面积的存在性问题解题策略

合集下载

二次函数与四边形形状相结合的“存在性”试题解题策略

二次函数与四边形形状相结合的“存在性”试题解题策略

解析式 ; (2 ) 设抛物线 C1 的顶点为 M,抛物线 C2 与 x 轴分别交于 C, D 两点 (点 C在点 D 的左侧 ) ,顶点为
N ,四边形 MDNA的面积为 S,若点 A、点 D 同时以每
秒一个单位的速度沿水平方向分别向右、向左运动 ,
与此同时 ,点 M、点 N 同时以每秒两个单位的速度沿
图 1 图 2 例 1 ( 2007浙江省 )如图 2,抛物线 y = x2 - 2 x - 3 与 x轴交 A、B两点 (A点在 B点左侧 ) ,直线 l与 抛物线交于 A、C两点 ,其中 C点的横坐标为 2. (1 ) 求 A、B 两点的坐标及直线 AC的函数表达式 ; (2 ) P 是线段 AC上的一个动点 ,过 P点作 y轴的平行线交 抛物线于 E 点 ,求线段 P E 长度的最大值 ; (3 ) 点 G 是抛物线上的动点 ,在 x轴上是否存在点 F,使 A、C、 F、G这样的四个点为顶点的四边形是平行四边形 ? 如果存在 ,求出所有满足条件的 F点坐标 ;如果不存 在 , 请说明理由 .
根据所需的数量关系建立方程模型求2006年山西如图4已知抛物线求抛物线关于原点对称的抛物线hongxueshuxuezha设抛物线c1的顶点为m抛物线c2顶点为n四边形mdna的面积为秒一个单位的速度沿水平方向分别向右向左运动与此同时点m点n同时以每秒两个单位的速度沿竖直方向分别向下向上运动直到点a点d重合为求出四边形mdna的面积s与运动时间t之间的关系式并写出自变量t的取值范围
四边形 MDNA为平行四边形 ,则 S = 2S△ AND = ( 8 2 t) ( 1 + 2 t) = - 4 t2 + 14 t + 8. 由题设知 0 ≤ t < 4.
7, 0 ). 点评 第 (3 ) 小题中 ,因为四个点能组成平行

2023年中考数学总复习专题5二次函数与面积最值定值问题(学生版)

2023年中考数学总复习专题5二次函数与面积最值定值问题(学生版)

专题5二次函数与面积最值定值问题面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常考的题型,此类问题计算量较大。

有时也要根据题目的动点问题产生解的不确定性或多样性。

解决这类问题常用到以下与面积相关的知识:图形的割补、等积变形、等比转化等数学方法.面积的存在性问题常见的题型和解题策略有两类:一是先根据几何法确定存在性,再列方程求解,后检验方程的根.二是先假设关系存在,再列方程,后根据方程的解验证假设是否正确.解决动点产生的面积问题,常用到的知识和方法,如下:如图1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式.如图2,图3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法.图1 图2 图3计算面积长用到的策略还有:如图4,同底等高三角形的面积相等.平行线间的距离处处相等.如图5,同底三角形的面积比等于高的比.如图6,同高三角形的面积比等于底的比.图4 图5 图6【例1】(2022•青海)如图1,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)若点E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)设点P是(1)中抛物线上的一个动点,是否存在满足S△P AB=6的点P?如果存在,请求出点P的坐标;若不存在,请说明理由.(请在图2中探讨)【例2】(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC,当点P在直线AC上方时,求四边形P ABC面积的最大值,并求出此时P点的坐标;(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.【例3】(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.【例4】(2022•岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B(1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.1.(2022•金坛区二模)如图,在平面直角坐标系xOy中,二次函数y=x2+bx﹣2的图象与x轴交于点A (3,0),B(点B在点A左侧),与y轴交于点C,点D与点C关于x轴对称,作直线AD.(1)填空:b=;(2)将△AOC平移到△EFG(点E,F,G依次与A,O,C对应),若点E落在抛物线上且点G落在直线AD上,求点E的坐标;(3)设点P是第四象限抛物线上一点,过点P作x轴的垂线,垂足为H,交AC于点T.若∠CPT+∠DAC=180°,求△AHT与△CPT的面积之比.2.(2022•罗城县模拟)如图,已知抛物线y=ax2+b经过点A(2,6),B(﹣4,0),其中E、F(m,n)为抛物线上的两个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)若C(x,y)是抛物线上的一点,当﹣4<x<2且S△ABC最大时,求点C的坐标;(3)若EF∥x轴,点A到EF的距离大于8个单位长度,求m的取值范围.3.(2022•老河口市模拟)在平面直角坐标系中,抛物线y=﹣x2+2mx的顶点为A,直线l:y=x﹣1与x轴交于点B.(1)如图,已知点A的坐标为(2,4),抛物线与直线l在第一象限交于点C.①求抛物线的解析式及点C的坐标;②点M为线段BC上不与B,C重合的一动点,过点M作x轴的垂线交x轴于点D,交抛物线于点E,设点M的横坐标t.当EM>BD时,求t的取值范围;(2)过点A作AP⊥l于点P,作AQ∥l交抛物线于点Q,连接PQ,设△APQ的面积为S.直接写出①S 关于m的函数关系式;②S的最小值及S取最小值时m的值.4.(2022•新吴区二模)如图,已知抛物线y=+bx过点A(﹣4,0)、顶点为B,一次函数y=x+2的图象交y轴于M,对称轴与x轴交于点H.(1)求抛物线的表达式;(2)已知P是抛物线上一动点,点M关于AP的对称点为N.①若点N恰好落在抛物线的对称轴上,求点N的坐标;②请直接写出△MHN面积的最大值.5.(2022•开福区校级二模)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.(1)直接写出∠OCA的度数和线段AB的长(用a表示);(2)如图①,若a=2,点D在抛物线的对称轴上,DB=DC,求△BCD与△ACO的周长之比;(3)如图②,若a=3,动点P在线段OA上,过点P作x轴的垂线分别与AC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△BPM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.6.(2022•官渡区二模)抛物线交x轴于A、B两点,交y轴正半轴于点C,对称轴为直线.(1)如图1,若点C坐标为(0,2),则b=,c=;(2)若点P为第二象限抛物线上一动点,在(1)的条件下,求四边形ABCP面积最大时,点P坐标和四边形ABCP的最大面积;(3)如图2,点D为抛物线的顶点,过点O作MN∥CD别交抛物线于点M,N,当MN=3CD时,求c 的值.7.(2022•徐州二模)如图,四边形ABCD中,已知AB∥CD,动点P从A点出发,沿边AB运动到点B,动点Q同时由A点出发,沿折线AD﹣DC﹣CB运动点B停止,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,已知y与x之间函数关系如图②,其中MN为线段,曲线OM,NK为抛物线的一部分,根据图中信息,解答下列问题:(1)图①AB=,BC=;(2)分别求线段MN,曲线NK所对应的函数表达式;(3)当x为何值,△APQ的面积为6?8.(2022•茌平区一模)如图,已知二次函数的图象交x轴于点B(﹣8,0),C(2,0),交y轴点A.(1)求二次函数的表达式;(2)连接AC,AB,若点P在线段BC上运动(不与点B,C重合),过点P作PD∥AC,交AB于点D,试猜想△P AD的面积有最大值还是最小值,并求出此时点P的坐标.(3)连接OD,在(2)的条件下,求出的值.9.(2022•碑林区校级模拟)抛物线W1:y=a(x+)2﹣与x轴交于A(﹣5,0)和点B.(1)求抛物线W1的函数表达式;(2)将抛物线W1关于点M(﹣1,0)对称后得到抛物线W2,点A、B的对应点分别为A',B',抛物线W2与y轴交于点C,在抛物线W2上是否存在一点P,使得S△P A′B′=S△P A'C,若存在,求出P点坐标,若不存在,请说明理由.10.(2021秋•钦北区期末)如图,抛物线y=ax2+bx+6与直线y=x+2相交于A(,)、B(4,6)两点,点P是线段AB上的动点(不与A、B两点重合),过点P作PC⊥x轴于点D,交抛物线于点C,点E是直线AB与x轴的交点.(1)求抛物线的解析式;(2)当点C是抛物线的顶点时,求△BCE的面积;(3)是否存在点P,使得△BCE的面积最大?若存在,求出这个最大值;若不存在,请说明理由.11.(2022•保定一模)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B (1,﹣5),D(4,0).(1)求c,b(含t的代数式表示);(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式.并求t为何值时,△MPN的面积为.12.(2022•黄石模拟)如图,已知抛物线与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣4),直线与x轴交于点D,点P是抛物线上的一动点,过点P作PE⊥x 轴,垂足为E,交直线l于点F.(1)求该抛物线的表达式;(2)点P是抛物线上位于第三象限的一动点,设点P的横坐标是m,四边形PCOB的面积是S.①求S 关于m的函数解析式及S的最大值;②点Q是直线PE上一动点,当S取最大值时,求△QOC周长的最小值及FQ的长.13.(2022•哈尔滨模拟)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+3与x轴的负半轴交于点A,与x的正半轴交于点B,与y轴正半轴交于点C,OB=2OA.(1)求抛物线的解析式;(2)点D是第四象限内抛物线上一点,连接AD交y轴于点E,过C作CF⊥y轴交抛物线于点F,连接DF,设四边形DECF的面积为S,点D的横坐标的t,求S与t的函数解析式;(3)在(2)的条件下,过F作FM∥y轴交AD于点M,连接CD交FM于点G,点N是CE上一点,连接MN、EG,当∠BAD+2∠AMN=90°,MN:EG=,求点D的坐标.14.(2022•利川市模拟)如图,等腰直角三角形OAB的直角顶点O在坐标原点,直角边OA,OB分别在y 轴和x轴上,点C的坐标为(3,4),且AC平行于x轴.(1)求直线AB的解析式;(2)求过B,C两点的抛物线y=﹣x2+bx+c的解析式;(3)抛物线y=﹣x2+bx+c与x轴的另一个交点为D,试判定OC与BD的大小关系;(4)若点M是抛物线上的动点,当△ABM的面积与△ABC的面积相等时,求点M的坐标.15.(2021•襄阳)如图,直线y=x+1与x,y轴分别交于点B,A,顶点为P的抛物线y=ax2﹣2ax+c过点A.(1)求出点A,B的坐标及c的值;(2)若函数y=ax2﹣2ax+c在3≤x≤4时有最大值为a+2,求a的值;(3)连接AP,过点A作AP的垂线交x轴于点M.设△BMP的面积为S.①直接写出S关于a的函数关系式及a的取值范围;②结合S与a的函数图象,直接写出S>时a的取值范围.16.(2021•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF的面积是△BOC面积的3倍时,求点P的坐标;(3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.17.(2021•贺州)如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的函数表达式;(2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;(3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(x P,y P),当1≤x P≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).18.(2021•常德)如图,在平面直角坐标系xOy中,平行四边形ABCD的AB边与y轴交于E点,F是AD 的中点,B、C、D的坐标分别为(﹣2,0),(8,0),(13,10).(1)求过B、E、C三点的抛物线的解析式;(2)试判断抛物线的顶点是否在直线EF上;(3)设过F与AB平行的直线交y轴于Q,M是线段EQ之间的动点,射线BM与抛物线交于另一点P,当△PBQ的面积最大时,求P的坐标.19.(2021•福建)已知抛物线y=ax2+bx+c与x轴只有一个公共点.(1)若抛物线过点P(0,1),求a+b的最小值;(2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.①求抛物线的解析式;②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和l于点B,C.求证:△MAB与△MBC的面积相等.20.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).(1)求抛物线的函数解析式;(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.21.(2021•聊城)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.(1)求抛物线的表达式和AC所在直线的表达式;(2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求的值最大时点P的坐标.22.(2020•贺州)如图,抛物线y=a(x﹣2)2﹣2与y轴交于点A(0,2),顶点为B.(1)求该抛物线的解析式;(2)若点P(t,y1),Q(t+3,y2)都在抛物线上,且y1=y2,求P,Q两点的坐标;(3)在(2)的条件下,若点C是线段QB上一动点,经过点C的直线y=﹣x+m与y轴交于点D,连接DQ,DB,求△BDQ面积的最大值和最小值.。

数学“存在性”问题的解题策略(含解答)-

数学“存在性”问题的解题策略(含解答)-

数学“存在性”问题的解题策略存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。

【典型例题】例1. 223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根,390cos 5a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且, 3b a m Rt -=,是否存在整数,使上述一元二次方程两个实数根的平方和等于 ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明理由。

分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。

解:在△中,∠°,∵Rt ABC C B ==9035cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k , 33343==-=-k k k a b ∴,∴,∵ ∴,,a b c ===91215设一元二次方程的两个实数根为,x m x m m x x 2212319200-++-+=() 则有:,x x m x x m m 1212231920+=+=-+()∴x x x x x x m m m 122212212222312920+=+-=+--+()[()]()=+-736312m m 由,x x c c 1222215+==有,即73631225736256022m m m m +-=+-= ∴,m m 124647==-∵不是整数,应舍去,m =-647当时,m =>40∆∴存在整数m=4,使方程两个实数根的平方和等于Rt △ABC 的斜边c 的平方。

应用题存在的问题及解决策略

应用题存在的问题及解决策略

应用题存在的问题及解决策略1. 引言1.1 应用题存在的问题及解决策略引言在学习数学时,应用题是我们经常遇到的一种题型。

虽然应用题的目的是让我们将所学的知识应用到实际问题中,但是很多时候我们会遇到一些问题,导致解题变得困难。

针对这些问题,我们需要制定一些解决策略,帮助我们更好地解决应用题。

正文问题一:题目结构复杂难以理解在解决应用题时,有些题目的结构可能会比较复杂,导致我们难以理解题目的意思。

为了解决这个问题,我们可以采取拆分题目的方法,逐步分析题目的要求和条件,将整个题目分解成更小的部分,这样有助于我们更清晰地理解题目。

解决策略一:拆分题目,逐步分析问题二:题目中有陷阱选项容易误解有些应用题在选项设计上可能会设置一些陷阱,容易让我们误解题目要求。

为了避免这种情况,我们需要仔细阅读题目,排除干扰项,确保我们理解题目的真正意图。

解决策略二:仔细阅读题目,排除干扰项在解决应用题时,我们要特别注意题目中的选项,仔细分析每个选项的含义,排除那些明显是干扰项的选项,确保我们选取的是正确答案。

通过细致的阅读和分析,我们可以避免被陷阱选项误导,提高解题的准确性。

问题三:计算过程繁琐,容易出错在解决一些复杂的应用题时,可能需要进行一系列繁琐的计算过程,容易出现计算错误。

为了避免这种情况,我们需要建立清晰的计算步骤,确保每一步计算都准确无误。

解决策略三:建立清晰的计算步骤,检查结果在解决应用题时,我们可以事先规划好整个计算过程的步骤,将每一步的计算结果都清晰地记录下来。

完成计算后,我们还要对结果进行检查,确保计算没有错误。

通过建立清晰的计算步骤和及时检查计算结果,我们可以有效降低出错的可能性,提高解题的准确性。

结论应用题在数学学习中起着至关重要的作用,掌握解题策略对于解决各种应用题至关重要。

通过拆分题目、仔细阅读问题、建立清晰的计算步骤等有效的解题策略,我们能够更好地理解题目的要求,避免被干扰项误导,减少计算错误,提高解题的准确性和效率。

中考数学复习之因动点产生的面积问题解题策略

中考数学复习之因动点产生的面积问题解题策略

因动点产生的面积问题解题策略一.解题策略解读:面积的存在性问题常见的题型和解题策略有两类:图1 图2 图3 计算面积常用到的策略还有:图4 图5 图6例1.已知抛物线y=mx2+(1-2m)x+1-3m与x轴交于不同的两点A、 B.(1) 求m的取值范围;(2) 证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3) 当<m≤8时,由(2)求出的点P和点A、 B构成的△ABP的面积是否有最值,若有,求出最值及相应的m的值;若没有,请说明理由.思路:1. 已知的抛物线的解析式可以因式分解的,抛物线过x轴上的定点(-1, 0).2. 第(2)题分两步,先对m赋予两个不同的值,联立求方程组的解,再验证这个点是确定的.3. 第(3)题中△ABP的高为定值,点A为定点,求△ABP的最大面积,其实就是求点B的横坐标的最大值.例2.问题提出(1) 如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2) 如图2,在矩形ABCD中,AB=4, AD=6, AE=4, AF=2.是否在边BC、CD上分别存在点G、 H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3) 如图3,有一块矩形板材ABCD, AB=3米, AD=6米,现想从此板材中截出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,米,∠EHG=45°.经研究,只有当点E、 F、 G分别在边AD、 AB、 BC上时,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能截出符合要求的部件.试问能否截得符合要求的面积尽可能大的四边形EFGH部件?若能,求出截得的四边形EFGH 部件的面积;若不能,请说明理由.图1 图2 图3思路:1. 第(2)题的模型是“打台球”两次碰壁问题,依据光的反射原理.2. 第(3)题需先设AF的长并求解,再验证点H在矩形内部,然后计算面积.例3.如图1,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8, OE=17.抛物线y=x2-3x+m与y轴交于点A,抛物线的对称轴与x轴交于点B,与CD交于点K.(1) 将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①求点F的坐标;②请直接写出抛物线的函数表达式;(2) 将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连结OG,折痕与OG交于点H,点M是线段EH上的一个动点(不与点H重合),连结MG, MO,过点G作GP⊥OM于点P,交EH于点N,连结ON.点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1·S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化的范围;若不变,请直接写出这个值.温馨提示: 考生可以根据题意,在备用图中补充图形,以便作答.图1 备用图思路:1. 第(1)题中点F的位置是由A、 B两点确定的,A、 B两点的坐标都隐含在抛物线的解析式中.2. 第(2)题思路在画示意图过程中,点G是关键点.以E为圆心,EO为半径画弧,交CD于点G.例 4.如图,已知平行四边形ABCD的三个顶点A(n, 0)、 B(m, 0)、 D(0,2n)(m>n>0),作平行四边形ABCD关于直线AD的对称图形AB1C1 D.(1) 若m=3,试求四边形CC1B1B面积S的最大值;(2) 若点B1恰好落在y轴上,试求的值.思路:1. 第(1)题先说理再计算,说理四边形CC1B1B是矩形.2. 第(2)题根据AB1=AB列关于m、 n的方程,整理就可以得到m与n的关系.例5.如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过点A(3, 0)和点B(2, 3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.(1) 求这条抛物线的表达式及对称轴;(2) 连结AB、 BC,求∠ABC的正切值;(3) 若点D在x轴下方抛物线的对称轴上,当S△ABC =S△ADC时,求点D的坐标.解析:1. 直觉告诉我们,△ABC是直角三角形.2. 第(3)题的意思可以表达为: B、 D在直线AC的两侧,到直线AC的距离相等.于是我们容易想到,平行线间的距离处处相等.例6.如图,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、D分别不与点A、 B重合),点E、 F在AB上,EC⊥CD, FD⊥CD.(1) 求证:EO=FO;(2) 连结OC,如果△ECO中有一个内角等于45°,求线段EF的长;(3) 当动弦CD在弧AB上滑动时,设变量CE=x,四边形CDFE的面积为S,周长为l,问:S与l是否分别随着x变化而变化?试用所学过的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.思路:1. 用垂径定理和平行线等分线段定理证明点O是EF的中点.2. 第(2)题的△ECO中,∠ECO是定值,45°的角分两种情况.3. 第(3)题用x表示OE的长,在△ECO中,∠ECO是定值.例7.直线y=2x+m与抛物线y=ax2+ax+b都过点M(1, 0),且a<b.(1) 求抛物线顶点Q的坐标(用含a的式子表示);(2) 试说明抛物线与直线有两个交点;(3) 设抛物线与直线的另一个交点为N.①若-1≤a≤-时,求MN的取值范围;②求△QMN的面积最小值.思路:1. 将M(1, 0)分别代入直线和抛物线的解析式,可以确定m的值,用a表示b.2. 联立直线与抛物线的解析式,消去y,得到关于a的一元二次方程,判断Δ>0.3. 第(3)题①,分别求a=-1和a=-时直线与抛物线的交点M、 N的坐标,再求MN的长,两个MN的长,就是MN的取值范围的两端值.例8.已知Rt△EFP和矩形ABCD如图1摆放(点P与点B重合),点F、 B(P)、 C 在同一直线上,AB=EF=6cm, BC=FP=8cm, ∠EFP=90°.如图2, △EFP从图1位置出发,沿BC方向匀速运动,速度为1cm/s, EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连结AF、 PQ.当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6).解答下列问题:(1) 当t为何值时,PQ∥BD?(2) 设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3) 在运动过程中,是否存在某一时刻t,使S五边形AFPQM ∶S矩形ABCD=9∶8?若存在,求出t的值;若不存在,请说明理由;(4) 在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.图1 图2思路:1. 把线段BP、 PC、 CQ、 DQ的长用t表示出来.再把线段BG、 DM的长用t表示出来.2. 用割补法求五边形AFPQM的面积,等于直角梯形减去两个直角三角形的面积.3. 第(3)题用第(2)题的结果,直接解方程就可以了.4. 第(4)题是根据MP2=MG2列方程,需要构造以MP为斜边的直角三角形.例9.如图1,在平面直角坐标系中,过原点O及点A(8, 0)、 C(0, 6)作矩形OABC,连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从点A出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1) 如图1,当t=3时,求DF的长;(2) 如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3) 连结AD,当AD将△DEF分成的两部分的面积比为1∶2时,求相应的t的值.图1 图2思路;1. 作DM⊥AB于M, DN⊥OA于N,那么△NDF与△MDE的相似比为3∶4.2. 面积比为1∶2要分两种情况讨论.把面积比转化为两个同高三角形底边的比.3. 过点E作OA的平行线,构造“8字型”相似,这样就把底边的比利用起来了.例10.如图1,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,与y轴交于点C, OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1) 求b、 c的值;(2) 如图1,连结BE,线段OC上点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3) 如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.图1 图2思路:1. 由已知抛物线的解析式可得C(0, c),再用c表示B、 D两点的坐标,然后将B、 D代入抛物线的解析式列关于b、 c的方程组.2. 第(2)题: 通过点C、 F分别与点D、 F'关于直线l对称,得到点F'是BE的中点,从而求得点F的坐标.3. 第(3)题: 设点P的横坐标为m,用m表示点M、 N的坐标,进而用m表示线段PM、 PN、 PA的长,根据两个三角形的面积相等,求出PN边上的高QH.最后讨论NQ与QH的关系.例11.如图,在平面直角坐标系中,直线y=12x+2与x 轴交于点A,与y 轴交于点C.抛物线y=-x 2+bx+c 经过A 、 C 两点,与x 轴的另一个交点为点B.(1) 求抛物线的函数表达式;(2) 点D 为直线AC 上方抛物线上一动点.① 连结BC 、 CD.设直线BD 交线段AC 于点E, △CDE 的面积为S 1, △BCE 的面积为S 2,求 12S S 的最大值; ② 过点D 作DF ⊥AC,垂足为F,连结CD.是否存在点D,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求出点D 的坐标;若不存在,请说明理由.图1 备用图思路: 1. △CDE 与△BCE 是同高三角形,面积比等于底边的比.构造“8字型”,把底边的比转化为竖直线段的比.2. 第(3)题的第一种情况∠DCF=2∠BAC,过点C 作x 轴的平行线,通过内错角相等,再作轴对称的角,很容易找到点D 的位置.3. 第(3)题的第二种情况∠CDF=2∠BAC,先要探求2∠BAC的大小(正切值),如果这一步探究不出来,基本上进行不下去.例12.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= ;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN 的面积为y,求当x为何值时y取得最大值?最大值为多少?思路:(1)由旋转的性质可以证明△OBC是等边三角形,从而可得∠OBC的度数;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤83时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,利用面积公式表示出△OMN的面积(y值);②当8 3<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H,利用∠CBO=60°表示出MH,再利用面积公式表示出△OMN的面积(y值);③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,易求OG,再利用面积公式表示出△OMN的面积(y值),最后分别求出三种情况下面积最大值,从而求出整个运动过程中y的最大值.例13. 在平面直角坐标系中,抛物线2y ax bx c=++交x轴于A、B两点,交y轴于点C(0,43-),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=34.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由;②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.思路:本题是代数几何综合题,以平面直角坐标系为背景,考查了求二次函数解析式,二次函数的性质,,方程组的解法,几何图形面积的表示,相似三角形的判定与性质,分类讨论思想,三角形的面积的最值问题,综合性强,难度大,解题的关键是需要学生有良好的运算能力及分析问题和解决问题的能力,还得富有耐心.(1)利用A、B、C三点的坐标确定二次函数的解析式.(2)利用题目的已知条件表示出相关线段的长,①中利用三角函数值探索出∠PAQ=∠ACD,再根据题目中的要求使得△ADC与△PQA相似,进行分类讨论得到对应线段成比例,列出关于t的方程求解即可;②直接利用三角形的面积公式列出△APQ与△CAQ 的面积之和与时间t之间的函数关系式,再将所得的二次函数的解析式配方确定最值即可得到答案.。

小学数学“图形的周长和面积”的有效教学策略

小学数学“图形的周长和面积”的有效教学策略

2022年第24期教育教学4SCIENCE FANS 数学是一门应用性很强的基础学科,很多学科都会运用数学相关知识,掌握数学这门学科后,可以解决实际生活中遇到的诸多问题。

在大力实施新课改的当下,小学数学教师应积极创新“图形的周长和面积”的教学方法,构建自主、高效的数学课堂,重视学生主体地位的体现,提高小学数学教学质量。

1 小学数学“图形的周长和面积”教学困境在“图形的周长和面积”教学过程中,对于理解起来相对困难的学生,教师通常会让他们对周长和面积的公式进行死记硬背,而不是引导他们去理解。

这部分学生在死记硬背下虽然能够记住公式,并且也能够解决规则图形周长和面积的相关问题,但是一旦遇到不规则的图形,大脑中匹配不到相关公式,解题时就会不知所措。

对此,教师应引导学生加强对公式的理解性记忆,并在解决图形类相关问题时树立转化意识[1]。

在小学数学“图形的周长和面积”的教学中,通过转化思想,学生可以把不熟悉、不规范、复杂的问题转化为熟悉、规范、简单的问题,教师引导学生运用转化思想,有利于培养学生的应变能力、思维能力,使其更好地掌握相关技能、技巧。

另外,小学数学教师在“图形的周长和面积”教学过程中,普遍都会关注学生掌握解题方法的熟练度,让学生花费大量的时间和精力解题,长此以往,学生就会失去主动思考的能力,不能及时进行反思,遇到问题时不会从多角度寻找解决思路[2]。

所以,在“图形的周长和面积”的教学中,教师在引导学生解题的同时,也要让学生积极主动反思,发现自己在解决问题时存在的不足,并总结方法和规律,这样才能实现能力进一步的提升。

小学数学是一门逻辑性很强的学科,其内容比较严谨,因此,小学数学“图形的周长和面积”的学习也具有较强的逻辑性和严谨性。

但由于小学阶段的学生对于逻辑性强且较为抽象的数学知识难以产生兴趣,所以通常因为学习内容太难而丧失学习积极性,不知道如何学习,更无法将所学知识应用到实际生活中,各种难题摆在眼前,使学生望而却步,没有了学习的主动性。

(完整版)解析几何的解题思路、方法与策略分析

(完整版)解析几何的解题思路、方法与策略分析

解析几何的解题思路、方法与策略高三数学复习的目的. 一方面是回顾已学过的数学知识. 进一步巩固基础知识. 另一方面. 随着学生学习能力的不断提高. 学生不会仅仅满足于对数学知识的简单重复. 而是有对所学知识进一步理解的需求. 如数学知识蕴涵的思想方法、 数学知识之间本质联系等等. 所以高三数学复习既要“温故” . 更要“知新” . 既能引起学生的兴趣. 启发学生的思维. 又能促使学生不断提出问题. 有新的发现和创造. 进而培养学生问题研究的能力.以“圆锥曲线与方程”内容为主的解题思想思路、方法与策略是高中平面解析几何的核心内容. 也是高考考查的重点.每年的高考卷中.一般有两道选择或填空题以及一道解答题. 主要考查圆锥曲线的标准方程及其几何性质等基础知识、基本技能及基本方法的灵活运用. 而解答题注重对数学思想方法和数学能力的考查.重视对圆锥曲线定义的应用. 求轨迹及直线与圆锥曲线的位置关系的考查.解析几何在高考数学中占有十分重要的地位.是高考的重点、热点和难点.通过以圆锥曲线为主要载体.与平面向量、导数、数列、不等式、平面几何等知识进行综合.结合数学思想方法.并与高等数学基础知识融为一体.考查学生的数学思维能力及创新能力.其设问形式新颖、有趣、综合性很强.基于解析几何在高考中重要地位.这一板块知识一直以来都是学生在高三复习中一块“难啃的骨头” .所以研究解析几何的解题思路.方法与策略.重视一题多解.一题多变.多题一解这样三位一体的拓展型变式教学.是老师和同学们在高三复习一起攻坚的主题之一.本文尝试以笔者在实际高三复习教学中.在教辅教参和各类考试中遇到的几道题目来谈谈解析几何解题思路和方法策略.一、一道直线方程与面积最值问题的求解和变式例1 已知直线l 过点(2,1)M - .若直线l 交x 轴负半轴于A.交y 轴正半轴于B.O 为坐标原点.(1)设AOB ∆的面积为S .求S 的最小值并求此时直线l 的方程;(2)求OA OB +最小值; (3)求M MA B ⋅最小值.解:方法一:∵直线l 交x 轴负半轴.y 轴正半轴.设直线l 的方程为(2)1(0)y k x k =++>.∴)(0,12kk A -- )12,0(+k B . (1)∴422122)12(2≥++=+=kk k k S , ∴当1)22=k (时.即412=k .即 21=k 时取等号.∴此时直线l 的方程为221+=x y .(2)3223211221+≥++=+++=+k k k k OB OA .当且仅当22k =时取等号; (3)4212)1)(11(24411222222≥++=++=+⋅+=⋅k k k k k k MB MA . 当且仅当1k =时取等号;方法二:设直线截距式为)0,0(1><=+b a b y a x .∵过点(2,1)M -.∴112=+-ba (1)∵abb a -≥+-=22121. ∴822≥-⇒≥-ab ab .∴42121≥-==∆ab b a S AOB ; (2)322)2(3))(12(+≥+-=+-+-=+-=+=+ba ab b a b a b a b a OB OA ; (3)5)12)(2(52)1()2(2-+-+-=-+-=-++-=⋅-=⋅ba b a b a b a MB MA MB MA 422≥-+-=ab b a . (3)方法三: θsin 1=MA .θcos 2=MB . ∴42sin 4cos sin 2≥==⋅θθθMB MA .当且仅当12sin =θ时最小.∴4πθ=.变式1:原题条件不变.(1)求△AOB 的重心轨迹;(2)求△AOB 的周长l 最小值.解:(1)设重心坐标为(,)x y .且(,0)A a .(0,)B b .则3a x =.3b y =.又∵112=+-ba .∴13132=+-y x . ∴2332312332)23(3123+-=+-+=+=x x x x x y .该重心的轨迹为双曲线一部分; (2)令直线AB 倾斜角为θ.则20πθ<<.又(2,1)M -.过M 分别作x 轴和y 轴的垂线.垂足为,E F , 则θsin 1=MA . θcos 2=MB .θtan 1=AE .θtan 2=BF ∴)20(tan 2tan 1cos 2sin 13πθθθθθ<<++++=l 2sin 2cos )2cos 2(sin22cos 2sin 22cos 23cos )sin 1(2sin cos 132222θθθθθθθθθθθ-+++=++++=)420(12cot )2cot 1(22cot 3πθθθθ<<-+++=. 令12cot-=θt . 则t>0. ∴周长10)2(213≥++++=t t t l ∴32cot 212cot =⇒=-θθ。

三年级学生易混淆周长和面积的原因及其策略分析

三年级学生易混淆周长和面积的原因及其策略分析

三年级学生易混淆周长和面积的原因及其策略分析【摘要】三年级学生容易混淆周长和面积的原因主要包括概念理解不清晰、计算方法的误区以及缺乏实际应用的训练。

为了帮助他们解决这一问题,应该通过强化概念理解、分开训练周长和面积的计算方法以及增加实际应用的练习来提高他们的数学能力。

通过这些策略的实施,学生们可以更好地理解和区分周长和面积的概念,避免混淆和错误计算。

针对三年级学生易混淆周长和面积的情况,应该从根本上加强他们的基础知识,通过实际操作和练习来提高他们的数学水平,以便更好地掌握这两个概念。

【关键词】周长、面积、易混淆、三年级学生、概念理解、计算方法、实际应用、策略分析。

1. 引言1.1 引言在数学学习中,周长和面积是基础概念,也是三年级学生经常容易混淆的知识点。

周长和面积的计算方法虽然看似简单,但学生们却常常在实际运用中出现混淆和错误。

这种现象背后究竟是什么原因导致的呢?本文将从概念理解、计算方法、实际应用等方面进行分析,并提出相应的解决策略。

对于三年级学生来说,周长和面积的概念可能并不容易理解。

周长是封闭图形的边界长度,而面积是封闭图形内部的面积大小。

学生容易混淆这两者的概念,导致在计算过程中出现错误。

计算周长和面积的方法也可能存在误区,例如在计算面积时没有正确将单位进行换算,或者没有理解公式的含义等。

缺乏实际应用的训练也是导致学生易混淆周长和面积的原因之一。

数学是一门实践性很强的学科,只有通过实际运用才能更好地理解和运用知识。

没有足够的实际练习,学生往往无法将抽象的概念与实际问题进行联系,从而容易混淆周长和面积的概念和计算方法。

针对学生易混淆周长和面积的问题,我们应该采取相应的策略进行解决。

要加强学生对周长和面积概念的理解,通过示意图、实物等形式让学生直观地感受这两者的区别。

要分开训练周长和面积的计算方法,让学生独立掌握两者的计算规则,避免混淆。

要增加实际应用的练习,让学生在解决问题的过程中不断巩固和加深对周长和面积的理解。

二次函数动点问题中面积最值的解法策略

二次函数动点问题中面积最值的解法策略

二次函数动点问题中面积最值的解法策略摘要:我国正在实施新的基础教育课程改革,《义务教育数学课程标准(2022年版)》指出要培养学生的数学核心素养,而二次函数和几何图形的综合应用题,能充分的考查学生的数学抽象,逻辑推理,数学运算以及数学建模等综合能力。

这种类型的综合题,通常出现在中考的压轴题中,综合性强,计算强度大,具有较大的难度,在二次函数与几何图形的综合题中,求二次函数面积的最值问题比较常见,本文就此问题解法进行探讨。

关键词:二次函数与几何图形;函数动点问题;二次函数面积最值二次函数动点问题就是通过点的运动生成一种函数关系及函数图象,抛物线上点的运动与直线相结合而产生的三角形面积问题,就是将几何图形与函数图象有机地融合在一起,解决的关键是结合图形通过点坐标衔接函数、方程找到函数关系。

本文就求解二次函数面积最值的问题,浅谈几种解决此类问题的方法策略。

一、割补法在解决二次函数面积最值问题时,不规则多边形的面积往往可以通过割补法把多边形分为几个三角形或者是规则的四边形的面积来求解,当三角形中有一边是在坐标轴上,或者在以坐标轴平行的直线上,那么就可以把这一条边当作三角形的底边,第三个点到这一条边的距离,作为三角形的高,直接利用三角形的面积公式求解,或者过图形的各端点作两坐标轴的平行线,构造与轴平行的最小矩形对所要求面积的图形进行覆盖,然后所求图形的面积即为矩形面积减去多余的几个直角三角形的面积。

最终把多边形面积的最值问题,转化为求三角形面积的最值问题,这也体现了一种“化归”的思想方法。

题目1、(2019枣庄)已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图①,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由.[思路分析](1)由抛物线的对称轴是直线x=3,解出a的值,即可求得抛物线的表达式,再令其y值为0,解一元二次方程即可求出A和B的坐标。

中考数学复习之因动点产生的面积问题解题策略

中考数学复习之因动点产生的面积问题解题策略

因动点产生的面积问题解题策略一.解题策略解读:面积的存在性问题常见的题型和解题策略有两类:图1 图2 图3 计算面积常用到的策略还有:图4 图5 图6例1.已知抛物线y=mx2+(1-2m)x+1-3m与x轴交于不同的两点A、 B.(1) 求m的取值范围;(2) 证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3) 当<m≤8时,由(2)求出的点P和点A、 B构成的△ABP的面积是否有最值,若有,求出最值及相应的m的值;若没有,请说明理由.思路:1. 已知的抛物线的解析式可以因式分解的,抛物线过x轴上的定点(-1, 0).2. 第(2)题分两步,先对m赋予两个不同的值,联立求方程组的解,再验证这个点是确定的.3. 第(3)题中△ABP的高为定值,点A为定点,求△ABP的最大面积,其实就是求点B的横坐标的最大值.例2.问题提出(1) 如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2) 如图2,在矩形ABCD中,AB=4, AD=6, AE=4, AF=2.是否在边BC、CD上分别存在点G、 H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3) 如图3,有一块矩形板材ABCD, AB=3米, AD=6米,现想从此板材中截出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,米,∠EHG=45°.经研究,只有当点E、 F、 G分别在边AD、 AB、 BC上时,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能截出符合要求的部件.试问能否截得符合要求的面积尽可能大的四边形EFGH部件?若能,求出截得的四边形EFGH 部件的面积;若不能,请说明理由.图1 图2 图3思路:1. 第(2)题的模型是“打台球”两次碰壁问题,依据光的反射原理.2. 第(3)题需先设AF的长并求解,再验证点H在矩形内部,然后计算面积.例3.如图1,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8, OE=17.抛物线y=x2-3x+m与y轴交于点A,抛物线的对称轴与x轴交于点B,与CD交于点K.(1) 将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①求点F的坐标;②请直接写出抛物线的函数表达式;(2) 将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连结OG,折痕与OG交于点H,点M是线段EH上的一个动点(不与点H重合),连结MG, MO,过点G作GP⊥OM于点P,交EH于点N,连结ON.点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1·S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化的范围;若不变,请直接写出这个值.温馨提示: 考生可以根据题意,在备用图中补充图形,以便作答.图1 备用图思路:1. 第(1)题中点F的位置是由A、 B两点确定的,A、 B两点的坐标都隐含在抛物线的解析式中.2. 第(2)题思路在画示意图过程中,点G是关键点.以E为圆心,EO为半径画弧,交CD于点G.例 4.如图,已知平行四边形ABCD的三个顶点A(n, 0)、 B(m, 0)、 D(0,2n)(m>n>0),作平行四边形ABCD关于直线AD的对称图形AB1C1 D.(1) 若m=3,试求四边形CC1B1B面积S的最大值;(2) 若点B1恰好落在y轴上,试求的值.思路:1. 第(1)题先说理再计算,说理四边形CC1B1B是矩形.2. 第(2)题根据AB1=AB列关于m、 n的方程,整理就可以得到m与n的关系.例5.如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过点A(3, 0)和点B(2, 3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.(1) 求这条抛物线的表达式及对称轴;(2) 连结AB、 BC,求∠ABC的正切值;(3) 若点D在x轴下方抛物线的对称轴上,当S△ABC =S△ADC时,求点D的坐标.解析:1. 直觉告诉我们,△ABC是直角三角形.2. 第(3)题的意思可以表达为: B、 D在直线AC的两侧,到直线AC的距离相等.于是我们容易想到,平行线间的距离处处相等.例6.如图,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、D分别不与点A、 B重合),点E、 F在AB上,EC⊥CD, FD⊥CD.(1) 求证:EO=FO;(2) 连结OC,如果△ECO中有一个内角等于45°,求线段EF的长;(3) 当动弦CD在弧AB上滑动时,设变量CE=x,四边形CDFE的面积为S,周长为l,问:S与l是否分别随着x变化而变化?试用所学过的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.思路:1. 用垂径定理和平行线等分线段定理证明点O是EF的中点.2. 第(2)题的△ECO中,∠ECO是定值,45°的角分两种情况.3. 第(3)题用x表示OE的长,在△ECO中,∠ECO是定值.例7.直线y=2x+m与抛物线y=ax2+ax+b都过点M(1, 0),且a<b.(1) 求抛物线顶点Q的坐标(用含a的式子表示);(2) 试说明抛物线与直线有两个交点;(3) 设抛物线与直线的另一个交点为N.①若-1≤a≤-时,求MN的取值范围;②求△QMN的面积最小值.思路:1. 将M(1, 0)分别代入直线和抛物线的解析式,可以确定m的值,用a表示b.2. 联立直线与抛物线的解析式,消去y,得到关于a的一元二次方程,判断Δ>0.3. 第(3)题①,分别求a=-1和a=-时直线与抛物线的交点M、 N的坐标,再求MN的长,两个MN的长,就是MN的取值范围的两端值.例8.已知Rt△EFP和矩形ABCD如图1摆放(点P与点B重合),点F、 B(P)、 C 在同一直线上,AB=EF=6cm, BC=FP=8cm, ∠EFP=90°.如图2, △EFP从图1位置出发,沿BC方向匀速运动,速度为1cm/s, EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连结AF、 PQ.当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6).解答下列问题:(1) 当t为何值时,PQ∥BD?(2) 设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3) 在运动过程中,是否存在某一时刻t,使S五边形AFPQM ∶S矩形ABCD=9∶8?若存在,求出t的值;若不存在,请说明理由;(4) 在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.图1 图2思路:1. 把线段BP、 PC、 CQ、 DQ的长用t表示出来.再把线段BG、 DM的长用t表示出来.2. 用割补法求五边形AFPQM的面积,等于直角梯形减去两个直角三角形的面积.3. 第(3)题用第(2)题的结果,直接解方程就可以了.4. 第(4)题是根据MP2=MG2列方程,需要构造以MP为斜边的直角三角形.例9.如图1,在平面直角坐标系中,过原点O及点A(8, 0)、 C(0, 6)作矩形OABC,连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从点A出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1) 如图1,当t=3时,求DF的长;(2) 如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3) 连结AD,当AD将△DEF分成的两部分的面积比为1∶2时,求相应的t的值.图1 图2思路;1. 作DM⊥AB于M, DN⊥OA于N,那么△NDF与△MDE的相似比为3∶4.2. 面积比为1∶2要分两种情况讨论.把面积比转化为两个同高三角形底边的比.3. 过点E作OA的平行线,构造“8字型”相似,这样就把底边的比利用起来了.例10.如图1,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,与y轴交于点C, OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1) 求b、 c的值;(2) 如图1,连结BE,线段OC上点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3) 如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.图1 图2思路:1. 由已知抛物线的解析式可得C(0, c),再用c表示B、 D两点的坐标,然后将B、 D代入抛物线的解析式列关于b、 c的方程组.2. 第(2)题: 通过点C、 F分别与点D、 F'关于直线l对称,得到点F'是BE的中点,从而求得点F的坐标.3. 第(3)题: 设点P的横坐标为m,用m表示点M、 N的坐标,进而用m表示线段PM、 PN、 PA的长,根据两个三角形的面积相等,求出PN边上的高QH.最后讨论NQ与QH的关系.例11.如图,在平面直角坐标系中,直线y=12x+2与x 轴交于点A,与y 轴交于点C.抛物线y=-x 2+bx+c 经过A 、 C 两点,与x 轴的另一个交点为点B.(1) 求抛物线的函数表达式;(2) 点D 为直线AC 上方抛物线上一动点.① 连结BC 、 CD.设直线BD 交线段AC 于点E, △CDE 的面积为S 1, △BCE 的面积为S 2,求 12S S 的最大值; ② 过点D 作DF ⊥AC,垂足为F,连结CD.是否存在点D,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求出点D 的坐标;若不存在,请说明理由.图1 备用图思路: 1. △CDE 与△BCE 是同高三角形,面积比等于底边的比.构造“8字型”,把底边的比转化为竖直线段的比.2. 第(3)题的第一种情况∠DCF=2∠BAC,过点C 作x 轴的平行线,通过内错角相等,再作轴对称的角,很容易找到点D 的位置.3. 第(3)题的第二种情况∠CDF=2∠BAC,先要探求2∠BAC的大小(正切值),如果这一步探究不出来,基本上进行不下去.例12.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= ;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN 的面积为y,求当x为何值时y取得最大值?最大值为多少?思路:(1)由旋转的性质可以证明△OBC是等边三角形,从而可得∠OBC的度数;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤83时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,利用面积公式表示出△OMN的面积(y值);②当8 3<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H,利用∠CBO=60°表示出MH,再利用面积公式表示出△OMN的面积(y值);③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,易求OG,再利用面积公式表示出△OMN的面积(y值),最后分别求出三种情况下面积最大值,从而求出整个运动过程中y的最大值.例13. 在平面直角坐标系中,抛物线2y ax bx c=++交x轴于A、B两点,交y轴于点C(0,43-),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=34.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由;②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.思路:本题是代数几何综合题,以平面直角坐标系为背景,考查了求二次函数解析式,二次函数的性质,,方程组的解法,几何图形面积的表示,相似三角形的判定与性质,分类讨论思想,三角形的面积的最值问题,综合性强,难度大,解题的关键是需要学生有良好的运算能力及分析问题和解决问题的能力,还得富有耐心.(1)利用A、B、C三点的坐标确定二次函数的解析式.(2)利用题目的已知条件表示出相关线段的长,①中利用三角函数值探索出∠PAQ=∠ACD,再根据题目中的要求使得△ADC与△PQA相似,进行分类讨论得到对应线段成比例,列出关于t的方程求解即可;②直接利用三角形的面积公式列出△APQ与△CAQ 的面积之和与时间t之间的函数关系式,再将所得的二次函数的解析式配方确定最值即可得到答案.。

人教版五年级上册数学《解决问题(不规则图形的面积)》教案

人教版五年级上册数学《解决问题(不规则图形的面积)》教案

人教版五年级上册数学《解决问题(不规则图形的面积)》教案一. 教材分析《解决问题(不规则图形的面积)》是人教版五年级上册数学的一章内容。

本章主要让学生掌握不规则图形面积的求法,培养学生解决实际问题的能力。

教材通过生活中的实例,引导学生发现不规则图形的面积求法,并通过实践活动,让学生掌握不规则图形面积的计算方法。

二. 学情分析五年级的学生已经掌握了基本的几何图形的面积求法,具备一定的观察、操作和推理能力。

但他们对不规则图形的面积求法尚不熟悉,需要通过实例和实践来进一步理解和掌握。

此外,学生可能对不规则图形的面积计算过程中涉及到的割补、近似等概念感到困惑,需要在教学中进行重点讲解和引导。

三. 教学目标1.让学生掌握不规则图形面积的求法,能运用割补、近似等方法解决实际问题。

2.培养学生观察、操作、推理和解决实际问题的能力。

3.激发学生学习兴趣,培养合作意识和创新精神。

四. 教学重难点1.重点:不规则图形面积的求法,割补、近似等方法的运用。

2.难点:不规则图形面积计算过程中的推理和解决问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现不规则图形面积的求法。

2.实践活动法:让学生动手操作,实践不规则图形面积的计算方法。

3.合作学习法:鼓励学生分组讨论,共同解决问题。

4.讲解法:对不规则图形面积计算过程中的关键步骤进行讲解和引导。

六. 教学准备1.准备一些不规则图形实物或图片,如树叶、拼图等。

2.准备投影仪或白板,用于展示实例和讲解。

3.准备练习题和学习单,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)利用投影仪或白板,展示一些不规则图形,如树叶、拼图等。

引导学生观察这些图形,并提出问题:“你们知道这些图形的面积怎么求吗?”让学生回顾已学过的几何图形面积求法,为新课的学习做好铺垫。

2.呈现(10分钟)讲解不规则图形面积的求法,引导学生发现割补、近似等方法。

通过实例演示,让学生了解不规则图形面积的计算过程。

抛物线中三角形面积最值问题的七种求解策略

抛物线中三角形面积最值问题的七种求解策略

图10的正切函数值,则问题便可逐步解决.解析在上找点£,使= 由外角定理,知•①易知直线S C 解析式为y-6.设 £(m ,m -6),由 fi (6,0),D (2, -8),则 B £2 = (m -6)' + (m -6)2, ED 2 = (m - 2)2 + (m + 2)2.由 B £ = £7),知(;n -6)2 +(m -6)2 = (m -2)2 +(m + 2)2,解得 m =|,即 £(夺,-爭)•又易知 C £>2 + fiC 2 = fi /)2,则乙BCD = 90。

.qi n由 C (0, -6),£(|■,-$),Z )(2, -8),知 CD =2^",C £=^,P J lain^CED = j .②由①②和 A C(?B = 2 A CflD ,则 tan Z _ C(?B =当点<?在点B 左侧时,(),( -8,0).当点<?在点B 右侧时,(?2(8,0).综上,(?( -8,0)或(8,0).从上面题目的解答可以发现:抛物线中角的存在 性问题,一般运用角的特殊性及坐标条件构造基本图形,并运用图形的性质,进行推理得出有关相等线段, 并表示出有关点的坐标,代入二次函数或一次函数的 解析式,或运用勾股定理计算作答.在解答过程中,既 要构造几何图形,根据几何直观和几何性质、定理理性分析、推理,还要运用函数与方程知识进行计算和 数据分析.综合运用几何推理、函数与方程思想等多 方面技能,有较强的综合性及创新探究意识,可以很 好地考查学生的综合素养[2].“问题是数学的心脏”,数学的真正组成部分是问 题和解,在学习过程中,在一定学习范围或主题内,围 绕一定目标或某一中心问题,按照一定的逻辑结构精 心设计一组问题,即为“一题多问”,采用“一题多问” 的方式,用同一道题目将多个知识点表现出来,可以 帮助学生梳理旧知,形成网络,将数学技能及方法得 以综合运用.“一题多问”引导学生从不同角度、不同 方位进行不同层次的思考,提高学生分析问题、解决 问题和提出问题的能力,可以让学生跳出“题海”,提 高解题效益,提升数学素养.参考文献:[1 ]罗峻,段利芳.一次函数与反比例函数图象相交的性质 之证明与运用[J ]•数理化学习(初中版),2018(12) :23 -28.[2]罗峻,段利芳.当完美正方形偶遇美丽的45度角[J ]. 理科考试研究(初中),2019,26(22) :29 -32.(收稿日期:2020 -09 -21 )抛物线中三角形面积最值问题的七种求鮮策略段昆山(易县教育局教研室河北保定074200)摘要:以二次函数为栽体,结合几何图形求面积最值问题具有难度大、综合性强,区分度高的特表.本文以某地初 三上学期期末考试试卷最后一题为例,谈一谈此类问题的七种求解策略.关键词:最值问题;转化;面积;求解策略纵观近年各地中考试卷,以二次函数为载体,结 合几何图形求面积最值问题的题型是各地中考的高 频考点之一.这类试题综合运用多种数学思想方法, 不仅考查了二次函数与三角形面积的相关知识,又为后续学习高中知识奠定了基础.1试题呈现题目如图1,在平面直角坐标系中,抛物线y = <M c 2 +心+2(a #0)与.t 轴交于两点(点4在点B作者简介:段昆山(1976 -),男,河北保定人,本科,中学一级教师,研究方向:数学教育.的左侧),与y 轴交于点C ,抛物线经过点£»(- 2,- 3) 和点£(3,2),点P 是第一象限抛物线上的一个动点.(1) 求抛物线的表达式;(2) 当A B P C 的面积取最大值时,求A fiP C 面积 及点P 的坐标.2试题解析 2. 1第(1)问解析将点A £的坐标代人函数表达式,得丄_ 了,3_r故抛物线的表达式为y +2.2.2第(2)问解析 2. 2. 1分割法三角形面积通常用面积公 式(底乘髙的一半)来求,在平面 直角坐标系中求斜三角形的面 积用这个公式难度大,那如何求 呢?那就需要运用转化的方法 把斜三角形分割成底与高分别 与坐标轴平行的三角形,充分利用定点的横纵坐标来求三角形面积•如图2,过点P 作丄;c 轴于点F ,A fiP C 被分 割成两个三角形,即A //P C 和所以SA B P C =S 娜c + SAW ,过点C 作C Z )丄/^于点Z ),过点B 作BE _L PF 于点 E ,S A H P C =夸PH x CD.解法1如图3,连接S C ,过点P 作W ///y 轴交S C 于点//,将点C ,S 代入一次函数表达式,可得直线的表达式为y = -+ 2.设点 P U ,+如 +2),则点+2).所以 S A P C B =-%2 +4%.f 4a -2b +2 =-3, 19a +36+2=2,解得,根据二次函数性质,利用配方法,当* = 2时, S apm 的最大值为4.故当A B P C 的面积取最大值时,点P (2,3),S A P C B 二 4.2.2.2补形法在平面直角坐标系中求斜 三角形的面积不仅可以运用分 割法,也可以转换思路,用补形 的方法把不规则图形转化成规 则图形,将斜三角形面积转化 成矩形面积减去三角形的面 积,再充分利用定点的横纵坐标,就可以求斜三角形面积了 • 图4如图4,过点P 作轴,垂足为点£,过点5作 fiZ )丄/)£,垂足为点£»,贝丨J 四边形为矩形•所以S APCB = S 酿形OBOE - S A P E (: 一 S APDB _ S a (X b .解法2如图5,过点P 作轴,垂足为点£,过点B 作丄/)£;,垂足为点/),所以四边形 OBD £为矩形.所以 s A PC b 二 S 四边形〇B D e : — S A P E (: - S _ s A 0C B 二(-+ ^-x + 2) x 4 - (- -^-x2 + -^-x ) x x x ~y - (4-x) x (- ~^x2 ++ 2) x -^--4=-x ~+ 4x.根据二次函数性质,利用配方法,当x =2时,^ A P C B的最大值为4.故当A B P C的面积取最大值时,点P(2,3),■5而=4_2.2.3铅垂法如图6,过A P S C的顶点分别作出水平线的垂线, 外侧两条垂线间的距离叫做水平宽.中间的垂线与 S C相交于点£,线段就叫做铅垂高.如图7,因为S apcb=S A peb+S&PCE二y PE x EU +j PE x EF =所以铅垂法本质上也是分割法.,铅垂高I图7解法3如图8,过点P作P//丄;c轴交B C于点//,设点 ,-+ 2),则点 //(x,+ 2)•所以11,312^apcb =^2^~^2X+Y"x+2+y*-2)x4=-x+4x.在直线B C上.根据平行线间的距离相等,所以ABPC 和A B fiC的高相等,底是BC.所以厶B P C和A B//C的面积相等.求A B P C的面积就转化成求A//£C的面积.解法4如图10,过点Z3作户////沉交7轴于点 所以 S&P C B= S A C H B-将点c,B代人一次函数表达式,可得直线C B的表达式为y= - 士;':+ 2.因为W///S C,所以设直线P//的表达式为y根据二次函数性质,利用配方法,当x= 2时,S apos的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB=^*2.2.4平行线法如图9,W///B C,点//,P在直线W/上,点5,CH E P设点户(%,- y i2 + y x+ 2),所以-2 =-—x +b,b22+ ~z~x + 2 + ~z~x2,//C=-y^2+2x+2-2TT22x.x2 +2x+PJflll S A P C B = ^H C xOB =-x2-t-4x.利用配方法,当x= 2时,S A P(:iB的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB=^*2.2.5相似法如图11,求三角形的面积可以用面积公式足为点D.所以BC= VOC2 + OB2 = 7^5.求三角形的 面积只要求出高就可以了.高如何求呢?我 们仔细观察图形发现丄SO,所以™//y轴.所以 APHC= AOCB•因为P E±B C,所以 APEH=厶COB.所以ABOC w•所以g = I I所以= PH^~° .这样就可以求出高了.解法5如图12,过点P作丄BC,垂足为点 £,PD丄50交 SC 于点 由题意,5C= VOC1+ OB2 = 2/5 ,APEH^ABOC.m i0BPH = BC'因为+ 2x,PE PH x BOBC¥(-士解法6如图13,过点P作P£//fiC,因为将点C,B代入一次函数表达式,同理可得直线C Z?的表达式为;^=-士尤+2.所以设直线的表达式为y=-+ 6.1,j=- y x + b-H i2+3+2y= - ~z~x+ ~zrx+1.1/22整理,得-士尤2 +~|~尤+2=-士a:+ 6 一士丨2 +2% +2-6=0.所以 A =4-4 x(-士)x(2 -6) =8 -26 =0.解得6=4_所以点P(2,3),A P C fi最大值为4 .2.2.7中点法如图14,设直线S C与抛物线交于B,C两点,直线B C的解析式可设为y= ^+ n,抛物线解析式可设为y= m2 +心+ C,求其交点坐标就是联立两解析式’所以 ax2 + + c = n w c + n_ 整理,得[y= mx+ n.ax2+ (b- m)x+ c- n= 0. fffVJs x, + x2 = ——因为直a%2 +2a〇,所以 S A P C fl =^^(-士尤2 +2幻x2V^x士 =-x2 + 4x.利用配方法,当* =2时,S A P efl的最大值为4.故当A S P C的面积取得最大值时,点P(2,3),^ APCB-4-2.2.6切线法如图13,若使点P在抛物线上,S A P eB最大,则需 使P£//BC,且与抛物线有且只有一个交点才能使心^8最大.因为底B C确定,只要高最大.因为点P 在抛物线上与抛物线有且只有一个交点时,SC 边上的高才最大.线B C平移到与抛物线只有一个交点时,七即& = 也就是%所以过点P作*轴的垂线,垂足M是O S的中点.所以当抛物线被直线 B C所截,P为抛物线上一动点(此时点P为线段SC 与抛物线所组成的封闭图形上抛物线上一点)丄%轴于点m,交s c于点yv,当点yv为b c中点时,s APC8 的面积有最大值.解法7如图15,过点尸作P////S C,所以& = X B+X C^所以点P 坐标为(2,3).所以=S 四边形"W /Y ;+ S APMB ""SA O R Cx (2+ 3) x 2+冬 x 2x 3_4-x 2x 4=4.' 2 2此法适用于填空、选择或验证.3感悟解法这一类以二次函数为载体,结合几何图形求面积最值问题的题型涉及的知识面多、难度大、综合性强, 要想顺利解答此类问题,必须抓住以下几点.(1)立足转化,抓住动点(设动为定).合理构造辅助线,以转化 思想为基本出发点,抓住动点,根据不同思路过动点 作平行,或作垂直等辅助线,把复杂问题转化为简单问题,把未知问题转换为已知问题.(2)数形结合,设 出动点坐标.充分挖掘已知条件与隐含条件,要明确 角边在数量关系变化中哪些是保持不变的量,哪些是 变化的量.哪些是变化的量.这需要在充分理解的基 础上,进行多方位思考、多角度着手、多层次探索m , 利用相似、面积公式、根与系数的关系等知识,表示出相关的数量关系.(3)根据相关的数量关系,把面积表示成一个含有某未知量的二次函数关系式,然后利用 公式法或配方法求出最值.参考文献:[1] 段昆山.构造图形求准确数形结合找临界一•一类“儿何”型新定义压轴题解法浅析[J ].中学数学教学,2020(01) :79 -80.[2]周威.圆锥曲线中几个特殊三角形面积最值问题探究[J ].理科考试研究,2020(09) :25 - 27.(收稿日期:2020 _08-15)指向“深度学习”的教学课壹教学策略李娜沈南山(合肥师范学院数学与统计学院安徽合肥230601)摘要:从认知结构观点来看,“深度学习”是一种理解性的学习,注重学习思维的批利性、学习内容的整合性、知识体系的建构性和知识学习的迁移性.指向深度学习的数学课堂教学需要深入追问学什么、怎么学、学得怎么样三个教 学本源问题,其教学策略应当注重数学知识对象的多重表征、数学学习脚手架的适时搭建、数学学习问题的逻辑引领、 数学学习方法的积极反思等.关键词:初中数学;深度学习;教学策略1 “深度学习”的基本特征“深度学习”(Deep Learning )最早由美国学者 Marlon 等人于1976年提出的一个比较性学习概念, 是相对于孤立记忆和非批判性接受知识的浅层学习 (Surface Learning )而言的.随后国内外学者对“深度 学习”开展理论与实践研究,其基本内涵是在教师引 领下,学生围绕着具有挑战性的学习主题,全身心积极参与、体验成功、获得发展的有意义的学习过程,并 在这个过程中学生掌握学科的核心知识,理解学习的 过程,把握学科的本质及思想方法,形成积极的内在 学习动机、高级的社会性感情、积极的态度、正确的价 值观等m .“深度学习”的基本特征蕴含理论和实践两个层 面.理论上,从知识结构观点来看,深度学习是基于学基金项目:合肥师范学院研究生创新基金项目“深度学习理念下初中数学课堂问题提出的教学实践研究”(项目编号:2020yjs 033).作者简介:李娜( 1995 -),女,安徽阜阳人,硕士研究生,研究方向:数学教育;沈南山(1964 -),男,安徽六安人,博士,教授,研究方向:数学课程与教学论研究.。

用转化思想促学习深入——从“圆的面积计算公式推导”教学为例

用转化思想促学习深入——从“圆的面积计算公式推导”教学为例

教学实践用转化思想促学习深入-从“圆的面积计算公式推导”教学为例江苏扬中市兴隆中心小学(212200)陈应芬[摘要]在小学几何学习中,转化思想是学生克服重重困难的制胜法宝。

在“圆的面积计算公式推导”教学实践中利用转化思想可以化繁为简、化陌生为熟悉,使学生的数学学习更加有理性,更加有灵性,有效促进学生学习的建构和深入。

[关键词]转化思想;有效学习;圆的面积;公式推导[中图分类号]G623.5[文献标识码]A[文章编号]1007-9068(2020)02-0068-02转化策略是解决问题的制胜法宝之一,也是学生数学学习的有力武器。

为此,教师要重视转化思想的渗透,让学生在学习过程中获得这一思想的感知,形成厚实的感悟,并灵活地将其运用于新知识的学习研究之中,从而助推学习的深入,促进数学素养的稳健发展。

在此,笔者结合“圆的面积计算公式推导”教学实践,简要地谈一谈转化思想在小学数学教学中的应用和对学生研究问题、解决问题的影响,以及对他们的数学思维发展、数学活动经验积累等方面的促进作用。

一、唤醒转化感悟,诱发学习迁移转化思想在小学数学中的渗透面极广,有数与计算领域方面的,也有图形与空间范畴的,还有统计与概率层面的。

因此,教师应重视对学生转化思想感悟的唤醒,使其成为学生攻克学习问题的有力武器。

在小学阶段有机渗透数学思想方法,势必要给学生应用的学习启蒙,使其拥有不断学习、深入研究的真本领。

如在“圆的面积计算公式推导”的教学中,教师首先应带领学生回顾“圆的认识”的知识内容,有效激活学生的方法,学生的思维实现了拔节、提升。

三、关注思维过程,实现策略外化“什么都可代替,唯有思维不可代替。

”在自主探索后,不管学生获得了何种解决问题的思路,都是他们积极思考的结果。

但对于三年级的学生而言,他们的数学语言能力还很薄弱,很多情况下难以清晰地表达出自己的想法。

如何将思维外显,把学生思考的过程有条理、有层次地表达出来,教师要动一番脑筋。

20秋西师大版数学五年级上册第五单元 多边形面积的计算 (教案)6、问题解决

20秋西师大版数学五年级上册第五单元  多边形面积的计算 (教案)6、问题解决

20秋西师大版数学五年级上册第五单元多边形面积的计算(教案)6、问题解决◆教学内容教材92-94页例1、例2、例3的“问题解决”,课堂活动和“练习二十四”的相关内容。

◆教材提示本课内容是在学生学习了平行四边形、三角形、梯形等多边形的面积计算方法,认识了平方千米和公顷这两个较大的面积单位的基础上进行学习的。

本节课的知识点有如下几点:知识点一:利用三角形面积计算公式解决生活中的问题。

知识点二:利用梯形面积计算公式解决生活中的问题。

知识点三:利用平行四边形面积计算公式解决生活中的问题。

根据本节内容的编排特点,教师在教学中,就注意以下几点:第一:教学例1时,可适当复习梯形的面积公式的推导过程,让学生感受到题中原林的横截面与梯形的关系。

同时还要注意引导学生感受到解决问题方法的多样化。

第二:在有多种解决问题方法的情况下,要引导学生抓住主要的解题思路,在主要解题思路的指导下,分析解题步骤。

第三:教学中要注意收放结合,给学生充分思考的空间,可引导学生用画图的方法分析数量关系,得出解题步骤。

在教学中,教师应着力培养学生多角度地观察问题,自主地获取、理解数学信息,寻求解决问题的策略,培养学生的思维能力,提高学生解决问题的能力。

◆教学目标知识与技能:1.能借助所学的梯形和三角形面积的计算公式及推导方法解决生活中的问题,感受解决问题策略的多样性与过程的严谨性。

2.应用已学过的梯形和三角形面积计算知识来更新解决实际问题的方法。

3.掌握应用平行四边形面积计算公式来解决实际问题的方法。

4.发展学生观察能力、动手操作能力、估算能力及小组合作交流学习的能力。

过程与方法:让学生通过自主探究、小组合作、同伴交流等方法,主动获取、整理、贮存、运用知识解决实际问题。

情感、态度和价值观:在运用所学知识解决生活中的简单实际问题的过程中,感受所学知识与现实生活的紧密联系,从中获得价值体验,坚定学生学好数学的信心。

◆重点、难点重点学会运用梯形、三角形和平行四边形面积公式解决实际问题。

求三角形周长(面积)范围类问题解法探究

求三角形周长(面积)范围类问题解法探究

求三角形周长(面积)范围类问题解法探究楚雄第一中学赵泽民解三角形是高考的常考题型,主要出现在高考试卷 的解答题中,以解答题第17题的位置较为常见,偶尔也会 出现在选择题和填空题中.其考法主要围绕着正、余弦定 理,结合三角恒等变换,重点考査正、余弦定理的边角互 化及三角恒等变换公式的灵活应用,往往要求考生计算 边长、周长和面积的大小或范围.这类试题以中档题为主, 是考生志在必得却又容易卡壳的题目之一.本文主要以三 角形周长范围的求解为例,探讨此类题的解法,总结解题 规律,帮助考生摆脱“会而不对,对而不全”的苦恼.解决这类问题的方法主要有两种:一是利用“正弦定 理结合三角函数的值域”来求得最终范围;二是利用“余 弦定理结合基本不等式”来构造不等式使问题得到很好 的解决.在遇到此类问题时,学生往往偏向于计算量相对 较少的“余弦定理结合基本不等式”的解题思路来解决问题,但随着解题的深人,往往会遇到诸如范围被放大或缩 小的困境;另外一部分学生会考虑用“正弦定理结合三角 函数值域”的求解策略,但随着解决问题的深人往往会受 正弦定理转化的影响使问题变得“无从下手”,最终使自 己的心态从“满满的期待”转变为“满心的无奈与紧张那 么,当我们遇到这样的问题时,应该采取什么样的解题策 略呢?原题呈现:在锐角A /1SC 中,角的对边分别为 a ,6 ,c ,已知6=3,sin /l +asinfi =2(1) 求角4的大小;(2) 求周长的取值范围.对于A 4S C 周长的取值范围问题,我们驾轻就熟的往 往是“已知三角形的一个内角和其对边求周长的大小或 周长的最值”这一类问题.而本题的第(2)问却巧妙地避开① 当a 矣1时,由1矣*矣3得g U )矣0,/,U )«0,.../U ) 在[1,3]上单调递减,此时/(x K 1 )=-a -l =-2,解得a =l ;② 当时,由 1以《3得g U )>0,/,(*)>0, .•./0«:)在[1,3]上单调递增,此时/U )_=/(3)=U -l )ln 3-f -3=-2,解得a =」^±L <3,舍去;ln 3-—3③ 当l <a <3时,由 l <Cc <a 得g (;c )>0,/彳*)>0,由a <x <3得 g U )<0,/' U )<0,此时/U )在[1, a ]上单调递增,在[a , 3]上单 调递减,从而〇 )=( a_ 1) l na_ 1 _a =_2,解得a =e .综上所述,a =l 或a =e .【点拨】在例4中,/'U )的函数值符号由函数g U )z -U +D U -a )的函数值符号决定,/'U )的零点即的 零点为-1和a ,其中a 与定义域[1,3]的关系不确定,应分为 三类,即①a 矣1,②a >3,③l <a <3.总之,在解函数导数综合题的过程中,当导函数含函数g U )=ax +6,且导函数的符号由)函数值符号决定,要根据一次项系数的符号进行分类.当导函数含函数g U )z a ^+h +c ,且导函数的符号由g U )函数值符号决定,要把 握好分类讨论的层次.一般按下面次序进行讨论:首先,根 据二次项系数的符号进行分类;其次,根据方程g U )=0的 判别式A 的符号进行分类;最后,在根存在时,根据根的 大小进行分类.◊责任编辑邱艳〇Journal of Yunnan Education 65了平时复习中“练熟练透”的解题方法,把已知条件由常 规的“已知三角形的一个内角和其对边”变为“已知三角 形的一边和与这条边不相对的角”,还加上了一条限制一“A/l f i C为锐角三角形”,最终要求考生求“周长的 取值范围”,成功地把一道毫无新意的“陈题”装满了“新 酒解决该题的第(2)问时无论考生选择“余弦定理结合 基本不等式”,还是选择“正弦定理结合三角函数值域”的解题策略都会不同程度受挫,造成一定的心理负担.一、一波三折,尝试解答在解决第(2)问时,如果采用“余弦定理结合基本不 等式”的解题策略,能顺利地解决问题吗?我们又会遇到 哪些困惑呢?第一种境遇,由第(1)问很容易求得/1= |,结合已知条件6=3,我们容易想到P d+c^a cco sB或^(a+c)2 -l a c d+c o s S),但苦于B角未知导致解题受阻,进而尝试 a^/^+^-Sfcccos/l或 +c)2-26c(l+cos/4),也因没有任何解题进展而放弃,最终无奈地写下“a+c>3”这一常见结 论,出现虽“惺惺相惜,但不得不罢手”的遗憾,因为这个 题由不得考生花太多的时间尝试.第二种境遇,尝试用“正弦定理结合三角函数值域”求解,考生受制于定式思维的影响,往往第一时间想到 a=2/?sin/4, 6=2/?siaB ,c=2/?sinC ,进一步得到a+ c= 2/f (sia4+S inC),结合/I+S+C=i7,快速地达到统一角的目 标,欣喜之余,发现2/?成了解下去的拦路虎,解题受挫,产 生“放弃与坚持”的纠结.第三种境遇,考生静下心来认真审视正弦定理+sirvi=2f t的结构和已知条件“6=3,4 =,找到解sin B sinC决问题的突破口,通过尝试发现,虽然“边不是角的对边,角也不是边的对角”,但只要搭配得当,也一样可以达到2V J统一角的目标.由-sin5-可知,csin;4 sinB3sinC-可知,0sinB,进一步得到a+c=2s\n B3V T;再由csinC3sinC合三角形内角和定理可知a+c:3V T2s\nB2sinB sin B3sin(^--B)sin/?,结,化简得a+c=3V T21+cosB 3 _ 3\^3~sin B 2 21+w寻-i..B Bzsin—cos—22•一1到此,本题基本上可以算是考生2 2 B2tan—2的囊中之物了,但部分欣喜若狂的考生可能会忘记题设对“三角形为锐角三角形”这一条件的限制而出现“大意失荆州”的苦恼与失落.由A/1S C为锐角三角形可知2(I,I),进一步求得tan!£(2-\A T,l),从而求得12 4 2-^E(1,2+\A T),q+c E( 3-^?—,3V T+6),又因B 2tan—2为6=3,所以周长的取值范围为a+6+C e(i V^,3V T+9).通过上述分析与解答,我们不难发现该题虽属中档题,每一个学生都是有思路的,但在解答的过程中却总是遇到或这样或那样的解题挫折,从心理上给学生造成相当大的压力,致使学生出现求之不得、弃之可惜的犹豫,导致宝贵的作答时间白白浪费.本题命题者设置了较多的“陷阱”,稍不留神,就会出现“会而不对,对而不全”的遗憾.另外,本题解题过程看似很新,实则还是利用了常规的“正弦定理结合三角函数值域”的解题策略,只是方法和以往解题常规略有差异导致考生解题时“困难重重二、遇见真题,强化巩固变式:(2019年全国卷nUZUBC的内角的对边分别为a,6,c,已知o sin l^"=fesinA.2(1) 求 S;(2) 若A/IBC为锐角三角形,且c=l,求厶/1BC面积的取值范围.分析:(1)已知边角等式asin^^=6Sin A.结合三角形2内角和定理得到sin土1^"=cos呈,进一步可求得s in Z■,最222终求出角5.(2)由(1)求得角S,结合三角形面积公式、正弦定理,以及三角形内角和定理得到关于面积的表达式,从66 4左焱1 •中学教师202 U、2方法与策略A XB C为锐角三角形出发,可求得面积的范围.有前面的解题实践,我们很快就可以将解题策略放在“正弦定理结合三角函数求值域”这一路径上.解答:⑵由(1)可知又因为c=l,所以S A,sc=V T 4由正弦定理可知〇=csin/1sinC sinC2tanCj.因为A薦为锐角三角形,所如(+’2),S导,苧点评:在本题第(2)问的解答过程中,准确地用好正 弦定理是关键,其易错点是忽视“S C为锐角三角形”这 一题设条件,导致角4 ,C的取值偏大,从而影响最终结果.三、反思人教A版《数学》(必修五)第一章“解三角形”重点讲 了正弦定理及其变形、余弦定理及其变形和三角形面积 公式,而这些内容往往结合三角恒等变换成为高考的热 点,深受命题者青睐.近几年,这一题型的命题方式呈现考 点被细化、方法更灵活、解题“陷阱”更隐秘的特点.表面上 考生人手是容易的,但要做对、做全却并非易事.在平时的 教学中,无论是教师,还是学生都认为这道题往往是考卷 中解答题的第一题,其难度中档,是平时训练力度较大、解题方法较全的题型.在大多数学生心中这类题是志在必 得的题目,是后进生突破90分,中等生突破120分的关键 题型之一,也是考生愉悦地解决后续大题的心理基础,对 提升应考状态也至关重要.解决这类问题,定理的选择很 重要,有效的边角互化是解题的关键,方法一旦出错,便 容易在这个问题上绕弯,甚至出现“无法自拔”的解题投 人,最终是“求之不得,弃之不舍”的无奈.所以,教师在平 时讲解训练时,一定要注重对方法的总结,鼓励学生大胆 尝试,重视对一题多解和多题一解的强化.总之,所有解题 时的从容应对,都是平时解题方法的日积月累,静下心 来,用心投人,所有的问题都经不起琢磨.解三角形中的面积与周长的相关问题其难度一般属 于中档题,解题关键是灵活应用正(余)弦定理及其变形,有效地结合三角函数值域或基本不等式来找到解题的突 破口,但在解题时需破除解题定式干扰,勇于尝试.一般情况是若已知当中给定的边是角的对边(或角是边的对 角),则选择“余弦定理结合基本不等式”或“正弦定理结 合三角函数值域”都可以解决问题;但如果题设条件中限 制三角形为锐角三角形(或钝角三角形)则宜选择“正弦 定理结合三角函数值域”来解决问题;若已知三角形的边 不是已知角的对边(或已知三角形的角不是已知边的对 角),则优先选择“正弦定理结合三角函数值域”来解决问 题.在使用正弦定理时,应规避三角形外接圆半径对解题 的影响,直接使用正弦定理解决问题即可.解题时,必须注 意三角形形状对解题结果的影响,注意角的取值范围.从近几年高考题来看,命题者往往选择比较熟悉的 命题背景,在题目中布下隐秘的陷阱.如在求周长或面积 的范围时,考生往往比较熟悉最值,而命题者在考生熟悉 的解题题型上,稍加改进,就可能困住考生.譬如在已知条 件中限制三角形形状或所给的边与角并不对应等.这提醒 我们在平时的教学训练中,应有针对性地进行一题多解 和多题一解的训练.这样可有效地提髙学生V I别问题和解 决问题的效率,可有效增强学生的解题自信.在教学中,教师强化学生的解后反思意识是非常有 必要的.引导学生写好解题反思有助于学生发现解题亮 点,关注解题过程中遇到的困难,优化解题过程和解题思 路.通过对解题过程的回顾与探讨、分析与研究,领悟解题 的主要思想,关键因素,掌握数学中的基本思想和通性通 法,并能灵活地应用其去解决不同的问题.◊责任编辑邱艳〇Journal of Yunnan Education 67。

上海中考压轴专题复习3(面积问题)

上海中考压轴专题复习3(面积问题)

面积问题面积的存在性问题常见题型与解题策略:第一类:先根据几何法确定存在性,再列方程求解,后检验方程的根;第二类:先假设关系存在,再列方程,然后根据方程的解验证假设是否正确。

例题解析:1、如图,AB=16cm,AC=12cm,动点P、Q分别以每秒2cm和1cm的速度同时开始运动,其中点P从点A出发沿AC边一直移到点C为止,点Q从点B出发沿BA边一直移动到点A为止.(1)写出AP的长y1和AQ的长y2关于时间t的函数;(2)经过多少时间后,△APQ与△ABC相似?(3)在整个过程中,是否存在使△APQ的面积恰好为△ABC面积一半的情况?若存在,请问此时点Q运动了多少时间?若不存在,请说明理由.2、如图,抛物线y=ax2+bx+3与x轴交于A(-1,0)、B (3,0)两点,与y轴交于点C,此抛物线的对称轴与抛物线相交于点P,与直线BC相交于点M,连接PB.(1)求点C坐标以及该抛物线的关系式;(2)连接AC,在x轴下方的抛物线上有点D,使S△ABD=S△ABC,求点D的坐标;(3)抛物线上是否存在点Q,使△QMB与△PMB的面积相等?若存在,直接写出点Q的坐标;若不存在,说明理由;(4)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等?若存在,直接写出点R的坐标;若不存在,说明理由.3、在平面直角坐标系中,O 为原点,直线y =-2x -1与y 轴交于点A ,与直线y =-x 交于点B ,点B 关于原点的对称点为点C .(1)求过A ,B ,C 三点的抛物线的解析式; (2)P 为抛物线上一点,它关于原点的对称点为Q . ①当四边形PBQC 为菱形时,求点P 的坐标;②若点P 的横坐标为t (-1<t <1),当t 为何值时,四边形PBQC 面积最大,并说明理由.由面积产生的函数关系问题解题策略:1、 规则图形的面积用面积公式;2、 不规则图形的面积通过割补进行计算;3、 同高等高(或同底等底)三角形面积比等于对应底边(或高)之比;4、 相似三角形的面积比等于相似比的平方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

面积的存在性问题解题策略
专题攻略
面积的存在性问题常见的题型和解题策略有两类:
第一类,先根据几何法确定存在性,再列方程求解,后检验方程的根.
第二类,先假设关系存在,再列方程,后根据方程的解验证假设是否正确.
例题解析
例❶如图1-1,矩形ABCD的顶点C在y轴右侧沿抛物线
y=x2-6x+10滑动,在滑动过程中CD//x轴,CD=1,AB在
CD的下方.当点D在y轴上时,AB落在x轴上.当矩形ABCD
在滑动过程中被x轴分成两部分的面积比为1:4时,求点C的
坐标.
图1-1 【解析】先求出CB=5,再进行两次转化,然后解方程.
把上下两部分的面积比为1∶4转化为S上∶S全=1∶5或S上∶S全=4∶5.
把面积比转化为点C的纵坐标为1或4.
, 4)或(3-3, 4).
如图1-2,C (3, 1).如图1-3,C(33
图1-2 图1-3
例❷如图2-1,二次函数y=(x+m)2+k的图象与x轴交于A、B两点,顶点M的坐标为(1,-4),AM与y轴相交于点C,在抛物线上是否还存在点P,使得S△PMB=S△BCM,如存在,求出点P的坐标.
图2-1
【解析】△BCM是确定的,△PBM与三角形BCM有公共边BM,根据“同底等高的三角形面积相等”和“平行线间的距离处处相等”,过点C画BM的平行线与抛物线的交点就是点P.一目了然,点P有2个.
由y =(x -1)2-4=(x +1)(x -3),得A (-1,0),B (3,0).由A 、M ,得C (0,-2).
如图2-2,设P (x , x 2-2x -3),由PC //BM ,得∠CPE =∠BMF .所以CE BF PE MF =. 解方程2(1)4242
x x --+=,得25x =±.所以(25,225)P ++或(25,225)--.
图2-2
例❸ 如图3-1,直线y =x +1与抛物线y =-x 2+2x +3交于A 、B 两点,点P 是直线AB 上方抛物线上的一点,四边形P AQB 是平行四边形,当四边形P AQB 的面积最大时,求点P 的坐标.
图3-1
【解析】△P AB 的面积最大时,平行四边形P AQB 的面积也最大.
我们介绍三种割补的方法求△P AB 的面积:如图3-2,把△P AB 分割为两个共底PE 的三角形,高的和等于A 、B 两点间的水平距离;如图3-3,用四边形P ACB 的面积减去△ABC 的面积;如图3-4,用直角梯形ABNM 的面积减去两个直角三角形的面积.
我们借用图3-2介绍一个典型结论.已知A (-1,0)、B (2, 3),设P (x ,-x 2+2x +3).
S △P AB =S △P AE +S △PBE =1()2PE AF BD +=1()()2
P E B A y y x x -- =21(2)32x x -++⨯=23127()228
x --+. 当12x =时,△P AB 的面积最大.12
x =的几何意义是点E 为AB 的中点,这是一个典型结论.同时我们可以看到,由于x B -x A 是定值,因此当PE 最大时,△P AB 的面积最大.
图3-2 图3-3 图3-4
例❹如图4-1,在平行四边形A BCD中,AB=3,BC=5,AC⊥AB,△ACD沿AC方向匀速平移得到△PNM,速度为每秒1个单位长度;同时点Q从点C出发,沿CB方向匀速移动,速度为每秒1个单位长度;当△PNM停止运动时,点Q也停止运动,如图4-2,设移动时间为t秒(0<t<4).是否存在某一时刻t,使S△QMC∶S四边形ABQP=1∶4?若存在,求出t的值;若不存在,请说明理由.
图4-1 图4-2
【解析】两步转化,问题就解决了.△QMC与△QPC是同底等高的三角形,△QPC是△ABC 的一部分.
因此S△QMC∶S四边形ABQP=1∶4就转化为S△QPC∶S△ABC=1∶5,更进一步转化为S△QPC=
6 5.如图4-3,解方程
136
(4)
255
t t
⨯-⋅=,得t=2.
图4-3
例❺如图5-1,在平面直角坐标系中,点A的坐标为(0, 1),直线y=2x-4与抛物线2
1
4
y x
=相交于点B,与y轴交于点D.将△ABD沿直线BD折叠后,点A落在点C处(如图5-2),问在抛物线上是否存在点P,使得S△PCD=3S△P AB?如果存在,请求出所有满足条件的点P的坐标;如果不存在,请说明理由.
图1 图2
【解析】由A(0, 1),B(4, 4),D(0,-4),可得AB=AD=5,这里隐含了四边形ADCB 是菱形.因此△PCD与△P AB是等底三角形,而且两底CD//AB.
如果S△PCD=3S△P AB,那么点P到直线CD的距离等于它到直线AB距离的3倍.
如果过点P与CD平行的直线与y轴交于点Q,那么点Q到直线CD的距离等于它到直线AB距离的3倍.
所以QD=3QA.点Q的位置有两个,在DA的延长线上或AD上.
如图5-3,过点Q 7(0)2,画CD 的平行线,得P 36537365()28
++,,或36537365()28
--,. 如图5-4,过点Q 1
(0)4-,画CD 的平行线,得P 35735()28++,,或35735()28
--,.
图5-3 图5-4
例❻ 如图6-1,抛物线21
584
y x x =-+经过点E (6, n ),与x 轴正半轴交于点A ,若点P 为抛物线上位于第一象限内的一个动点,以P 、O 、A 、E 为顶点的四边形的面积记作S ,则S 取何值时,相应的点P 有且只有3个?
图6-1
【解析】如图6-2,当点P 在直线AE 上方的抛物线上,过点P 作AE 的平行线,当这条直线与抛物线相切时,△P AE 的面积最大.这时我们可以在直线OE 的上方画一条与OE 平行的直线,这条直线与抛物线有2个交点P ′和P ′′,满足S △P AE =S △P ′OE =S △P ′′OE .
设过点P 与直线AE 平行的直线为34y x m =-
+,联立21584
y x x =-+,消去y ,整理,得x 2-16x +8m =0.由Δ=0,解得m =8.
因此方程x 2-16x +64=0的根为x 1=x 2=8.所以P (8, 2).
如图6-3,作PH ⊥x 轴于H ,可以求得S =S 四边形OAPE =9+5+2=16.
图6-2 图6-3
例❼ 如图7-1,点P 是第二象限内抛物线2
188y x =-+上的一个动点,点D 、E 的坐标分别为(0, 6)、(-4, 0).若将“使△PDE 的面积为整数” 的点P 记作“好点”,请写出所有“好点”的个数.
图7-1
【解析】第一步,求△PDE 的面积S 关于点P 的横坐标x 的函数关系式;第二步,分析S 关于x 的函数关系式.
如图7-2,S △PDE =S △POD +S △POE -S △DOE =21(6)134
x -++.
因此S 是x 的二次函数,对称轴为直线x =-6,S 的最大值为13.
如图7-3,当-8≤x ≤0时,4≤S ≤13.所以面积的值为整数的个数为10.
当S =12时,对应的x 有两个解-8, -4,都在-8≤x ≤0范围内.
所以“使△PDE 的面积为整数” 的 “好点”P 共有11个.
图7-2 图7-3
例❽ 如图8-1,在平面直角坐标系中,已知点A 的坐标为(a , 3)(其中a >4),射线OA 与反比例函数12y x =
的图象交于点P ,点B 、C 分别在函数12y x =
的图象上,且AB //x 轴,AC //y 轴.试说明ABP ACP
S S △△的值是否随a 的变化而变化? 图8-1
【解析】如图8-2,我们在“大环境”中认识这个问题,关系清清楚楚.
由于S 1=S 2,所以S △ABO =S △ACO .所以B 、C 到
AO 的距离相等.于是△ABP 与△ACP 就是同底等高的
三角形,它们的面积比为1.
图8-2
例❾ 如图9-1,已知扇形AOB 的半径为2,圆心角∠AOB =90°,点C 是弧AB 上的一个动点,CD ⊥OA 于D ,CE ⊥OB 于E ,求四边形ODCE 的面积的最大值.
图9-1
【解析】如图9-2,图9-3,设矩形ODCE 的对角线交于点F ,那么OF =1为定值. 作OH ⊥DE 于H ,那么OH ≤OF .因为DE =2为定值,因此当OH 与OF 相等时(如图9-4),△DOE 的面积最大,最大值为1.所以矩形ODCE 的面积的最大值为2.
图9-2 图9-3 图9-4
例❿ 如图10-1,在△ABC 中,∠C =90°,A C =6,BC =8,设直线l 与斜边AB 交于点E ,与直角边交于点F ,设AE =x ,是否存在直线l 同时平分△ABC 的周长和面积?若存在直线l ,求出x 的值;若不存在直线l ,请说明理由.
图10-1
【解析】先假设存在,再列方程,如果方程有解那么真的存在.
△ABC 的周长为24,面积为24.
①如图10-2,点F 在AC 上,假设直线EF 同时平分△ABC 的周长和面积,那么AE =x ,AF =12-x ,45EG x =.解方程14(12)1225
x x -⨯=,得66x =±. 当66x AE ==-,1266AF x =-=+,此时点F 不在AC 上.所以取66x =+(如图10-3).
②如图10-4,点F 在BC 上,假设直线EF 同时平分△ABC 的周长和面积,那么AE =x ,BE =10-x ,BF =12-(10-x )=2+x ,3(10)5
EH x =-. 方程13(2)(10)1225
x x +⨯-=整理,得28200x x -+=.此方程无实数根.
图10-2 图10-3 图10-4。

相关文档
最新文档