27.1图形的相似教案与学案

合集下载

27.1图形的相似教案

27.1图形的相似教案

27.1图形的相似教案篇一:27.1图形的相似教案(含1.2课时)[1]九年级数学图形的相似集体备课教案27.1图形的相似(第1课时)【教学任务分析】【教学环节安排】【当堂达标自测题】一、填空题1.观察下列图形,指出.2.形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的.3、下面各组中的两个图形,是形状相同的图形,.二、选择题1.(1)????????;(2);(3);(4).在上述各种符号中,形状相同的符号有几组?()a.一组B.二组c.三组d.四组2.下列说法中,正确的是()a.正方形与矩形的形状一定相同B.两个直角三角形的形状一定相同c.形状相同的两个图形的面积一定相等d.两个等腰直角三角形的形状一定相同3.经历平移、旋转、轴对称变化前后的两个图形()a.形状大小都一样B.形状一样,大小不一样c.形状不一样,大小一样d.形状大小都不一样4.在平面坐标系中,一个图形各点的横坐标、纵坐标都加上或减去同一个非零数,得到一组新的对应用点,则连接所得到点的图形与原图形形状()a.不能够互相重合B.形状相同,大小也一定相同c.形状不一样d.形状相同,大小不一定相同三、解答题画一个三角形,然后把它的各边扩大2倍,画出图形,观察新图形与原图形的关系.九年级数学图形的相似集体备课教案陈军27.1图形的相似(第2课时)【教学任务分析】【教学环节安排】篇二:27.1图形的相似教学设计教案教学准备1.教学目标1.1知识与技能:1.掌握相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等;2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算。

1.2过程与方法:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题。

1.3情感态度与价值观:培养学生严谨的数学思维习惯。

2.教学重点/难点教学重点:相似多边形的主要特征与识别教学难点:运用相似多边形的特征进行相关的计算。

人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》一. 教材分析《图形的相似》是人教版数学九年级下册第27.1节的内容,本节主要让学生理解相似图形的概念,掌握相似图形的性质,以及学会运用相似图形解决实际问题。

教材通过生动的实例和丰富的练习,引导学生探索和发现相似图形的性质,培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念和性质,如点、线、面的关系,角度、三角形的性质等。

但是,对于相似图形的概念和性质,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对于解决实际问题,尤其是涉及到相似图形的实际问题,感到困难,需要教师的引导和帮助。

三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。

2.学会运用相似图形解决实际问题。

3.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.相似图形的概念和性质。

2.运用相似图形解决实际问题。

五. 教学方法1.实例教学:通过生动的实例,引导学生观察和发现相似图形的性质。

2.问题驱动:提出实际问题,引导学生运用相似图形进行解决。

3.分组讨论:学生分组讨论,培养学生的合作能力和解决问题的能力。

4.练习巩固:通过丰富的练习,巩固学生对相似图形的理解和掌握。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示实例。

2.练习题:准备相关的练习题,巩固学生的学习效果。

3.实物模型:准备一些实物模型,如相似的三角形、矩形等,帮助学生直观地理解相似图形。

七. 教学过程1.导入(5分钟)利用实物模型或图片,引导学生观察和比较相似的图形,引发学生对相似图形的兴趣。

提问:你们发现这些图形有什么共同的特点?学生回答:形状相同,但大小不同。

教师总结:这就是我们今天要学习的相似图形。

2.呈现(10分钟)展示教学课件,讲解相似图形的概念和性质。

通过实例和图形的变换,引导学生发现相似图形的性质,如对应边的比例关系、对应角的相等关系等。

人教版数学九年级下册27.1图形的相似(教案)

人教版数学九年级下册27.1图形的相似(教案)
-将相似图形的性质灵活运用于解决非标准形式的实际问题。
举例解释:
-对于相似图形性质证明的难点,通过分步骤的引导和图形演示,帮助学生理解面积比和周长比是由相似比平方这一数学原理。
-在识别相似图形时,教师需要提供不同难度的图形练习,指导学生如何从复杂图形中提取关键信息,应用判定法。
-在解决实际问题时,教师应设计多样化的题目,如不规则图形的相似变换、实际物体尺寸的测量等,以训练学生将理论应用到不同情境中的能力。
3.重点难点解析:在讲授过程中,我会特别强调相似图形的定义和相似判定法这两个重点。对于难点部分,如相似性质证明,我会通过举例和逐步推导来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形并测量其边长比,从而观察周长比和面积比的关系。
三、教学难点与重点
1.教学重点
-理解并掌握相似图形的定义及其性质,特别是相似图形的周长比和面积比。
-掌握AA相似判定法和SAS相似判定法的应用。
-学会将相似图形的性质应用于解决实际问题,如地图比例尺的计算、物体放大与缩小的比例等。
举例解释:
-在讲解相似图形的定义时,重点强调对应角相等、对应边成比例的两个条件,并通过具体图形的例子加深理解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

27.1图形的相似2教案

27.1图形的相似2教案
CA_5_1c¥^To^2,
AB_BC_CAAjT-FiT-cW'
ΛΔABC与4A'B'C'相像.
让学生完成解答,老师巡察指导
课堂小结
在课的最终,我们还要介绍一个概念.(指准例1图)我们知道,这两个四边形相像,它1O1O
们对应边的比相等,那么对应边的比等于多少?(稍停)等于二(板书:—),约分2424
解题过程如课本第37页所示
师可组织学生分组探讨,


的长度X.
M_SLfLSX
摸索练习,同授调整
2.填空:如图所示的两个五边形
相像,
贝Ua=,b=,
证明:在等腰直角AABC和4A'B'
C'中,
NA=NA'=45°,ZB=Z
B'=45°,NC=NC'=90°.
而_
AB=√52+52=√50=5√2,
相互沟通,让各组代表发言,达成共识;
2.阅历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,驾驭分析问题和解决问题的一些基本方法。
情感看法
1.主动参与数学活动,对数学有新颖心和求知欲。
2.感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的志气,具备学好数学的信念。
重点
运用相像多边形的概念进行计算和证明.
学科
数学
老师姓名
备课时间
课题
27.1图形的相像2
课时
1
教学目标
学问与技能
1.会运用相像多边形的概念进行计算和证明,知道相像比的意义.
2.培育推理论证明力,发展空间观念.
过程与方法
1.初步学会在具体的情境中从数学的角度发觉问题和提出问题,并综合运用数学学问和方法等解决简洁的实际问题,增加应用意识,提高实践实力。

《27.1 图形的相似》教案、导学案、同步练习

《27.1 图形的相似》教案、导学案、同步练习

第二十七章相似27.1 图形的相似【教学目标】1.从生活中形状相同的图形的实例中认识图形的相似;(重点)2.理解成比例线段的概念,会确定线段的比.(难点)【教学过程】一、情境导入如图是两张大小不同的世界地图,左边的图形可以看作是右边的图形缩小得来的.由于不同的需要,对某一地区,经常会制成各种大小的地图,但其形状(包括地图中所描绘的各个部分)肯定是相同的.日常生活中我们会碰到很多这种形状相同、大小不一定相同的图形,在数学上,我们把具有相同形状的图形称为相似图形.像这样的图形有哪些性质?下面我们就一起探讨一下吧!二、合作探究探究点一:相似图形观察下面图形,指出(1)~(9)中的图形有没有与给出的图形(a)、(b)、(c)形状相同的?解析:通过观察寻找与(a),(b),(c)形状相同的图形,在所给的9个图形中仔细观察,然后作出判断.解:通过观察可以发现:图形(4)、(8)与图形(a)形状相同;图形(6)与图形(b)形状相同;图形(5)与图形(c)形状相同.方法总结:判断两个图形的形状是否相同,应仔细观察,当两个图形的形状除了大小没有其他任何差异时,我们才可以说这两个图形形状相同.探究点二:比例线段【类型一】判断四条线段是否成比例下列各组中的四条线段成比例的是( )A.4cm,2cm,1cm,3cmB.1cm,2cm,3cm,5cmC.3cm,4cm,5cm,6cmD.1cm,2cm,2cm,4cm解析:选项A.从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;选项B.从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;选项C.从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;选项D.从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选D.方法总结:判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可.【类型二】利用成比例线段的定义,求线段的长已知线段a、b、c、d是成比例线段,其中a=2m,b=4m,c=5m,则d =( )A.1m B.10m C.52m D.85m解析:∵线段a、b、c、d是成比例线段,∴a∶b=c∶d,而a=2m,b=4m,c=5m,∴d=b·ca=4×52=10(m).故选B.方法总结:求线段之比时,要先统一线段的长度单位,然后根据比例关系求值.【类型三】利用比例尺求距离若一张地图的比例尺是1∶150000,在地图上量得甲、乙两地的距离是5cm,则甲、乙两地的实际距离是( )A.3000m B.3500mC.5000m D.7500m解析:设甲、乙两地的实际距离是x cm,根据题意得1∶150000=5∶x,x =750000(cm),750000cm=7500m.故选D.方法总结:比例尺=图上距离∶实际距离.根据比例尺进行计算时,要注意单位的转换.探究点三:相似多边形【类型一】利用相似多边形的性质求线段和角如图所示,给出的两个四边形是相似形,具体数据如图所示,求出未知边a、b的长度及角α的值.解析:根据相似多边形对应角相等和对应边成比例解答.解:因为四边形ABCD与四边形A′B′C′D′相似,所以∠B′=∠B=63°,∠D′=∠D,ADA′D′=ABA′B′=BCB′C′,所以416=a20=4.5b,所以a=5,b=18.在四边形A′B′C′D′中,∠D′=360°-(84°+75°+63°)=138°.∠α=∠D=∠D′=138°.方法总结:若两个多边形相似,那么它们的对应角相等,对应边成比例.在书写两个多边形相似时,要注意把表示对应角顶点的字母写在对应的位置上.【类型二】相似多边形的判定如图,一块长3m、宽1.5m的矩形黑板ABCD如图所示,镶在其外围的木质边框宽75cm.边框的内边缘所成的矩形ABCD与边框的外边缘所成的矩形EFGH相似吗?为什么?解析:两个矩形的四个角虽然相等,但四条边不一定对应成比例,判定两个矩形是否相似,关键是看对应边是否成比例.解:不相似.∵矩形ABCD 中,AB =1.5m ,AD =3m ,镶在其外围的木质边框宽75cm =0.75m ,∴EF =1.5+2×0.75=3m ,EH =3+2×0.75=4.5m ,∴AB EF =1.53=12,AD EH =34.5=23.∵12≠23,∴内边缘所成的矩形ABCD 与边框的外边缘所成的矩形EFGH 不相似.方法总结:判定两个多边形相似,需要对应角相等,对应边成比例,这两个条件缺一不可.三、板书设计1.相似图形的概念;2.比例线段;3.相似多边形的判定和性质.【教学反思】本节课中对相似多边形的特征的教学要注意难度的把握,不要过高要求学生掌握更多的内容.学生能了解性质,并能简单运用即可,重要的还是后续的相似三角形的学习,当相似三角形的特征掌握之后,再进一步研究相似多边形的性质,学生就比较容易掌握.第二十七章 相似27.1 图形的相似学习目标:1.从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念. 了解成比例线段的概念,会确定线段的比.2.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.3.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.学习重、难点:1.重点:相似图形的主要特征与识别.2.难点:运用相似多边形的特征进行相关的计算.学习过程:一、依标独学1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?2 、小组讨论、交流.得到相似图形的概念.相似图形3 、如图,是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?二、围标群学实验探究:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的比是多少?成比例线段:对于四条线段,如果其中两条线段的比与另两条线段的比相等,如(即),我们就说这四条线段是成比例线段,简称比例线段.【注意】(1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;线段的比是一个没有单位的正数;,,,a b c da cb d=ad bc=(2)四条线段成比例,记作或;(3)若四条线段满足,则有.小应用:一张桌面的长,宽,那么长与宽的比是多少?(1)如果,,那么长与宽的比是多少?(2)如果,,那么长与宽的比是多少?三、探索1、如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.2.【结论】:(1)相似多边形的特征:相似多边形的对应角______,对应边的比_______.反之,如果两个多边形的对应角______,对应边的比_______,那么这两个多边形_______.几何语言:在四边形ABCD和四边形A1B1C1D1中若.则四边形ABCD和四边形A1B1C1D1相似(2)相似比:相似多边形________的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形______,因此________形是一种特殊的相似形.,,,a b c da cb d=::a b c d=a cb d=ad bc=1.25a m=0.75b m=125a cm=75b cm=1250a mm=750b mm=1111;;D DA AB BC C;11111111D=AB BC C DAA B B C C D D A四、自我检测1.在比例尺为1:10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边、、、的长度.五、归纳小结《相似——图形的相似》同步检测1附答案一、填空题1、形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。

27.1 图形的相似教案

27.1 图形的相似教案

27.1 图形的相似《图形的相似》是继“轴对称、平移、旋转”之后集中研究图形形状的内容,从实际问题引入,通过对生活中的实例认识图形的相似,让学生理解图形相似的概念,让学生体验图形与现实世界的密切联系,体会图形相似与图形全等等内容之间的内在联系.本节课是学生在认识了全等形的基础上进行教学的,研究相似比研究全等更具一般性,相似图形、相似多边形的概念是后续学习相似三角形的基础,是空间与图形领域中的重要内容.本节课所涉及的内容来源于实际生活,为学生的数学建模能力搭建了一个平台,从中学到的不仅仅是知识、方法,还会将生活语言转化为数学语言,提高了学生的应用意识,有着承上启下、贯穿始终的作用.【情景导入】播放一些著名建筑物的图片(如图所示),让学生在音乐中欣赏,感受生活中形状相同的图形.欣赏并找出图中哪些图形是相同的.【说明与建议】说明:让学生留心观察生活中存在的大量形状相同的图形,增强学生的感性认识.伴着音乐欣赏美丽的图片,提高了学生的学习兴趣,从而让学生感受到数学学习的内容都是现实的、有趣的,让学生体会到数学就在我们身边.建议:让学生经历从现实世界中抽象出平面图形的过程,直观地感受图片中有很多相同的图形,从而引出课题.【置疑导入】下图中每一组图形的形状相同吗?大小相同吗?每一组图形是全等图形吗?(1)等边三角形(2)正方形(3)矩形【说明与建议】说明:通过图形的比较,让学生感受相似图形所具备的共同特征,同时引导学生自然地得出相似多边形的定义.建议:在得到相似多边形定义的时候要抓住两个关键点:一是各角对应相等,二是各边对应成比例.【回顾导入】如图,下边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.问题:对于图中两个相似的四边形,它们的对应角是否相等?对应边的比是否相等?【说明与建议】教师可以让学生依据相似图形的概念画出后,利用量角器和直尺测量对应角、对应边,从而引导学生得出相似多边形的概念.命题角度1 识别相似图形、判断相似多边形1.下列图形一定相似的是(C)A.两个平行四边形B.两个矩形C.两个正方形D.两个等腰三角形命题角度2 利用相似多边形的性质求线段和角2.如图,四边形ABCD∽四边形EFGH,∠A=80°,∠C=90°,∠F=70°,则∠H=(D)A.70°B.80°C.110° D.120°3.已知四边形ABCD与四边形A′B′C′D′相似,相似比为3∶4,其中四边形ABCD 的周长为18 cm,则四边形A′B′C′D′的周长为24cm.命题角度3 判断四条线段是否成比例及利用成比例线段的定义求线段的长4.下列各组线段中,线段a,b,c,d是成比例线段的是(A)A.a=1,b=2,c=4,d=8 B.a=2,b=1,c=4,d=8C.a=1,b=2,c=8,d=4 D.a=1,b=4,c=8,d=25.已知a,b,c,d是成比例线段,其中a=1 cm,b=4 cm,c=2 cm,则d=(C) A.2 cm B.4 cm C.8 cm D.10 cm命题角度4 利用比例尺求距离6.若一张地图的比例尺是1∶150 000,在地图上量得甲、乙两地的距离是5 cm,则甲、乙两地的实际距离是(D)A.3 000 m B.3 500 m C.5 000 m D.7 500 m《苏轼巧分田产》相传,北宋大文学家苏轼在凤翔作官时,为官清正,秉公执法,深得百姓拥戴.一天,有兄弟四人前来告状.苏轼坐在公案前,展开状纸一看:“小民杨大毛,家住城南寨.先父临终时,留下两顷田,只因分不均,兄弟反目.青天大老爷,请把理来断.”苏轼接过地契,心中暗暗盘算,杨家田地为工字形,如何分配,才能让四兄弟满意呢?沉思片刻,计上心来,遂唤一名差役耳语道:“只需如此如此……”差役遵嘱叫上四兄弟当场丈量,不一会儿,只见四兄弟满面带笑地跑过来,叩头不迭道:“多谢恩公明断!”你知道苏轼是怎样使分开后的四块田地形状相同,面积相等的吗?分法如下:课题27.1 图形的相似授课人素养目标1.理解相似图形的特征,掌握相似图形的识别方法.2.了解成比例线段的含义,会判断四条线段是不是成比例线段.3.理解相似多边形的概念、性质及判定,会计算和相似多边形有关的角度和线段的长.教学重点1.理解并掌握相似图形、相似多边形的概念及特征.2.探索相似多边形的性质中的“对应”关系.教学难点能利用成比例线段的概念及相似多边形的性质进行有关计算. 授课类型新授课课时教学步骤师生活动设计意图回顾1.什么是全等形?全等形的形状和大小有什么关系?2.下面两个图形是不是全等形?如何判断?通过复习全等形的概念和判定,为本节课相似形的学习做铺垫.同时,通过欣赏、识别生活中的全等图片,让学生体会数学来源于生活,激发学生学习的兴趣,感受数学中的美.活动一:创设情境、导入新课【课堂引入】1.欣赏下面各组图片:(1)在空中不同高度飞行的两架型号相同的直升机;(2)大小不同的两个足球;(3)汽车和它的模型.2.你能看出上面各组图片的共同之处吗?把你的想法说给同学听听.通过对生活中形状相同的图形的观察和欣赏,从实际模型中抽象概括得出数学概念,自然地引出课题,使学生初步感受相似,同时进行美育渗透.活动二:实践探究、交流新知探究新知:1.探究相似图形的定义问题:(1)全等图形的形状和大小之间有什么关系?1.让学生亲自观察实际生活中的图形,在教师提出学生在教师的引导下,边动手操作边思考、回答问题,师生共同归纳出相似多边形的概念.相似多边形:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.中,教师通过设置层层深入的小问题,引导学生完成探究活动,降低了学生学习新知识的难度,让学生体验了知识的形成过程,提高了学生分析问题的能力.通过用几何语言表示相似多边形的定义和性质,完成文字语言与符号语言之间的转化,培养学生用符号语言表达数学知识的能力.活动三:开放训练、体现应用【典型例题】例(教材第25页练习第2题)如图,图形(a)~(f)中,哪些与图形(1)或(2)相似?解:图形(d)和图形(1)相似,图形(e)和图形(2)相似.【变式训练】如图所示的图形中,哪些是相似图形?通过经历对例题的探究过程,加深学生对相似图形的基本特征的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.活动四:课堂检测【课堂检测】1.下列四组长度的线段中,是成比例线段的是(C)A.4 cm,5 cm,6 cm,7 cm B.3 cm,4 cm,5 cm,8 cmC.5 cm,15 cm,3 cm,9 cm D.8 cm,4 cm,1 cm,3 cm2.观察下面图形,指出(1)~(9)中的图形有没有与给出的图形(a),(b),(c)形状相同的?解:通过观察可以发现图形(4)、(8)与图形(a)形状相同;图形(6)与图形(b)形状相同;图形(5)与图形(c)形状相同.3.如图,四边形ABCD与四边形EFGH相似,求角α,β的大小和EF的长度x.解:α=83°,β=81°,x=28.通过课堂检测,进一步巩固所学的新知,同时检测学习效果,做到“堂堂清”.课堂小结1.课堂小结:(1)通过本节课的学习,你有哪些收获?还有什么疑感?说给老师或同学听听.(2)教师与同学聆听部分同学的收获,解决部分同学的疑惑.教学说明:梳理本节课的重要方法和知识点,加深对本节课知识的理解.让学生在总结的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,再通过排忧解难让学生对知识形成正向迁移,从而构建出合理的知识体系,养成良好的学习习惯.2.布置作业:教材第27~28页习题27.1第1,3,5,6题.学生在反思中整理知识、梳理思维,获得成功的体验,积累学习的经验,养成系统整理所学知识的习惯.板书设计27.1 图形的相似提纲挈领,重点突出.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.。

人教版九年级数学下27.1图形的相似(第1课时)优秀教学案例

人教版九年级数学下27.1图形的相似(第1课时)优秀教学案例
2.问题导向的教学策略:教师在课堂上提出一系列具有启发性的问题,引导学生思考和探索相似图形的性质。这种问题导向的教学策略能够培养学生的独立思考能力,提高他们的逻辑思维能力。
3.小组合作的学习方式:教师将学生分成若干小组,鼓励他们相互讨论、交流,共同探究相似图形的性质。这种小组合作的学习方式能够培养学生的合作精神,提高他们的沟通能力和团队协作能力。
4.教师组织小组汇报、展示等活动,让学生在分享成果的同时,提高自己的表达能力和合作能力。
(四)反思与评价
1.教师引导学生回顾本节课的学习内容,总结相似图形的性质及其应用。
2.教师设计反思性题目,让学生思考自己在学习过程中的优点和不足,明确今后的学习方向。
3.教师组织学生进行自我评价、同伴评价,让学生了解自己的学习状况,提高自我监控能力。
(二)过程与方法
1.采用自主学习、合作交流的教学模式,引导学生主动探究相似图形的性质。
2.利用多媒体课件、实物模型等教学资源,为学生提供丰富的感性材料,增强他们的空间想象力。
3.设计一系列具有层次性的数学题目,让学生在解决实际问题的过程中,逐步掌握相似图形的性质。
4.注重培养学生的问题提出、问题解决、归纳总结的能力,提高他们的逻辑思维能力。
4.教师及时给予反馈,引导学生反思自己的思考过程,及时调整学习策略。
(三)小组合作
1.教师将学生分成若干小组,鼓励他们相互讨论、交流,共同探究相似图形的性质。
2.教师设计具有挑战性的数学题目,让学生在合作交流中,提高自己的数学素养。
3.教师关注每个小组的学习进度,及时给予指导,帮助学生克服学习中的困难。
三、教学策略
(一)情景创设
1.利用多媒体课件展示生活中的实际例子,如建筑物的立面图、电路图等,让学生感受到相似图形在实际应用中的重要性。

人教版九年级下册27.1图形的相似27.1图形的相似课程设计

人教版九年级下册27.1图形的相似27.1图形的相似课程设计

人教版九年级下册27.1图形的相似课程设计课程背景九年级数学是学生学习数学的最后一年,相似性是其中一个重要的概念。

在该课程中,学生需要通过理解和应用相似性来解决面积、体积、图像、运动和几何相关问题。

通过本节课的学习,学生将会学习到相似性的定义、基本性质和相似三角形的特征。

教学目标知识目标•理解相似性的定义•掌握相似三角形中的比例定理•能够判断两个图形是否相似•能够计算相似图形的周长、面积和体积能力目标•发展空间直观观察和理解能力•发展解决几何问题的思考能力•发展对几何问题进行推理和证明的能力教学内容知识内容1.相似性的定义2.相似三角形的基本概念–边的比例–面积的比例–圆的相似性3.相似三角形的判定方法–夹角相等–对应边成比例教学方法1.讲授相似性的定义和基本概念2.利用幻灯片展示带有比例的相似三角形3.手绘相似的多边形和几何造型4.小组讨论题目,如“如何判断两个图形是否相似?”或“如何计算相似三角形的比例定理?”5.讲授相似三角形的判定方法并进行演示教学过程教学导入引导学生根据班级课本28页上面的两幅图像找出相似三角形,让学生讲出自己找到的相似性依据,并引导学生思考相似性的概念。

讲授概念通过幻灯片来展示相似三角形的比例和特征。

让学生理解三角形的相似定义,以及相似三角形的几何特征比例如另一个相似三角形的对应边成比例。

给出例子手绘多边形和几何造型来让学生思考其中的相似性,并引导学生说出其中的共性和差异性。

然后,引导学生再进行分类并将它们分为相似组。

讨论进行小组讨论,并提出一些问题,如“如何判断两个图形是否相似?”,“如何计算相似三角形的比例定理?”等问题。

教学结束讲授相似三角形的判定方法并进行演示,结束当天的课程。

课堂练习•教师发放相似三角形的练习题,让学生在课堂时间内完成。

•在课堂时间内检查练习题的结果,以推动和确定下一次课程的重点。

课程评估方式•考察学生通过练习题的答案来确定学生已经理解了相似性的概念和基本特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:27.1图形的相似 P34—39【教学内容及其分析】1、内容:这是九年级人教版数学第27章第1节内容。

主要讲述相似图形的概念、怎样判别相似图形以及从相似三角形到相似多边形的特征。

2、分析:本部分内容虽然只需要讲解一个概念:相似。

但所要准备的工作却有很多,特别是如何从相似的一般性到特殊性,再回到一般性的过程很重要。

【目标以及分析】1、教学目标:通过一些相似的实例,让学生观察相似图形的特点,感受形状相同的意义,理解相似图形的概念.能通过观察识别出相似的图形.能根据直觉在格点图中画出已知图形的相似图形.2、分析:在获得知识的过程中培养学习的自信心.【教学问题诊断分析】相似图形在日常生活是非常普遍的,如何把它引入到数学中来,及如何引导学生通过观察识别相似的图形,培养学生的观察分析及归纳能力是一个特别要关注的问题。

【教学过程设计】(一)教学流程创设情境,提出问题→探索新知,解决问题→巩固与练习→小结(二)教学情景1、创设情境,引出问题问题1:我们日常生活中有哪些图形给我们以相似的感觉,它们的形状、大小各有什么特征?还有,我们地理所说的比例尺又是怎么回事呢?问题2:观察课本第34页图24.1.1、图27.1-1,每组图形中的两图之间有什么关系?问题3:相似三角形有什么特征,相似多边形呢?它们的各角、各边各有什么变化?(设计意图:此问题贴近学生生活,容易激发学生学习兴趣,能较快的引入新课。

)2、探索新知,解决问题(设计意图:学生结合课本,在自主探究问题过程中发现问题,解决问题,并总结规律,加深对所学知识的理解。

)观察同一张底片洗出的不同尺寸的照片,不同大小的足球,还有汽车和它的模型,它们有什么特征?(1)归纳:每组图形中的两个图形形状相同,大小不同;具有相同形状的图形叫相似图形.(2)老师还可结合实例说明:①相似图形强调图形形状相同,与它们的位置、颜色、大小无关.②相似图形不仅仅指平面图形,也包括立体图形相似的情况.③我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.(3)若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.两个正三角形,其中一大一小,我们可以把其中较大的一个当作是较小的那个经过图形放大所得到的,那么它们之间有什么关系?延伸到多边形呢?下面我们进一步研究相似多边形的主要特征:对比上图,我们可以得到:相似三角形的对应角相等,对应边成比例。

类似地,相似多边形的对应角相等,对应边的比相等。

实际上,对于相似多边形,我们有:相似多边形对应角相等,对应边的比相等。

反过来,如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似我们把相似多边形对应边的比称为相似比。

3、巩固与练习(1)你还见过哪些相似的图形?请举出一些例子与同学们交流.(2)观察课本第35页图27.1-3中的三组图形,它们是否相似形?为什么?(3)想一想:放大镜下的图形与原来的图形相似吗?放大镜下的角与原来图形中的角是什么关系?可让学生动手实验,然后讨论得出结论.4、小结:你通过这节课的学习,有哪些收获?(1)具有相同形状的图形叫相似图形.(2)相似多边形对应角相等,对应边的比相等。

(3)相似多边形对应边的比称为相似比【布置作业】配餐作业A组判断题1、任意两个正方形的形状都相同2、任意两个矩形的形状都相同3、任意两个等边三角形的形状一定相同4、形状相同的两个三角形一定全等5、把一个图形放大或缩小后得到的图形与原来图形的形状一定相同B组选择题1、下列说法中,正确的是()A、正方形与矩形的形状一定相同B、两个直角三角形的形状一定相同C、形状相同的两个图形的面积一定相等D、两个等腰直角三角形的形状一定相同2、下列说法中,错误的是()A、放大镜下看到的图象与原图象的形状相同B、哈哈镜中人像与真人形状是相同的C、显微镜下看到图象与原图象形状相同D、放大一万倍物体与它本身形状是相同的3、已知:(1)两个圆;(2)两个等边三角形;(3)两个正方形;(4)两个菱形;(5)两个直角三角形。

在上述的两个图形中,形状一定相同的图形有几组?()A、一组B、二组C、三组D、四组4、(1)☺☹;(2)✶✷;(3)→↑;(4) 。

在上述各种符号中,形状相同的符号有几组? ( )A 、一组B 、二组C 、三组D 、四组C 组1、在平面坐标系中,一个图形各点的横坐标、纵坐标都乘以或除以同一个非零数,得到一组新的对应用点,则连接所得到点的图形与原图形形状( )A 、能够互相重合B 、形状相同,大小也一定相同C 、形状不一样D 、形状相同,大小不一定相同2、经历平移、旋转、轴对称变化前后的两个图形 ( )A 、形状大小都一样B 、形状一样,大小不一样C 、形状不一样,大小一样D 、形状大小都不一样3、下列各种小动物中,动物的形状相同的共有几组 ( )A 、一组B 、二组C 、三组D 、四组【板书设计】黑板共分为三部分,左边、中间和右边。

中间的上面写课题;左边写问题,通过问题的探讨得出相似图形图像的概念及性质;规律总结则用醒目的彩色粉笔写在最中间;右边学生板演课堂练习。

1、相似图形 ——相同形状的图形2、判断两个图形是否相似3、利用相似放大或缩小图形【课后反思】学案课题:图形的相似 P34—39班级:学号:姓名:【学习目标】能通过一些相似的实例,观察相似图形的特点,感受形状相同的意义,理解相似图形的概念。

并能通过观察识别出相似的图形.根据直觉在格点图中画出已知图形的相似图形。

【问题及例题】1、创设情境,引出问题问题1:我们日常生活中有哪些图形给我们以相似的感觉,它们的形状、大小各有什么特征?还有,我们地理所说的比例尺又是怎么回事呢?问题2:观察课本第34页图24.1.1、图27.1-1,每组图形中的两图之间有什么关系?问题3:相似三角形有什么特征,相似多边形呢?它们的各角、各边各有什么变化?(设计意图:此问题贴近学生生活,容易激发学生学习兴趣,能较快的引入新课。

)3、探索新知,解决问题(设计意图:学生结合课本,在自主探究问题过程中发现问题,解决问题,并总结规律,加深对所学知识的理解。

)观察同一张底片洗出的不同尺寸的照片,不同大小的足球,还有汽车和它的模型,它们有什么特征?(1)归纳:每组图形中的两个图形形状相同,大小不同;叫相似图形。

(2)老师还可结合实例说明:①相似图形强调图形形状相同,与它们的位置、颜色、大小无关.②相似图形不仅仅指平面图形,也包括立体图形相似的情况.③我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的。

(3)若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形。

两个正三角形,其中一大一小,我们可以把其中较大的一个当作是较小的那个经过图形放大所得到的,那么它们之间有什么关系?延伸到多边形呢?下面我们进一步研究相似多边形的主要特征:对比上图,我们可以得到:相似三角形的对应角相等,对应边成比例。

类似地,相似多边形的对应角相等,对应边的比相等。

实际上,对于相似多边形,我们有:相似多边形;反过来,如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似我们把称为相似比;【学后反思】配餐作业A组判断题1、任意两个正方形的形状都相同2、任意两个矩形的形状都相同3、任意两个等边三角形的形状一定相同4、形状相同的两个三角形一定全等5、把一个图形放大或缩小后得到的图形与原来图形的形状一定相同B 组选择题1、下列说法中,正确的是( )A 、正方形与矩形的形状一定相同B 、两个直角三角形的形状一定相同C 、形状相同的两个图形的面积一定相等D 、两个等腰直角三角形的形状一定相同2、下列说法中,错误的是( )A 、放大镜下看到的图象与原图象的形状相同B 、哈哈镜中人像与真人形状是相同的C 、显微镜下看到图象与原图象形状相同D 、放大一万倍物体与它本身形状是相同的3、已知:(1)两个圆;(2)两个等边三角形;(3)两个正方形;(4)两个菱形;(5)两个直角三角形。

在上述的两个图形中,形状一定相同的图形有几组? ( )A 、一组B 、二组C 、三组D 、四组4、(1)☺☹;(2)✶✷;(3)→↑;(4) 。

在上述各种符号中,形状相同的符号有几组? ( )A 、一组B 、二组C 、三组D 、四组C 组1、在平面坐标系中,一个图形各点的横坐标、纵坐标都乘以或除以同一个非零数,得到一组新的对应用点,则连接所得到点的图形与原图形形状( )A 、能够互相重合B 、形状相同,大小也一定相同C 、形状不一样D 、形状相同,大小不一定相同2、经历平移、旋转、轴对称变化前后的两个图形 ( )A 、形状大小都一样B 、形状一样,大小不一样C 、形状不一样,大小一样D 、形状大小都不一样3、下列各种小动物中,动物的形状相同的共有几组 ( )A 、一组B 、二组C 、三组D 、四组。

相关文档
最新文档