科二生化简答题及名词解释

合集下载

生化名词解释、简答

生化名词解释、简答

试卷一五、写出下列物质的中文名称并阐明该物质在生化中的应用(共8分)DNS-C1 DNFB DEAE —纤维素 BOC 基1、DNS-Cl : 5一二甲氨基萘-1-磺酰氯,用作氨基酸的微量测定,或鉴定肽链的N —端氨基酸。

2、DNFB :2,4一二硝基氟苯,鉴定肽链的N —端氨基酸。

3、DEAE 一纤维素: 二乙氨基乙基纤维素,阴离子交换剂,用于分离蛋白质。

4、BOC 基: 叔丁氧羰酰基,人工合肽时用来保护氨基酸的氨基。

六、解释下列名词(共12分)1、肽聚糖:肽聚糖是以NAG 与NAM 组成的多糖链为骨干与四肽连接所成的杂多糖。

2、蛋白质的别构效应:含亚基的蛋白质由于一个亚基的构象改变而引起其余亚基和整个分子构象、性质和功能发生改变的作用称别构效应。

3、肽平面:由于肽键不能自由旋转,形成肽键的4个原子和与之相连的2个α-碳原子共处在1个平面上,形成酰胺平面,也称肽平面。

4、两面角:由于肽链中的C α-N 键和Cα—C 键是单键,可以自由旋转,其中绕C α-N 键旋转的角度称φ角,绕C α-C 键旋转的角度称ψ角,这两个旋转的角度称二面角。

5、波耳效应:pH 的降低或二氧化碳分压的增加,使血红蛋白对氧的亲和力下降的现象称波耳效应。

6、碘价:100克脂肪所吸收的碘的克数称碘价,碘价表示脂肪的不饱和度。

七、问答与计算(共30分)1、今从一种罕见的真菌中分离到1个八肽,它具有防止秃发的作用。

经分析,它的氨基酸组成是:Lys 2,Asp 1,Tyr 1,Phe 1,Gly 1,Ser 1和Ala 1。

此八肽与FDNB 反应并酸水解后。

释放出FDNB-Ala 。

将它用胰蛋白酶酶切后,则得到氨基酸组成为:Lys 1,Ala 1,Ser 1和Gly ,Phe 1,Lys 1的肽,还有一个二肽。

将它与胰凝乳蛋白酶反应后,释放出游离的Asp 以及1个四肽和1个三肽,四肽的氨基酸组成是:Lys 1,Ser 1,Phe 1和Ala 1,三肽与FDNB 反应后,再用酸水解,释放出DNP-Gly 。

生化名词解释及简答题

生化名词解释及简答题

生化简答题一、蛋白质1、蛋白的结构的层次性怎么理解?(1)蛋白质的一级结构是氨基酸序列;(2)二级结构是肽链结构,包括α-螺旋,β-折叠等;(3)超二级结构是二级结构单元相互聚集形成更高一级有规律的结构;(4)结构域是相对独立的紧密球状实体;(5)三级结构是二级结构组合成的多肽链;(6)四级结构是两条或两条以上有独立三级结构的多肽链的四聚体.2、常用的蛋白质分离纯化方法有哪几种?各自的作用原理是什么?(1)盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。

凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。

(2)电泳法:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。

电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。

(3)透析法:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。

(4)层析法:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。

(5)凝胶过滤法:蛋白质溶液加于柱之顶部,任其往下渗漏,小分子蛋白质进入孔内,因而在柱中滞留时间较长,大分子蛋白质不能进入孔内而径直流出,因此不同大小的蛋白质得以分离。

(6)超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。

3、蛋白质的两性解离与等电点(1)两性解离:蛋白质分子中带有可解离的氨基和羧基,这些基团在不同的pH溶液中可解离成正离子或负离子,因此蛋白质分子即可带有正电荷又可带有负电荷,这种性质称为蛋白质的两性解离。

根据蛋白质的两性解离性质,可采取电泳法和离子交换层析法分离纯化蛋白质。

(2)等电点:氨基酸分子所带净电荷为零时,溶液的PH值即为氨基酸的等电点.4、为何蛋白质的含氮量能表示蛋白质相对量?实验中又是如何依此原理计算蛋白质含量的?因为蛋白质中氮的含量一般比较恒定,平均为16%,这是蛋白质元素组成的一个特点,也是凯氏定氮测定蛋白质含量的计算基础.蛋白质含量的计算为:每克样品中含氮克数 *6.25*100即为100克样品中蛋白质含量.5、氨基酸的分类非极性氨基酸(疏水氨基酸)8种丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)脯氨酸(Pro)苯丙氨酸(Phe)色氨酸(Trp)蛋氨酸(Met)极性氨基酸(亲水氨基酸):1)极性不带电荷:7种甘氨酸(Gly)丝氨酸(Ser)苏氨酸(Thr)半胱氨酸(Cys)酪氨酸(Tyr)天冬酰胺(Asn)谷氨酰胺(Gln)2)极性带正电荷的氨基酸(碱性氨基酸)3种赖氨酸(Lys)精氨酸(Arg)组氨酸(His) 3)极性带负电荷的氨基酸(酸性氨基酸)2种天冬氨酸(Asp)谷氨酸(Glu)二、酶1、酶的必需基团有哪几种,各有什么作用?酶的必需基团有活性中心的必需基团和非活性中心的必需基团,活性中心的必需基团有催化基团和结合基团,催化基团改变底物中某些化学键的稳定性,使底物发生反应生成产物,结合基团与底物相结合,使底物和一定构象的酶形成中间产物.非活性中心的必需基团为维持酶活性中心的空间构象所必需.2、酶蛋白与辅助因子的相互关系如何?(1)酶蛋白与辅助因子组成全酶,单独哪一种都没有催化活性;(2)一种酶蛋白只能结合一种辅助因子形成全酶,催化一定的化学反应;(3)一种辅助因子可与不同酶蛋白结合成不同的全酶,催化不同的化学反应;(4)酶蛋白决定反应的特异性,而辅助因子具体参加化学反应,决定酶促反应的性质。

生化名词解释与简答题

生化名词解释与简答题

第一章蛋白质的结构与功能(一)名词解释1. 肽键2. 结构域 3. 蛋白质的等电点4. 蛋白质的沉淀5. 蛋白质的凝固(三)问答题1. 何谓蛋白质变性?影响变性的因素有哪些?2. 蛋白质变性后,为什么水溶性会降低?3. 举例说明一级结构决定构象。

答案(一)1.肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合所形成的结合键,称为肽键。

2.构域:蛋白质在形成三级结构时,肽链中某些局部的二级结构汇集在一起,形成发挥生物学功能的特定区域称为结构域。

3.蛋白质的等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。

4.蛋白质的沉淀:蛋白质分子从溶液中析出的现象称为蛋白质的沉淀。

5.蛋白质的凝固:蛋白质经强酸、强碱作用发生变性后,仍能溶解于强酸或强碱中,若将pH调至等电点,则蛋白质立即结成絮状的不溶解物,此絮状物仍可溶解于强酸或强碱中。

如再加热则絮状物可变成比较坚固的凝块,此凝块不再溶于强酸或强(三)问答题1. 蛋白质在某些物理因素或化学因素的作用下,蛋白质分子内部的非共价键断裂,天然构象被破坏,从而引起理化性质改变,生物活性丧失,这种现象称为蛋白质变性。

蛋白质变性的实质是维系蛋白质分子空间结构的次级键断开,使其空间结构松解,但肽键并未断开。

引起蛋白质变性的因素有两方面:一是物理因素,如紫外线照射等,一是化学因素如强酸、强碱、重金属盐、有机溶剂等。

2. 三级结构以上的蛋白质的空间结构稳定主要靠疏水键和其它副键,当蛋白质在某些理化因素作用下变性后,维持蛋白质空间结构稳定的疏水键、二硫键以及其它次级键断裂,空间结构松解,蛋白质分子变为伸展的长肽链,大量的疏水基团外露,导致蛋白质水溶性降低。

3. 牛胰核糖核酸酶溶液加入尿素和巯基乙醇后变性失活,其一级结构没有改变。

当用透析法去除尿素和巯基乙醇后,牛胰核糖核酸酶自发恢复原有的空间结构与功能,此例充分说明一级结构决定构象。

碱中,这种现象称为蛋白质的凝固作用。

生化名词解释:

生化名词解释:

生化名词解释、问答1、km:反应速度为最大反应速度一半时的底物浓度,它表示酶与底物的亲和力,是酶的特征性常数,代表酶的催化效率。

2、同工酶:在同一种属或同一个体中催化相同的化学反应而酶的分子结构不同的一组酶。

3、底物水平磷酸化:底物在分解过程中,由于脱氢脱水等作用,使能量在分子内部重新分布而形成高能磷酸化合物,然后将高能磷酸基因ADP形成ATP。

简单说是高能磷酸基因直接转移给ADP生成A TP。

4、蛋白质生理价值:吸收人体内氨基酸的量与用以合成蛋白质的量的百分比。

5、氧化磷酸化:在电子传递过程中,释放的能量使ADP磷酸化形成ATP的过程,又称电子传递水平磷酸化。

6、酶的活性中心:必需基因在酶分子的一定区域形成一定的空间排布,直接与底物结合,并发挥其催化作用的部位。

7、半保留复制:DNA复制时,亲代DNA二条链都作为模板,各自互成其互补链,结果两个子代DNA分别保留了一条亲代DNA链,各自与新合成的链构成双螺旋分子。

8、蛋白质变性:蛋白质在某些理化因素作用下,其特定的空间构成破坏而导致理化性质改变及生物学活性丧失。

9、巴士德效应:有氧氧化对生醇发酵的抑制现象。

10、P/O比值:每消耗一克,原子氧所消耗无机磷的克原子数。

11、联合脱氧作用:氨基酸与α-酮戊二酸在转氨酶作用下生成相应的α-酮酸和谷氨酸,后者经L-谷氨酸脱氢酶作用,脱去氨基生成氨及α-酮成二酸。

12、基因工程:在体外将不同来源的DNA进行重新组合,引入受体细胞使其表达的过程。

13、脂解激素与抗脂解激素:1、脂解激素:促进脂肪动员的激素;2、抗脂解激素:抑制脂肪动员的激素。

14、密码子与反密码于:密码子:mRNA上每3个小时相邻的核苷酸编成一组,代表某种氨基酸或肽链合成的起始或终止信号。

15、正氮平衡与负氮平衡:1、正氮平衡:蛋白质的合成代谢多于分解代谢,表现为摄入氮大于排出氮。

2、负氮平衡:组织蛋白质分解加强,摄入氮小于排出氮。

16、初级胆汁酸与次级胆汁酸:1、初级胆汁酸:肝细胞以胆固醇为原料合成的胆汁酸,包括胆酸和鹅脱氧胆酸等。

生化名词解释简答

生化名词解释简答

生化名词解释简答生化名词解释、简答名词解释:1.蛋白质的一级、二级结构p87、89蛋白质一级结构是指蛋白质多肽链中氨基酸残基的排列顺序,也称化学结构;蛋白质二级结构是指多肽主链骨架有规则的盘曲折叠形成的构象,不涉及侧链基团的空间排布。

2.蛋白质的变(别)二重效应别构效应又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。

别构效应(allostericeffect)某种不直接涉及蛋白质活性的物质,结合于蛋白质活性部位以外的其他部位(别构部位),引起蛋白质分子的构象变化,而导致蛋白质活性改变的现象。

(底物或效应物和酶分子上的适当部位融合后,可以引发酶分子构象发生改变从而影响酶的催化活性的效应。

)3.等电点p102对某一蛋白质来说,在某一ph溶液中,它所带的正电荷与负电荷数恰好成正比,即为净电荷为0时,在电场中它既不向阳极也不向阴极移动,这时溶液的ph就称作蛋白质的等电点(pi)4.酶的活性中心p153通过肽链的卷曲、螺旋或织成构成了多种活性空间――酶的活性部位(或表示活性中心)5.酶的比活力p163比活力就是所指每毫克酶蛋白含有的酶活力单位数,即为比活力=活力单位数/每毫克酶蛋白6.核酸的增色效应核酸的光吸收值为各核苷酸光吸收值的和太少30-40%,当核酸变性或水解时光稀释值明显减少。

(将dna的叶唇柱盐溶液冷却至80~100℃时,双螺旋结构解体,两条链分离构成单链,由于双螺旋分子内部的碱基曝露,260nm紫外稀释值增高的现象。

)7.核酸的变复性p133-134核酸的变性指dna分子中的双螺旋结构解链为无规则线性结构的现象。

变性dna在适度条件下,又可以并使两条彼此分离的链再次键合称作双螺旋结构,此过程表示复性。

8.生物氧化p175有机物质在生物体内的氧化作用(充斥着还原作用)泛称为生物水解。

9.呼吸链p177一系列具备水解还原成特性的酶与辅酶做为氢和电子的传达体。

寄氢体和寄电子体按一定顺序排列在线粒体内膜上所形成的连锁氧化还原体系称为电子传递链。

生化问答题和名词解释重点

生化问答题和名词解释重点

1.核酸杂交: 在DNA变性后的复性过程中,如果将不同种类的DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在着一定程度的碱基配对关系,在适宜的条件(温度及离子强度)下,就可以在不同的分子间形成杂化双链。

这种杂化双链可以在不同的DNA与DNA之间形成,也可以在DNA和RNA分子间或者RNA与RNA分子间形成。

这种现象称为核酸分子杂交。

(2分)2.P/O比值:每消耗1mol氧原子时 ADP磷酸化成ATP所需消耗的无机磷的mol数。

3.一碳单位:某些氨基酸在分解代谢过程中产生含有一个碳原子的基因,称为一碳单位。

体内的一碳单位有甲基(—CH3)、甲烯基(—CH2—)、甲炔基(—CH==)、甲酰基(—CHO)、亚氨甲基(—CH==NH)等。

(2分)4.外显子:在断裂基因及其初级转录产物上出现,并表达为成熟RNA的核酸序列。

(2分)5.遗传密码:mRNA分子上从5,至3,方向,由AUG开始,每3个核苷酸为一组,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码。

6.DNA变性: 在某些理化因素作用下,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,即为DNA变性。

(2分)7. 糖异生: 由非糖化合物 (乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖原的过程称为糖异生。

(2分)8. 底物水平磷酸化:ADP或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直接相偶联的反应过程称为底物水平磷酸化。

(2分)9.氨基酸代谢库:食物蛋白质经消化而被吸收的氨基酸(外源性氨基酸)与体内组织蛋白质降解产生的氨基酸(内源性氨基酸)混在一起,分布于体内各处,参与代谢,称为氨基酸代谢库。

(2分)10. 不对称转录: 转录模板DNA双链中,只有一股链可作为模板指引转录,另一股链不能作为模板;模板链并非永远在同一条单链上,不同基因的模板链可交叉分布在两股链上,这种选择性转录方式称为不对称转录。

生化简答题与名词解释(新)

生化简答题与名词解释(新)

针推生物化学(仅供参考)一、名词解释:1、肽键:一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。

2、电泳:带点粒子在电场中泳动时的现象。

3、蛋白质的变性:蛋白质变性是指蛋白质在某些物理和化学因素作用下其特定的空间构象被改变,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质变性。

4、亚基:是指在四级结构中具有独立三级结构的多肽链。

5、等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。

6、退火:退火是变性的逆转过程,它受温度、时间、DNA浓度、DNA顺序的复杂性等因素的影响。

7、Tm值:DNA熔解温度,指把DNA的双螺旋结构降解一半时的温度,亦即DNA 变性过程中,紫外吸收值达到最大值的50%时的温度称为DNA 的解链温度(Tm) 。

8、同工酶:催化同一化学反应而化学组成不同的一组酶。

它们彼此在氨基酸序列、底物的亲和性等方面都存在着差异。

9、酶原:通过有限蛋白水解能够由无活性变成具有催化活性的酶前体。

10、酶原的激活:酶原在某些因素的作用下向酶转化的过程,酶原的激活实际是酶的活性中心形成或暴露的过程。

11、化学修饰调节:酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰,从而引起酶活性的改变,这种调节称为酶的化学修饰。

(填空)12、别构调节:当小分子变构剂与酶活性中心的调节亚基结合后,使酶的空间构象发生改变,从而影响酶的活性。

(填空)13、酶的竞争性抑制作用:通过增加底物浓度可以逆转的一种酶抑制类型。

一个竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。

这种抑制使得Km增大,而Vmax不变。

14、呼吸链:是电子传递链,是定位于线粒体内膜,由一组排列有序的H+和电子传递体构成的功能单位。

15、底物水平磷酸化:底物水平磷酸化指在分解代谢过程中,底物因脱氢、脱水等作用而使能量在分子内部重新分布,形成高能磷酸化合物,然后将高能磷酸基团转移到ADP形成ATP的过程。

生化名词解释及问答题答案

生化名词解释及问答题答案

名词解释1、血糖:血液中的单糖,主要是葡萄糖2、糖原合成与分解:由单糖合成糖原的过程称为糖原合成;糖原分解成葡萄糖的过程称糖原分解。

3、糖异生:由非糖物质合成葡萄糖的过程4、有氧氧化:在供氧充足时,葡萄糖在胞液中分解生成的丙酮酸进入线粒体,彻底氧化生成CO2和H2O,并释放大量能量5、三羧酸循环:在线粒体内,乙酰CoA和草酰乙酸缩合成生成柠檬酸, 柠檬酸经一系列酶促反应之后又生成成草酰乙酸,形成一个循环,该循环生成的第一个化合物是柠檬酸,它含有三个羧基,所以称为三羧酸循环6、糖酵解:在供氧不足时,葡萄糖在细胞液中分解成丙酮酸,丙酮酸进一步还原成乳酸,称为糖酵解途径。

7、血脂:血浆中脂类的总称。

主要包括甘油三酯、磷脂、胆固醇和游离脂肪酸。

8、血浆脂蛋白:是脂类在血浆中的存在形式和转运形式。

包括脂类和载脂蛋白。

9、脂肪动员:脂肪细胞内的甘油三酯被脂肪酶水解生成甘油和脂肪酸,释放入血,供给全身各组织氧化利用的过程。

10、酮体:包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸分解代谢的正常产物。

11、必需脂肪酸:人体生命活动所必不可少的几种多不饱和脂肪酸,在人体内不能合成,必需由食物来供给。

有亚油酸、亚麻酸及花生四烯酸三种。

12、必需氨基酸:体内需要而自身又不能合成、必需由食物供给的氨基酸。

包括异亮氨酸、苯丙氨酸、色氨酸、苏氨酸、亮氨酸、甲硫氨酸、赖氨酸和缬氨酸。

13、蛋白质互补作用:将不同种类营养价值较低的蛋白质混合食用,可以相互补充所缺少的必需氨基酸,从而提高其营养价值,称为蛋白质的互补作用。

14、转氨基作用:是指由氨基转移酶催化,将氨基酸的α- 氨基转移到一个α- 酮酸的羰基位置上,生成相应的α-酮酸和一个新的α-氨基酸。

该过程只发生氨基转移,不产生游离的NH3。

15、一碳单位:有些氨基酸在分解代谢过程中可以产生含有一个碳原子的活性基团,称为一碳单位。

16、遗传密码子:从mRNA编码区5’端向3’端按每3个相邻碱基为一组连续分组,每组碱基构成一个遗传密码,称为密码子或三联体密码。

生化名词解释及问答题

生化名词解释及问答题

的双链结构,脱氧核糖基和磷酸骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相接触。

腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢键(A=T),鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键(C ≡C)。

碱基平面与线性分子结构的长轴相垂直。

一条链的走向是5'→3',另一条链的走向就一定是3'→5'。

(2)DNA 是一右手螺旋结构。

螺旋每旋转一周包含了10对碱基,每个碱基的旋转角度为36°,螺距为3.4nm ,每个碱基平面之间的距离为0.34nm 。

DNA 双螺旋分子存在一个大沟和一个小沟。

(3)DNA 双螺旋结构稳定的维系横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。

面推动了对生命活动多样性的理解,另一方面在医学上有其特殊的用途。

核苷酸的作用:作为核酸合成的原料;体内能量的作用形式;参与代谢和生理调节;组成辅酶;活化中间代谢物 1)维生素的摄入量不足;(2)机体的吸收利用率降低;(3)食物以外的维生素供给不足;(4)机体对维生素的需要量增加。

及FAD 是体内氧化还原酶的负笈;维生素B 2广泛参与体内的各种氧化还原反应,能促进糖,脂肪和蛋白质的代谢,对维护皮肤,粘膜和视觉的正常功能有一定的作用B 12为甲基移换酶的辅酶,它催化同型半胱氨酸甲基化转变为蛋氨酸,甲基由N 5-CH 3-FH 4提供,所以维生素B 12可以促进游离四氢叶酸的再生。

四氢叶酸是携带一碳单位的载体,一碳单位参与核苷酸的合成,所以维生素B 12和叶酸都可影响一碳单位的代谢,影响细胞的分裂和增殖。

维生素B 12和叶酸的缺乏都可影响红细胞的分裂与成熟,导致巨幼红细胞贫血。

)氧化还原酶类(2)转移酶类(3)水解酶类(4)裂合酶类(5)异构酶类(6)合成酶类特殊特点,在组织中多以功能形式存在,体内一般不贮存,超过机体生理需要量时,可由尿排出。

1)无机离子为维持酶分子活性构,甚至参与活性中心的形成(2)在酶分子中通过氧化还原而传递电子(3)在酶与底物之间起桥梁作用(4)利用离子的电荷影响酶的活性酶原受某种因素作用后,分子结构发生变化,暴露或形成活性中心,转变成具有活性的酶,这一过程叫做酶原的激活。

科二生化简答题及名词解释

科二生化简答题及名词解释

5 名词解释 增色效应:DNA变性后在260nm处的紫外光吸收增加的效应称为增色效应 减色效应:DNA复性后在260nm处的紫外光吸收减少的效应称为减色效应 第三章 名词解释 蛋白质一级结构:蛋白质分子中氨基酸的排列顺序就是蛋白质的一级结构 蛋白质二级结构:指具有一定程序规则氢键结构的多肽链主链的空间排布,而不涉及侧链的构象 等电点 氨基酸等电点:在某一特定的PH条件下,氨基酸分子在溶液中解离成阳离子和阴离子的数目和趋势相等,即氨基酸分子所带静电荷为零,在电场中级既不向阴极也不向阳极移动,这是氨基酸所处溶液的PH即为该氨基酸的等电点。 蛋白质等电点:当溶液在某一特定的PH时,使蛋白质多所带的正负电荷恰好相等,即静电荷为零,这时溶液的PH称为该蛋白质的等电点。 1在下述条件下计算含有45个氨基酸残基肽链的长度(以nm为单位) (1)70%为a螺旋,10%为平行式B折叠,20%为线性。(2)全部为a螺旋。 ①(45*70%/3.6)*0.54+(45*10%/2-1)*0.132+(45*20%-1)0.132=5.496 ②(45/3.6)*0.54nm=6.75 2已知:(1)卵清蛋白pI为4.6;(2)B乳球蛋白pI为5.2;(3)糜蛋白酶原pI为9.1。问在PH5.2时上述蛋白质在电场中向阳极移动、向阴极移动还是不移动? a 向阳极移动 因为PI<5.2,所以蛋白质带负电荷,在电场中向阳极移动。 b 不移动 因为PI=5.2 c向阴极移动 因为PI>5.2,所以蛋白质带正电荷,在电场中向阴极移动。 3什么叫蛋白质的变性?哪些因素可以引起变性?蛋白质变性后有何性质和结构上的改变?蛋白质的变性有何实际应用? 蛋白质变性指天然蛋白质因受某些物理或化学因素的影响,由氢键、盐键等次级键维系的高级结构遭到破坏,分子空间结构发生改变,致使其物理化学性质和生物活性改变的作用 影响因素 物理因素:加热、紫外线、X射线、超声波、剧烈震荡、搅拌等 化学因素:强酸、强碱、脲,胍,重金属盐,三氯乙酸,磷钨酸,浓乙醇等 物理性质的改变:黏度增加、溶解度减少、旋光值改变、渗透压和扩散速度降低。 化学性质的改变:容易被酶水解。生物活性改变:活性降低或完全丧失 结构改变:由于二级结构以上的高级结构破坏,由有序的紧密结构变成无序的松散结构,侧链基因暴露。变性可涉及次级键和与二硫键的变化,但不涉及肽键的断裂。 蛋白质变性的应用:做豆腐利用蛋白质变性的原理,将大豆蛋白质的浓溶液加热加盐而成变性蛋白凝固体即豆腐。医疗上的消毒杀菌是利用了蛋白质变性而使病菌失活。在急救重金属盐中毒患者时,可给患者饮用大量牛乳或蛋清,其

生化名词解释

生化名词解释

一.名词解释1. Tm〔解链温度〕:当核酸分子加热变性时,其在260nm处的紫外吸收会急剧增加,当紫外吸收到达最大变化的半数值时,此时对应的温度称为溶解温度,用Tm表示。

热变性的DNA解链到50%时的温度。

2. 增色效应:DNA变性时,其溶液A260增高的现象。

3. 退火:热变性的DNA经缓慢冷却后即可复性,这一过程称为~。

4. 核酸分子杂交:这种杂化双链可以在不同的DNA单链之间形成,也可以在不同的RNA单链形成,甚至还可以在DNA单链和RNA单链之间形成,这一现象叫做核酸分杂交。

5. DNA复性:当变性条件缓慢去除后,两条解链的互补链可以重新配对,恢复到原来的双螺旋构造。

这一现象称为DNA复性。

6. Chargaff规那么:包括 [A] = [T],[G] = [C];不同生物种属的DNA的碱基组成不同;同一个体的不同器官或组织的DNA碱基组成一样。

7. DNA的变性: 在某些理化因素作用下,DNA双链解开成两条单链的过程。

8. 核酸酶:所有可以水解核酸的酶。

9. 糖酵解:在机体缺氧条件下,葡萄糖经一系列酶促反响生成丙酮酸进而复原生成乳酸的过程称为糖酵解(glycol sis),亦称糖的无氧氧化10. 糖异生:是指从非糖化合物转变为葡萄糖或糖原的过程。

11. 丙酮酸羧化支路:糖异生过程中为绕过糖酵解途径中丙酮酸激酶所催化的不可逆反响,丙酮酸需经丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶作用而生成丙酮酸的过程称为~。

12. 乳酸循环〔Cori循环〕:肌收缩〔尤其是供氧缺乏时〕通过糖酵解生成乳酸。

肌内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝内异生为葡萄糖。

葡萄糖释入血液后又可被肌摄取,这就构成了一个循环,此循环称为~,也称Cori循环。

13. 糖原合成:指由葡萄糖合成糖原的过程。

14. 糖原分解:习惯上指肝糖原分解成为葡萄糖的过程。

15. 血糖:血液中的葡萄糖。

16. 脂肪发动:储存在脂肪细胞中的脂肪,经脂肪酶逐步水解为甘油和脂肪酸,并释放入血供全身组织氧化利用的过程称为脂肪发动。

生化简答和名词解释

生化简答和名词解释

1.纤维素和糖原的什么结构特性使得他们的物理特性有那么大的差别?纤维素和糖原的结构特性确定了他们什么生物学作用?答:天然纤维素是由通过β(1→4)糖苷键连接的葡萄糖单位组成的,这种糖苷键迫使聚合物链成伸展的结构。

这种一系列的平行的聚合物链形成分子间的氢键,他们聚集成长的、坚韧的不溶于水的纤维。

糖原主要是由通过α(1→4)糖苷键连接的葡萄糖单位组成的,这种糖苷键能引起链弯曲,防止形成长的纤维。

另外体验版是个具有高分支的聚合物。

他的许多羟基暴露于水,可被高度水合,因此可分散在水中。

纤维素由于他的坚韧特性,所以他是植物中的结构材料。

糖原是动物中的贮存燃料。

2.葡萄糖溶液为什么有变旋现象?答:主要原因是由于葡萄糖具有不同的环状结构,当葡萄糖由开链结构变为环状结构时,C1原子同时变成不对称碳原子,同时产生了两个新的旋光异构体。

一个叫α-D-吡喃葡萄糖,另外一个叫β-D-吡喃葡萄糖,这两种物质互为异头物,在溶液中可以开链式结构发生相互转化,达到最后平衡,其比旋光度为+52°。

1.许多埋在膜内的蛋白(内在蛋白)与细胞中的蛋白质不同,他们几乎不可能从膜上转移至水溶液中。

然而,此类蛋白质的溶解和转移,常可用含有十二烷基硫酸钠或其他的去污剂,这是什么道理?答:十二烷基硫酸钠和胆酸钠等去污剂,都具有亲水和疏水两部分,他们可以破坏蛋白和膜之间的疏水相互作用,并用疏水部分结合蛋白的疏水部分,亲水部分向外,形成一个可溶性微团,将蛋白转移到水中。

2.任何动物体内胆固醇可能装备为哪些具有重要生理意义的类固醇物质?答:激素类:雄激素、雌激素、孕酮、糖皮质激素和盐皮质激素。

非激素类:维生素D、胆汁酸、牛黄胆酸和甘氨胆酸。

1.简述酶与一般化学催化剂的共性及其特性?答(1)共性:用量少而催化效率高;仅改变化学反应的速度,不改变化学反应的平衡点,酶本身在化学反应前后也不改变;可降低化学反应的活化能。

(2)特性:酶作为生物催化剂的特点是催化效率更高,具有高度的专一性,容易失活,活力受条件的调节控制,全酶的活力与辅助因子有关。

生化名词解释简答题

生化名词解释简答题

第一章:核酸9.核酸的变性、复性:当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。

在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。

这个DNA螺旋的重组过程称为“复性”。

10.增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。

11. 减色效应:DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。

12. 噬菌体:一种病毒,它可破坏细菌,并在其中繁殖。

也叫细菌的病毒。

14. DNA的熔解温度(Tm值):引起DNA发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(Tm)。

15. 分子杂交:不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。

这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。

3. 答:tRNA一级结构具有以下特点:1)分子量较小,大约由73~95个核苷酸组成。

2)分子中含有较多的修饰成分3)3′末端都具有CpCpA-OH的结构。

5′端多为pG,也有pC4)恒定核苷酸,有十几个位臵上的核苷酸在几乎所有的tRNA中都不变。

5)tRNA约占细胞总RNA的15%tRNA的二级结构呈“三叶草形”。

在结构上具有某些共同之处,即四臂四环:氨基酸接受臂;反密码(环)臂;二氢尿嘧啶(环)臂;T C(环)臂;可变环。

tRNA的三级结构:倒挂的L字母tRNA主要功能:在蛋白质生物合成过程中转运氨基酸。

4. 答:在20世纪50年代初,E.Chargaff等应用纸层析技术及紫外分光光度法,对各种生物的DNA分子的碱基组成进行了定量分析,总结出一些共同的规律,这些规律被人们称之为Chargaff出定则。

生化(名词解释及问答题)

生化(名词解释及问答题)
36. 磷氧比(P/O):每消耗1摩尔氧所消耗无机磷酸的摩尔数?
37.底物水平磷酸化:在被氧化的底物上发生磷酸化作用就是底物水平磷酸化。
38.糖酵解:1mol葡萄糖变成2mol丙酮酸并伴随ATP生成的过程为糖酵解。
39.磷酸戊糖途径:是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。
4.何谓酶的抑制剂?酶的抑制剂的主要类别及其特点是什么?
通过改变酶必需基团的化学性质从而引起酶活力降低或者丧失的作用称为抑制作用,具有抑制作用的物质称为抑制剂。主要类别:不可逆抑制剂,可逆抑制剂。不可逆抑制剂与酶的必需集团以共价键结合,引起酶的永久失活。可逆抑制剂与酶蛋白以非共价键结合,引起暂时性失活。
(3)β-折叠结构有平行排列和反平行排列两种。
6.什么是蛋白质的变性作用和复性作用?
蛋白质变性后哪些性质会发生改变?蛋白质变性作用是指在某些因素的影响下,蛋白质分子的空间构象被破坏,并导致其性质和生物活性改变的现象。蛋白质变性后会发生以下几方面的变化:
(1)生物活性丧失;
(2)理化性质的改变,包括:溶解度降低,因为疏水侧链基团暴露;结晶能力丧失;分子形状改变,由球状分子变成松散结构,分子不对称性加大;粘度增加;光学性质发生改变,如旋光性、紫外吸收光谱等均有所改变。
蛋白质的空间结构是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链走向。蛋白质的空间结构决定蛋白质的功能。空间结构与蛋白质各自的功能是相适应的。
3.蛋白质的α—螺旋结构有何特点?
(1)多肽链主链绕中心轴旋转,形成棒状螺旋结构,每个螺旋含有3.6个氨基酸残基,螺距为0.54nm,氨基酸之间的轴心距为0.15nm(2)α-螺旋结构的稳定主要靠链内氢键,每个氨基酸的N—H与前面第四个氨基酸的C=O 形成氢键。(3)天然蛋白质的α-螺旋结构大都为右手螺旋。

生化考试名词解释

生化考试名词解释

生化考试名词解释2.别构酶:又称为变构酶,是一类重要的调节酶。

其分子除了与底物结合、催化底物反应的活性中心外,还有与调节物结合、调节反应速度的别构中心。

通过别构剂结合于别构中心影响酶分子本身构象变化来改变酶的活性。

3.酮体:在肝脏中,脂肪酸不完全氧化生成的中间产物乙酰乙酸、β - 羟基丁酸及丙酮统称为酮体。

在饥饿时酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。

4.糖酵解:生物细胞在无氧条件下,将葡萄糖或糖原经过一系列反应转变为乳酸,并产生少量 ATP的过程。

5.EMP 途径:又称糖酵解途径。

指葡萄糖在无氧条件下经过一定反应历程被分解为丙酮酸并产生少量 ATP和 NADH+H+的过程。

是绝大多数生物所共有的一条主流代谢途径。

6.糖的有氧氧化:葡萄糖或糖原在有氧条件下,经历糖酵解途径、丙酮酸脱氢脱羧和TCA循环彻底氧化,生成 C02和水,并产生大量能量的过程。

7.氧化磷酸化:生物体通过生物氧化产生的能量,除一部分用于维持体温外,大部分通过磷酸化作用转移至高能磷酸化合物 ATP中,这种伴随放能的氧化作用而使 ADP磷酸化生成 ATP 的过程称为氧化磷酸化。

根据生物氧化的方式可将氧化磷酸化分为底物水平磷酸化和电子传递体系磷酸化。

8.三羧酸循环:又称柠檬酸循环、 TCA 循环,是糖有氧氧化的第三个阶段,由乙酰辅酶 A 和草酰乙酸缩合生成柠檬酸开始,经历四次氧化及其他中间过程,最终又生成一分子草酰乙酸,如此往复循环,每一循环消耗一个乙酰基,生成CO2和水及大量能量。

19.糖异生:由非糖物质转变为葡萄糖或糖原的过程。

糖异生作用的途径基本上是糖无氧分解的逆过程 --- 除了跨越三个能障(丙酮酸转变为磷酸烯醇式丙酮酸、1,6- 磷酸果糖转变为 6- 磷酸果糖, 6- 磷酸果糖转变为葡萄糖)需用不同的酶及能量之外,其他反应过程完全是糖酵解途径逆过程。

10.乳酸循环:指糖无氧条件下在骨骼肌中被利用产生乳酸及乳酸在肝中再生为糖而又可以为肌肉所用的循环过程。

生化重点名词解释+问答知识点

生化重点名词解释+问答知识点

1.兴奋性:生理学中将可兴奋细胞接受刺激后产生动作电位的能力称为兴奋性。

2.内环境:生理学中将围绕在多细胞动物体细胞周围的液体即细胞外液,称为内环境。

3.内环境稳态:是指内环境的理化性质,如温度、PH、渗透压和各种液体成分的相对恒定状态。

4.神经调节:是通过反射而影响生理功能的一种调节方式,是人体生理功能中最主要的一种调节方式。

5.反射:是指机体在中枢神经系统的参与下,对内、外环境作出的规律性应答。

6.正反馈:受控部分发出的反馈信息,促进加强控制部分的活动,最后使受控部分的活动朝着与它原先活动相同的方向改变,称为正反馈。

7.负反馈:受控部分发出的反馈信息,调整控制部分的活动,最终使受控部分的活动朝着与它原先活动相反的方向改变。

称为负反馈。

8.静息电位:静息时,质膜两侧存在着外正内负的电位差,称为静息电位。

9.动作电位:在静息电位的基础上,给细胞一个适当刺激,可触发其发生可传播的膜电位波动称为动作电位。

10.阈电位:产生动作电位时,要使膜去极化是最小的膜电位,称为阈电位。

11.单收缩:当骨骼肌复制一次短促刺激时,可发生一次动作电位,随后出现一次收缩和舒张,这种形式的收缩称为单收缩。

12.不完全强直收缩:如果刺激频率较低,使后一次收缩落在了前一次收缩的舒张期,这个过程称为不完全强直收缩。

13.完全强直收缩:如果刺激频率较高,使后一次收缩落在了前一次收缩的收缩期,这个过程称为完全强直收缩。

14.红细胞比容:血细胞在血液中所占的容积百分比家偶偶血细胞比容。

15.红细胞沉降率:通常以哄细胞在第一小时末下沉的距离来表示红细胞的沉降速度,称为沉降速度。

16.血液凝固:指血液由流动的固体状态变成不能流动的液体状态的过程,其实质是血浆中可溶性纤维蛋白原变成不溶性纤维蛋白的过程。

17.血型:通常是指红细胞膜上特异性抗原的类型。

18.心动周期:心脏的一次收缩和舒张,构成一个机械活动周期,称为心动周期。

19.每搏输出量:一侧心室在一次心搏中射出的血液量,称为每搏输出量,简称每搏量。

生化名词解释简答题

生化名词解释简答题

第一章:核酸9.核酸的变性、复性:当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。

在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。

这个DNA螺旋的重组过程称为“复性”。

10.增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。

11. 减色效应:DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。

12. 噬菌体:一种病毒,它可破坏细菌,并在其中繁殖。

也叫细菌的病毒。

14. DNA的熔解温度(T m值):引起DNA发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(T m)。

15. 分子杂交:不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。

这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。

3. 答:tRNA一级结构具有以下特点:1)分子量较小,大约由73~95个核苷酸组成。

2)分子中含有较多的修饰成分3)3′末端都具有CpCpA-OH的结构。

5′端多为pG,也有pC4)恒定核苷酸,有十几个位置上的核苷酸在几乎所有的tRNA中都不变。

5) tRNA约占细胞总RNA的15%tRNA的二级结构呈“三叶草形”。

在结构上具有某些共同之处,即四臂四环:氨基酸接受臂;反密码(环)臂;二氢尿嘧啶(环)臂;TyC(环)臂;可变环。

tRNA的三级结构:倒挂的L字母tRNA主要功能:在蛋白质生物合成过程中转运氨基酸。

4. 答:在20世纪50年代初,E.Chargaff等应用纸层析技术及紫外分光光度法,对各种生物的DNA分子的碱基组成进行了定量分析,总结出一些共同的规律,这些规律被人们称之为Chargaff出定则。

生化名词解释及填空问答

生化名词解释及填空问答

一、名词解释1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。

2.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein )3.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。

4.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。

5.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。

6.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。

7.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。

8.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA及增强子,弱化子等。

9.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。

10.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。

11.单克隆抗体:只针对单一抗原决定簇起作用的抗体。

12.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。

13.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’3’外切酶活性14.DNA的C值与C值矛盾:一个单倍体基因组和DNA含量总是恒定的,它通常称为该物DNA的C值。

在真核生物中,物种进化的复杂程度与DNA含量C值并不完全一致,成为C值矛盾。

15.基因与基因组:基因就是贮存RNA序列信息及表达这些信息所必须的全部核苷酸序列。

基因组指一个细胞或生物体中的全部DNA.16.回复突变与抑制突变:突变失去的野生型性状可以通过第二次突变得到恢复,第二次突变叫做回复突变。

生化复习-名词解释

生化复习-名词解释

名词解释●标准氨基酸:用于合成蛋白质的20种氨基酸。

●蛋白质变性:由于稳定蛋白质构象的化学键在某些物理因素或化学因素的作用下被破坏,使其天然构象部分或全部改变。

●酶:由活细胞合成,其催化作用的蛋白质。

●酶活性中心:又称活性部位,是酶的分子结构中可以结合底物并催化其反应生成产物的部位。

●米氏常数:等于酶促反应达到最大速度Vm一半时的底物浓度[s]。

●酶原:某些酶在细胞内合成或初分泌时只是酶的无活性前体。

●同工酶:指能催化相同的化学反应、但酶蛋白的组成、结构、理化性质和免疫学性质都不同的一组酶,是在生物进化过程中基因变异的产物。

●酶原激活:酶原向酶转化的过程,实际上就是酶的活性中心形成或暴露的过程。

●生物氧化:指糖、脂肪和蛋白质等营养物质在体内氧化分解,最终生成二氧化碳和水并释放出能量满足机体生命活动需要的过程。

●呼吸链:指位于真核生物线粒体内膜或原核生物细胞膜上的一组排列有序的递氢体和递电子体。

●底物水平磷酸化:指由营养物质通过分解代谢生成高能化合物,通过高能基团转移推动合成ATP。

●氧化磷酸化:指由营养物质氧化分解释放的能量推动ADP与磷酸所和生成ATP:ADP+Pi→ATP+H2O●血糖:指血液中的游离葡萄糖。

●糖异生:是指由非糖物质合成葡萄糖的过程。

●糖酵解:指葡萄糖在各组织细胞质中分解成丙酮酸,并释放部分能量推动合成ATP供给生命活动。

●三羧酸循环:在线粒体内,乙酰CoA与草酰乙酸所和生成柠檬酸,柠檬酸经过一系列酶促反应又生成草酰乙酸,形成一个循环。

该循环生成第一个化合物是柠檬酸,它有三个羧基,所以称为三羧酸循环、柠檬酸循环。

●糖有氧氧化:指当氧气充足时,葡萄糖在细胞质中分解生成的丙酮酸进入线粒体,彻底氧化成CO2和H2O,并释放大量能量推动合成ATP供给生命活动。

●糖原合成和分解:葡萄糖在细胞内合成糖原的过程称为糖原合成,糖原在细胞内分解成葡萄糖的过程称为汤圆分解。

●磷酸戊糖途径:是葡萄糖经过6-磷酸葡萄糖氧化分解生成5-磷酸核糖(磷酸戊糖)和NADPH的途径。

生化名词解释及大题

生化名词解释及大题

生化资料:一、名词解释1.糖有氧氧化:葡萄糖或糖原在有氧条件下彻底氧化分解生成二氧化碳和水的过程。

2.糖酵解:在机体缺氧的条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解,亦称糖的无氧氧化。

3.受体:靶细胞中能识别信息分子并与之结合,引起特定生物学效应的蛋白质,个别为糖脂。

4.维生素:是维持人体正常生理功能所必需的营养素,是人体内不能合成或合成量甚少,必须由食物供给的一组低分子有机化合物。

5.必须脂肪酸:机体需要而体内不能合成,必须从植物中获得的不饱和脂肪酸,包括亚油酸、亚麻酸、花生四烯酸。

6.同工酶:是指具有相同催化功能(即催化的化学反应相同)而酶蛋白的分子结构、理化性质和免疫学性质各不相同的一组酶。

7.等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。

8.酶的活性中心:酶分子中组成氨基酸残基侧链与酶的活性密切相关的一些化学基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异的结合并将底物转化为产物。

这一区域称为酶的活性中心。

9.一碳单位:一碳单位是指氨基酸分解代谢产生的含一个碳原子的有机基团。

二、简答1.简述一碳单位的概念,载体,生理意义?一碳单位是指氨基酸分解代谢产生的含一个碳原子的有机基团。

叶酸的辅酶形式四氢叶酸是一碳单位的载体。

一碳单位的主要功用是参与核苷酸的合成:N5、N10=CH-FH4和N10-CHOFH4参与嘌呤核苷酸合成。

N5、N10-CH2-FH4参与胸腺嘧啶核苷酸合成,核苷酸是合成核酸的原料,故一碳单位在核酸合成中占重要地位。

2.蛋白质的理化性质及其应用?⑴蛋白质是两性电解质:作为两性电解质,不同的蛋白质具有不同的等电点,在同一pH 的溶液中不同的蛋白质带电性质和数量不同,藉此分离、纯化蛋白质的方法有电泳、离子交换层析、等电点沉淀法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章1 DNA双螺旋结构模型的要点有哪些此模型如何解释Chargaff定律A 天然DNA分子由两条反平行的多聚脱氧核苷酸链组成,一条链的走向为5’→3’,另一条链的走向为3’→5’。

两条链沿一个假想的中心轴右旋相互盘旋,形成大沟和小沟。

b磷酸和脱氧核糖作为不变的骨架成分位于外侧,作为可变成分的碱基位于内侧,链间的碱基按A=T(两个氢键),G=C配对(三个氢键)配对形成碱基平面,碱基平面与螺旋纵轴近于垂直。

c螺旋的直径为2nm,相邻碱基平面的垂直距离为。

因此,螺旋结构每隔10bp 重复一次,间距为d DNA双螺旋结构是非常稳定的。

稳定力量主要有两个,一是碱基堆积力,二是碱基配对的氢键。

2 原核生物与真核生物mRNA的结构有哪些区别①原核生物mRNA常以多顺反子的形式存在。

真核生物mRNA一般以单顺反子的形式存在。

②原核生物mRNA的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作。

③原核生物mRNA半寿期很短,一般为几分钟,最长只有数小时(RNA噬菌体中的RNA除外)。

真核生物mRNA的半寿期较长,如胚胎中的mRNA可达数日。

④原核与真核生物mRNA的结构特点也不同。

原核生物mRNA一般5′端有一段不翻译区,称前导顺序,3′端有一段不翻译区,中间是蛋白质的编码区,一般编码几种蛋白质。

真核生物mRNA(细胞质中的)一般由5′端帽子结构、5′端不翻译区、翻译区(编码区)、3′端不翻译区和3′端聚腺苷酸尾巴构成分子中除m7G构成帽子外,常含有其他修饰核苷酸,如m6A等。

真核生物mRNA通常都有相应的前体。

从DNA转录产生的原始转录产物可称作原始前体(或mRNA前体)。

一般认为原始前体要经过hnRNA 核不均-RNA的阶段,最终才被加工为成熟的mRNA。

3从两种不同细菌提起DNA样品,其腺嘌呤核苷酸残基分别占其碱基总数的32%和17%,计算这两种不同来源DNA四种脱氧核苷酸残基相对百分组成,两种细菌中有一种是从温泉(64°C)种分离出来的,该细菌DNA具有何种碱基组成为什么腺嘌呤核苷酸残基分别占其碱基总数的32%:A 32% G 18% C 18% T 32%腺嘌呤核苷酸残基分别占其碱基总数的17%:A 17% G 33% C 33% T 17%由于含氢键越多,DNA越稳定,GC碱基对之间是三个氢键,AT碱基对之间是两个氢键,所以腺嘌呤核苷酸残基分别占其碱基总数的17%的这一种DNA比较稳定,是从温泉中分离出来的。

4正确写出下列寡核苷酸的互补的DNA和RNA序列(1)GATCAA (2)TGGAAC (3)ACGCGT (4)TAGCAT DNA 5’UUGATC3’5’GTTCCA3’5’ACGCGT3’5’ATGCTA3’RNA 5’UUGAUC3’5’G UU CCA3’5’ACGCG U3’5’A UGCU A3’5 名词解释增色效应:DNA变性后在260nm处的紫外光吸收增加的效应称为增色效应减色效应:DNA复性后在260nm处的紫外光吸收减少的效应称为减色效应第三章名词解释蛋白质一级结构:蛋白质分子中氨基酸的排列顺序就是蛋白质的一级结构蛋白质二级结构:指具有一定程序规则氢键结构的多肽链主链的空间排布,而不涉及侧链的构象等电点氨基酸等电点:在某一特定的PH条件下,氨基酸分子在溶液中解离成阳离子和阴离子的数目和趋势相等,即氨基酸分子所带静电荷为零,在电场中级既不向阴极也不向阳极移动,这是氨基酸所处溶液的PH即为该氨基酸的等电点。

蛋白质等电点:当溶液在某一特定的PH时,使蛋白质多所带的正负电荷恰好相等,即静电荷为零,这时溶液的PH称为该蛋白质的等电点。

1在下述条件下计算含有45个氨基酸残基肽链的长度(以nm为单位)(1)70%为a螺旋,10%为平行式B折叠,20%为线性。

(2)全部为a螺旋。

①(45*70%/3.6)*0.54+(45*10%/2-1)*0.132+(45*20%-1)0.132=②(45/3.6)*0.54nm=2已知:(1)卵清蛋白pI为;(2)B乳球蛋白pI为;(3)糜蛋白酶原pI为。

问在时上述蛋白质在电场中向阳极移动、向阴极移动还是不移动a 向阳极移动因为PI<,所以蛋白质带负电荷,在电场中向阳极移动。

b 不移动因为PI=c向阴极移动因为PI>,所以蛋白质带正电荷,在电场中向阴极移动。

3什么叫蛋白质的变性哪些因素可以引起变性蛋白质变性后有何性质和结构上的改变蛋白质的变性有何实际应用蛋白质变性指天然蛋白质因受某些物理或化学因素的影响,由氢键、盐键等次级键维系的高级结构遭到破坏,分子空间结构发生改变,致使其物理化学性质和生物活性改变的作用影响因素物理因素:加热、紫外线、X射线、超声波、剧烈震荡、搅拌等化学因素:强酸、强碱、脲,胍,重金属盐,三氯乙酸,磷钨酸,浓乙醇等物理性质的改变:黏度增加、溶解度减少、旋光值改变、渗透压和扩散速度降低。

化学性质的改变:容易被酶水解。

生物活性改变:活性降低或完全丧失结构改变:由于二级结构以上的高级结构破坏,由有序的紧密结构变成无序的松散结构,侧链基因暴露。

变性可涉及次级键和与二硫键的变化,但不涉及肽键的断裂。

蛋白质变性的应用:做豆腐利用蛋白质变性的原理,将大豆蛋白质的浓溶液加热加盐而成变性蛋白凝固体即豆腐。

医疗上的消毒杀菌是利用了蛋白质变性而使病菌失活。

在急救重金属盐中毒患者时,可给患者饮用大量牛乳或蛋清,其目的就是就是使牛乳或蛋清中的蛋白质在消化道中与重金属盐结合成不溶解的变性蛋白质,最后将沉淀物从肠胃中洗出,从而阻止对重金属离子的吸收第四章名词解释同工酶:存在于同一属性生物或同一个体中能催化同一种化学反应,但酶蛋白分子的结构,理化性质和生化特性(Km,电泳行为等)存在明显差异的一组酶。

别构酶:某种因素作用下,有些酶发生构象变化而改变活性,这类酶称为别构酶。

1磺胺类药物能抑制细菌的生长,其作用机理是什么细菌不能直接利用其生长环境中的叶酸,而是利用环境中的对氨苯甲酸(PABA)和二氢喋啶、谷氨酸在菌体内的二氢叶酸合成酶催化下合成二氢叶酸。

二氢叶酸在二氢叶酸还原酶的作用下形成四氢叶酸,四氢叶酸作为一碳单位转移酶的辅酶,参与核酸前体物(嘌呤、嘧啶)的合成。

而核酸是细菌生长繁殖所必须的成分。

磺胺药的化学结构与PABA类似,能与PABA竞争二氢叶酸合成酶,影响了二氢叶酸的合成,因而使细菌生长和繁殖受到抑制。

2 有机磷农药的毒性机理有机磷化合物如二异丙基氟磷酸能与胰蛋白酶或乙酰胆碱酯酶活性中心的丝氨酸残基反应,形成稳定的共价键而使酶丧失活性。

乙酰胆碱是昆虫和脊椎动物体内传导神经冲动和刺激的化学介质。

乙酰胆碱酯酶催化乙酰胆碱水解为乙酸和胆碱。

若乙酸胆碱酯酶被抑制,则会导致乙酸胆碱的积累,因而引起一系列神经中毒症状,因过度兴奋引起功能失调,最终导致死亡,这就是有机磷化物的毒性原理。

3请分析下列现象的生化机理:“酵母汁将蔗糖变成酒精称为乙醇发酵;酵母汁经透析或加热至50°C,失去发酵能力,而透析的酵母汁与加热的酵母汁混合后又具有发酵能力”。

酵母发酵活性取决于两类物质,一类是热不稳定的不可透析的成分,酶蛋白。

另一种是热稳定可透析的成分,辅因子。

第五章维生素与辅酶什么是维生素维生素是维持生物体正常生命活动所必需的一类小分子有机化合物。

大多数维生素作为酶地辅酶或辅基的组成成分参与体内的代谢过程,具有外源性、微量性、调节性和特异性。

试述维生素与辅酶、辅基的关系。

很多维生素是在体内转变成辅酶或辅基,参与物质的代谢调节。

所有 B 族维生素都是以辅酶或辅基的形式发生作用的,但是辅酶或辅基则不一定都是由维生素组成的,如细胞色素氧化酶的辅基为铁卟啉,辅酶Q 不是维生素等。

第七章糖类代谢糖酵解(EMP 三位德国科学家:Embden、Meyerhof、Parnas):是在无氧条件下,葡萄糖转变为丙酮酸并释放ATP的一系列反应,是普遍存在生物界最基本代谢过程。

葡萄糖异生作用:是指生物体利用非碳水化合物的前体物质合成葡萄糖的过程。

糖酵解与三羧酸循环中调节酶有哪几个三羧酸循环主要生理意义糖酵解(EMP)调节酶:a.己糖激酶,b.磷酸果糖激酶,c.丙酮酸激酶;三羧酸循环调控酶:丙酮酸脱氢酶、柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶系、琥珀酸脱氢酶三羧酸循环(TCA)主要生理意义:(1)TCA是三大营养素彻底氧化的最终代谢通路;(2)TCA是三大营养素代谢联系的枢纽;(3)TCA为其他合成代谢提供小分子前体;(4)TCA为氧化磷酸化提供还原当量。

第八章生物氧化和能量转换生物氧化:是指细胞内的糖、蛋白质和脂肪进行氧化分解而生成CO2和H2O,并释放能量的过程。

氧化磷酸化:是指生物氧化过程中释放自由能驱动ADP磷酸化形成ATP的过程。

化学渗透假说(Mitchell 1961年)的主要内容是什么电子传递链各组分在线粒体内膜中不对称分布,当高能电子沿其传递时,所释放的能量将H+从基质泵到膜间隙,形成H+电化学梯度。

在这个梯度驱使下,H+穿过ATP合成酶回到基质,同时合成ATP,电化学梯度中所蕴藏的能量储存1到ATP的高能磷酸键。

电子及质子通过呼吸链上电子载体和氢载体的交替传递,在线粒体内膜上形成3次回路,导致3对H+抽提至膜间隙,生成3个ATP分子。

生物氧化中CO2、H2O、能量的形成。

CO2:糖、脂、蛋白质等有机物转变成含羧基的中间化合物,然后在酶催化下脱羧而生成CO2。

类型:α-脱羧和β-脱羧氧化脱羧和单纯脱羧H2O:代谢物在脱氢酶催化下脱下的氢由相应的氢载体(NAD+、NADP+、FAD、FMN等)所接受,再通过一系列递氢体或递电子体传递给氧而生成H2O 。

生成能量的过程主要途径:1、底物水平磷酸化2、电子传递链磷酸化。

第九章1.名词解释β氧化:是指在一系列酶的作用下,脂肪酸的α碳原子和β碳原子之间发生氧化作用,β碳原子被氧化形成酮基,然后裂解成乙酰coA和较原来少2个碳原子的脂肪酸.5,脂肪酸从头合成需要那些原料及能源物质他们分别来自哪些代谢途径原料:乙酰coA,来自糖酵解产物丙酮酸.部分来自脂肪酸β氧化和氨基酸氧分解.能源:NADPH+H,约百分之60来自磷酸戊糖途径6-磷酸葡萄糖脱氢酶和6-磷酸葡萄糖酸脱氢酶的催化反应,其余的可来自苹果酸酶催化反应.6.计算1分子软脂酸经氧化作用后彻底分解为co2和H2O时,生成ATP的分子数.一分子软脂酸彻底氧化分解要经过7β次氧化,共产生8分子乙酰coA,7分子FADH2,7分子NADH+H.每分子乙酰coA进入三羧酸循环彻底氧化生成10分子分子乙酰coA共产生80个ATP;7分子FADH2经FADH2电子传递链共产生个ATP 乘以7),7分子NADH+H经NADH电子传递链共产生个ATP乘以7).那么一分子软脂酸经氧化作用生成ATP总数为108(80++=108).脂肪酸活化成脂酰coA需要消耗2个ATP,所以一分子软脂酸氧化分解co2和H2O共获得106个ATP.8.脂肪酸的β氧化与饱和脂酸的从头合成有哪些相同点和不同点详见课本202页表9-2.第十章1.名词解释联合脱氨基:联合脱氨基作用是由转氨酶催化的转氨基反应和L-谷氨酸脱氢酶催化的脱氨基反应偶联在一起的脱氨基方式.3.联合脱氨基为什么是生物体内脱去氨基的主要方式联合脱氨基的过程:首先转氨酶催化一种氨基酸的氨基转移到α-酮戊二酸的酮基上生成L-谷氨酸,然后体内活性很高的L-谷氨酸脱氢酶将L-谷氨酸的氨基脱去,生成α-酮戊二酸和氨,NADPH, α-酮戊二酸再继续参与转氨基作用。

相关文档
最新文档