[小学奥数专题15】8-8-1最短路线.题库学生版

合集下载

[小学奥数专业题材15】8-2-1抽屉基础学习知识原理.汇总题库学生版

[小学奥数专业题材15】8-2-1抽屉基础学习知识原理.汇总题库学生版

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.知识精讲知识点拨教学目标8-2抽屉原理模块一、利用抽屉原理公式解题(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】试说明400人中至少有两个人的生日相同.【例 3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【例 4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【例 5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例 6】证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。

小学奥数 比例解行程问题.学生版

小学奥数 比例解行程问题.学生版

1. 理解行程问题中的各种比例关系.2. 掌握寻找比例关系的方法来解行程问题.比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

知识精讲教学目标比例解行程问题模块一:比例初步——利用简单倍比关系进行解题【例 1】甲、乙两车从相距330千米的A、B两城相向而行,甲车先从A城出发,过一段时间后,乙车才从B城出发,并且甲车的速度是乙车。

当两车相遇时,甲车比乙车多行驶了30千米,则甲车开速度的56出千米,乙车才出发。

【例 2】甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的1加上未走路程的2倍,恰好等于已走的路3程,又知出租车的速度是30千米/小时,那么现在的时间是。

小学奥数习题版三年级三大原理最短路线学生版

小学奥数习题版三年级三大原理最短路线学生版

知识要点快乐热身【例 1】 如下图所示,小虎家在A 地,姥姥家在B 地。

一天,他要去看望姥姥,但不知有几条路可走,走哪条路最短,热心的小朋友们快帮帮他吧?最短路线【例2】如下图所示,从甲地到乙地一共有两条路可走,请问哪条路长?哪条路短?【例3】观察下图,若黑猫与白猫奔跑速度相同,那么哪只猫先捉到老鼠?白猫黑猫鼠【例4】直线AB是一条公路,公路两侧有甲、乙两个村庄。

现在要在公路上建一个汽车站,让两个村子的人到汽车站的路线之和最短,问汽车站建在哪儿最好?乙甲BA走格子边【例5】一只蚂蚁在长方形格纸上的A点,它想去B点玩,但是不知走哪条路最近。

小朋友们你能给它找到几条这样的最短路线呢?BA【例6】如果A、B 两点变成下面两图这样的位置关系,那么从A到B的最短路线有几条呢?BA【例7】方格纸上取一点A作为起点,再在A的右上方任取一点B作为终点,画一条由A到B的最短路线,聪明的小朋友,你能画出来吗?总共能画出几条呢?【例8】小明和小强到少年宫参加2010上海世博会志愿者培训,少年宫和学校之间的地图如下。

如果他们从学校出发,共有多少种不同的最短路线?学校少年宫【例9】小虎和小羊是好朋友,它们居住的小区的平面图如下。

星期天,两人相约去博物馆看展览,现在小虎要先去小羊家和小羊会和,请问小虎去小羊家的最短路线有多少条?【例10】小聪明想从北村到南村上学,可是他不知道最短路线的走法共有几种?小朋友们,快帮帮忙呀!北村南村【例11】如图,从F点出发到G点,走最短的路程,有多少种不同的走法?GF【例12】“五一”长假就要到了,小新和爸爸决定去黄山玩。

聪明的小朋友请你找找看从北京到黄山的最短路线共有几条呢?北京黄山【例13】下图是小明家和学校的示意图,亲爱的同学们,你们觉得小明从家到学校共有几条最短路线呢?学校小明家【例14】小海龟在小猪家玩,它们想去游乐场坐碰碰车,爱动脑筋的小朋友,请你想一想,从小猪家到游乐场共有几条最短路线呢?游乐场小猪家【例15】学校组织三年级的小朋友去帮助农民伯伯锄草,大家从学校乘车出发,去往的李家村(如图)。

三年级奥数金典讲义第四讲最短路线问题通用版(含答案)

三年级奥数金典讲义第四讲最短路线问题通用版(含答案)

三年级奥数金典讲义(jiǎngyì)第四讲最短路线问题通用版(含答案)在日常(rìcháng)工作、生活和娱乐中,经常会遇到有关行程路线(lùxiàn)的问题.在这一讲里,我们主要(zhǔyào)解决的问题是如何确定从某处到另一处最短路线的条数。

例1下图4—1中的线段表示(biǎoshì)的是汽车所能经过的所有马路,这辆汽车从A走到B处共有多少条最短路线?分析为了叙述方便,我们在各交叉点都标上字母.如图4—2.在这里,首先我们应该明确从A到B的最短路线到底有多长?从A点走到B点,不论怎样走,最短也要走长方形AHBD 的一个长与一个宽,即AD+DB.因此,在水平方向上,所有线段的长度和应等于AD;在竖直方向上,所有线段的长度和应等于DB.这样我们走的这条路线才是最短路线.为了保证这一点,我们就不应该走“回头路”,即在水平方向上不能向左走,在竖直方向上不能向上走.因此只能向右和向下走。

有些同学很快找出了从A到B的所有最短路线,即:A→C→D→G→B A→C→F→G→BA→C→F→I→B A→E→F→G→BA→E→F→I→B A→E→H→I→B通过验证,我们确信这六条路线都是从A到B的最短路线.如果按照上述方法找,它的缺点是不能保证找出所有的最短路线,即不能保证“不漏”.当然如果图形更复杂些,做到“不重”也是很困难的。

现在观察这种题是否有规律可循。

1.看C点:由A、由F和由D都可以到达C,而由F→C是由下向上走,由D→C是由右向左走,这两条路线不管以后怎样走都不可能是最短路线.因此,从A到C只有一条路线。

同样道理:从A到D、从A到E、从A到H也都只有一条路线。

我们把数字“1”分别标在C、D、E、H这四个点上,如图4—2。

2.看F点:从上向下走是C→F,从左向右走是E→F,那么从A点出发到F,可以是A→C →F,也可以是A→E→F,共有两种走法.我们在图4—2中的F点标上数字“2”.2=1+1.第一个“1”是从A→C的一种走法;第二个“1”是从A→E的一种走法。

小学奥数培优 8-1 智巧趣题.学生版

小学奥数培优 8-1 智巧趣题.学生版

智巧趣题教学目标1.挖掘孩子学习数学的兴趣.2.让孩子掌握各种趣题的不同思考方式.知识点拨知识点说明智巧趣题顾名思义,就是有趣的一类问题,但回答时要十分小心,稍有不慎,就可能落入“圈套”。

要想正确地解答这类题目,一是细心,善于观察,全面考虑各种情况;二是要充分运用生活中学到的知识;三是需要那么一点思考问题的灵气和非常规的思考方法。

本讲主要是通过数学趣题的研究学习引发学生学习奥数的兴趣,激发学生学习奥数的灵感,充分调动学生学习奥数的积极性。

智巧趣题主要依靠巧妙的构思而解决问题,其中包括火柴棍游戏、数的恰当排列、称量问题及直线或圆周形状的报数问题。

例题精讲青蛙跳、蜗牛爬【例 1】青蛙沿着10米高的井往上跳,每次它向上跳半米,然后又落下去,问青蛙爬需要跳几次就能跳出井外?【巩固】一只树蛙爬树,每次往上爬5厘米,又往下滑2厘米,这只青蛙这样上下了5次,实际往上爬了多少厘米?【例 2】一口井深10米,一只蜗牛从井底白天往上爬2米,晚上又往下滑1米,请问要多长时间,这只蜗牛能爬出这口井?天几夜?【巩固】蜗牛沿着10米高的柱子往上爬,白天它向上爬5米,而晚上又下降3米,问蜗牛爬到柱顶需要几天?【巩固】有一道关于蜗牛爬墙的题:“日升六尺六,夜降三尺三,墙高一丈九,几日到顶端”。

蜗牛第天首次到顶端。

【例 3】某个早晨,容器中有200个细菌,白天有光照,容器中的细菌将减少65个,夜间无光照,容器中的细菌将增加40个。

则在第个白天,容器中的细菌全部死亡。

【例 4】树袋熊丫丫在爬一棵10米高的大树,每爬10分钟累了休息2分钟再继续爬,在这10分钟里它能向上爬2米。

那么丫丫要分钟才能爬到树顶。

过桥过河问题【例 5】一个农民携带一只狼,一只羊和一棵白菜,要借助一条小船过河.小船上除了农民只能再带狼、羊、白菜中的一样.而农民不在时,狼会吃羊,羊会吃白菜.农民如何过河呢?【例 6】赵大爷和一个小八路带着一个负伤的红军战士因为叛徒出卖被日本鬼子追到一条小河边,河岸边只有一条能同时乘坐两人的小船,赵大爷划船需要2分钟,小八路划船需要3分钟,负伤的红军战士划船需要5分钟,现在在危机关头,需要尽快过河,采用怎样的过河方式,三个人全部过河用时最少?【例 7】有一家五口人要在夜晚过一座独木桥.他们家里的老爷爷行动非常不便,过桥需要12分钟;孩子们的父亲贪吃且不爱运动,体重严重超标,过河需要时间也较长,8分钟;母亲则一直坚持劳作,动作还算敏捷,过桥要6分钟;两个孩子中姐姐需要3分钟,弟弟只要1分钟.当时正是初一夜晚又是阴天,不要说月亮,连一点星光都没有,真所谓伸手不见五指.所幸的是他们有一盏油灯,同时可以有两个人借助灯光过桥.但要命的灯油将尽,这盏灯只能再维持30分钟了!他们焦急万分,该怎样过桥呢?【巩固】有四个人在晚上准备通过一座摇摇欲坠的小桥.此桥每次只能让2个人同时通过,否则桥会倒塌.过桥的人必须要用到手电筒,不然会一脚踏空.只有一个手电筒.4个人的行走速度不同:小强用1分种就可以过桥,中强要2分中,大强要5分中,最慢的太强需要10分中.17分钟后桥就要倒塌了.请问:4个人要用什么方法才能全部安全过桥?【例 8】37个同学要坐船过河,渡口处只有一只能载5人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?【巩固】38个同学要坐船过河,渡口处只有一只能载4人的小船(无船工).他们要全部渡过河去,至少要使用这只小船渡河多少次?【例 9】一家人 6 口人,夜间要过一架独木桥,他们仅有一盏油灯照明,借助这盏灯,每次最多两人可以走过独木桥.而这 6 人过桥所需要的时间分别是 1 , 3 , 6 ,8 ,12 ,20 分钟,要命的是这盏灯只能点燃47 分钟了,而没有灯照明,任何人企图过河那是必然跌落到深谷中.【巩固】小明骑在牛背上赶牛过河.共有甲、乙、丙、丁4头牛.甲牛过河需要1分钟,乙牛过河需要2分钟,丙牛过河需要5分钟,丁牛过河需要6分钟.每次只能赶两头牛过河,那么小明要把这4头牛都赶到对岸,最小要用多少分钟?【巩固】小强、小明、小红和小蓉4个小朋友效游回家时天色已晚,他们来到一条河的东岸,要通过一座小木桥到西岸,但是他们4个人只有一个手电筒,由于桥的承重量小,每次只能过2人,因此必须先由2个人拿着手电筒过桥,并由1个人再将手电筒送回,再由2个人拿着手电筒过桥……直到4人都通过小木桥.已知,小强单独过桥要1分钟;小明单独过桥要1.5分钟;小红单独过桥要2分钟;小蓉单独过桥要2.5分钟.那么,4个人都通过小木桥,最少要多少分钟?酒杯问题【例 10】吝啬的卖酒老板老钱招聘卖酒伙计,他只给伙计两个分别为5升和3升的盛酒杯,要求满足所有顾客的买酒需求(当然顾客只需要整数升的酒),这下难倒了很多前来应聘的人,可是有一个聪明的放牛娃娃却做到了,你知道放牛娃娃是怎么样卖出一升酒的吗?【巩固】大桶能装5千克油,小桶能装4千克油,你能用这两只桶量出6千克油吗?怎么量?【例 11】某人有12升啤酒一瓶,想从中倒出6升.但是他没有6升的容器,只有一个8升的容器和一个5升的容器.怎样的倒法才能使8升的容器中恰好装好了6升啤酒?【例 12】有大、中、小3个瓶子,最多分别可发装入水1000克、700克和300克.现在大瓶中装满水,希望通过水在3个瓶子间的流动动使得中瓶和小瓶上标出装100克水的刻度线,问最少要倒几次水?火柴棍游戏【例 13】桌子上放着55根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方采用最佳方法,甲先取,那么谁将获胜?【巩固】将例题中的条件“每次取走1~3根”改为“每次取走1~4根”,其余不变,情形会怎样?【巩固】桌子上放着50根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方采用最佳方法,甲先取,那么谁将获胜?如何?【巩固】1111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7个格.规定将棋子移到最后一格者输.甲为了获胜,第一步必须向右移多少格?【例 14】有两堆火柴,一堆35根,另一堆24根.两人轮流在其中任一堆中拿取,取的根数不限,但不能不取.规定取得最后一根者为胜者.如果都采用最佳方法,那么谁将获胜?【巩固】有两堆火柴,一堆3根,另一堆7根.甲、乙两人轮流取火柴,每次可以从每一堆中取任意根火柴,也可以同时从两堆中取相同数目的火柴.每次至少要取走一根火柴.谁取得最后一根火柴谁胜.如果都采用最佳方法,那么谁将获胜?【巩固】桌子上放着2堆火柴,一堆12根,另一堆24根.两人轮流在其中任一堆中拿取,取的根数不限,但不能不取.规定取得最后一根者为胜者.如果都采用最佳方法,那么谁将获胜?【例 15】黑板上写着一排相连的自然数1,2,3,…,51.甲、乙两人轮流划掉连续的3个数.规定在谁划过之后另一人再也划不成了,谁就算取胜.问:甲有必胜的策略吗?智巧行程【例 16】甲和乙分别从东西两地同时出发,相对而行,两地相距100里,甲每小时走6里,乙每小时走4去,遇到甲后又回头向乙奔去,直到甲乙两人相遇时狗才停住。

[小学奥数专题15】8-2-1抽屉原理.题库学生版

[小学奥数专题15】8-2-1抽屉原理.题库学生版

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.知识精讲知识点拨教学目标8-2抽屉原理模块一、利用抽屉原理公式解题(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【巩固】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样.【巩固】光明小学有367名2000年出生的学生,请问是否有生日相同的学生?【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】试说明400人中至少有两个人的生日相同.【例 3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【例 4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【例 5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例 6】证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。

小学奥数习题版三年级几何图形的剪拼学生版

小学奥数习题版三年级几何图形的剪拼学生版

知识要点找对称【例 1】 把一个33 的的网格分成形状、大小完全相同的四份。

【例 2】 哥哥和弟弟一起做手工,想把一张红色的平行四边形蜡光纸沿着一条直线,把它剪成大小、形状完全相同的两部分。

想一想,你可以有多少种剪法?【例 3】 要把一个正方形剪成形状相同、大小相等的4个图形,该怎样分?按照题目要求(形状和面积),根据图形与图形之间的内在联系,通过在纸上画图或者实际的剪拼,来掌握图形的变化,包括把一个几何图形分割成几个图形以及把几个几何图形拼成几个图形。

有兴趣的学生还可以自制“七巧板”或者“伤脑筋十二块”等中国传统益智拼板游戏,在闲暇时间尝试拼一下,说不定还能拼出自创的新颖有趣的图形。

图形的剪拼【例 4】你能把下面的图形分割成4个形状相同、大小相等的图形吗?【例 5】一个长6厘米,宽4厘米的长方形,从中间剪开,如图所示,得到2个大小、形状都相同的长方形,这两个新长方形的周长是多少?图形剪切【例 6】你能把一个正三角形分成形状相同,大小相等的2个、3个、4个、6个、9个三角形吗?分成【例 7】你能把一个正方形分成6个、7个、8个、9个小正方形吗?(不要求面积相等)【例 8】你能把下面的图形分割成4个形状相同、大小相等的图形吗?【例 9】把下图分成5个形状相同、大小相等的图形。

【例 10】下图是由18个小正方形组成的图形,请你把它分成6个完全相同的图形。

【例 11】你能把下面的图形分成7个大小相等的长方形吗?动手画一画。

【例 12】如右图所示是由三个正方形组成的图形,请把它分成大小、形状都相同的四个图形。

【例 13】阿凡提周游世界,有一天来到一个村庄。

一个地主对他说:“都传说你很聪明,我有一块地,你能把它分成大小相等、形状相同的2份,我就把地送给你。

”聪明的阿凡提不慌不忙,用木棍画了一道线,把这块地分成大小相等、形状相同的2份。

地主傻了眼,只好履行诺言。

后来,阿凡提把地分给了最穷的2户人家,你知道阿凡提是怎么分的吗?图形拼合【例 14】 用下面的四块图形能拼成右边的正方形吗?怎样拼?1212124321【例 15】 晚饭后,平平和妈妈玩拼木板游戏。

三年级奥数最短路线同步练习

三年级奥数最短路线同步练习

三年级奥数最短路线同步练习
(答题时间:30分钟)
1. 图中,从A点沿实线走最短路径到B点,且经过F、D两点,共有多少条不同路线?
2. 沿图中箭头所指的方向从A点到B点共有多少种不同的走法?
3. 如图,从X点到Y点走最短路径共有几种走法?
4. 小君家到学校的道路如图所示。

从小君家到学校走最短路径有多少种不同的走法?
三年级奥数通用版最短路线(二)参考答案
1. 解:我们可以从左下角A点开始,按对角线法,依次向上、向右写出到F、D两点的走法数,最后得到共有8条不同路线。

2. 解:如图所示,先标出到C点的走法数,再标出到D点和E点的走法数,然后标出到F 点的走法数,最后标出到B点的走法数,共有8种不同的走法。

3. 解:用标号法,如图所示,共有716种走法。

4. 解:用标号法,如图所示,共12种走法。

5. 解:先找到甲村关于直线AB的对称点C,连结点C和乙村交直线AB的那一点即为汽车站。

小学奥数 技巧综合行程问题 行程综合问题.学生版

小学奥数  技巧综合行程问题   行程综合问题.学生版

行程综合问题教学目标1.运用各种方法解决行程内综合问题。

2.发现一些综合问题中,行程与其它模块的联系,并解决奥数综合问题。

知识精讲行程问题是奥数中的一个难点,内容多而杂。

而在行程问题中,还有一些尤其复杂的综合问题。

它们大致可以分为两类:一、行程内综合,把行程问题中的一些零散的知识点综合在一道题目中,这就是一道行程内综合题目。

例如把环形跑道和猎狗追兔结合在一起,把流水行船和发车间隔结合起来等等。

二、学科内综合,这种问题就不只是行程问题了,把行程问题和其它知识模块里的思想方法结合在一起,这种综合性题目的难度也很大,比如行程与策略综合等等。

本讲内容主要就是针对这种综合性题目。

虽然题目难度偏大,但是这种题目在杯赛和小升初试题中是很受“偏爱”的。

所以很重要。

模块一、行程内综合【例 1】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【例 2】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【例 3】已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?【例 4】甲、乙两人沿400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用24 秒同时回到原地。

求甲原来的速度。

【例 5】环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发。

甲每分跑120米,乙每分跑100米,两人都是每跑200米停下休息1分。

(完整)小学奥数最短路线问题(有答案)

(完整)小学奥数最短路线问题(有答案)

小学六年级奥数教案—运筹学初步 本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。

这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。

当然,限于现有的知识水平,我们仅仅是初步探索一下。

1.统筹安排问题 例1星期天妈妈要做好多事情。

擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。

妈妈干完所有这些事情最少用多长时间? 分析与解:如果按照题目告诉的几件事,一件一件去做,要95分钟。

要想节约时间,就要想想在哪段时间里闲着,能否利用闲着的时间做其它事。

最合理的安排是:先洗脏衣服的领子和袖口,接着打开全自动洗衣机洗衣服,在洗衣服的40分钟内擦玻璃和收拾厨房,最后晾衣服,共分钟(见下图)。

需60 例1告诉我们,当有许多事要做时,科学地安排好先后顺序,就能用较少的时间完成较多的事情。

2.排队问题 例2理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10,12,15,20和24分钟。

怎样安排他们的理发顺序,才能使这五人理发和等候所用时间的总和最少?最少要用多少时间? 分析与解:一人理发时,其他人需等待,为使总的等待时间尽量短,应让理发所需时间少的人先理。

甲先给需10分钟的人理发,然后15分钟的,最后24分钟的;乙先给需12分钟的人理发,然后20分钟的。

甲给需10分钟的人理发时,有2人等待,占用三人的时间和为(10×3)分;然后,甲给需 15分钟的人理发,有 1人等待,占用两人的时间和为(15×2)分;最后,甲给需 24分钟的人理发,无人等待。

甲理发的三个人,共用(10×3+15×2+24)分,乙理发的两个人,共用(12×2+20)分。

总的占用时间为 (10×3+15×2+24)+(12×2+20)=128(分)。

8-7-1统计与概率.题库学生版

8-7-1统计与概率.题库学生版

1. 能准确判断事件发生的等可能性以及游戏规则的公平性问题.2. 运用排列组合知识和枚举等计数方法求解概率问题.3. 理解和运用概率性质进行概率的运算知识点说明在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的一半左右.这里的“大量重复”是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率.这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值.在统计里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体。

从总体中所抽取的一部分个体叫做总体的一个样本。

样本中个体的数目叫做样本的容量。

总体中所有个体的平均数叫做总体平均数,把样本中所有个体的平均数叫做样本平均数。

概率的古典定义: 如果一个试验满足两条: ⑴试验只有有限个基本结果:⑵试验的每个基本结果出现的可能性是一样的. 这样的试验,称为古典试验.对于古典试验中的事件A ,它的概率定义为:()mP A n=,n 表示该试验中所有可能出现的基本结果的总数目,m 表示事件A 包含的试验基本结果数.小学奥数中,所涉及的问题都属于古典概率.其中的m 和n 需要我们用枚举、加乘原理、排列组合等方法求出.相互独立事件:()()()P A B P A P B ⋅=⋅事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件.公式含义:如果事件A 和B 为独立事件,那么A 和B 都发生的概率等于事件A 发生的概率与事件B 发知识点拨教学目标8-7概率与统计生的概率之积.举例:⑴明天是否晴天与明天晚餐是否有煎鸡蛋相互没有影响,因此两个事件为相互独立事件.所以明天天晴,并且晚餐有煎鸡蛋的概率等于明天天晴的概率乘以明天晚餐有煎鸡蛋的概率.⑵第一次抛硬币掉下来是正面向上与第二次抛硬币是正面向上是两个相互独立事件.所以第一次、第二次抛硬币掉下来后都是正面向上的概率等于两次分别抛硬币掉下来后是正面向上的概率之积,即111P=⨯=.224⑶掷骰子,骰子是否掉在桌上和骰子的某个数字向上是两个相互独立的事件,如果骰子掉在桌上的概率为0.6,那么骰子掉在桌上且数字“n”向上的概率为1⨯=.0.60.16例题精讲【例 1】(2007年“希望杯”二试六年级)气象台预报“本市明天降雨概率是80%”.对此信息,下列说法中正确的是.①本市明天将有80%的地区降水.②本市明天将有80%的时间降水.③明天肯定下雨.④明天降水的可能性比较大.【巩固】一个小方木块的六个面上分别写有数字2、3、5、6、7、9,小光、小亮两人随意往桌面上扔放这个木块.规定:当小光扔时,如果朝上的一面写的是偶数,得1分.当小亮扔时,如果朝上的一面写的是奇数,得1分.每人扔100次,______得分高的可能性比较大.【例 2】在多家商店中调查某商品的价格,所得的数据如下(单位:元)25 21 23 25 27 29 25 28 30 2926 24 25 27 26 22 24 25 26 28请填写下表【例 3】在某个池塘中随机捕捞100条鱼,并给鱼作上标记后放回池塘中,过一段时间后又再次随机捕捞200尾,发现其中有25条鱼是被作过标记的,如果两次捕捞之间鱼的数量没有增加或减少,那么请你估计这个池塘中一共有鱼多少尾?【例 4】有黑桃、红桃、方块、草花这4种花色的扑克牌各2张,从这8张牌中任意取出2张。

[小学奥数专题15】2-3-1_列方程解应用题.题库学生版

[小学奥数专题15】2-3-1_列方程解应用题.题库学生版

1、会解一元一次方程2、根据题意寻找等量关系的方法来构建方程3、合理规划等量关系,设未知数、列方程知识点说明:一、 等式的基本性质1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.二、解一元一次方程的基本步骤1、去括号;2、移项;3、未知数系数化为1,即求解。

三、列方程解应用题 (一)、列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程. (二) 、列方程解应用题的主要步骤是1、 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、 设这个量为x ,用含x 的代数式来表示题目中的其他量;3、 找到题目中的等量关系,建立方程;4、 运用加减法、乘除法的互逆关系解方程;5、通过求到的关键量求得题目答案.知识精讲教学目标2-3-1列方程解应用题板块一、直接设未知数【例 1】 长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米?【巩固】 一个三角形的面积是18平方厘米,底是9厘米,求三角形的高是多少厘米?【巩固】 (全国小学数学奥林匹克)一个半圆形区域的周长等于它的面积,这个半圆的半径是 .(精确到0.01,π 3.14 )【例 2】用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?【例 3】 (2003年全国小学数学奥林匹克)某八位数形如2abcdefg ,它与3的乘积形如4abcdefg ,则七位数abcdefg 应是 .【巩固】 有一个六位数1abcde 乘以3后变成1abcde ,求这个六位数.【巩固】 (第六届“迎春杯”刊赛试题)有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数.如果第二个六位数是第一个六位数的5倍,那么这个五位数是 .【例 4】 有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数. 例题精讲【例5】兄弟二人共养鸭550只,当哥哥卖掉自己养鸭总数的一半,弟弟卖出70只时,两人余下的鸭只数相等,求兄弟两人原来各养鸭多少只?【巩固】(2008年全国小学数学资优生水平测试)一人看见山上有一群羊,他自言自语到:“我如果有这些羊,再加上这些羊,然后加上这些羊的一半,又加上这些羊一半的一半,最后再加上我家里的那只,一共有100只羊”.山上的羊群共有______只.【例6】 (清华附中培训试题)某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将一组人数调整为二组人数的一半,应从一组调多少人到二组去?【例7】 (小学生数学报数学邀请赛)寒暑表上通常有两个刻度,摄氏度(记为℃)和华氏度(记为F。

完整word版小学奥数图形找规律题库学生版

完整word版小学奥数图形找规律题库学生版

图形找规律.找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;.⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.数量规律板块一.【例 1】请找出下面哪个图形与其他图形不一样观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【例2】【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?.观察下面的图形,按规律在“?”处填上适当的图形】 3【例?)35)(()(4(2))1(观察图形变化规律,在右边补上一幅,使它成为一个完整系列。

【例 4】【例 5】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.观察下图中的点群,请回答: 6】【例方框内的点群包含多少个点?(1)个点群中包含多少个点?推测第10(2) 个点群中,所有点的总数是多少?前10(3)观察下面由点组成的图形(点群),请回答:】【例 71)方框内的点群包含多少个点?( 10)个点群中包含多少个点?(2)第( 3)前十个点群中,所有点的总数是多少?(仔细观察后,请回答:下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.【例 8】)五层的“宝塔”的最下层包含多少个小三角形?(1 )整个五层“宝塔”一共包含多少个小三角形?(2旋转、轮换型规律板块二【例 9】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?△☆□○△☆□○○□☆☆○△□△□△□△○☆○☆()()()()()()()().下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形】【例 101)(?组第1组第3组第2(2)?第1组第3组组2第3)(★★★★★?组1第组3第组2第【例 11】观察下图的变化规律,画出丙图.BACABDCD丙乙甲使每一横行和每一竖行.将它们砌在如下图那样的地面上,块【例 12】有六种不同图案的瓷砖,每种各6 你会怎样设计?都没有相同图案的瓷砖.下面各种各样的娃娃头好看吗?认真观察你能找到它们排列的规律吗?根据规律把最后一个画13【例】.出来.. 14【例】观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形她将9她用直尺和圆规在纸上画了幅蝴蝶图,并用剪刀将它们一一剪下来.琪琪特别喜欢蝴蝶,】【例 15只319这只纸蝴蝶摆在桌上,见下图,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了纸蝴蝶,见下图2.的空缺处吗?3只蝴蝶放入图1的你能找出蝴蝶的排列规律,将图2321465BCA7982图1图.】请观察下图中已有的几个图形,并按规律填出空白处的图形【例 16.17【例】观察下列各组图的变化规律,并在“?”处画出相关的图形 1()?2()?甲乙丙丁.个方格表中阴影的规律,在空白的方格表中也填上相应的阴影3如图,根据图中已知】 18【例)个方格表中阴影部分的小正方形内的几个10【巩固】根据前三个方格表中阴影部分的变化规律,填上第(数之和。

小学奥数讲义最短路线专题

小学奥数讲义最短路线专题

小学奥数讲义最短路线专题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN在日常生活、工作中,经常会遇到有关行程路线的问题。

比如:邮递员送信,要穿遍所有的街道,为了少走冤枉路,需要选择一条最短的路线;旅行者希望寻求最佳旅行路线,以求能够走最近的路而达到目的地,等等。

这样的问题,就是我们所要研究学习的“最短路线问题”。

典型例题例[1] 假如直线AB是一条公路,公路两旁有甲乙两个村子,如下图1。

现在要在公路上修建一个公共汽车站,让这两个村子的人到汽车站的路线之和最短。

问:车站应该建在什么地方?甲村乙村A B甲村乙村图1 图2最短路线专题分析如果只考虑甲村的人距离公路AB最近,只要由甲村向公路AB画一条垂直线,交AB于C点,那么C点是甲村到公路AB 最近的点,但是乙村到C点就较远了。

反过来,由乙村向公路AB画垂线,交AB于D点,那么D点是乙村到公路AB最近的点。

但是这时甲村到公路AB的D点又远了。

因为本题要求我们在公路AB上取的建站点,能够兼顾甲村和乙村的人到这个车站来不走冤枉路(既路程之和最短),根据我们的经验:两个地点之间走直线最近,所以,只要在甲村乙村间连一条直线,这条直线与公路AB交点P,就是所求的公共汽车站的建站点了(图2)。

解用直线把甲村、乙村连起来。

因为甲村乙村在公路的两侧,所以这条连线必与公路AB有一个交点,设这个交点为P,那么在P点建立汽车站,就能使甲村乙村的人到汽车站所走的路程之和最短。

例[2] 一个邮递员投送信件的街道如图3所示,图上数字表示各段街道的千米数。

他从邮局出发,要走遍各街道,最后回到邮局。

问:走什么样的路线最合理全程要走多少千米3分析选择最短的路线最合理。

那么,什么路线最短呢?一笔画路线应该是最短的。

邮递员从邮局出发,还要回到邮局,按一笔画问题,就是从偶点出发,回到偶点。

因此,要能一笔把路线画出来,必须途径的各点全是偶点。

但是图中有8个奇点,显然邮递员要走遍所有街道而又不走重复的路是不可能的。

小学奥数专题-走停问题.学生版

小学奥数专题-走停问题.学生版

走停问题教学目标1、学会化线段图解决行程中的走停问题2、能够运用等式或比例解决较难的行程题3、学会如何用枚举法解行程题知识点拨本讲中的知识点较为复杂,主要讲行程过程中出现休息停顿等现象时的问题处理。

解题办法比较驳杂。

例题精讲模块一、停一次的走停问题【例 1】甲、乙两车分别同时从A,B两城相向行驶,6时后可在途中某处相遇。

甲车因途中发生故障抛描,修理2.5时后才继续行驶,因此从出发到相遇经过7.5时。

甲车从A城到B城共用多长时间?【例 2】龟兔赛跑,同时出发,全程6990米,龟每分钟爬30米,兔每分钟跑330米,兔跑了10分钟就停下来睡了215分钟,醒来后立即以原速往前跑,问龟和兔谁先到达终点?先到的比后到的快多少米?【例 3】快车与慢车分别从甲、乙两地同时开出,相向而行,经过5时相遇。

已知慢车从乙地到甲地用12.5时,慢车到甲地停留1时后返回,快车到乙地停留2时后返回,那么两车从第一次相遇到第二次相遇共需多长时间?【例 4】邮递员早晨7 时出发送一份邮件到对面山里,从邮局开始要走12 千米上坡路,8 千米下坡路.他上坡时每小时走 4 千米,下坡时每小时走5 千米,到达目的地停留1 小时以后,又从原路返回,邮递员什么时候可以回到邮局?【例 5】一辆汽车原计划6小时从A城到B城。

汽车行驶了一半路程后,因故在途中停留了30分钟。

如果按照原定的时间到达B城,汽车在后一半路程的速度就应该提高12千米/时,那么A、B两城相距多少千米?【巩固】 一辆汽车从甲地开往乙地,每分钟行 750 米,预计 50 分钟到达.但汽车行驶到路程的3/5时,出了故障,用 5 分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?【例 6】 一列火车出发 1 小时后因故停车 0.5 小时,然后以原速的3/4前进,最终到达目的地晚 1.5 小时.若出发 1 小时后又前进 90 公里再因故停车 0.5 小时,然后同样以原速的3/4前进,则到达目的地仅晚1 小时,那么整个路程为多少公里?【例 7】 一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到路程3/5时,出了故障,用5分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?【例 8】 甲每分钟走80千米,乙每分钟走60千米.两人在A , B 两地同时出发相向而行在E 相遇,如果甲在途中休息7分钟,则两人在F 地相遇,已知为C 为AB 中点,而EC=FC,那么AB 两地相距多少千米?A B C F E【巩固】 一辆货车从甲地开往乙地需要7小时,一辆客车从乙地开往甲地需要9小时,两车同时从两地相对开出。

小学奥数最短路线问题(有答案)

小学奥数最短路线问题(有答案)

小学六年级奥数教案—运筹学初步本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。

这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。

当然,限于现有的知识水平,我们仅仅是初步探索一下。

1.统筹安排问题例1星期天妈妈要做好多事情。

擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。

妈妈干完所有这些事情最少用多长时间?分析与解:如果按照题目告诉的几件事,一件一件去做,要95分钟。

要想节约时间,就要想想在哪段时间里闲着,能否利用闲着的时间做其它事。

最合理的安排是:先洗脏衣服的领子和袖口,接着打开全自动洗衣机洗衣服,在洗衣服的40分钟内擦玻璃和收拾厨房,最后晾衣服,共需60分钟(见下图)。

例1告诉我们,当有许多事要做时,科学地安排好先后顺序,就能用较少的时间完成较多的事情。

2.排队问题例2理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10,12,15,20和24分钟。

怎样安排他们的理发顺序,才能使这五人理发和等候所用时间的总和最少?最少要用多少时间?分析与解:一人理发时,其他人需等待,为使总的等待时间尽量短,应让理发所需时间少的人先理。

甲先给需10分钟的人理发,然后15分钟的,最后24分钟的;乙先给需12分钟的人理发,然后20分钟的。

甲给需10分钟的人理发时,有2人等待,占用三人的时间和为(10×3)分;然后,甲给需 15分钟的人理发,有 1人等待,占用两人的时间和为(15×2)分;最后,甲给需 24分钟的人理发,无人等待。

甲理发的三个人,共用(10×3+15×2+24)分,乙理发的两个人,共用(12×2+20)分。

总的占用时间为(10×3+15×2+24)+(12×2+20)=128(分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 准确运用“标数法”解决题目.
2. 培养学生的实际操作能力.
知识点说明
从一个地方到另外一个地方,两地之间有许多条路,就有许多种走法,如果你能从中选择一条最近的路走,也就是指要选择一条最短的路线走,这样你就可以节省许多时间了,那么如何能选上最短的路线呢?亲爱的小朋友们,你要记住两点:⑴两点之间线段最短.⑵尽量不走回头路和重复路,这样的话,你就做到了省时省力.
【例 1】 一只蚂蚁在长方形格纸上的A 点,它想去B 点玩,但是不知走哪条路最近.小朋友们,你能给
它找到几条这样的最短路线呢?
B
A
1161
33
21
B
A I
H
G F E D
C
【巩固】 如图所示,从A
点沿线段走最短路线到B 点,每次走一步或两步,共有多少种不同走法?
A B
【巩固】 从A 到B 的最短路线有几条呢?
B
A
例题精讲
知识精讲
教学目标
8-8最短路线
【巩固】有一只蜗牛从A点出发,要沿长方形的边或对角线爬到C点,中间不许爬回A点,也不能走重复的路,那么,它有多少条不同的爬行路线?最短的是哪条呢?
A
D
O
C
B
【例2】阿呆和阿瓜到少年宫参加2008北京奥运会志愿者培训.如果他们从学校出发,共有多少种不同的最短路线?
学校
少年宫
【巩固】方格纸上取一点A作为起点,再在A的右上方任取一点B作为终点,画一条由A到B的最短路线,聪明的小朋友,你能画出来吗?总共能画出几条呢?
【巩固】如图,从F点出发到G点,走最短的路程,有多少种不同的走法?
G
F
【巩固】小聪明想从北村到南村上学,可是他不知道最短路线的走法共有几种?小朋友们,快帮帮忙呀!
北村
南村
【例3】“五一”长假就要到了,小新和爸爸决定去黄山玩.聪明的小朋友请你找找看从北京到黄山的最短路线共有几条呢?
黄山
北京
【巩固】 从甲到乙的最短路线有几条?


【例 4
】 古希腊有一位久负盛名的学者,名叫海伦.他精通数学、物理,聪慧过人.人一天一位将军向
他请教一个问题:如下图,将军从甲地骑马出发,要到河边让马饮水,然后再回到乙地的马棚,为了使行走的路线最短,应该让马在什么地方饮水?
乙地
甲地
河流
【例 5】 学校组织三年级的小朋友去帮助农民伯伯锄草,大家从学校乘车出发,去往的李家村(如图).爱
动脑筋的嘟嘟就在想,从学校到李家村共有多少种不同的最短路线呢?
李家村
学校
[拓展] 亲爱的小朋友们,你们觉得从A 到B 共有几条最短路线呢?
B
A
【例 6】 阿花和阿红到少年宫参加2008北京奥运会志愿者培训.他们从学校出发到少年宫最多有多少种
不同的行走路线?
少年宫
学校
[铺垫] 小
海龟在小猪家玩,它们想去游乐场坐碰碰车,爱动脑筋的小朋友,请你想一想,从小猪家到游
乐场共有几条最短路线呢?
小猪家
游乐场
【例 7】 阿强和牛牛结伴骑车去图书馆看书,第一天他们从学校直接去图书馆;第二天他们先去公园看
大熊猫再去图书馆;第三天公园修路不能通行.咱们学而思的小朋友都很聪明,请你们帮阿强和牛牛想想这三天从学校到图书馆的最短路线分别有多少种不同的走法?
【巩固】 大熊和美子准备去看望养老院的李奶奶,可是市中心在修路(城市的街道如图所示),他们从学校到
养老院最短路线共有几条呢?聪明的小朋友,请你们快想想吧!
【例 8】 如图,从X 到Y 最短路线总共有几种走法? 【分析】 如图,共有716种.
【例9】如图,从A到B沿网格线不经过线段CD和EF的最短路径的条数是多少条?
B
【巩固】下图为某城市的街道示意图,C处正在挖下水道,不能通车,从A到B处的最短路线共有多少条?
【例10】按图中箭头所指的方向行走,从A到I共有多少条不同的路线?
I
A
【例11】按图中箭头方向所指行走,从A到G有多少种不同的路线?
【巩固】 ⑴按下图左箭头方向所指,从X 到Y 有多少种不同的路线?
⑵如下图右所示,这个问题有一个规则:只能沿着箭头指的方向走,你能否根据规则算出所有从入口到出口的路径共有多少条?
【例 12】 ⑴如下图左,如果只允许向下移动,从A 点到B 点共有多少种不同的路线?
⑵如下图右,要从A 点到B 点,要求每一步都是向右,向上或者斜上方,问共有多少种不同的走法?
A
B
B
A
【巩固】 图中有10个编好号码的房间,你可以从小号码房间走到相邻的大号码房间,但不能从大号码房
间走到小号码房间,从1号房间走到10号房间共有多少种不同走法?
10
987654321
【例 13】 一只密蜂从A 处出发,A 回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,
共有多少种回家的方法?
B
A
8
6
4
2
97531
【例 14】 在图中,用水平或垂直的线段连接相邻的字母,当沿着这些线段行走时,正好拼出“APPLE ”
的路线共有多少条?
A
A
P
P
L
E
L
P
P
A A P L P P P A A P P P A A P A
[铺垫] 图中的“我爱希望杯”有多少种不同的读法.
望杯

杯希杯

望希杯杯
望希爱我
[拓展] 如下图左所示,科学家“爱因斯坦”的英文名拼写为“Einstein ”,按图中箭头所示方向有多少
种不同的方法拼出英文单词“Einstein ”
.
i。

相关文档
最新文档