证明数列极限存在的六种方法_顾庆荷

合集下载

求数列极限的十五种解法

求数列极限的十五种解法

求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111na a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞. 解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!n n n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112(122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n = )极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim n n x l →∞=存在,对①式两边取极限得:l =解得:l =l =;∴lim n n x →∞=4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim n n c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++;∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用. 5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()baJ f x dx =⎰.例7.求:()()11lim !2!nnn n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n →∞→∞==112lim (1)(1)(1)nn n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12limlim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sinsinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()111n nx x n n e e e e n n=→∞→∞--'===-. 例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭. 解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1n n n n n n n n n n n n n -------+-=+≥+;由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1lim(1lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n ----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈. 解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p p p n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nknk n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1lim lim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >. 解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<, ∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵111()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()(1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n nx f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x Sl +→∞→∞=+=(存在);对式子:12(1)2n n n x xx ++=+,两边同时取极限:2(1)2l l l+=+,∴l =或l =(舍负);∴lim nn x →∞= 例15.证明:111lim(1ln )23n n n→∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数). 证:设1111ln 23n a n n =++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n---; 对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim nn a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用.例17.求:2lim (arctan arctan )1n a an n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, 1a an n+上应用拉格朗日中值定理, 得:21()()( [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明,若lim nn x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim nn x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12lim n n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略.例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211lim n n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦ 因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211lim n n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim 1()x f x g x →=,且当n →∞时,0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =-,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n→∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数). 解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n→∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==;∴2231lim (1)nn i i a n →∞=+=∏21exp()3a . 注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, 22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim nn x c →∞=,则c 是222a x x =+在1[0, ]2a +的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =(n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =,[0, )x ∈+∞且在[0, )+∞上有:1f '<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==的解,解得:lim n n x →∞=本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞.(2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-, 从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n nn ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn n n a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫=⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()11111111111111120101n n n AP P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-. 因为11α-<,所以lim(1)0nn α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ==,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫=⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn nn n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-, 由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim limn n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。

求数列极限的方法

求数列极限的方法

求数列极限的方法求数列极限是数学中的重要概念之一,它在分析学、微积分以及实际问题的建模与求解中起着重要的作用。

本文将介绍数列极限的概念、求解方法以及一些常见的数列极限例子。

一、数列极限的概念数列是由一系列按照一定规律排列的数所组成的序列。

而数列的极限则是指当数列中的数逐渐趋近于某个值时,该值即为数列的极限。

用数学符号表示为lim(a_n)=A,其中a_n表示数列中的第n个数,A表示极限值。

二、数列极限的求解方法1. 利用通项公式求解对于一些特定的数列,我们可以通过找到它们的通项公式来求解极限。

例如,对于等差数列an=2n-1,我们可以通过计算数列中的数随着n的增大而逐渐趋近于无穷大,因此该数列的极限为正无穷大。

2. 利用数列的性质求解对于一些特殊的数列,我们可以利用数列的性质来求解极限。

例如,对于数列an=(1+1/n)^n,我们可以通过观察数列中的数随着n的增大而逐渐趋近于一个固定值,即极限为常数e。

3. 利用夹逼定理求解夹逼定理是数列极限求解中常用的方法之一。

夹逼定理的核心思想是找到两个数列,一个上界和一个下界,它们的极限值相同,且夹在待求数列的中间。

通过夹逼定理,我们可以求解一些比较复杂的数列极限。

三、数列极限的例子1. 阶乘数列的极限考虑数列an=n!,我们可以通过计算数列中的数随着n的增大而逐渐趋近于无穷大,因此该数列的极限为正无穷大。

2. 斐波那契数列的极限斐波那契数列是指数列中的每一项都是前两项的和,即an=an-1+an-2,其中a1=1,a2=1。

通过计算数列中的数随着n的增大而逐渐趋近于黄金分割比 1.618,我们可以求得该数列的极限为黄金分割比。

四、总结数列极限是数学中的重要概念,通过求解数列极限,我们可以深入理解数列的性质以及数学运算的规律。

本文介绍了数列极限的概念、求解方法以及一些常见的数列极限例子。

希望通过阅读本文,读者对数列极限有更深入的理解,并能应用数列极限的求解方法解决实际问题。

数列极限的万能方法

数列极限的万能方法

数列极限的万能方法
数列极限的万能方法:定义法。

定义:设{an} 为数列,a 为定数,若对任给的正数ε,总存在正数N,使得当n>N时,有|an-a|<ε,则称数列{an} 收敛于a;记作:lim(n→∞)an=a,否则称{an} 为发散数列。

数列极限的其他方法还有:利用柯西收敛准则、运用单调有界定理、利用迫敛性准则、利用定积分的定义、利用归结(海涅)原则、利用施托尔茨(stolz)定理、利用级数求和、利用级数收敛性判断极限存在、利用幂级数、利用微分中值定理、巧用无穷小数列、利用无穷小的等价代换、利用压缩映射原理等。

1。

数列极限计算方法

数列极限计算方法

数列极限计算方法数列极限是数学分析中一个重要的概念,用于描述数列的发散或收敛趋势。

在实际问题中,我们常常需要通过计算数列的极限来解决一些复杂的数学问题。

本文将介绍几种常见的数列极限计算方法,包括数列的递推关系、数列的夹逼定理和数列的收敛性判定方法。

一、数列的递推关系数列的递推关系是指数列中的每一项都可以通过前一项来计算得到。

最经典的例子就是斐波那契数列,每一项都等于前两项之和。

对于这种类型的数列,我们可以通过递推关系来计算其极限。

例如,斐波那契数列的极限是黄金分割比例(约为 1.618),通过递推关系可以逐步逼近这个极限值。

二、数列的夹逼定理数列的夹逼定理是一种常用的数列极限计算方法。

它基于这样一个思想:如果一个数列可以被两个收敛的数列夹住,那么这个数列的极限也会收敛到相同的值。

具体而言,如果一个数列的每一项都大于等于另一个数列,并且每一项都小于等于第三个数列,而这两个数列的极限都是L,那么这个数列的极限也是L。

三、数列的收敛性判定方法在计算数列的极限时,我们还可以使用一些收敛性判定方法来判断数列是否收敛。

常见的判定方法包括单调有界数列必收敛、等比数列在绝对值小于1时收敛、调和数列发散等。

这些判定方法可以帮助我们快速判断数列的极限性质,从而简化计算过程。

除了上述的数列极限计算方法,还有一些特殊的数列极限需要特殊的计算方法。

例如,对于无穷级数,我们可以通过部分和的极限来计算其极限值。

对于级数的收敛性问题,我们可以使用比较判别法、根值判别法和积分判别法等方法来判断。

总结起来,数列极限计算是数学分析中的一个重要问题,它涉及了数列的发散和收敛性质。

在实际问题中,我们可以通过数列的递推关系、夹逼定理和收敛性判定方法等多种方法来计算数列的极限。

通过运用这些方法,我们可以更好地理解和应用数学知识,解决一些复杂的数学问题。

因此,掌握数列极限计算方法对于提高数学分析能力和解决实际问题具有重要意义。

数列求极限的方法总结

数列求极限的方法总结

数列求极限的方法总结数列求极限的方法总结数列求极限的方法有那些?极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。

极限分为一般极限,还有个数列极限,下面是为大家总结的数列求极限的方法总结。

1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记(x趋近无穷的时候还原成无穷小)。

2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。

首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x 趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。

对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的.形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。

数列的极限定义证明

数列的极限定义证明

摘要:本文旨在通过对数列极限的定义进行证明,阐述数列极限的概念,并展示其数学严谨性。

首先回顾数列极限的定义,然后通过数学归纳法、夹逼定理等方法对数列极限进行证明。

一、引言数列极限是微积分学中的基本概念之一,它描述了数列在无限趋近于某一数值时的行为。

数列极限的定义为:若对于任意给定的正数ε,都存在一个正整数N,使得当n>N时,数列{an}的项与常数A的差的绝对值小于ε,则称常数A为数列{an}的极限。

本文将对数列极限的定义进行证明,以展示其数学严谨性。

二、数列极限的定义设数列{an}是定义在正整数集N上的函数,常数A是实数。

如果对于任意给定的正数ε,都存在一个正整数N,使得当n>N时,有|an - A| < ε,则称常数A为数列{an}的极限,记作:lim_{n→∞}an = A三、数列极限的证明1. 数学归纳法证明(1)当n=1时,由数列极限的定义,只需证明|a1 - A| < ε即可。

由于ε是任意给定的正数,因此当|a1 - A| < ε时,命题成立。

(2)假设当n=k(k为正整数)时,命题成立,即|ak - A| < ε。

接下来证明当n=k+1时,命题也成立。

由于|ak - A| < ε,根据数列极限的定义,存在一个正整数N1,使得当n>N1时,有|ak - A| < ε。

当n=k+1时,有:|ak+1 - A| ≤ |ak+1 - ak| + |ak - A|根据数列极限的定义,存在一个正整数N2,使得当n>N2时,有|ak+1 - ak| <ε/2。

取N = max{N1, N2},则当n>N时,有:|ak+1 - A| ≤ |ak+1 - ak| + |ak - A| < ε/2 + ε/2 = ε因此,当n=k+1时,命题也成立。

由数学归纳法可知,对于任意正整数n,都有|an - A| < ε。

因此,根据数列极限的定义,lim_{n→∞}an = A。

求数列极限的方法总结及例题

求数列极限的方法总结及例题

求数列极限的方法总结及例题以《求数列极限的方法总结及例题》为标题,写一篇3000字的中文文章一、什么是数列极限数列极限是数学中非常重要的概念,它是指当数列中的每一项都确定时,其值是无限值,而它表示的数字则不会变化。

数列极限是描述数字趋势的一种抽象思想,它可以帮助我们理解许多数学问题。

然而,要求出数列极限的思路并不是十分简单,需要我们熟悉一些基本的数学知识和求极限的方法来推导出最终的结果。

二、常用的求极限的方法1.t极限定义法。

在求极限的过程中,极限定义法是最基本也是最强有力的一种方法,它可以使用限定条件将极限运算表达式化简,这样最终可以得出一个易于理解的极限表达式。

2.t化为无穷积分法。

将极限表达式进行拆分变形,将复杂的极限表达式化为无穷积分的形式,利用积分的性质来求解极限。

3.t求解解微分方程求解极限。

这种求极限的方法由求解解微分方程的极限问题引出,其本质是求解极限问题时将表达式进行拆分化简,将复杂的极限表达式化为微分方程来求解极限。

4.t比较定理。

具有相同极限值的函数可以用比较定理来求极限,其本质是利用比较定理来求出未知项的极限值。

三、例题例1:已知数列{an}为正数序列,且满足liman= 0,求lim(1/an)解:用极限定义法求解,lim(1/an)=lim(1/liman)=1/0,根据定义,1/0不存在,即数列的极限不存在。

例2:已知数列{an}为正数序列,求lim(1/an+1/bn)解:用比较定理求解,lim(1/an+1/bn)=lim(1/an)+lim(1/bn)根据定义, lim(1/an)=lim(1/bn)=0,所以lim(1/an+1/bn)=0+0=0。

四、总结从上面的分析中可以发现,要求数列极限的法子有很多,只需要熟悉基本思路,就可以把数列极限问题解决出来。

其中极限定义法是最基本也是最强有力的一种方法,它可以将极限运算表达式简化;而化为无穷积分法可以将复杂的极限表达式化为无穷积分的形式;求解解微分方程求解极限方法则是求解极限问题时将表达式进行拆分;比较定理则是利用比较定理来求出未知项的极限值。

求数列极限的几种典型方法

求数列极限的几种典型方法

求数列极限的几种典型方法首先我们要知道数列极限的概念:设{}a n为数列,a 为定数,若对任给的正数ε,总存在正整数N ,使得当n >N 时有ε<-a an,则称数列{}a n收敛于a ,定数a 则称为数列{}a n的极限,并记作a a a an nn →=∞→或lim (∞→n )。

若数列没有极限,则称{}a n不收敛,或称{}a n为发散数列。

下面我们来研究求数列极限的几种方法:方法一:应用数列极限的定义 例一:证明01lim=∞→nn α,这里α为正数。

证明:由于nnαα101=-故对任给的0>ε,只要取111+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=εαN ,则当N n >时就有εαα<<Nn11这就证明了01lim=∞→nn α。

用定义求数列极限有几种模式: (1)0>∀ε,作差a an-,解方程ε<-a a n ,解出()εf n >,则取()εf N =或() ,1+=εf N(2)将a an-适当放大,解出()εf n >;(3)作适当变形,找出所需N 的要求。

方法二:(迫敛性)设收敛数列{}{}b a nn,都以a 为极限,数列{}c n满足:存在正整数N 0,当Nn 0>时有:b c a nnn≤≤则数列{}c n收敛,且a cnn =∞→lim 。

例二:求数列{}nn 的极限。

解:记h a n n n n +==1,这里0>h n ()1>n ,则有h h n nn n n n 22)1()1(-⋅>=+ 由上式的120-<<n h n )1(>n ,从而有 12111-+≤+=≤n h a n n 数列⎭⎬⎫⎩⎨⎧-+121n 是收敛于1的,因为任给的0>ε,取ε221+=N ,则当N n >时有ε<--+1121n ,于是上述不等式两边的极限全为1,故由迫敛性证得1lim =∞→n n n 。

16种求极限的方法总结

16种求极限的方法总结

16种求极限的方法总结说起考研数学,你觉得最难的是哪个?据调查,数学中求极限的问题一直困扰着广大考生,2015年的考研马上就要到了,海文考研专门为大家梳理了16种求极限的方法,相信肯定对你有帮助。

解决极限的方法如下:1、等价无穷小的转化只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记(x趋近无穷的时候还原成无穷小2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。

首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。

对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x 展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

4、无穷大比上无穷大面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母看上去复杂,处理很简单!5、无穷小于有界函数无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。

证明极限的方法总结

证明极限的方法总结

证明极限的方法总结思路一:利用数列的定义证明一般来说,如果已知数列的表达式,欲证明数列的极限是给定的实数,那么我们通常采用定义法来证明数列收敛。

首先,我们再来回顾一下数列极限的概念。

如果对于任意ϵ>0,都存在N,使得对任意n≥N都有|a n−A|<ϵ,就称数列{a n}收敛于A,或者称A是数列{a n}的极限。

所以如果不知道数列到底收敛到何值,或者难以得到数列的具体表达式,我们很难利用定义证明数列收敛。

而用定义法证明数列收敛的思路是显而易见的,就是对于任意给定的ϵ,设法寻找相应的N,使得n≥N时候数列的每一项与A的差值小于给定的ϵ。

N一般来说是可以用ϵ表示的。

这里要注意,我们要做的事情并不一定是解不等式|a n−A|<ϵ(如果这个不等式比较容易解,当然解不等式就可以找到需要的N),一般来说这个不等式并不是很好解。

想办法利用表达式的特征找到N就好了。

首先,我们暂时还不知道对给定的ϵ,要取的N为何值。

我们并没有直接获知需要的N的“特异功能”,所以先要进行分析,看看表达式的特征,通过分析发现合适的取值。

如果直接解不等式很容易,那么只需要解这个不等式就行了。

如果并不容易,我们要看能否作合适的放缩。

倘若我们找到了一个表达式g(n),满足|a n−A|≤g(n),而g(n)<ϵ这个不等式很好解,比如说现在找到了一个N,n≥N的时候g(n)<ϵ那么自然|a n−A|≤g(n)<ϵ。

虽然这个N并不一定是“最好的”,但是我们并不在乎这一点,只要找到就行了。

至于具体怎么放缩还是要看式子的特征,难以统一归纳了。

下面我们来看一些例子。

例1:证明lim n→∞1n2=0分析:对于给定的ϵ>0,需要找到使得∣∣1n2−0∣∣<ε成立的n的阈值。

这里这个不等式并不难解,所以可以解出来n>1ε√,所以取N=[1ε√]+ 1就可以了(方括号表示取整数部分)。

因为经过了这样的分析,接下的证明我们径直如是取N的值。

如何利用数学归纳法证明数列极限

如何利用数学归纳法证明数列极限

如何利用数学归纳法证明数列极限数学归纳法是一种常用的证明方法,特别适用于证明数列的极限。

通过归纳法可以逐步推理出数列中每一个项的性质,从而得到整个数列的性质。

本文将介绍如何利用数学归纳法来证明数列的极限。

首先,我们需要明确数列极限的定义。

对于一个数列 {an},如果存在一个数 L,使得当 n 足够大时,数列中的任意项与 L 的差的绝对值小于任意给定的正数ε,即 |an - L| < ε,那么我们称 L 是数列 {an} 的极限,记作 lim(an) = L。

这意味着当 n 足够大时,数列中的项将无限接近于 L。

利用数学归纳法证明数列的极限可以分为三个步骤:基础步骤、归纳假设和归纳推理。

第一步是基础步骤。

我们需要证明数列中的某个特定项满足极限的定义。

通常我们选择数列的第一个项作为基础步骤。

假设我们要证明lim(an) = L,那么我们需要证明当 n = 1 时,an 与 L 的差的绝对值小于任意给定的正数ε。

这通常可以通过直接计算或者代入数值来得到。

第二步是归纳假设。

我们假设当 n = k 时,数列中的第 k 项与 L 的差的绝对值小于任意给定的正数ε,即 |ak - L| < ε。

这个假设是我们证明剩下项与 L 的差的绝对值同样小的前提条件。

第三步是归纳推理。

我们需要证明当 n = k+1 时,数列中的第 k+1项与 L 的差的绝对值小于任意给定的正数ε。

根据归纳假设,我们知道|ak - L| < ε。

现在,我们需要利用这个已知条件来推导出 |ak+1 - L| < ε。

在归纳推理的过程中,我们可以利用数列的递推关系式,数学运算和极限的性质等来推导不等式。

具体的推导方法要根据数列的特点和题目给出的条件来确定。

综上所述,通过数学归纳法,我们可以逐步推理出数列中的每一个项与极限的关系,并最终证明数列的极限存在。

这种证明方法在数学的各个领域都有广泛应用,尤其是在数学分析和数学推理中。

证明极限的几种方法

证明极限的几种方法

证明极限的几种方法极限是微积分中的一个重要概念,用来描述函数在某一点或无穷远处的趋势。

在数学中,有多种方法可以用来证明极限的存在或计算极限的值。

本文将介绍几种常用的证明极限的方法。

一、数列极限的证明方法数列极限是极限的一种特殊情况,通常用来描述数列在无穷项处的趋势。

对于数列${a_n}$,如果存在一个实数$a$,使得对于任意给定的正实数$\varepsilon$,都存在正整数$N$,使得当$n>N$时,有$|a_n-a|<\varepsilon$成立,则称数列${a_n}$的极限为$a$,记作$\lim\limits_{n\to\infty} a_n=a$。

数列极限的证明方法主要有夹逼准则、单调有界准则等。

夹逼准则是证明数列极限存在的常用方法。

其思想是通过夹逼数列,找到一个已知的收敛数列,使得待证数列夹在这两个数列之间。

然后利用已知数列的极限,推导出待证数列的极限。

例如,要证明数列${\frac{1}{n}}$收敛于0,可以利用夹逼准则。

首先,我们知道对于任意正整数$n$,都有$0<\frac{1}{n}<\frac{1}{1}=1$。

又因为$\lim\limits_{n\to\infty} \frac{1}{1}=0$,所以根据夹逼准则,数列${\frac{1}{n}}$的极限存在且为0。

二、函数极限的证明方法函数极限是极限的一般情况,用来描述函数在某一点处的趋势。

对于函数$f(x)$,如果存在一个实数$a$,使得对于任意给定的正实数$\varepsilon$,都存在正实数$\delta$,使得当$0<|x-a|<\delta$时,有$|f(x)-a|<\varepsilon$成立,则称函数$f(x)$在点$a$处具有极限$a$,记作$\lim\limits_{x\to a} f(x)=a$。

函数极限的证明方法主要有$\varepsilon-\delta$准则、夹逼准则等。

求数列的极限的方法

求数列的极限的方法

求数列的极限的方法求数列的极限是数学分析中的一个重要概念,它描述了数列在无限逼近的过程中,数值趋于的一个确定值或者无穷大的现象。

数列的极限不仅在数学中有重要应用,还在物理、经济和工程等学科中发挥着重要作用。

在解决实际问题中,了解数列的极限有助于我们预测和分析变化的趋势,优化方案和做出合理决策。

下面将介绍数列的极限的计算方法和应用。

首先,计算数列极限的方法有多种,常见的有代数,几何和收敛定理等方法。

代数方法一般通过对数列的通项公式进行变形运算,推导出其极限的表达式。

几何方法则通过图形的观察和几何直观的解释,帮助我们理解和计算数列的极限。

收敛定理是基于数列的性质和数学定理,通过理论推导和证明来确定数列的极限。

接下来将介绍常见的代数方法和收敛定理方法。

一、代数方法1. 直接代入法:数列的极限可以直接通过将自变量取极限来确定,即将数列中的n值逐渐加大,观察数列的极限情况。

例如,对于数列an=1/n,当n趋于无穷大时,1/n的值逐渐接近于0,因此数列an的极限为0。

2. 分子有界法:数列极限可以通过计算数列的分子项和分母项的极限来确定。

当数列中的分子项在n趋近无穷大时有界,而分母项趋于无穷大时,可以得出数列的极限为0。

例如,对于数列an=(n+1)/(n^2+1),当n趋近无穷大时,分子项n+1是有界的,并且分母项n^2+1趋近无穷大,因此可以得出数列an的极限为0。

3. 数列通项分解法:对于复杂的数列,可以通过将其通项进行分解,得到更简单的数列的极限。

例如,对于数列an=(n^2+1)/(2n^2+3n),可以将其分解为an=(n^2/n^2)(1+1/n)/(2+3/n),然后运用数列的性质,分别计算分子项和分母项的极限,最后得出数列an的极限。

二、收敛定理方法1. 夹逼定理:夹逼定理是数列极限的重要定理之一,可以通过夹逼定理来求解一些复杂或者难以直接计算的数列极限。

夹逼定理的基本思想是通过构造两个辅助数列,一个较小且比待求数列逼近其极限值,另一个较大且比待求数列逼近其极限值,从而利用这两个数列来夹逼待求数列的极限值。

数列求极限的方法总结

数列求极限的方法总结

数列求极限的方法总结数列求极限的方法总结数列求极限的方法有那些?极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。

极限分为一般极限,还有个数列极限,下面是为大家总结的数列求极限的方法总结。

1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记(x趋近无穷的时候还原成无穷小)。

2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。

首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x 趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。

对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的.形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。

数列极限的推导及应用

数列极限的推导及应用

数列极限的推导及应用数列是数学中的重要概念,它是一列有序的数按一定规律排列而成。

数列极限是研究数列性质以及数列在某个方向无限趋近的值的重要概念。

数列极限的推导过程可以通过数学的严谨推理来完成。

首先,我们需要明确数列的定义和性质。

数列的一般形式可以表示为{an},其中an表示数列中的第n个数。

数列可以是有界数列或无界数列。

有界数列是指数列中的所有数都在某个区间内,而无界数列则是指数列中的数没有上界或下界。

要推导数列极限,我们需要首先观察数列的趋势和规律。

通过观察数列中前几项的值,我们可以猜测数列是否有极限。

如果数列无法通过观察得到明确的极限值,我们还可以利用数学定理和方法来推导。

最常用的推导数列极限的方法是利用数列收敛的定义。

数列{an}收敛于一个实数L,可以用以下等价定义来描述:对于任意给定的正数ε,存在正整数N,当n>N时,有|an-L|<ε。

这个定义说明了当数列中的项超过某个位置n>N时,数列的值与极限值L之间的误差可以被任意小的正数ε所限制。

通过找到满足这个条件的极限值L和对应的N,我们可以推导出数列的极限。

另外一种常用的方法是利用数列的递推关系式来推导数列极限。

递推关系式是指通过前一项或前几项的数来定义后一项的数的关系。

通过递推关系式,我们可以用逐渐逼近的方式推导出数列的极限。

数列极限的应用非常广泛。

在实际问题中,数列常常用于描述一些具有规律变化的量。

例如,天文学中的周期性天体运动、物理学中的振动和波动、经济学中的市场价格波动等等都可以用数列来进行建模和分析。

数列极限的应用也涉及到数学中的其他概念和工具。

例如,数列极限与函数极限有密切的联系。

数列极限可以看作是函数在自然数序列上的极限,而函数极限则是在实数集上进行定义。

通过数列极限的研究,我们可以更好地理解函数极限的概念。

另外,数列极限还与微积分中的导数和积分密切相关。

通过研究数列的极限性质,我们可以推导出函数的导数和积分的性质,从而进一步研究函数的变化规律和面积计算。

求数列的极限的方法总结

求数列的极限的方法总结

求数列的极限的方法总结求数列的极限是微积分中的一个重要问题,是计算数列中数字的趋势和趋近于的值。

在数学中,数列的极限是指当数列中的元素逐渐接近于某个值时,该值被称为数列的极限。

数列的极限有着重要的理论意义和广泛的应用,常常出现在微积分、数值计算以及物理等领域中。

为了求解数列的极限,我们可以使用多种方法和定理。

下面我将总结一些常见的方法,以帮助读者更好地理解和掌握求数列极限的技巧。

一、数列的递推关系求解数列的极限时,通常首先要确定数列的递推关系。

数列的递推关系是指数列中的每一项与前一项之间的数学关系。

通过找到数列的递推关系,我们可以更好地理解数列的增长规律,从而更好地求解数列的极限。

二、数列的有界性和单调性如果数列是有界的和单调的,那么我们可以通过有界性定理和单调性定理来判断数列的极限。

1. 有界性定理:如果数列是有界的,即存在一个上界和下界,那么数列的极限存在。

2. 单调性定理:如果数列递增且有上界,或者数列递减且有下界,那么数列的极限存在。

通过判断数列的有界性和单调性,我们可以进一步缩小数列极限的范围,从而更容易确定数列的极限值。

三、数列的极限定理数列的极限定理是求解数列极限的重要工具,它包括以下几个定理:1. 唯一性定理:如果数列有极限,那么极限是唯一的。

2. 夹逼定理:如果数列的每一项都被夹在两个趋于同一极限的数列之间,那么数列的极限也趋于相同的值。

3. 四则运算法则:如果两个数列都有极限,那么它们的和、差、积和商的极限也存在,并且可以通过已知数列的极限来计算。

4. 单调有界定理:如果一个数列既是单调递增的又有上界(或单调递减的且有下界),那么它的极限存在。

应用这些数列极限定理,我们可以更加简化和有效地求解数列的极限问题。

四、应用泰勒展开泰勒展开是一种通过逼近函数的无穷级数和多项式,来求解函数在某点附近的近似值的方法。

在求解数列极限时,我们可以使用泰勒展开来逼近数列中的元素。

通过对数列中的元素应用泰勒展开,我们可以将数列中的每一项表示为一个近似的无穷级数和多项式。

判断函数极限是否存在的方法

判断函数极限是否存在的方法

判断函数极限是否存在的方法判断函数极限是否存在是微积分中的一个重要问题,它涉及到了许多基本理论和重要定理。

本文将介绍如何通过数列极限、夹逼定理、单调有界原理、Heine定理、Cauchy准则等方法来判断函数极限是否存在。

1. 数列极限法数列极限法是判断函数极限是否存在的一种基本方法。

它的基本思路是利用函数在某一点附近的数列逼近函数极限的性质,来判断函数极限是否存在。

一般来说,数列极限法适用于具有连续性和有限性质的函数。

具体来说,如果函数f(x)在x0附近有定义,那么只需要找到一些趋近于x0的数列{x_n},使得这些数列对应的函数值{f(x_n)}逐渐趋近于一个有限的常数L,那么我们就可以得到f(x)在x0处的极限为L。

即:lim x->x0 f(x) = L当且仅当对于任意一个趋近于x0的数列{x_n}, 都有lim n->∞ f(x_n) = L例如,考虑函数f(x) = (x^2 - 1)/(x-1) 在x = 1处的极限问题。

我们可以取一个数列{1.1, 1.01, 1.001, … },通过计算,得到这些数列对应的函数值为{2.1, 2.01, 2.001, … },显然这些函数值逐渐趋近于 2。

因此,我们可以断言:lim x->1 (x^2 - 1)/(x-1) = 22. 夹逼定理夹逼定理是常用的一种判断函数极限是否存在的方法。

它的基本思路是将我们要研究的函数夹在两个已知的函数之间,这两个函数的极限都已经被证明存在,并且它们的极限相等,那么我们就可以得到这个函数的极限存在,并且等于这个相同的极限。

夹逼定理适用于那些比较难直接处理的函数。

例如:lim x->0 xcos(1/x)我们可以将这个函数夹在两个函数之间:-lim x->0 |x| <= lim x->0 xcos(1/x) <= lim x->0 |x|其中 |x| 是 x 的绝对值。

数学中的数列与级数极限判定方法

数学中的数列与级数极限判定方法

数学中的数列与级数极限判定方法数学中的数列和级数是数学分析中的重要概念,研究数列和级数的极限是数学分析的核心内容之一。

通过数列和级数的极限判定方法,可以帮助我们了解数列和级数的性质、求解一些特殊数列和级数的极限值。

本文将介绍数学中常用的数列与级数极限判定方法,包括单调有界数列的极限判定、夹逼准则、正项级数收敛判定和交错级数收敛判定等。

一、单调有界数列的极限判定单调有界数列是指数列的值随着下标的增加而单调递增或单调递减,并且数列存在上界或下界。

对于单调有界数列,我们可以直接判定其极限。

若数列是递增有上界的,那么数列的极限为它的上确界;若数列是递减有下界的,那么数列的极限为它的下确界。

二、夹逼准则夹逼准则是数学分析中常用的极限判定方法之一。

它适用于那些难以直接判定的数列极限问题。

夹逼准则的主要思想是通过比较一个数列与两个已知数列的大小关系,来确定这个数列的极限。

具体来说,如果数列b(n)大于等于数列a(n),而数列b(n)又小于等于数列c(n),那么当n趋向于无穷大时,数列a(n)与数列c(n)的极限相等,并且数列b(n)的极限也等于这个极限值。

三、正项级数收敛判定正项级数是指级数的每一项都是非负的数列。

对于正项级数的收敛性判定,可以使用柯西收敛准则或比较判别法。

柯西收敛准则是说对于任意正数ε,当级数的部分和序列满足对于任意自然数n和m,当m>n时,有|Sn-Sm|<ε,则称该级数收敛。

比较判别法是通过比较级数的通项与已知级数的通项大小关系来判定级数的收敛性。

四、交错级数收敛判定交错级数是指级数的各项符号交替出现的级数。

交错级数的收敛性判定方法主要有莱布尼茨判别法和绝对收敛判别法。

莱布尼茨判别法是说如果交错级数的各项绝对值递减趋于零,并且绝对收敛,那么交错级数收敛。

绝对收敛判别法是说如果交错级数的绝对值级数收敛,那么交错级数收敛。

总结:数学中的数列与级数极限判定方法包括单调有界数列的极限判定、夹逼准则、正项级数收敛判定和交错级数收敛判定等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档