(完整版)微积分基本公式

合集下载

dx微积分所有公式,微积分24个基本公式

dx微积分所有公式,微积分24个基本公式

dx微积分所有公式,微积分24个基本公式dx表示x变化无限小的量,其中d表示“微分”,是“derivative(导数)”的第一个字母。

当一个变量x,越来越趋向于一个数值a时,这个趋向的过程无止境的进行,x与a的差值无限趋向于0,就说a是x的极限。

这个差值,称它为“无穷小”,它是一个越来越小的过程,一个无限趋向于0的过程,它不是一个很小的数,而是一个趋向于0的过程。

扩展资料:注意微分的几何意义:设δx是曲线y = f(x)上的点m的在横坐标上的增量,δy是曲线在点m对应δx在纵坐标上的增量,dy是曲线在点m的切线对应δx在纵坐标上的增量。

f(x0)在表示曲线y=f(x)在切点m(x0,f(x0))处切线的斜率。

(1)微积分的基本公式共有四大公式:1.牛顿-莱布尼茨公式,又称为微积分基本公式2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分4.斯托克斯公式,与旋度有关(2)微积分常用公式:dx sin x=cos xcos x = -sin xtan x = sec2 xcot x = -csc2 xsec x = sec x tan xcsc x = -csc x cot xsin x dx = -cos x + ccos x dx = sin x + ctan x dx = ln |sec x | + ccot x dx = ln |sin x | + csec x dx = ln |sec x + tan x | + c csc x dx = ln |csc x - cot x | + c sin-1(-x) = -sin-1 xcos-1(-x) = - cos-1 xtan-1(-x) = -tan-1 xcot-1(-x) = - cot-1 xsec-1(-x) = - sec-1 xcsc-1(-x) = - csc-1 xdx sin-1 ()=cos-1 ()=tan-1 ()=cot-1 ()=sec-1 ()=csc-1 (x/a)=sin-1 x dx = x sin-1 x++ccos-1 x dx = x cos-1 x-+ctan-1 x dx = x tan-1 x- ln (1+x2)+c cot-1 x dx = x cot-1 x+ ln (1+x2)+c sec-1 x dx = x sec-1 x- ln |x+|+c csc-1 x dx = x csc-1 x+ ln |x+|+c sinh-1 ()= ln (x+) xrcosh-1 ()=ln (x+) x≥1tanh-1 ()=ln () |x| 1sech-1()=ln(+)0≤x≤1csch-1 ()=ln(+) |x| 0dx sinh x = cosh xcosh x = sinh xtanh x = sech2 xcoth x = -csch2 xsech x = -sech x tanh xcsch x = -csch x coth xsinh x dx = cosh x + ccosh x dx = sinh x + ctanh x dx = ln | cosh x |+ c coth x dx = ln | sinh x | + c sech x dx = -2tan-1 (e-x) + c csch x dx = 2 ln || + cduv = udv + vduduv = uv = udv + vdu→ udv = uv - vducos2θ-sin2θ=cos2θcos2θ+ sin2θ=1cosh2θ-sinh2θ=1cosh2θ+sinh2θ=cosh2θdx sinh-1()=cosh-1()=tanh-1()=coth-1()=sech-1()=csch-1(x/a)=sinh-1 x dx = x sinh-1 x-+ ccosh-1 x dx = x cosh-1 x-+ ctanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ c coth-1 x dx = x coth-1 x- ln | 1-x2|+ c sech-1 x dx = x sech-1 x- sin-1 x + c csch-1 x dx = x csch-1 x+ sinh-1 x + c sin 3θ=3sinθ-4sin3θcos3θ=4cos3θ-3cosθ→sin3θ= (3sinθ-sin3θ)→cos3θ= (3cosθ+cos3θ)sin x = cos x =sinh x = cosh x =正弦定理:= ==2r余弦定理:a2=b2+c2-2bc cosαb2=a2+c2-2ac cosβc2=a2+b2-2ab cosγsin (α±β)=sin α cos β ± cos α sin βcos (α±β)=cos α cos β sin α sin β2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β) sin α + sin β = 2 sin (α+β) cos (α-β) sin α - sin β = 2 cos (α+β) sin (α-β) cos α + cos β = 2 cos (α+β) cos (α-β) cos α - cos β = -2 sin (α+β) sin (α-β) tan (α±β)=,cot (α±β)=ex=1+x+++…++ …sin x = x-+-+…++ …cos x = 1-+-+++ln (1+x) = x-+-+++tan-1 x = x-+-+++(1+x)r =1+rx+x2+x3+ -1= n= n (n+1)= n (n+1)(2n+1)= [ n (n+1)]2γ(x) = x-1e-t dt = 22x-1dt = x-1 dtβ(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx转换为 f (ω ) = 解f (t ) = ± jω0t f ( t ) e ? jωt dt f ( t ) e ? j(ω ?ω0 ) t dt = f (ω ? ω0 ) 。

微积分计算公式

微积分计算公式

微积分计算公式微积分是研究可以量化连续变化的数学分支,主要包括积分、微分及函数的求导、求积等内容。

与其他的数学学科不同的是,微积分把求解过程和求解结果联系在一起,其结果可以表示为一个方程,即公式。

微积分公式是这一学科的核心内容,也是最重要的知识点,正确的掌握和应用公式是这一学科取得成功的关键所在。

首先,最基本的微积分公式,也就是微分的基本公式,是:f′(x)=limh→0f(x+h)f(x)h 。

这个公式表明,函数 f(x)点 x的导数,等于函数在点 x+h的取值与函数在点 x的取值的差值,除以此时的h。

在这个基本的微分公式之上,还有一些常用的微分公式,例如:微分 y= ax n公式为:Dy=nax n1 。

积分也是微分的一个重要方面,其最基本的公式是:∫f(x)dx=F(x)+C这里 F(x)示函数 f(x)积分,C示积分常数。

积分是用来求取函数的积分面积,而积分公式是进行函数求积的基本公式。

此外,还有许多其它的常用的微积分公式,例如积分微分公式,椭圆积分公式,余弦积分公式等。

积分微分公式是将微分操作和积分操作结合起来的公式,椭圆积分公式是根据椭圆来求解函数积分的公式,余弦积分公式是使用余弦函数求解函数积分的公式。

此外,微积分还有一种特殊情况,也是其重要分支,即积分变换。

积分变换是把分析问题变换成数学模型,并使用积分来求解这些模型的解决方案的一种方法。

积分变换的基本思想是,根据原始问题,利用积分的运算建立合适的模型,并解决这些模型,从而得到最终的结果。

总之,以上就是微积分中常用的公式。

对于学习微积分,要牢记这些公式,并熟练应用在实际的问题中,才能取得更好的学习成果。

微积分基本公式16个

微积分基本公式16个

微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。

可以理解为小步长地移动拟合函数,接近曲线本身。

可以表示为\frac{dy}{dx} 或f'(x) 。

2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。

可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。

它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。

4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。

可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。

5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。

6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。

16个微积分公式

16个微积分公式

16个微积分公式微积分是一门研究函数的变化率与积分的数学学科。

在学习微积分时,我们会使用一些重要的公式来计算和推导出函数的性质。

下面是16个常用的微积分公式:1.导数的定义:设函数f(x)在x点有定义,则f(x)在x点可导,当且仅当下式极限存在:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示f(x)的导数。

2.基本导数公式:a.(k)'=0,其中k是常数。

b. (x^n)' = nx^(n-1),其中n是实数。

c. (sin x)' = cos x。

d. (cos x)' = -sin x。

e.(e^x)'=e^x。

f. (ln x)' = 1/x。

3.导数的四则运算法则:如果f(x)和g(x)都是可导函数,则有:a.(f(x)+g(x))'=f'(x)+g'(x)。

b.(f(x)-g(x))'=f'(x)-g'(x)。

c.(k*f(x))'=k*f'(x),其中k是常数。

d.(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。

e.(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g^2(x),其中g(x)≠0。

4.链式法则:如果有复合函数F(g(x)),其中F(u)和g(x)都是可导函数,则有:(F(g(x)))'=F'(g(x))*g'(x)。

5.反函数的导数:如果函数f(x)和g(x)满足f(g(x))=x,并且g(x)在一些点可导且不为0,则有:(f^-1(x))'=1/g'(f^-1(x))。

6.高阶导数:函数f(x)的n阶导数,记作f^(n)(x),可通过对其一阶导数进行n次求导得到。

微积分的全部公式

微积分的全部公式

微积分的全部公式微积分是数学的一个重要分支,研究函数的变化规律和各种变化量之间的关系。

微积分的公式是研究微积分的基础,下面将介绍一些微积分的重要公式。

1. 导数的定义公式:导数可以理解为函数在某一点上的变化率,用数学符号表示为f'(x)或者dy/dx。

导数的定义公式为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,f(x)是函数,h是无穷小的增量。

2. 导数的基本公式:导数具有一些基本的运算规则,包括常数因子法则、求和法则、乘积法则和商法则。

这些公式可以简化对函数的导数计算。

- 常数因子法则:如果f(x)是一个函数,k是一个常数,则有(d/dx)(k*f(x)) = k*(d/dx)f(x)- 求和法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)+g(x)) = (d/dx)f(x) + (d/dx)g(x)- 乘积法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)*g(x)) = f(x)*(d/dx)g(x) + g(x)*(d/dx)f(x)- 商法则:如果f(x)和g(x)都是函数,则有(d/dx)(f(x)/g(x)) = [g(x)*(d/dx)f(x) - f(x)*(d/dx)g(x)] / [g(x)]^23. 积分的定义公式:积分可以理解为函数在区间上的累积和,用数学符号表示为∫f(x)dx。

积分的定义公式为:∫f(x)dx = F(x) + C其中,F(x)是函数f(x)的原函数,C是常数。

4. 积分的基本公式:积分也具有一些基本的运算规则,包括常数法则、线性法则、分部积分法和换元积分法。

这些公式可以简化对函数的积分计算。

- 常数法则:∫k*f(x)dx = k*∫f(x)dx,其中k是一个常数- 线性法则:∫[f(x) + g(x)]dx = ∫f(x)dx + ∫g(x)dx- 分部积分法:∫f(x)*g(x)dx = f(x)*∫g(x)dx - ∫[f'(x)*∫g(x)dx]dx- 换元积分法:如果u = g(x)是一个可导函数,则有∫f(g(x))g'(x)dx = ∫f(u)du5. 泰勒级数公式:泰勒级数是用一组多项式逼近函数的方法,可以将复杂的函数近似表示为多项式的形式。

常用微积分公式大全

常用微积分公式大全

以下是常用的微积分公式大全,包括导数、积分和极限的公式:导数公式:1. 常数函数导数:(c)' = 02. 幂函数导数:(x^n)' = nx^(n-1)3. 指数函数导数:(e^x)' = e^x4. 对数函数导数:(ln(x))' = 1/x5. 三角函数导数:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x)6. 反三角函数导数:(arcsin(x))' = 1/√(1-x^2), (arccos(x))' = -1/√(1-x^2), (arctan(x))' = 1/(1+x^2)7. 链式法则:如果y = f(g(x)),则y' = f'(g(x)) * g'(x)积分公式:1. 幂函数积分:∫(x^n) dx = (x^(n+1))/(n+1) + C,其中C 是常数2. 指数函数积分:∫(e^x) dx = e^x + C3. 对数函数积分:∫(1/x) dx = ln|x| + C4. 三角函数积分:∫sin(x) dx = -cos(x) + C, ∫cos(x) dx = sin(x) + C, ∫sec^2(x) dx = tan(x) + C5. 反三角函数积分:∫(1/√(1-x^2)) dx = arcsin(x) + C, ∫(-1/√(1-x^2)) dx = arccos(x) + C, ∫(1/(1+x^2)) dx = arctan(x) + C极限公式:1. 极限定义:lim(x→a) f(x) = L,表示当x 趋近于a 时,f(x) 趋近于L2. 基本极限:lim(x→0) (sin(x)/x) = 1, lim(x→∞) (1/x) = 0, lim(x→0) (e^x - 1)/x = 1这只是一些常用的微积分公式,还有更多的公式和规则可用于不同的函数和问题。

高数微积分基本公式大全

高数微积分基本公式大全

高数微积分基本公式大全1.导数的基本公式:-基本导数:(常数)' = 0, (x^n)' = nx^(n-1), (e^x)' = e^x, (a^x)' = a^xln(a), (ln(x))' = 1/x, (sin(x))' = cos(x),(cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x), (sec(x))' = sec(x)tan(x), (csc(x))' = -csc(x)cot(x).-乘法法则:(uv)' = u'v + uv'.-除法法则:(u/v)' = (u'v - uv') / v^2.-链式法则:(f(g(x)))' = f'(g(x)) * g'(x).2.不定积分的基本公式:-基本积分:∫(k) dx = kx + C, ∫(x^n) dx =(1/(n+1))x^(n+1) + C, ∫(e^x) dx = e^x + C, ∫(1/x) dx =ln(|x|) + C, ∫(sin(x)) dx = -cos(x) + C, ∫(cos(x)) dx =sin(x) + C.-分部积分:∫(uv') dx = uv - ∫(u'v) dx.-特殊积分:∫(1/(1+x^2)) dx = arctan(x) + C,∫(1/(sqrt(1-x^2))) dx = arcsin(x) + C.3.微分方程的基本公式:-一阶线性微分方程:dy/dx + P(x)y = Q(x),解为y = e^(-∫P(x)dx) * (∫Q(x)e^(∫P(x)dx)dx + C).-齐次方程:dy/dx = f(y/x),令v = y/x,化为可分离变量的形式求解.-常系数线性齐次微分方程:ay'' + by' + cy = 0,其特征方程为ar^2 + br + c = 0,解为y = C1e^(r1x) + C2e^(r2x)。

微积分的公式大全

微积分的公式大全

微积分的公式大全1.导数公式:- 限定义导数:f'(a) = lim[h->0] (f(a+h)-f(a))/h-幂函数的导数:(x^n)'=n*x^(n-1)-指数函数的导数:(e^x)'=e^x- 对数函数的导数:(ln(x))' = 1/x-三角函数的导数:- (sin(x))' = cos(x)- (cos(x))' = -sin(x)- (tan(x))' = sec^2(x)-反三角函数的导数:- (arcsin(x))' = 1/√(1-x^2)- (arccos(x))' = -1/√(1-x^2)- (arctan(x))' = 1/(1+x^2)2.积分公式:- 不定积分的基本公式:∫[f(x)+g(x)]dx = ∫f(x)dx + ∫g(x)dx - 幂函数的积分:∫x^n dx = x^(n+1)/(n+1) + C (其中C为常数) - 指数函数的积分:∫e^x dx = e^x + C- 对数函数的积分:∫1/x dx = ln,x, + C (其中C为常数)-三角函数的积分:- ∫sin(x) dx = -cos(x) + C- ∫cos(x) dx = sin(x) + C- ∫tan(x) dx = -ln,cos(x), + C-反三角函数的积分:- ∫1/√(1-x^2) dx = arcsin(x) + C- ∫-1/√(1-x^2) dx = arccos(x) + C- ∫1/(1+x^2) dx = arctan(x) + C3.基本定理:- 第一基本定理:∫[a, b] f'(x)dx = f(b) - f(a) (即导函数的积分等于原函数在区间上的差)- 第二基本定理:∫[a, b] f(x)dx = F(b) - F(a) (即函数的积分等于其原函数在区间上的差)4.微分方程:- 一阶线性ODE通解:y = ∫[a, x] f(t)*e^(∫[a, t] p(u)du) dt + Ce^(∫[a, x] p(t)dt)-二阶常系数齐次线性ODE通解:y=C1e^(r1x)+C2e^(r2x)-二阶常系数非齐次线性ODE通解:- 非齐次线性ODE的特解:y = yp- 齐次线性ODE的通解:y = yp + C1e^(r1x) + C2e^(r2x)5.极限公式:- 极限定义:lim[x->a] f(x) = L (当x趋近于a时,f(x)趋近于L) -极限的四则运算法则:- lim[x->a] [f(x) + g(x)] = lim[x->a] f(x) + lim[x->a] g(x) - lim[x->a] [f(x) - g(x)] = lim[x->a] f(x) - lim[x->a] g(x) - lim[x->a] [f(x) * g(x)] = lim[x->a] f(x) * lim[x->a] g(x) - lim[x->a] [f(x) / g(x)] = lim[x->a] f(x) / lim[x->a] g(x) (其中g(a)不等于0)- 极限函数的连续性:如果lim[x->a] f(x) = f(a)和lim[x->a]g(x) = g(a),则lim[x->a] [f(x) + g(x)] = f(a) + g(a)和lim[x->a] [f(x) * g(x)] = f(a) * g(a)。

(整理)微积分公式大全95514

(整理)微积分公式大全95514

ex=1+x+ x2 + x3 +…+ xn + …
2! 3!
n!
sin x = x- x3 + x5 - x7 +…+ (1)n x 2n1 + …
3! 5! 7!
(2n 1)!
cos x = 1- x2 + x4 - x6 +…+ (1)n x2n + …
2! 4! 6!
(2n)!
ln (1+x) = x- x2 + x3 - x4 +…+ (1)n x n1 + …
sin-1(-x) = -sin-1 x cos-1(-x) = - cos-1 x tan-1(-x) = -tan-1 x cot-1(-x) = - cot-1 x sec-1(-x) = - sec-1 x csc-1(-x) = - csc-1 x
Dx
sin-1
(
x a
)=
cos-1 ( x )= a
csc-1 (x/a)=
sech-1( x )=ln( 1 + 1 x2 )0≦x≦1
a
x
x2
csch-1 ( x )=ln( 1 + ax
1 x2 x2
)
|x| >0
Dx sinh x = cosh x
sinh x dx = cosh x + C
cosh x = sinh x
cosh x dx = sinh x + C
cosh-1 ( x )=ln (x+ x2 a2 ) x≧1 a
tan-1
(

微积分常用公式及运算法则上

微积分常用公式及运算法则上

微积分常用公式及运算法则上微积分是数学中的一个重要分支,广泛应用于物理、工程、经济学等领域。

在学习微积分的过程中,掌握常用的公式和运算法则是非常重要的。

下面是微积分中常用的公式和运算法则的详细介绍。

一、常用公式1.导数公式(1)常数的导数:若c为常数,则d/dx(c)=0。

(2)乘方函数的导数:若y=x^n,则dy/dx=nx^(n-1)。

(3)指数函数的导数:若y=e^x,则dy/dx=e^x。

(4)对数函数的导数:若y=ln(x),则dy/dx=1/x。

(5)三角函数的导数:(a)若y=sin(x),则dy/dx=cos(x)。

(b)若y=cos(x),则dy/dx=-sin(x)。

(c)若y=tan(x),则dy/dx=sec^2(x)。

(d)若y=cot(x),则dy/dx=-csc^2(x)。

(e)若y=sec(x),则dy/dx=sec(x)tan(x)。

(f)若y=csc(x),则dy/dx=-csc(x)cot(x)。

2.积分公式(1)不定积分:若F(x)是f(x)的一个原函数,则∫f(x)dx=F(x)+C,其中C为常数。

(2)定积分:若f(x)在区间[a, b]上可积,则∫[a, b]f(x)dx是f(x)在[a, b]上的定积分。

3.常用等式(1)和差化积:(a+b)(a-b)=a^2-b^2(2)完全平方差:a^2-2ab+b^2=(a-b)^2(3)二次方程的根:若ax^2+bx+c=0(a≠0)有实根,则判别式D=b^2-4ac≥0。

(4)勾股定理:在直角三角形ABC中,设∠C=90°,则a^2+b^2=c^2,其中a、b为直角边,c为斜边。

二、运算法则1.四则运算法则(1)加法法则:(f+g)'=f'+g'。

(2)减法法则:(f-g)'=f'-g'。

(3)乘法法则:(f*g)'=f'*g+f*g'。

微积分公式大全

微积分公式大全

微积分公式D x sin x=cos x cos x = -sin x tan x = sec 2 x cot x = -csc 2 x sec x = sec x tan x csc x = -csc x cot x ? sin x dx = -cos x + C ? cos x dx = sin x + C ? tan x dx = ln |sec x | + C ? cot x dx = ln |sin x | + C ? sec x dx = ln |sec x + tan x | + C ? csc x dx = ln |csc x – cot x | + C sin -1(-x) = -sin -1 x cos -1(-x) = ? - cos -1 x tan -1(-x) = -tan -1 x cot -1(-x) = ? - cot -1 x sec -1(-x) = ? - sec -1 x csc -1(-x) = - csc -1 x D x sin -1 (a x )= 221x a -±cos -1 (ax )= tan -1 (a x )=22x a a+± cot -1 (ax )= sec -1 (a x )=22ax x a -±csc -1 (x/a)= ? sin -1 x dx = x sin -1 x+21x -+C ? cos -1 x dx = x cos -1 x-21x -+C? tan -1 x dx = x tan -1 x-?ln (1+x 2)+C ? cot -1 x dx = x cot -1 x+?ln (1+x 2)+C ? sec -1 x dx = x sec -1 x- ln |x+12-x |+C ? csc -1 x dx = x csc -1 x+ ln |x+12-x |+Csinh -1 (ax )= ln (x+22x a +) x ∈R cosh -1 (ax )=ln (x+22a x -) x ≧1 tanh -1 (a x )=a21ln (x a x a -+) |x| <1coth -1 (a x )=a21ln (a x ax -+) |x| >1sech -1(a x)=ln(x 1-+221xx -)0≦x ≦1 csch -1(a x )=ln(x 1+221x x +) |x| >0D x sinh x = cosh x cosh x = sinh x tanh x = sech 2 x coth x = -csch 2 x sech x = -sech x tanh x csch x = -csch x coth x? sinh x dx = cosh x + C ? cosh x dx = sinh x + C ? tanh x dx = ln | cosh x |+ C ? coth x dx = ln | sinh x | + C ? sech x dx = -2tan -1 (e -x ) + C ? csch x dx = 2 ln |xx ee 211---+| + Cd uv = u d v + v d u? d uv = uv = ? u d v + ? v d u →? u d v = uv - ? v d u cos 2θ-sin 2θ=cos2θ cos 2θ+ sin 2θ=1cosh 2θ-sinh 2θ=1 cosh 2θ+sinh 2θ=cosh2θ D x sinh -1(ax)=221x a +cosh -1(ax )=221ax -tanh -1(a x )= 22x a a -± coth -1(ax )=sech -1(a x)= 22xa x a --csch -1(x/a)=22x a x a +-? sinh -1 x dx = x sinh -1 x-21x ++ C ? cosh -1 x dx = x cosh -1 x-12-x + C? tanh -1 x dx = x tanh -1 x+ ? ln | 1-x 2|+ C ? coth -1 x dx = x coth -1 x- ? ln | 1-x 2|+ C ? sech -1 x dx = x sech -1 x- sin -1 x + C ? csch -1 x dx = x csch -1 x+ sinh -1 x + Csin 3θ=3sin θ-4sin 3θ cos3θ=4cos 3θ-3cos θ →sin 3θ= ? (3sin θ-sin3θ) →cos 3θ=?(3cos θ+cos3θ)sin x = j e e jx jx 2-- cos x = 2jxjx e e -+sinh x = 2x x e e -- cosh x = 2xx e e -+正弦定理:αsin a= βsin b =γsin c =2R余弦定理: a 2=b 2+c 2-2bc cos αb 2=a 2+c 2-2ac cos β c 2=a 2+b 2-2ab cos γa bcα βγ Rsin (α±β)=sin α cos β ± cos α sin β cos (α±β)=cos α cos βsin α sin β2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β)sin α + sin β = 2 sin ?(α+β) cos ?(α-β) sin α - sin β = 2 cos ?(α+β) sin ?(α-β) cos α + cos β = 2 cos ?(α+β) cos ?(α-β) cos α - cos β = -2 sin ?(α+β) sin ?(α-β) tan (α±β)=βαβαtan tan tan tan ±, cot (α±β)=βαβαcot cot cot cot ±e x=1+x+!22x +!33x +…+!n x n+ …sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r=1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1∑=ni 11= n∑=ni i 1= ?n (n +1)∑=ni i 12=61n (n +1)(2n +1) ∑=ni i13= [?n (n +1)]2Γ(x) =⎰∞0t x-1e -t d t = 2⎰∞t 2x-12t e -d t =⎰∞)1(ln tx-1 d tβ(m , n ) =⎰1xm -1(1-x)n -1d x =2⎰2sin π2m -1x cos 2n -1x d x =⎰∞+-+01)1(nm m x x d x 希腊字母 (Greek Alphabets)大写 小写读音 大写 小写读音 大写 小写 读音 Α α alpha Ι ι iota Ρ ρ rho Β β beta Κ κ kappa Σ σ, ? sigma Γ γ gamma Λ λ lambda Τ τ tau Δ δ delta Μ μ mu Υ υ upsilon Ε ε epsilon Ν ν nu Φ φ phi Ζ ζ zeta Ξ ξ xi Χ χ khi Η η eta Ο ο omicron Ψ ψ psi Θθ thetaΠπ piΩωomega倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ? 顺位高d 顺位低 ;0*? =∞1 *? = ∞∞ = 0*01 = 00 00 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e顺位一: 对数; 反三角(反双曲) 顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲)算术平均数(Arithmetic mean)中位数(Median) 取排序后中间的那位数字 众数(Mode)次数出现最多的数值 几何平均数(Geometric mean) 调和平均数(Harmonic mean) 平均差(Average Deviatoin)变异数(Variance)nX Xni21)(-∑ or1)(21--∑n X Xni标准差(Standard Deviation)nX Xni21)(-∑ or1)(21--∑n X Xni分配机率函数f (x )期望值E(x )变异数V(x )动差母函数m (t )Discrete Uniform21(n +1) 121(n 2+1)Continuous Uniform 21(a +b ) 121(b -a )2Bernoullip x q 1-x (x =0, 1)p pq q +pe t Binomial⎪⎪⎭⎫ ⎝⎛x n p x q n -x npnpq(q+ pe t )nNegative Binomial⎪⎪⎭⎫ ⎝⎛-+x x k 1p k q xMultinomialf (x 1, x 2, …, x m -1)=m xm x x m p p p x x x n ...!!...!!212121np inp i (1-p i )三项 (p 1e t 1+ p 2e t 2+p 3)nGeometricpq x-1Hypergeometricn ⎪⎭⎫⎝⎛N k ⎪⎭⎫ ⎝⎛--1N n N n ⎪⎭⎫⎝⎛N kPoissonλλNormal μσ2Beta Gamma ExponentChi-Squared χ2=f (χ2)E(χ2)=nV(χ2)=2n=212222)(221χχ--⎪⎭⎫ ⎝⎛Γen n nWeibull1 000 000 000 000 000 000 000 000 1024 yotta Y 1 000 000 000 000 000 000 000 1021 zetta Z 1 000 000 000 000 000 000 1018 exa E 1 000 000 000 000 000 1015 peta P 1 000 000 000 000 1012 tera T 兆 1 000 000 000 109 giga G 十亿 1 000 000 106 mega M 百万 1 000 103 kilo K 千 100 102 hecto H 百 10 101 deca D 十0.1 10-1 deci d 分,十分之一0.01 10-2 centi c 厘(或写作「厘」),百分之一 0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百万分之一 0.000 000 001 10-9 nano n 奈,十亿分之一 0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一 0.000 000 000 000 000 001 10-18 atto a 阿 0.000 000 000 000 000 000 001 10-21 zepto z 0.000 000 000 000 000 000 000 001 10-24 yocto y。

高等数学微积分公式

高等数学微积分公式

高等数学微积分公式
在高等数学里,微积分公式即微积分的基本公式,它由积分的概
念和积分操作组成。

积分的概念是指把一个有限或无限的连续区间中的某个函数f(x)在指定范围内的值求和,换个说,就是把连续范围、一定方向上的一
类函数,折合为指定函数定义范围内的一个实数。

如果在定积分区间[a,b]内把f (x)折叠为:
∫a bf(x)dx
就称上式为定积分,并且称f (x)为积分函数。

是不是把积分概念记住了,想要把它应用到实际生活里,就要把
积分进一步拆解为它的基本操作,即微积分公式。

主要公式如下:
1. 一阶导数:f'(x) = lim(h→0)[f(x+h)-f(x)]/h
2. 二阶导数:f'(x) = lim(h→0)[f′(x+h) -f′(x)]/h
3. 曲线的面积:∫a bf(x) dx = F(b)-F(a)
4. 曲线的长度:L = ∫a b[1+(f′(x))2]1/2 dx
5. 平面曲线的曲率:k = |f″(x) / [1+(f′(x))2]3/2|
6. 曲面积分公式:∫ S f(x, y) dS = ∫∫ D(∇f) dD
7. 毕达哥拉斯公式:1/2π ∫0 2πf(cosθ,sinθ) dθ =
∫∫ Bf(x, y) d S

微积分的基本公式涵盖的范围极广,几乎可以把它应用到多种领域,可以求解机械運動的微积分問題,也可以解决金融领域利息计算
问题等,为工程中矩阵计算、计时和财务模拟分析提供各类运算算法,是统计学,随机分布理论和经济学中不可或缺的工具。

高等数学微积分公式大全

高等数学微积分公式大全

高等数学微积分公式大全微积分是高等数学中的重要分支,是研究函数变化规律以及求解各种问题的一种数学工具。

微积分公式是微积分学习中最为基础和重要的内容之一,掌握这些公式可以帮助我们更好地理解和应用微积分知识。

本文将为大家逐一介绍高等数学微积分公式大全。

1. 导数公式导数是函数在某一点上的变化速率,反映了函数的局部特征。

以下是常见的导数公式:- 常数函数导数公式:若y = C,C为常数,则导数dy/dx = 0。

- 幂函数导数公式:若y = x^n,n为实数,则导数dy/dx = nx^(n-1)。

- 指数函数导数公式:若y = a^x,a>0且a≠1,则导数dy/dx = a^x * ln(a)。

- 对数函数导数公式:若y = loga(x),a>0且a≠1,则导数dy/dx = 1 / (x * ln(a))。

- 三角函数导数公式:若y = sin(x),则导数dy/dx = cos(x)。

若y = cos(x),则导数dy/dx = -sin(x)。

若y = tan(x),则导数dy/dx = sec^2(x)。

2. 积分公式积分是反导数的计算过程,可以计算函数的面积、曲线长度、体积等。

以下是常见的积分公式:- 幂函数积分公式:∫x^n dx = (1/(n+1))x^(n+1) + C,其中C为常数。

- 指数函数积分公式:∫a^x dx = (1/ln(a))a^x + C,其中C为常数。

- 对数函数积分公式:∫(1/x) dx = ln|x| + C,其中C为常数。

- 三角函数积分公式:∫sin(x) dx = -cos(x) + C,其中C为常数。

∫cos(x) dx = sin(x) + C,其中C为常数。

∫tan(x) dx = -ln|cos(x)| + C,其中C为常数。

3. 极限公式极限是函数在某一点附近的近似取值,是微积分理论的基础。

以下是常见的极限公式:- 基本极限公式:lim(x→0) (sin(x)/x) = 1。

常用微积分公式大全

常用微积分公式大全

常用微积分公式大全微积分是数学的一个重要分支,涵盖了导数、积分、极限等概念和公式。

在学习微积分的过程中,掌握一些常用的微积分公式对于解题和理解概念非常重要。

下面是一些常用的微积分公式的介绍。

1. 导数的基本公式:- 常数函数导数为0:(c)' = 0,其中 c 是常数。

- 幂函数导数公式:(x^n)' = n*x^(n-1),其中 n 是常数。

- 乘积法则:(f*g)' = f'*g + f*g',其中 f 和 g 是可导函数。

- 商法则:(f/g)' = (f'*g - f*g')/g^2,其中 f 和 g 是可导函数,并且 g 不等于0。

- 链式法则:(f(g(x)))' = f'(g(x))*g'(x),其中 f 是可导函数,g 是可导函数。

2. 基本积分公式:- 变上限定积分公式:∫(f(x)'dx) = f(x) + C,其中 C 是常数。

- 幂函数积分公式:∫(x^n dx) = (x^(n+1))/(n+1) + C,其中 n 不等于-1,C 是常数。

- 指数函数积分公式:∫(e^x dx) = e^x + C,其中 C 是常数。

- 三角函数积分公式:∫(sin(x) dx) = -cos(x) + C,∫(cos(x) dx) = sin(x) + C,∫(tan(x) dx) = -ln|cos(x)| + C,C 是常数。

- 分部积分法:∫(f(x)g(x) dx) = f(x)∫(g(x) dx) - ∫(f'(x)∫(g(x) dx) dx,其中 f 和 g 是可导函数。

3. 极限的基本公式:- 夹逼定理:如果对于 x -> a,有g(x) ≤ f(x) ≤ h(x),且 g(x) 和h(x) 的极限都等于 L,则 f(x) 的极限也等于 L。

- 幂函数极限公式:lim(x -> a) (x^n) = a^n,其中 n 是正整数。

微积分的公式大全

微积分的公式大全

微积分的公式大全1.导数的定义和性质:- 导数的定义:若函数 f(x) 在点 x0 处的导数存在,且为 f'(x0),则导数为 f'(x) = lim(h->0) [f(x0 + h) - f(x0)] / h。

-导数的性质:(1)和差的导数法则,(2)常数倍数的导数法则,(3)乘积的导数法则,(4)商的导数法则,(5)复合函数的导数法则。

2.常见函数的导数公式:- 幂函数的导数:d(x^n)/dx = nx^(n-1)。

- 指数函数的导数:d(e^x)/dx = e^x。

- 对数函数的导数:d(ln(x))/dx = 1/x。

- 三角函数的导数:(1) d(sin(x))/dx = cos(x),(2)d(cos(x))/dx = -sin(x),(3) d(tan(x))/dx = sec^2(x)。

3.微分和积分的基本公式:- 微分:dy = f'(x) dx。

- 积分基本定理:若 F'(x) = f(x),则∫f(x) dx = F(x) + C,其中 C 是常数。

-积分的性质:(1)定积分,(2)不定积分,(3)函数的积分求导,(4)分部积分法。

4.常见函数的积分公式:- 幂函数的积分:∫x^n dx = x^(n+1) / (n+1) + C,其中n ≠ -1- 指数函数的积分:∫e^x dx = e^x + C。

- 对数函数的积分:∫(1/x) dx = ln,x, + C。

- 三角函数的积分:(1) ∫sin(x) dx = -cos(x) + C,(2) ∫cos(x) dx = sin(x) + C,(3) ∫tan(x) dx = -ln,cos(x), + C。

5.微分方程的公式:- 一阶线性常微分方程的通解:dy/dx + P(x) y = Q(x),通解为 y= e^(-∫P(x)dx) (∫Q(x) e^(∫P(x)dx) dx + C)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ( x) sinx et2 dt , f ( x) esin2 x cos x ; 1
d x2 f (t )dt f ( x2 ) 2x .
dx a
d
x3
f (t)dt
f (x3)3x2
f (x2)2x .
dx x2
9
例2
设 f (x) 为连续函数, F(x)
ln x 1
11
例3 求下列极限.
x2 cos t 2 dt
(2) lim 0 x0 x sin x
分析:这是 0 型未定式, 0
等价无穷
x2 cos t 2 dt
解 原式 lim 0 x0
x2
小替换
2x cos lim
x4
limcos x4
1.
x0 2x
x0
12
例3 求下列极限.
1 et2 dt
(3) lim x0
cos x
x2
分析:这是 0 型未定式, 0
解 原式 lim ecos2 x ( sin x)
x0
2x
e cos2 x lim
1
.
x0 2
2e
13
例4 设 F( x) x2
x
f (t)dt ,其中 f ( x) 是连续函数,
xa a
则 lim F(x)
.
x a
x 2
x
f (t)dt
证 limF( x) lim a
xa a
x
( x a) f ( x) f (t)dt
证 F ( x)
a
(x a)2
x
只要证明 ( x a) f ( x) f (t)dt 0 即可. a
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) f ( x) ( x a) f ( x) f ( x)
x0 x
lim f ( ) x0
当x 0 时, x, 而 f ( x) 在[a, b] 上连续,
Φ( x) f ( x)
4
Φ( x) d
x
f (t)dt f ( x)
dx a
证 x (a, b) , Φ( x) f ( x) .
若x a , 取x 0, a x (a, b) ,
记 F ( x) 1 x f (t)dt .证明:在(a, b) 内F ( x) 0 .
f (t)dt ,

x
F( x)
f
(ln
x)
1 x
f
1 x
1 x 2
1 x
f (ln x)
1 x2
f
1 x
10
例3 求下列极限.
x (arctant)2 dt
(1) lim 0
x
1 x2
分析:这是 型未定式,应用洛必达法则.

原式
(arctan x )2
lim
x
x
2
4
.
1 x2
f [ ( x)] ( x) f [( x)]( x) .
(x)

f (t)dt
(x)
( x)
(x)
a f (t )dt a f (t)dt
即可得结论。
8
例1 求下列变限积分函数的导数.
f (x)
x
sint dt ,
f ( x) sin x ;
1
f ( x) 2 1 t 2 dt , f ( x) 1 x2 ; x
( x a) f ( x) 0 , 15
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) ( x a) f ( x) 0 ,
所以 g(x) 单调不增,
而 g(a) 0 , 故当 x (a, b) 时, g(x) g(a) 0 .
16
例5 设 f ( x) 在 [a, b] 上连续,在(a, b) 内可导,且f ( x) 0 ,
原函数.
该定理告诉我们, 连续函数一定有原函数.
6
变限积分函数的求导:
d x f (t)dt f ( x) ,
dx a
d
b
f (t)dt
d
x f (t)dt f ( x) ,
dx x
dx b
设(x) 在[a, b]上可导,则
d
(x)
f (t)dt f [( x)]( x) .
dx a
同上可证 Φ (a) f (a) ;
若x b , 取x 0, b x (a, b) ,
同上可证 Φ (b) f (b) . 证毕。
5
Φ( x) d
x
f (t)dt f ( x)
dx a
原函数存在定理 如果 f ( x) 在[a,b] 上连续,则变上限积分函数
x
Φ( x) f (t)dt 就是 f ( x) 在[a, b] 上的一个 a
x0
x
x
x x
x
lim a f (t)dt x f (t)dt a f (t)dt
x0
x
x x
lim x f (t)dt
x 0
x
3
y
x x
Φ( x) lim x f (t)dt
x 0
x
( x)
由积分中值定理得
o a x x x b x
Φ( x) lim f ( )x ( 在 x 与 x x 之间)
xa
xa x a
x
f (t)dta2 lim a源自a2 lim f ( x)
xa x a
xa
a2 f (a) .
14
例5 设 f ( x) 在 [a, b] 上连续,在(a, b) 内可导,且f ( x) 0 ,
记 F ( x) 1 x f (t)dt .证明:在(a, b) 内F ( x) 0 .
dx a
x
Φ( x) a f (t)dt
y y f (x)
Φ( x)
oa
x
bx 2
Φ( x) d
x
f (t)dt f ( x) .
dx a
证 x (a, b) , 取x,使得 x x (a, b) ,
Φ( x) lim Φ( x x) Φ( x)
x0
x
x x
x
lim a f (t)dt a f (t)dt
证 设 Φ( x) x f (t)dt ,则 (x) f (t)dt Φ[( x)],
a
a
所以
d
(x)
f (t)dt Φ[( x)]( x) f [( x)]( x) .
dx a
7
更一般地,设 ( x) , ( x) 在[a, b] 上可导,则
d (x)
f (t)dt
dx ( x)
§6.3 微积分基本定理
用定义求定积分实际上是行不通 的,下面介绍计算定积分的方法
原函数存在定理 牛顿-莱布尼茨公式
1
原函数存在定理
定理6.3 设函数f ( x)在[a, b]上连续, 则变上限积分
x
Φ( x) a f (t)dt
在[a, b]上可导, 且
Φ( x) d
x
f (t)dt f ( x), x [a, b]
相关文档
最新文档