. 解:由于
,求 dz.[华东师范大学研]
8 / 54
,极限不
圣才电子书
十万种考研考证电子书、题库视频学习平 台
故
.
6.函数 数.[天津大学研]
同时
,
.
5.若函数 f(x,y)在 上对 x 连续,且存在 L>0,对任意的 x、y′有
数学分析习题集4复旦大学
x − cos y = sin y − x ;
e x 2 + y − xy 2 = 0 ;
2 y sin x + x ln y = 0 ;
6. 设所给的函数可导,证明: ⑴ 奇函数的导函数是偶函数;偶函数的导函数是奇函数; ⑵ 周期函数的导函数仍是周期函数。 7.求曲线 xy + ln y = 1 在 M (1,1) 点的切线和法线方程。 8. 对下列参数形式的函数求
x →a + 0 x→a + 0
⑵ 若 lim f ′( x ) = ∞ ,那么能否断定也有 lim f ( x ) = ∞ ?
x→a + 0 x →a + 0
证明 f ( x ) 在 x = 0 处可导的充分必要条件是: 存在在 x = 0 11. 设函数 f ( x ) 满足 f (0) = 0 。 处连续的函数 g ( x ) ,使得 f ( x ) = xg ( x ) ,且此时成立 f ′(0) = g (0) 。
⑷ y = ln( x + x 2 + a 2 ) ;
⑸ ⒊
1 y = ( x x 2 − a 2 − a 2 ln( x + x 2 − a 2 ) . 2
设 f ( x ) 可导,求下列函数的导数:
⑴ ⑶ ⑸
f (3 x 2 ) ;
⑵ ⑷ ⑹
⎛ 1 ⎞ f⎜ ⎟; ⎝ ln x ⎠
arc tan f ( x ) ; sin ( f (sin x )) ;
1 ; x + cos x
f ( x) = x 2 (3 tan x + 2 sec x) ;
f (x) = 2 sin x + x − 2 x ; 3 x2
复旦大学第三版数学分析答案
一﹑细心填一填,你一定能行(每空2分,共20分)1.当 = 时,分式的值为零.2.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为.3.请你写出一个图象在第一、三象限的反比例函数.4.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:,,,,则小麦长势比较整齐的试验田是(填“甲”或“乙”).5.如图,□ABCD中,AE,CF分别是∠BAD,∠BCD的角平分线,请添加一个条件使四边形AECF为菱形.6.计算.7.若点()、、都在反比例函数的图象上,则的大小关系是.8.已知梯形ABCD中,AD∥BC,∠ABC=60°,BD=2 ,AE为梯形的高,且BE=1,•则AD=______.9.如图,中,,,,分别以为直径作三个半圆,那么阴影部分的面积为(平方单位).10.如图,矩形ABCD的对角线BD过O点,BC∥x轴,且A(2,-1),则经过C点的反比例函数的解析式为.二﹑精心选一选,你一定很棒(每题3分,共30分)11.下列运算中,正确的是A. B. C. D.12.下列说法中,不正确的是A.为了解一种灯泡的使用寿命,宜采用普查的方法B.众数在一组数据中若存在,可以不唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差13.能判定四边形是平行四边形的条件是A.一组对边平行,另一组对边相等 B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等 D.一组对边平行,一组对角相等14.反比例函数在第一象限的图象如图所示,则k的值可能是A.1 B.2 C.3 D.415.在平面直角坐标系中,已知点A(0,2),B(,0),C(0,),D(,0),则以这四个点为顶点的四边形是A.矩形B.菱形 C.正方形 D.梯形16.某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10 8 12 15 10 12 11 9 10 13.则这组数据的A.平均数是11 B.中位数是10 C.众数是10.5 D.方差是3.917.一个三角形三边的长分别为15cm,20cm和25cm,则这个三角形最长边上的高为A.15cmB.20cmC.25cmD.12cm18.已知,反比例函数的图像经过点M(k+2,1)和N(-2, ),则这个反比例函数是A. B. C. D.19.如图所示,有一张一个角为600的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是A.邻边不等的矩形B.等腰梯形C.有一角是锐角的菱形D.正方形20.甲、乙两班举行跳绳比赛,参赛选手每分钟跳绳的次数经统计计算后填入下表:班级参加人数中位数方差平均次数甲 35 169 6.32 155乙 35 171 4.54 155某同学根据上表分析得出如下结论:①甲、乙两班学生跳绳成绩的平均水平相同,②乙班优秀的人数多于甲班优秀的人数(每分钟跳绳次数≥170为优秀),③甲班的成绩的波动情况比乙班的成绩的波动大。
2021数学分析考研南京师大与复旦配套考研真题
2021数学分析考研南京师大与复旦配套考研真题一、南京师范大学《602数学分析》考研真题二、复旦大学第一部分极限初论第1章变量与函数一、选择题是()。
[同济大学研]A.右界函数B.单调函数C.周期函数D.偶函数【答案】D查看答案【解析】二、解答题1.证明下列不等式:[浙江师范大学2006研]证明:因为|a+b|≤|a|+|b|,所以2.设,当y=1时,z=x,求f(x)和z。
[西安交通大学研] 解:依题意令,则,所以3.设求f(x)的表达式。
[北京大学研]解:令t=lnx,则,所以4.设,求f(x)的定义域和[中国人民大学研] 解:由,解得,从而f(x)的定义域为5.求函数的定义域和值域.[华东师范大学研]解:由可得.解得函数的定义域为又因为所以函数的值域:6.已知的定义域为,求的定义域.[武汉大学研]解:,即f(x)的定义域为.再由解得,∴所求定义域为7.设函数f(x)在(-∞,+∞)上是奇函数,f(1)=a且对任何x值均有(1)试用a表示f(2)与f(5);(2)问a取什么值时,f(x)是以2为周期的周期函数.[清华大学研]解:(1)在①式中,令x=-1.(2)由①式知当且仅当f(2)=0,即a=0时,f(x)是以2为周期的周期函数.8.已知,设.[南京邮电大学研]解:令,可用数学归纳法证明①当n=1时,显然①式成立.假设当n=k时,①式成立.当n=k+1时,即对n=k+1,①式也成立。
命题得证.9.已知.求.[北京理工大学研]解:由解得,互换x,y得当10.设,试验证,并求.[华中科技大学研]解:又。
复旦大学数学分析考研真题
复旦大学 数学分析考研真题一.填空题(1)0lim x →ln(1)1cos x x x+-=_____(2)微分方程'y =(1)y x x-的通解是____,这是变量可分离方程(3)设∑是锥面z=22x y +(0≤z ≤1)的下侧,则23(1)x d y d z y d z d x z d x d y ++-=∑⎰⎰____(4)点(2,1,0)到平面3x+4y+5z=0的距离d=____ (5)设A=2112⎛⎫⎪-⎝⎭,2阶矩阵B 满足BA=B+2E,则B =____(6)设随机变量X 与Y 相互独立,且均服从区间[]0,3上的均匀分布,则{m a x (,)1}P x y ≤=____一、 选择题(1) 设函数()y f x =具有二阶导数,且'()0f x >,''()0f x >,x 为自变量x 在x,处的增量,y 与dy 分别为()f x 在点x处对应的增量与微分,若0x >,则( )(A )0dx y << (B )0y dy << (C )0y dy << (D )0dy y << (2)设(,)f x y 为连续函数,则41(cos ,sin )d f r r rdr πθθθ⎰⎰等于( )(A )2210(,)xx dx f x y dy -⎰⎰(B )22100(,)xdx f x y dy -⎰⎰(C )2210(,)yydy f x y dx -⎰⎰(D )2210(,)ydy f x y dx -⎰⎰(3)若级数1nn a∞-∑收敛,则级数( )(A )1nn a∞-∑收敛 (B )1(1)n nn a ∞--∑收敛(C )11n n n a a ∞+-∑收敛 (D )112n n n a a ∞+-+∑收敛(4)设(,)f x y 和(,)x y ϕ均为可微函数,且'(,)y x y ϕ≠0,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( ) (A )若'00(,)0x f x y =,则'00(,)0y f x y = (B )若'00(,)0x f x y =,则'00(,)0y f x y ≠ (C )若'00(,)0x f x y ≠,则'00(,)0y f x y = (D )若'00(,)0x f x y ≠,则'00(,)0y f x y ≠ (5)设12,,,s ααα都是n 维向量,A 是m n ⨯矩阵,则( )成立(A)若12,,,s ααα线性相关,则12,,s A A A ααα线性相关 (B)若12,,,s ααα线性相关,则12,,s A A A ααα线性无关 (C)若12,,,s ααα线性无关,则12,,s A A A ααα线性相关 (D)若12,,,s ααα线性无关,则12,,s A A A ααα线性无关(6)设A是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第一列的1-倍加到第2列上得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则( )(A )1C P AP -= (B )1C PAP -= (C )TC P AP = (D )TC PAP =(7)设A ,B 为随机事件,()0P B >,()|1P A B =,则必有( ) (A )()()P A B P A ⋃> (B )()()P A B P B ⋃> (C )()()P A B P A ⋃= (D )()()P A B P B ⋃=(8)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1}P X P Y μμ-<>-<,则( )(A )12σσ< (B )12σσ> (C )12μμ< (D)12μμ>三、简答题(1) 设区域22{(,)|1,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰ (2) 设数列{}n x 满足110,sin n n x x x π+<<=(n=1,2),求:(I )证明lim n x x →∞存在,并求之(II )计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭(3) 设函数()f u 在(0,∞)内具有二阶导数,且22()z f x y =+满足等式22220z zx y∂∂+=∂∂ (I )验证'''()()0f u f u u+= (II )若'(1)0,(1)1f f ==,求函数()f u 的表达式(4) 设在上半平面{(,)|0}D x y y =>内,函数(,)f x y 是有连续偏导数,且对任意的0t >都有2(,)(,)f tx ty t f x y =证明:对L 内的任意分段光滑的有向简单闭曲线L,都有(,)(,)0Lyf x y dx xf x y dy -=⎰(5)已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有3个线性无关的解(I)证明方程组系数矩阵A的秩 ()2r A = (II )求 a , b 的值及方程组的通解(6)设3阶实对称矩阵A 的各行元素之和均为3,向量1(1,2,1)T α=--,2(0,1,1)T α=-实线性方程组0Ax =的两个解,(I )求A 的特征值与特征向量(II )求:正交矩阵Q与对角矩阵A,使得TQ AQ A =(7)随机变量X 的概率密度为1,1021(),0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩其他令2,(,)y x F x y =为二维随机变量(,)X Y 的分布函数(I)求Y的概率密度()Y f y (II)1,42F ⎛⎫-⎪⎝⎭(8)设总体X 的概率密度,01(,0)1,120,x F X x θθ<<⎧⎪=-≤<⎨⎪⎩其他其中θ实未知参数(01θ<<),12,,,n X X X 为来自总体X 的简单随即样本,记N 为样本值12,,,n x x x 中小于1的个数,求θ的最大似然估计。
复旦版数学分析答案全解ex14-5
f ′(r) + z 2 r2
f ′′(r) ,
所以
div[grad f (r)] = 2 f ′(r) + f "(r) 。
r
由 div[grad f (r)] = 0 ,得 2 f ′(r) + rf ′′(r) = 0 ,解此微分方程,得到
f
(r)
=
c1 r
+
c2
,
其中 c1, c2 为任意常数。
方向 n = i + 2 j + 2k 的环量面密度。
解由
i jk
rotr = ∂ ∂ ∂ = x(z − y)i + y(x − z)j + z( y − x)k ,
∂x ∂y ∂z
xyz xyz xyz
可得
rot r (M ) = −i − 3j + 4k 。
向量场 r = xyz(i + j + k) 在点 M (1,3,2) 沿方向 n 的环量面密度为
(2)圆周 x2 + y2 = 4, z = 1,从 z 轴正向看去为顺时针方向。
解 经计算,可得
a
=
grad⎜⎛ arctan ⎝
y x
⎟⎞ ⎠
=
x2
1 +
y2
(− y, x, 0) ,
2
i
j
k
∂ rot a =
∂
∂ =0,
∂x
∂y
∂z
−y
x
x2 + y2 x2 + y2
0
它在除去 z 轴的空间上是无旋场。
(2)满足 div[grad f (r)] = 0 的函数 f (r) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
09复旦数学分析考研试题
一、 数学分析(90)
1. 计算(每个6分)
(1) 设∑为:222
4(3)6(2)(1)36x y z -+-++≤曲面的外侧,求232x dydz ydxdz +∑
⎰⎰=_______。
(2) 13
20
(1)(1)x dx x x ++⎰=_______。
(3)
ln x -(0,)+∞上有唯一的零点,A =_______。
(4) ()f x 在原点存在二阶导数,''(0)0f ≠,
'()(0)()x f x f f x θ-=,则0lim x x θ→=_______。
(填某个值或不一定存在或无法确定) (5) 1sin 2009k xk k α
π∞=∑在(0,)+∞上一致收敛,则α的取值范围为_______。
2. 证明(每个15分)
(1)(,)f x y 定义在[,][,]a b c d ⨯上,且(,)f x y 关于x 连续,且对于某一固定的0[,]y c d ∈, 00[,]lim sup |(,)(,)|0y y x a b f x y f x y →∈-=
证明:(,)f x y 在[,][,]a b c d ⨯上连续。
(2)21sin()n n n a a a n
-=-
求证:lim 0n n a →∞= (3)()f x 在(,)-∞+∞上任意有限区间上可积,求证:对任意的,,,,a b c d
()()b
d d b
a c c a dx f x t dt dt f x t dx +=+⎰⎰⎰⎰ (4)()f x 定义在区间(,)a
b 上,对任一(,)x a b ∈
0()()lim
0y f x y f y y
→+-> (注:左式可以为+∞),求证:()f x 在(,)a b 上严格单调。
二、 常微分方程(30)
已知2
(,)3...x y x Φ=+(这个式子都记不清楚了) 和系统[*] 3dx y dt λ=+ ...dy dt = [*]
(1)(,)x y C Φ=是[*]的首次积分,确定[*]中λ的值。
(或者是0δ的值,具体不是很清楚) (只要明白首次积分的概念就能做的题目)
(2)证明解对参数的连续性
(3)求系统[*]在0λ>,0δδ<时在李亚普诺夫意义下的稳定性。
三、 实变函数(30)
1. 叙述积分的法杜(Fatou )引理。
(10分)
2. (20分){()}n f x 为定义在可测集上的可测函数列,{()}n f x 在勒贝格测度意义下收敛
于()f x
求证:
(1)存在子列{()}k n f x 1()k k n n +<,满足
12k k mE <,1{:|()()|}2k k n k
E x E f x f x =∈-≥ (2)证明上述子列几乎处处收敛于()f x 。
(这个整个是一个定理,分成两步证明了。
Rieze 引理)。