(完整版)微积分基本公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dx a
x
Φ( x) a f (t)dt
y y f (x)
Φ( x)
oa
x
bx 2
Φ( x) d
x
f (t)dt f ( x) .
dx a
证 x (a, b) , 取x,使得 x x (a, b) ,
Φ( x) lim Φ( x x) Φ( x)
x0
x
x x
x
lim a f (t)dt a f (t)dt
x0 x
lim f ( ) x0
当x 0 时, x, 而 f ( x) 在[a, b] 上连续,
Φ( x) f ( x)
4
Φ( x) d
x
f (t)dt f ( x)
dx a
证 x (a, b) , Φ( x) f ( x) .
若x a , 取x 0, a x (a, b) ,
记 F ( x) 1 x f (t)dt .证明:在(a, b) 内F ( x) 0 .
xa a
x
( x a) f ( x) f (t)dt
证 F ( x)
a
(x a)2
x
只要证明 ( x a) f ( x) f (t)dt 0 即可. a
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) f ( x) ( x a) f ( x) f ( x)
同上可证 Φ (a) f (a) ;
若x b , 取x 0, b x (a, b) ,
同上可证 Φ (b) f (b) . 证毕。
5
Φ( x) d
x
f (t)dt f ( x)
dx a
原函数存在定理 如果 f ( x) 在[a,b] 上连续,则变上限积分函数
x
Φ( x) f (t)dt 就是 f ( x) 在[a, b] 上的一个 a
f (t)dt ,

x
F( x)
f
(ln
x)
1 x
f
1 x
ห้องสมุดไป่ตู้
1 x 2
1 x
f (ln x)
1 x2
f
1 x
10
例3 求下列极限.
x (arctant)2 dt
(1) lim 0
x
1 x2
分析:这是 型未定式,应用洛必达法则.

原式
(arctan x )2
lim
x
x
2
4
.
1 x2
x0
x
x
x x
x
lim a f (t)dt x f (t)dt a f (t)dt
x0
x
x x
lim x f (t)dt
x 0
x
3
y
x x
Φ( x) lim x f (t)dt
x 0
x
( x)
由积分中值定理得
o a x x x b x
Φ( x) lim f ( )x ( 在 x 与 x x 之间)
( x a) f ( x) 0 , 15
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) ( x a) f ( x) 0 ,
所以 g(x) 单调不增,
而 g(a) 0 , 故当 x (a, b) 时, g(x) g(a) 0 .
16
例5 设 f ( x) 在 [a, b] 上连续,在(a, b) 内可导,且f ( x) 0 ,
§6.3 微积分基本定理
用定义求定积分实际上是行不通 的,下面介绍计算定积分的方法
原函数存在定理 牛顿-莱布尼茨公式
1
原函数存在定理
定理6.3 设函数f ( x)在[a, b]上连续, 则变上限积分
x
Φ( x) a f (t)dt
在[a, b]上可导, 且
Φ( x) d
x
f (t)dt f ( x), x [a, b]
f ( x) sinx et2 dt , f ( x) esin2 x cos x ; 1
d x2 f (t )dt f ( x2 ) 2x .
dx a
d
x3
f (t)dt
f (x3)3x2
f (x2)2x .
dx x2
9
例2
设 f (x) 为连续函数, F(x)
ln x 1
cos x
x2
分析:这是 0 型未定式, 0
解 原式 lim ecos2 x ( sin x)
x0
2x
e cos2 x lim
1
.
x0 2
2e
13
例4 设 F( x) x2
x
f (t)dt ,其中 f ( x) 是连续函数,
xa a
则 lim F(x)
.
x a
x 2
x
f (t)dt
证 limF( x) lim a
11
例3 求下列极限.
x2 cos t 2 dt
(2) lim 0 x0 x sin x
分析:这是 0 型未定式, 0
等价无穷
x2 cos t 2 dt
解 原式 lim 0 x0
x2
小替换
2x cos lim
x4
limcos x4
1.
x0 2x
x0
12
例3 求下列极限.
1 et2 dt
(3) lim x0
xa
xa x a
x
f (t)dt
a2 lim a
a2 lim f ( x)
xa x a
xa
a2 f (a) .
14
例5 设 f ( x) 在 [a, b] 上连续,在(a, b) 内可导,且f ( x) 0 ,
记 F ( x) 1 x f (t)dt .证明:在(a, b) 内F ( x) 0 .
证 设 Φ( x) x f (t)dt ,则 (x) f (t)dt Φ[( x)],
a
a
所以
d
(x)
f (t)dt Φ[( x)]( x) f [( x)]( x) .
dx a
7
更一般地,设 ( x) , ( x) 在[a, b] 上可导,则
d (x)
f (t)dt
dx ( x)
原函数.
该定理告诉我们, 连续函数一定有原函数.
6
变限积分函数的求导:
d x f (t)dt f ( x) ,
dx a
d
b
f (t)dt
d
x f (t)dt f ( x) ,
dx x
dx b
设(x) 在[a, b]上可导,则
d
(x)
f (t)dt f [( x)]( x) .
dx a
f [ ( x)] ( x) f [( x)]( x) .
(x)

f (t)dt
(x)
( x)
(x)
a f (t )dt a f (t)dt
即可得结论。
8
例1 求下列变限积分函数的导数.
f (x)
x
sint dt ,
f ( x) sin x ;
1
f ( x) 2 1 t 2 dt , f ( x) 1 x2 ; x
相关文档
最新文档