单克隆抗体制备的基本原理

合集下载

单克隆抗体的制备及应用实验原理

单克隆抗体的制备及应用实验原理

单克隆抗体的制备及应用实验原理1. 简介单克隆抗体是指由单一B细胞克隆扩增得到的抗体,在医学研究和生物制药等领域具有重要的应用价值。

本文将介绍单克隆抗体的制备方法及其在实验中的应用原理。

2. 单克隆抗体的制备方法单克隆抗体的制备需要经历以下几个步骤:2.1 免疫原的选择免疫原的选择是单克隆抗体制备的第一步。

通常选择与所需抗体结构最为相似的蛋白质作为免疫原,可以是纯化的蛋白质、重组蛋白、细胞表面抗原等。

2.2 免疫动物的免疫选择适当的免疫动物,常见的包括小鼠、大鼠、兔子等。

将免疫原与免疫佐剂混合注射到动物体内,触发免疫反应,使得免疫动物产生特异性抗体。

2.3 细胞融合将免疫动物的脾细胞和癌细胞进行融合,常用的癌细胞包括骨髓瘤细胞、淋巴瘤细胞等。

通过融合方法,使得脾细胞和癌细胞融合成为杂交瘤细胞。

2.4 杂交瘤细胞的筛选与培养对融合后的杂交瘤细胞进行筛选,常用的方法包括喷洒法、限稀稀释法等。

筛选出具有单克隆性的杂交瘤细胞后,进行培养、扩增。

2.5 单克隆抗体的纯化将培养得到的杂交瘤细胞进行离心、洗涤等操作,得到含有目标抗体的上清液。

通过柱层析、电泳等方法,对上清液进行纯化,最终得到单克隆抗体。

3. 单克隆抗体的应用实验原理单克隆抗体在实验室中有多种应用,包括免疫组化、免疫印迹、流式细胞术等。

以下将介绍单克隆抗体在这些实验中的应用原理:3.1 免疫组化免疫组化是一种检测组织或细胞中特定抗原表达情况的方法。

通过与组织或细胞中特定分子结合,单克隆抗体可以为我们提供目标抗原的定位和分布情况。

3.2 免疫印迹免疫印迹是一种检测特定蛋白质表达情况的方法。

通过将蛋白质转移到膜上,并与特异单克隆抗体结合,可以用于检测目标蛋白质的存在与定量。

3.3 流式细胞术流式细胞术是一种用于分析和鉴定细胞表面标记物的方法。

通过与特定抗原结合,单克隆抗体可以进行标记,并通过流式细胞仪进行检测和分析。

3.4 免疫沉淀免疫沉淀是一种用于富集目标蛋白质的方法。

单克隆抗体的制备原理及方法

单克隆抗体的制备原理及方法

单克隆抗体的制备原理及方法单克隆抗体是一种由单一克隆B细胞产生的抗体,具有高度的特异性和亲和力。

它在生物医药领域有着广泛的应用,包括疾病诊断、治疗和生物学研究等方面。

本文将介绍单克隆抗体的制备原理及方法,希望能对相关领域的研究人员有所帮助。

一、制备原理。

单克隆抗体的制备原理主要包括以下几个步骤,抗原免疫、细胞融合、筛选和鉴定、扩增和保存。

首先,通过将目标抗原注射到实验动物体内,诱导其产生特异性抗体。

然后,从免疫动物体内获得B细胞,与骨髓瘤细胞进行融合,形成杂交瘤细胞。

接着,通过细胞培养和筛选,筛选出产生特异性单克隆抗体的杂交瘤细胞。

最后,对所得的单克隆抗体进行扩增和保存,以备进一步的实验和应用。

二、制备方法。

1. 抗原免疫。

选择合适的实验动物,根据抗原的特性和研究需要,选择合适的免疫方案,包括抗原的种类、免疫的途径和次数等。

2. 细胞融合。

将获得的B细胞与骨髓瘤细胞进行融合,形成杂交瘤细胞。

融合细胞的筛选条件包括杂交瘤细胞的生长条件、培养基的成分和杂交瘤细胞的筛选方法等。

3. 筛选和鉴定。

通过特异性抗原的筛选和鉴定,筛选出产生特异性单克隆抗体的杂交瘤细胞。

鉴定的方法包括ELISA、免疫印迹、免疫荧光等。

4. 扩增和保存。

对所得的单克隆抗体进行扩增和保存,以备进一步的实验和应用。

扩增的方法包括体外培养、动物体内生长等。

三、实验注意事项。

在进行单克隆抗体的制备过程中,需要注意以下几个方面的实验注意事项,实验动物的选择和管理、抗原的制备和纯化、细胞融合和杂交瘤细胞的培养条件、单克隆抗体的鉴定和保存等。

四、应用前景。

单克隆抗体作为一种重要的生物医药制剂,在疾病诊断、治疗和生物学研究等方面具有广阔的应用前景。

随着生物技术的不断发展,单克隆抗体的制备技术也在不断完善,相信在未来会有更多的应用领域被开发出来。

综上所述,单克隆抗体的制备原理及方法是一个复杂而又具有挑战性的过程,需要研究人员在实验操作中严格把关,以确保所得的单克隆抗体具有高度的特异性和亲和力。

单克隆抗体实验报告

单克隆抗体实验报告

一、实验目的1. 学习单克隆抗体的制备方法;2. 掌握单克隆抗体的鉴定技术;3. 了解单克隆抗体在免疫学研究和临床诊断中的应用。

二、实验原理单克隆抗体(Monoclonal Antibody,mAb)是由单个B细胞克隆产生的,具有高度特异性和亲和力。

单克隆抗体的制备通常采用杂交瘤技术,即将B细胞与肿瘤细胞融合,形成杂交瘤细胞,杂交瘤细胞既具有B细胞的抗体产生能力,又具有肿瘤细胞的无限增殖能力。

通过筛选和培养杂交瘤细胞,可以得到大量相同的单克隆抗体。

三、实验材料1. 实验动物:Balb/c小鼠;2. 抗原:目的蛋白;3. 细胞株:SP2/0(小鼠骨髓瘤细胞);4. 培养基:IMDM培养基、DMEM培养基、RPMI-1640培养基;5. 试剂:FCS、HAT(Hypoxanthine-Aminopterin-Thymidine)、PEG(聚乙二醇)、兔抗小鼠IgG-HRP(辣根过氧化物酶标记)、羊抗兔IgG-FITC(荧光素异硫氰酸酯标记);6. 仪器:CO2培养箱、倒置显微镜、酶标仪、流式细胞仪等。

四、实验方法1. 抗原免疫小鼠:将抗原注入Balb/c小鼠体内,免疫小鼠,制备抗体。

2. 细胞融合:收集免疫小鼠脾细胞,与SP2/0细胞按一定比例混合,加入PEG,诱导细胞融合。

3. 融合细胞筛选:将融合细胞接种于96孔板,加入HAT培养基,培养7-10天,观察细胞生长情况,筛选出阳性克隆。

4. 阳性克隆扩大培养:将阳性克隆扩大培养,制备杂交瘤细胞。

5. 阳性克隆抗体检测:收集杂交瘤细胞培养上清,进行ELISA检测,鉴定阳性克隆。

6. 阳性克隆抗体纯化:将阳性克隆抗体进行亲和层析或蛋白A/G层析,纯化抗体。

7. 阳性克隆抗体鉴定:采用流式细胞术或免疫荧光技术,鉴定阳性克隆抗体。

五、实验结果1. 免疫小鼠制备抗体:免疫小鼠后,血清抗体水平明显升高。

2. 细胞融合:融合细胞生长良好,阳性克隆筛选成功。

3. 阳性克隆扩大培养:阳性克隆杂交瘤细胞生长旺盛。

单克隆抗体制备的基本原理与过程?有什么意义?

单克隆抗体制备的基本原理与过程?有什么意义?

单克隆抗体制备的基本原理与过程?有什么意义?哈哈~我们刚考到这题原理:B淋巴细胞在抗原的刺激下,能够分化、增殖形成具有针对这种抗原分泌特异性抗体的能力.B细胞的这种能力和量是有限的,不可能持续分化增殖下去,因此产生免疫球蛋白的能力也是极其微小的.将这种B细胞与非分泌型的骨髓瘤细胞融合形成杂交瘤细胞,再进一步克隆化,这种克隆化的杂交瘤细胞是既具有瘤的无限生长的能力,又具有产生特异性抗体的B淋巴细胞的能力,将这种克隆化的杂交瘤细胞进行培养或注入小鼠体内即可获得大量的高效价、单一的特异性抗体.这种技术即称为单克隆抗体技术.1)免疫脾细胞的制备制备单克隆抗体的动物多采用纯系Balb/c 小鼠.免疫的方法取决于所用抗原的性质.免疫方法同一般血清的制备,也可采用脾内直接免疫法.2)骨髓瘤细胞的培养与筛选在融合前,骨髓瘤细胞应经过含8-AG 的培养基筛选,防止细胞发生突变恢复HGPRT的活性(恢复HGPRT的活性的细胞不能在含8-AG的培养基中存活).骨髓瘤细胞用10%小牛血清的培养液在细胞培养瓶中培养,融合前24h换液一次,使骨髓瘤细胞处于对数生长期.3)细胞融合的关键:1技术上的误差常常导致融合的失败.例如,供者淋巴细胞没有查到免疫应答.这必然要失败的.2融合试验最大的失败原因是污染,融合成功的关键是提供一个干净的环境,以及适宜的无菌操作技术.4)阳性克隆的筛选应尽早进行.通常在融合后10天作第一次检测,过早容易出现假阳性.检测方法应灵敏、准确、而且简便快速.具体应用的方法应根据抗原的性质,以及所需单克隆抗体的功能进行选择.常用的方法有 RIA法、 ELISA法和免疫荧光法等.其中ELISA法最简便,RIA法最准确.阳性克隆的筛选应进行多次,均阳性时才确定为阳性克隆进行扩增.5)克隆化克隆化的目的是为了获得单一细胞系的群体.克隆化应尽早进行并反复筛选.这是因为初期的杂交瘤细胞是不稳定的,有丢失染色体的倾向.反复克隆化后可获得稳定的杂交瘤细胞株.克隆化的方法很多,而最常用的是有限稀释法.(1)显微操作法:在显微镜下取单细胞,然后进行单细胞培养.这种方法操作复杂,效率低,故不常用.(2)有限稀释法:将对数生长期的杂交瘤细胞用培养液作一定的稀释后,按每孔1个细胞接种在培养皿中,细胞增值后成为单克隆细胞系.第一次克隆化时加一定量的饲养细胞.由于第一次克隆化生长的细胞不能保证单克隆化,所以为获得稳定的单克隆细胞株需经2~3次的再克隆才成.应该注意的是,每次克隆化过程中所有有意义的细胞都应冷冻保存,以便重复检查,避免丢失有意义的细胞.(3)软琼脂法:将杂交瘤细胞稀释到一定密度,然后与琼脂混悬.在琼脂中的细胞不能自由移动,彼此互不相混,从而达到单细胞培养的目的.但此法不如有限稀释法好.(4)荧光激光细胞分类法:用抗原包被的荧光乳胶微球标记杂交瘤细胞,然后根据抗原与杂交瘤细胞结合的特异性选出细胞,并进行单细胞培养.6)细胞的冻存与复苏7)大规模单克隆抗体的制备选出的阳性细胞株应及早进行抗体制备,因为融合细胞随培养时间延长,发生污染、染包体丢失和细胞死亡的机率增加.抗体制备有两种方法.一是增量培养法,即将杂交瘤细胞在体外培养,在培养液中分离单克隆抗体.该法需用特殊的仪器设备,一般应用无血清培养基,以利于单克隆抗体的浓缩和纯化.最普遍采用的是小鼠腹腔接种法.选用BALB/c小鼠或其亲代小鼠,先用降植烷或液体石蜡行小鼠腹腔注射,一周后将杂交瘤细胞接种到小鼠腹腔中去.通常在接种一周后即有明显的腹水产生,每只小鼠可收集5~10ml的腹水,有时甚至超过40ml.该法制备的腹水抗体含量高,每毫升可达数毫克甚至数十毫克水平.此外,腹水中的杂蛋白也较少,便于抗体的纯化.意义:用于以下各种生命科学实验并具有医用价值(1)沉淀反应:Precipitation reaction(2)凝集实验:haemaglutination(3)放射免疫学方法检测免疫复合物(4)流式细胞仪:用于细胞的分型和细胞分离. (5)ELISA 等免疫学检测(6)BIAcore biosensor:检测Ab-Ag或与蛋白的亲和力 .(7) 免疫印记(western blotting)(8)免疫沉淀:(9)亲和层析:分离蛋白质(10)磁珠分离细胞(11)临床疾病的诊断和治疗;。

单克隆抗体制备的基本原理

单克隆抗体制备的基本原理

单克隆抗体制备的基本原理It was last revised on January 2, 2021单克隆抗体制备的基本原理一、单克隆抗体的概念抗体(antibody)是机体在抗原刺激下产生的能与该抗原特异性结合的免疫球蛋白。

常规的抗体制备是通过动物免疫并采集抗血清的方法产生的,因而抗血清通常含有针对其他无关抗原的抗体和血清中其他蛋白质成分。

一般的抗原分子大多含有多个不同的抗原决定簇,所以常规抗体也是针对多个不同抗原决定簇抗体的混合物。

即使是针对同一抗原决定簇的常规血清抗体,仍是由不同B细胞克隆产生的异质的抗体组成。

因而,常规血清抗体又称多克隆抗体(polyclonal antibody),简称多抗。

由于常规抗体的多克隆性质,加之不同批次的抗体制剂质量差异很大,使它在免疫化学试验等使用中带来许多麻烦。

因此,制备针对预定抗原的特异性均质的且能保证无限量供应的抗体是免疫化学家长期梦寐以求的目标。

随着杂交瘤技术的诞生,这一目标得以实现。

1975年,Kohler和Milstein建立了淋巴细胞杂交瘤技术,他们把用预定抗原免疫的小鼠脾细胞与能在体外培养中无限制生长的骨髓瘤细胞融合,形成B 细胞杂交瘤。

这种杂交瘤细胞具有双亲细胞的特征,既像骨髓瘤细胞一样在体外培养中能无限地快速增殖且永生不死,又能像脾淋巴细胞那样合成和分泌特异性抗体。

通过克隆化可得到来自单个杂交瘤细胞的单克隆系,即杂交瘤细胞系,它所产生的抗体是针对同一抗原决定簇的高度同质的抗体,即所谓单克隆抗体(monoclonal antibody,McAb),简称单抗。

与多抗相比,单抗纯度高,专一性强、重复性好、且能持续地无限量供应。

单抗技术的问世,不仅带来了免疫学领域里的一次**,而且它在生物医学科学的各个领域获得极广泛的应用,促进了众多学科的发展。

德国科学家柯勒(Georges Ko1er)和英国科学家米尔斯坦(Cesar Milstein)两人由此杰出贡献而荣获1984年度诺贝尔生理学和医学奖。

单克隆抗体的应用及原理

单克隆抗体的应用及原理

单克隆抗体的应用及原理单克隆抗体是一种由相同母细胞分裂而来的具有相同特异性、亲和力和效能的抗体。

它是通过体外诱导和细胞融合技术获得的,可以专门针对特定抗原进行应用和治疗。

单克隆抗体在医学、科研和生物技术等领域具有广泛的应用前景。

单克隆抗体的应用主要分为治疗应用、诊断应用和研究应用三个方面。

治疗应用方面,单克隆抗体被用于免疫治疗和抗肿瘤药物的研发。

例如,单克隆抗体可以与肿瘤细胞表面的抗原结合,通过直接杀伤肿瘤细胞或激活免疫细胞来抑制肿瘤的生长和扩散。

目前已经有多种单克隆抗体药物被批准用于临床治疗,如赫赛汀、特鲁替珠单抗等。

此外,单克隆抗体还可以用于传统药物的改进,增强药效、减少毒副作用。

单克隆抗体的应用在抗癌药物研发中具有巨大的潜力。

在诊断应用方面,单克隆抗体被用于制备特异性的抗原检测试剂盒。

通过与特定抗原的结合,单克隆抗体可以在临床实验室中用于疾病的早期检测、诊断和预后。

例如,单克隆抗体可以用于肿瘤标志物的检测,如CA125、PSA等。

此外,单克隆抗体还可以用于免疫组化、免疫印迹、流式细胞术等实验方法中,对细胞表面分子、蛋白质的检测和鉴定起关键作用。

在研究应用方面,单克隆抗体被用于分子生物学、细胞生物学和生物工程等领域的研究。

例如,单克隆抗体可以用于从复杂的混合物中纯化特定的蛋白质或细胞。

此外,单克隆抗体还可以用于研究蛋白质的结构与功能、信号转导途径等。

由于单克隆抗体拥有高度特异性和亲和力,它在研究领域具有重要的价值。

单克隆抗体的制备原理主要包括免疫克隆、细胞融合和筛选等步骤。

首先,制备单克隆抗体需要从动物体内或体外免疫获得特定的抗原刺激。

接下来,从免疫动物(如小鼠)体内采集抗体产生的淋巴细胞。

这些淋巴细胞与肿瘤细胞进行融合,形成杂交瘤细胞。

这些细胞具有强大的免疫力,并能长时间产生单克隆抗体。

然后,必须对杂交瘤细胞进行筛选和鉴定。

首先,通过双荧光筛选法、酶联免疫吸附实验等技术,选择具有特异性抗原结合能力的杂交瘤细胞。

单克隆抗体的制备技术

单克隆抗体的制备技术

单克隆抗体的制备技术单克隆抗体是一种特定的抗体,由同一种克隆的B细胞产生,并具有相同的抗原结合特异性。

这种抗体制备技术是通过将B细胞与瘤细胞融合而形成的杂交瘤细胞来实现的。

以下是关于单克隆抗体制备技术的详细解释。

1. 免疫原制备:要制备单克隆抗体,首先需要准备免疫原。

免疫原可以是蛋白质、多肽、糖脂或其他小分子化合物。

免疫原的选择基于所需抗体的特异性。

一般来说,免疫原应具有较高的纯度,并且能够激发免疫系统产生特定的抗体。

2. 免疫动物免疫:接下来,将免疫原注射到实验动物体内,以激发其免疫系统产生抗体。

常用的实验动物包括小鼠、大鼠或兔子。

在注射过程中,免疫原通常与佐剂混合以增强免疫反应。

注射免疫通常在一段时间内进行多次,以确保充分激发免疫系统产生抗体。

3. B细胞的筛选和融合:在动物免疫后,从其脾脏或骨髓中收集B细胞。

这些B细胞是产生抗体的主要细胞类型。

通过在培养基中培养,可以增加B细胞的数量。

然后,将这些B细胞与一种名为骨髓瘤细胞的癌细胞融合。

这种骨髓瘤细胞有着无限增殖的能力,而B细胞则提供了抗体生产所需的特定性。

4. 杂交瘤细胞的筛选:融合后的细胞形成了杂交瘤细胞。

这些细胞具有两个来源的特性,具有骨髓瘤细胞的无限增殖能力和B细胞的抗体产生能力。

为了筛选出产生特定抗体的杂交瘤细胞,可以使用细胞培养基中的特定抗原进行筛选。

只有与特定抗原结合的杂交瘤细胞才能存活和增殖。

5. 克隆的建立:经过筛选后,单个杂交瘤细胞被分离并单独培养,以建立纯化的单个细胞克隆。

这些克隆细胞会持续产生与免疫原结合的特定抗体。

这些单克隆抗体可以通过培养细胞并收集培养上清液来获取。

6. 单克隆抗体的纯化和特性分析:单克隆抗体的纯化是将其从其他细胞产物和杂质中分离出来。

这通常包括离心、过滤和亲和层析等步骤。

纯化后的抗体可以进行各种特性分析,如亲和性测定、特异性测定和功能性分析等。

这些测试可以验证抗体的特异性和效能。

总结:单克隆抗体的制备技术是一种通过将免疫的动物B细胞与骨髓瘤细胞融合形成杂交瘤细胞的方法。

单克隆抗体制备的基本原理

单克隆抗体制备的基本原理

单克隆抗体制备的基本原理单克隆抗体(monoclonal antibody)是指由同一抗体原型细胞(B细胞)分娩的具有相同抗原结合能力和单一特异性的抗体分子。

单克隆抗体制备的基本原理是通过融合抗体原型细胞和肿瘤细胞,形成无限增殖的杂交瘤细胞,利用这些细胞生产大量的单克隆抗体。

首先,制备免疫原。

免疫原可以是纯化的蛋白质,也可以是从细胞、病毒、细菌等生物体中提取的抗原。

免疫原的选择要根据具体需要,确保能够引发免疫应答。

接着,通过免疫程序激发抗体原型细胞。

将免疫原注射给小鼠等实验动物,促使其免疫应答产生特异性抗体。

这个过程一般包括预免疫、主免疫和增强免疫等步骤,以提高免疫应答的效果。

然后,收集免疫骨髓细胞或淋巴细胞,与肿瘤细胞进行细胞融合。

肿瘤细胞一般选择无限增殖能力的骨髓瘤或葡萄状囊肿瘤细胞,这些细胞能够提供长期稳定的单克隆抗体分泌。

融合过程中利用聚乙二醇等化学物质提高融合效率。

杂交瘤筛选是在含有融合细胞的培养基中筛选出能够分泌目标抗体的杂交瘤细胞株。

筛选的方法包括细胞排序、ELISA、免疫组化和免疫磁珠等。

通过这些方法,可以快速筛选出能够特异性地分泌目标抗体的细胞株。

最后,对单克隆细胞进行培养和扩增,得到大量的单克隆抗体。

单克隆细胞培养一般在无血清培养基中进行,可以使用悬浮培养方法或者固定化培养方法。

培养的细胞经过一定周期后可以分离单克隆抗体。

总的来说,单克隆抗体制备的基本原理是通过免疫应答激发产生抗体原型细胞,然后与肿瘤细胞融合形成无限增殖的杂交瘤细胞,再通过杂交瘤筛选和单克隆细胞培养等环节,最终获得大量单克隆抗体。

这一技术在生命科学和医学领域中具有广泛的应用前景。

简述利用杂交瘤细胞制备单克隆抗体的基本原理

简述利用杂交瘤细胞制备单克隆抗体的基本原理

简述利用杂交瘤细胞制备单克隆抗体的基本原理杂交瘤细胞制备单克隆抗体是一种重要的生物技术手段。

本文将介绍杂交瘤细胞制备单克隆抗体的基本原理、流程及其应用。

一、原理单克隆抗体是指来自同一B细胞克隆的抗体,它具有高度的特异性和稳定性,广泛应用于生物医学、生命科学和工业等领域。

杂交瘤细胞制备单克隆抗体的基本原理是将体外免疫的B细胞与骨髓瘤细胞融合成杂交瘤细胞,使其继承了B细胞产生抗体的能力和骨髓瘤细胞的不死性,从而长期稳定的产生单克隆抗体。

二、流程制备单克隆抗体的流程主要分为以下五个步骤:1. 免疫动物:将抗原注射于小鼠等哺乳动物体内,诱导其产生抗体。

2. 分离B细胞:从免疫动物体内获取脾脏,制备成单细胞悬浮液。

3. 融合细胞:将分离的B细胞与骨髓瘤细胞融合,形成杂交瘤细胞。

4. 筛选杂交瘤细胞:用选择性培养液筛选并纯化杂交瘤细胞,使其长期稳定的产生单克隆抗体。

5. 鉴定鉴定单克隆抗体:对产生的单克隆抗体进行鉴定,并获取其蛋白质序列,以便制备大规模的单克隆抗体。

三、应用杂交瘤细胞制备的单克隆抗体已广泛应用于许多领域。

在医学上,单克隆抗体已成为重要的诊断和治疗工具。

例如,抗癌单克隆抗体可以选择性地靶向癌细胞,疗效显著。

在生命科学领域,单克隆抗体也广泛应用于分子生物学、组织学和免疫学等方面。

在工业领域,单克隆抗体可以用于生化工业、食品工业和环保等方面。

综上所述,杂交瘤细胞制备单克隆抗体是一种重要的生物技术手段。

它的原理简单、流程清晰,经过鉴定的单克隆抗体具有高度的特异性和稳定性,有着广泛的应用前景。

简述单克隆抗体技术的基本原理

简述单克隆抗体技术的基本原理

简述单克隆抗体技术的基本原理单克隆抗体技术是生物技术领域的一项重要技术,在医药研发、诊断和治疗等方面都有着广泛的应用和前景。

单克隆抗体技术的基本原理是通过选择一种特定的免疫细胞,获取它产生的特异性抗体并使其进行不限制性复制,最终获得具有高度特异性和稳定性的单克隆抗体。

下面将详细介绍单克隆抗体技术的基本原理,包括鼠源性、嵌合型和人源性单克隆抗体技术,以及单克隆抗体生产的流程和应用。

一、鼠源性单克隆抗体鼠源性单克隆抗体是最早使用的单克隆抗体,其制备原理是将鼠类动物免疫一种抗原,收集其脾细胞,将其与骨髓瘤细胞融合,产生杂交瘤细胞,然后将杂交瘤细胞单克隆化,即从杂交瘤中分离出单个克隆细胞并培养扩大。

鼠源性单克隆抗体的优点是制备简单、产量高,但由于小鼠免疫系统与人类的巨大差异,鼠源性抗体往往容易引起免疫原性反应,从而限制了其在临床应用中的使用。

二、嵌合型单克隆抗体为了克服鼠源性单克隆抗体的局限性,研究人员提出了嵌合型单克隆抗体技术。

嵌合型单克隆抗体是由人源性的Fc区和鼠源性的可变区域组成,它可以确保高度特异性和稳定性的又可以降低免疫原性反应。

嵌合型单克隆抗体的制备方法是将人源性的IgG1的Fc片段与包含鼠源性单克隆抗体的可变区域进行基因重组,最终获得嵌合型单克隆抗体。

嵌合型单克隆抗体优点是高度特异性和稳定性、免疫原性反应小。

嵌合型单克隆抗体的制备过程较为复杂,且其效价可能比鼠源性单克隆抗体略低。

随着生物技术的不断发展,研究人员逐渐开始研制具有人源性的单克隆抗体,其能够更加充分地体现在人体内生物学免疫动态,从而降低了潜在的体内免疫原性反应。

人源性单克隆抗体制备方法有两种,一种是在小鼠背景中将人源性单克隆抗体进行筛选和生产,另一种是通过人免疫系统获得人源性单克隆抗体。

人免疫系统产生抗体的原理与小鼠类似,但需要额外进行一系列的筛选和优化步骤,以保证细胞系的干净和稳定性。

由于人源性单克隆抗体与人体内的免疫系统具有良好的兼容性和相似性,因此在临床应用中具有极高的价值。

单克隆抗体的制备原理及方法

单克隆抗体的制备原理及方法

单克隆抗体的制备原理及方法嘿,你知道单克隆抗体不?那可是超厉害的东西呢!单克隆抗体的制备就像是一场神奇的冒险。

先说说制备原理吧。

想象一下,免疫系统就像一个超级大工厂,里面有各种不同的“工人”。

单克隆抗体的制备就是要找到那个能专门对付特定“坏蛋”的“超级工人”。

通过把特定的抗原注入动物体内,让动物的免疫系统产生反应,就像吹响了战斗的号角。

动物体内的免疫细胞们开始行动起来,其中有一种叫B 淋巴细胞的,它们能产生针对特定抗原的抗体。

这就好比是一群勇敢的战士,找到了攻击的目标。

那制备方法呢?首先,把抗原注射到小鼠等动物体内,让动物产生免疫反应。

然后把动物的脾脏取出来,这里面有很多产生抗体的B 淋巴细胞。

接下来,把这些B 淋巴细胞和骨髓瘤细胞融合在一起。

这就像是让两个不同的超级英雄合体,产生更强大的力量。

融合后的细胞既有B 淋巴细胞产生抗体的能力,又有骨髓瘤细胞无限增殖的特性。

然后通过筛选,找到能产生特定抗体的杂交瘤细胞。

这就像是在一堆宝石中找到那颗最闪亮的钻石。

在这个过程中有啥注意事项呢?哎呀,那可不少呢!比如注射抗原的剂量要合适,不然可能效果不好。

融合细胞的时候,条件要控制好,不然成功率就低啦。

筛选的时候要仔细,可不能让那些“滥竽充数”的细胞混进来。

那安全性和稳定性咋样呢?单克隆抗体的安全性还是挺高的呢!经过严格的检测和筛选,确保不会对人体造成危害。

而且稳定性也不错,就像一个可靠的小伙伴,在需要的时候总能发挥作用。

单克隆抗体有哪些应用场景和优势呢?那可多了去了!在医学领域,可以用来诊断疾病、治疗疾病。

比如检测癌症标志物,就像一个超级侦探,能快速找到疾病的线索。

治疗某些疾病的时候,就像一个精准的导弹,直接攻击病变细胞,副作用还小。

在科研领域,也是个得力助手,可以用来研究蛋白质的结构和功能。

实际案例也不少呢!比如治疗某些癌症的单克隆抗体药物,让很多患者看到了希望。

就像黑暗中的一束光,给人们带来了温暖和力量。

单克隆抗体制备的基本原理

单克隆抗体制备的基本原理

单克隆抗体制备的基本原理一、引言单克隆抗体(Monoclonal Antibodies,mAb)是指来源于同一个B细胞克隆的抗体,具有高度特异性和单一免疫反应性。

单克隆抗体的制备是基于科学家科尔和米尔斯于1975年提出的杂交瘤技术。

该技术的发明是继酶联免疫吸附试验(ELISA)之后,对于生物医药研究领域的重大突破。

本文将重点介绍以单克隆抗体制备的基本原理。

二、单克隆抗体制备的基本原理单克隆抗体的制备主要包括以下几个步骤:免疫原制备、小鼠免疫、融合细胞的制备、杂交瘤细胞的筛选和克隆、抗体纯化及鉴定。

下面将详细介绍每个步骤。

1. 免疫原制备免疫原是指诱导机体产生免疫应答的物质。

在单克隆抗体制备中,免疫原通常是具有特定抗原性的蛋白质。

可以通过基因工程技术或从天然来源提取免疫原。

为了提高免疫原的免疫原性,通常会将其与适当的载体结合。

2. 小鼠免疫将免疫原注射到小鼠体内,刺激小鼠产生特异性抗体。

通常需要多次免疫,以增强免疫反应。

免疫后,可以通过采集小鼠血清进行抗体的初步筛选。

3. 融合细胞的制备将小鼠的脾细胞和骨髓瘤细胞进行细胞融合。

小鼠的脾细胞负责产生特异性抗体,而骨髓瘤细胞则具有无限增殖的能力。

融合细胞的制备通常使用聚乙二醇(Polyethylene Glycol,PEG)等化合物来促进细胞融合。

4. 杂交瘤细胞的筛选和克隆将融合细胞悬浮液培养在含有选择性培养基的培养皿中,筛选出杂交瘤细胞。

杂交瘤细胞是具有脾细胞和骨髓瘤细胞的特性,能够稳定地产生特异性抗体。

为了获得单克隆抗体,需要进行单克隆化培养,即每个杂交瘤细胞分离为一个克隆。

5. 抗体纯化及鉴定通过培养杂交瘤克隆细胞,可以得到大量的抗体。

接下来需要对抗体进行纯化和鉴定。

通常使用亲和层析、离子交换层析等技术对抗体进行纯化。

鉴定抗体的方法包括酶联免疫吸附试验(ELISA)、免疫印迹(Western Blot)等。

三、应用前景单克隆抗体的制备在生物医药领域有着广泛的应用前景。

单克隆抗体的制备原理及方法

单克隆抗体的制备原理及方法

单克隆抗体的制备原理及方法
单克隆抗体是一种来源于同一B细胞克隆的抗体,具有单一的抗原结合特异性。

它在生物医学领域有着广泛的应用,如药物研发、疾病诊断和治疗等方面。

本文将介绍单克隆抗体的制备原理及方法。

首先,制备单克隆抗体的原理是通过免疫细胞融合技术获得单克隆抗体细胞系。

该技术主要包括以下几个步骤,免疫原注射、混合细胞培养、细胞融合、筛选和克隆等。

其中,免疫原注射是指将目标抗原注射到小鼠等动物体内,刺激其产生特异性抗体;混合细胞培养是将小鼠脾细胞与骨髓瘤细胞混合培养,促使它们融合形成杂交瘤细胞;细胞融合是通过聚乙二醇等化合物促使免疫细胞与骨髓瘤细胞融合,形成杂交瘤细胞;筛选和克隆是通过限稀稀释法或限稀稀释法筛选出单克隆杂交瘤细胞,并将其进行克隆扩增,最终得到单克隆抗体细胞系。

其次,制备单克隆抗体的方法主要包括动物免疫、细胞融合、杂交瘤筛选和克
隆等步骤。

动物免疫是指将目标抗原注射到小鼠等动物体内,刺激其产生特异性抗体;细胞融合是通过将免疫细胞与骨髓瘤细胞融合,形成杂交瘤细胞;杂交瘤筛选是通过限稀稀释法或限稀稀释法筛选出单克隆杂交瘤细胞;克隆是将筛选出的单克隆杂交瘤细胞进行克隆扩增,最终得到单克隆抗体细胞系。

总之,单克隆抗体的制备原理及方法是通过免疫细胞融合技术获得单克隆抗体
细胞系。

其制备方法包括动物免疫、细胞融合、杂交瘤筛选和克隆等步骤。

这些步骤的顺序和方法的选择都对单克隆抗体的制备起着至关重要的作用。

希望本文的介绍能够对单克隆抗体的制备原理及方法有所帮助。

单克隆抗体的应用和原理

单克隆抗体的应用和原理

单克隆抗体的应用和原理单克隆抗体是一种由单一克隆细胞所产生的具有同一免疫原特异性的抗体。

相比于多克隆抗体,单克隆抗体具有更高的特异性和亲和力,因此在医学、生物学、生物技术等领域得到了广泛的应用。

本文将介绍单克隆抗体的应用和原理。

一、单克隆抗体的制备单克隆抗体的制备主要包括以下几个步骤:1. 免疫原制备:免疫原是指能够引起机体免疫反应的物质,如蛋白质、多肽、糖类等。

免疫原的制备需要根据具体的实验目的进行选择,通常采用纯化、重组、化学合成等方法制备。

2. 免疫动物的免疫:将免疫原注射到小鼠等动物体内,激发机体产生抗体。

为了增强免疫效果,通常需要多次免疫。

3. 脾细胞的制备:在免疫动物免疫一定次数后,取出其脾脏,制备脾细胞悬液。

4. 杂交瘤的制备:将脾细胞与肿瘤细胞进行杂交,形成杂交瘤。

由于肿瘤细胞具有无限增殖能力,因此杂交瘤可以持续产生单克隆抗体。

5. 单克隆抗体的筛选和纯化:通过ELISA、免疫印迹、流式细胞术等方法筛选出具有特异性的单克隆抗体,并进行纯化。

二、单克隆抗体的应用1. 诊断单克隆抗体可以用于诊断疾病。

例如,针对肿瘤标志物的单克隆抗体可以用于肿瘤的早期检测和诊断。

另外,单克隆抗体还可以用于检测病毒、细菌等微生物,以及药物、毒素等物质。

2. 治疗单克隆抗体还可以用于治疗疾病。

例如,针对肿瘤细胞表面的特异性抗体可以选择性地杀死肿瘤细胞,达到治疗肿瘤的效果。

另外,单克隆抗体还可以用于治疗自身免疫性疾病、炎症等疾病。

3. 生物技术单克隆抗体在生物技术领域也有广泛的应用。

例如,可以用于免疫印迹、ELISA、流式细胞术等实验中,用于检测特定蛋白质的表达和定量。

另外,单克隆抗体还可以用于纯化蛋白质、分离细胞等。

三、单克隆抗体的原理单克隆抗体的原理是基于机体的免疫反应。

当机体遇到免疫原时,会产生多种不同的抗体,这些抗体具有不同的特异性和亲和力。

其中,具有特异性和亲和力最高的抗体被称为单克隆抗体。

单克隆抗体的制备需要经过多个步骤,其中最核心的是杂交瘤的制备。

高中生物《单克隆抗体的制备》

高中生物《单克隆抗体的制备》

高中生物《单克隆抗体的制备》单克隆抗体是一种专一性极强的抗体,是由一种单一的淋巴细胞或细胞群体产生的,仅能特异性的识别和结合一种抗原。

在医学、生物科学、免疫学等领域中得到了广泛的应用。

本文将介绍单克隆抗体的制备方法。

单克隆抗体制备方法:一、免疫原制备制备单克隆抗体的关键是选取质量优良的免疫原,一般来说,免疫原应是纯化、特异性强和含有多个抗原表位的物质。

二、小鼠免疫将经充分清洗的免疫原,加入无菌纯水中混合悬浮后,与适量的氢氧化铝混合,制成疫苗。

将经过筛选的小鼠作为进行免疫的实验动物,并用疫苗进行免疫,使小鼠产生多克隆抗体。

免疫期一般在5-8周之间,不宜过短或过长,以免影响产生的抗体的质量。

三、脾细胞制备在小鼠免疫期结束后,将小鼠的脾脏取出,用PBS缓冲液冲洗,得到脾细胞。

脾细胞是制备单克隆抗体时的重要材料,需要在取出脾脏后尽快处理,以保证细胞数量和活性的充足。

四、瘤细胞融合将脾细胞与瘤细胞进行混合,经过某些药物的刺激,使两种细胞融合成杂交瘤细胞。

杂交瘤细胞的特点是生长速度快,细胞寿命长,抗体分泌能力强,是单克隆抗体的制备过程中不可或缺的一环。

五、分选单克隆细胞将杂交瘤细胞进行分离和筛选,筛选出能够产生特异性单克隆抗体的细胞。

六、培养细胞产生抗体将分选出来的单克隆细胞培养在含有特定物质的培养基中,经过数次分离和筛选,获取产生大量单克隆抗体的细胞系。

七、提取单克隆抗体将细胞培养物通过旋转离心等方法,将单克隆抗体从培养液中提取出来,并进行进一步的纯化和检测。

对提取出来的单克隆抗体进行检测,包括其特异性、纯度、抗原特异性等指标的检测,确保单克隆抗体的质量。

总结:单克隆抗体制备的流程繁琐,但制备出的单克隆抗体优异的特异性和高度的纯度,尤其在生物医学和免疫学领域中得到广泛的应用。

单克隆抗体的基本原理

单克隆抗体的基本原理

单克隆抗体的基本原理
单克隆抗体是一种具有单一特异性的抗体,它可以识别并结合到特定的抗原上。

单克隆抗体的制备基本原理是通过免疫细胞技术,从单一的B细胞克隆中获得具
有单一特异性的抗体。

首先,制备单克隆抗体的第一步是免疫动物。

研究人员将目标抗原注射到小鼠
等动物体内,刺激其产生特异性抗体。

随后,从免疫动物中获得B细胞,这些B
细胞具有对目标抗原的特异性结合能力。

其次,获得的B细胞需要与癌细胞(骨髓瘤细胞)融合,形成杂交瘤细胞。

这些杂交瘤细胞具有B细胞的抗原结合能力和癌细胞的无限增殖能力,能够长期稳
定地产生单克隆抗体。

接着,研究人员需要筛选杂交瘤细胞,找到产生目标单克隆抗体的杂交瘤细胞。

这一步通常通过ELISA等方法进行,筛选出具有特异性和高亲和力的单克隆抗体
产生的杂交瘤细胞。

随后,研究人员需要大规模培养筛选出的杂交瘤细胞,生产大量的单克隆抗体。

这些单克隆抗体可以用于治疗、诊断、实验室研究等领域。

最后,单克隆抗体需要进行纯化和鉴定。

研究人员通过离心、层析等方法,将
单克隆抗体与其他蛋白质分离,得到纯净的单克隆抗体。

同时,需要对单克隆抗体进行活性和特异性的鉴定,确保其可以准确地识别和结合目标抗原。

总的来说,制备单克隆抗体的基本原理是通过免疫细胞技术,从单一的B细胞克隆中获得具有单一特异性的抗体。

这种单克隆抗体具有高度的特异性和亲和力,可以广泛应用于医学、科研等领域,具有重要的意义和应用前景。

单克隆抗体的制备2

单克隆抗体的制备2
一.单克隆抗体的概念
抗体是机体在抗原刺激下产生的能与该抗原特异性结合的免疫球蛋白。常规的抗体制备是通过动物免疫并采集抗血清的方法产生的,因而抗血清通常含有针对其他无关抗原的抗体和血清中其他蛋白质成分。一般的抗原分子大多含有多个不同的抗原决定簇,所以常规抗体也是针对多个不同抗原决定簇抗体的混合物。即使是针对同一抗原决定簇的常规血清抗体,仍是由不同B细胞克隆产生的异质的抗体组成。因而,常规血清抗体又称多克隆抗体(polyclonal antibody),简称多抗。由于常规抗体的多克隆性质,加之不同批次的抗体制剂质量差异很大,使它在免疫化学试验等使用中带来许多麻烦。因此,制备针对预定抗原的特异性均质的且能保证无限量供应的抗体是免疫化学家长期梦寐以求的目标。随着杂交瘤技术的诞生,这一目标得以实现。
淋巴细胞杂交瘤技术的主要步骤包括:动物免疫、细胞融合、杂交瘤细胞的筛选与单抗检测、杂交瘤细胞的克隆化、冻存、单抗的鉴定等,图6-1概括了淋巴细胞杂交瘤技术的免疫抗原,从纯度上说虽不要求很高,但高纯度的抗原使得到所需单抗的机会增加,同时可以减轻筛选的工作量。因此,免疫抗原是越纯越好,应根据所研究的抗原和实验室的条件来决定。一般来说,抗原的来源有限,或性质不稳定,提纯时易变性,或其免疫原性很强,或所需单抗是用于抗原不同组分的纯化或分析等,免疫用的抗原只需初步提纯甚至不提纯,但抗原中混杂物很多,特别是如果这些混杂物的免疫原性较强时,则必须对抗原进行纯化。检测用抗原可以是与免疫抗原纯度相同,也可是不同的纯度,这主要决定于所用筛检方法的种类及其特异性和敏感性。
c、次黄嘌呤和胸腺嘧啶核苷(HT)贮存液(100×,H:10-2mol/L,T:1.6×10-3mol/L):称取136.1mg次黄嘌呤(Hypoxanthine,MW 136.1)和38.8mg胸腺嘧啶核苷(Thymidine,MW 242.2),加超纯水或四蒸水至100ml,置45-50℃水浴中使完全溶解,过滤除菌,分装小瓶(2ml/瓶),-20℃冻存。用前可置37℃加温助溶。

单克隆抗体的原理

单克隆抗体的原理

单克隆抗体的原理单克隆抗体,是指与一种具有特定抗原性质的物质所结合的抗体,它只含有一个种类的抗体分子,这类抗体的针对性非常特异性。

单克隆抗体也被广泛用于治疗疾病、诊断和科学研究中。

那么单克隆抗体的原理是什么呢?下面我们一起来看一下。

1. 抗原制备首先需要准备与我们所需要生产的单克隆抗体相应的抗原。

这个抗原可以是蛋白质、多肽、糖类、脂质等分子。

2. 免疫原接下来就是将抗原注射到动物体内,以激发免疫反应,使得免疫系统产生抗体。

3. 混合细胞在免疫过程中需要混合不同克隆的淋巴细胞,以增加抗体的多样性。

混合细胞的来源既可以是不同的动物,也可以是同一动物中的不同淋巴细胞。

4. 融合将免疫细胞和肿瘤细胞进行融合,生成对抗体的杂交瘤细胞,这些细胞是能够连续生长,并且能够产生单一抗体的。

5. 选择在一个缺乏致死性剂的培养基中培养杂交瘤细胞,同时添加只能选择产生所需要抗体的无限稀释的抗原,以筛选产生单克隆抗体的细胞。

6. 鉴定使用不同的免疫学方法,比如免疫印迹、酶联免疫吸附试验(ELISA)、免疫荧光、流式细胞术等,鉴定单克隆抗体的纯度和特异性。

7. 扩增为了在大量使用单克隆抗体的应用中获得充足的材料,需要将从克隆细胞的細胞系中的产生的单克隆抗体扩张。

这通常通过在实验室中生产大量的单克隆抗体细胞来实现。

总的来说,单克隆抗体的原理是通过制备免疫原、混合细胞、融合、筛选、鉴定、扩张等步骤来产生针对特定抗原的高度特异性的单克隆抗体。

这些抗体对于疾病的诊断和治疗有着广泛应用,同时也推动了科学研究的进展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单克隆抗体制备的基本原理一、单克隆抗体的概念抗体( antibody )是机体在抗原刺激下产生的能与该抗原特异性结合的免疫球蛋白。

常规的抗体制备是通过动物免疫并采集抗血清的方法产生的,因而抗血清通常含有针对其他无关抗原的抗体和血清中其他蛋白质成分。

一般的抗原分子大多含有多个不同的抗原决定簇,所以常规抗体也是针对多个不同抗原决定簇抗体的混合物。

即使是针对同一抗原决定簇的常规血清抗体,仍是由不同 B 细胞克隆产生的异质的抗体组成。

因而,常规血清抗体又称多克隆抗体( polyclonal antibody ),简称多抗。

由于常规抗体的多克隆性质,加之不同批次的抗体制剂质量差异很大,使它在免疫化学试验等使用中带来许多麻烦。

因此,制备针对预定抗原的特异性均质的且能保证无限量供应的抗体是免疫化学家长期梦寐以求的目标。

随着杂交瘤技术的诞生,这一目标得以实现。

1975年,Kohler和Milstein 建立了淋巴细胞杂交瘤技术,他们把用预定抗原免疫的小鼠脾细胞与能在体外培养中无限制生长的骨髓瘤细胞融合,形成 B 细胞杂交瘤。

这种杂交瘤细胞具有双亲细胞的特征,既像骨髓瘤细胞一样在体外培养中能无限地快速增殖且永生不死,又能像脾淋巴细胞那样合成和分泌特异性抗体。

通过克隆化可得到来自单个杂交瘤细胞的单克隆系,即杂交瘤细胞系,它所产生的抗体是针对同一抗原决定簇的高度同质的抗体,即所谓单克隆抗体( monoclonal antibody ,McAb,简称单抗。

与多抗相比,单抗纯度高,专一性强、重复性好、且能持续地无限量供应。

单抗技术的问世,不仅带来了免疫学领域里的一次** ,而且它在生物医学科学的各个领域获得极广泛的应用,促进了众多学科的发展。

德国科学家柯勒( Georges Ko1er )和英国科学家米尔斯坦( Cesar Milstein )两人由此杰出贡献而荣获1984 年度诺贝尔生理学和医学奖。

二、杂交瘤技术(一)杂交瘤技术的诞生淋巴细胞杂交瘤技术的诞生是几十年来免疫学在理论和技术两方面发展的必然结果,抗体生成的克隆选择学说、抗体基因的研究、抗体结构与生物合成以及其多样性产生机制的揭示等,为杂交瘤技术提供了必要理论基础,同时,骨髓瘤细胞的体外培养、细胞融合与杂交细胞的筛选等提供了技术贮备。

1975年8月7日,Kohler和Milstein 在英国《自然》杂志上发表了题为“分泌具有预定特异性抗体的融合细胞的持续培养” (Continuous cultures of fused cells secreting antibody of predefined specificity )的著名论文。

他们大胆地把以前不同骨髓瘤细胞之间的融合延伸为将丧失合成次黄嘌呤- 鸟嘌呤磷酸核糖转移酶( hypoxanthine guanosine phosphoribosyl transferase ,HGPR)T 的骨髓瘤细胞与经绵羊红细胞免疫的小鼠脾细胞进行融合。

融合由仙台病毒介导,杂交细胞通过在含有次黄嘌吟(hypoxanthine , H)、氨基喋吟(ami nopterin , A)和胸腺嘧啶核苷 (thymidi ne , T)的培养基(HAT 中生长进行选择。

在融合后的细胞群体里,尽管未融合的正常脾细胞和相互融合的脾细胞是HGPRT,但不能连续培养,只能在培养基中存活几天,而未融合的HGPRT骨髓瘤细胞和相互融合的HGPRT骨髓瘤细胞不能在HAT培养基中存活,只有骨髓瘤细胞与脾细胞形成的杂交瘤细胞因得到分别来自亲本脾细胞的HGPR和口亲本骨髓瘤细胞的连续继代特性,而在HAT培养基中存活下来。

实验的结果完全像起始设计的那样,最终得到了很多分泌抗绵羊红细胞抗体的克隆化杂交瘤细胞系。

用这些细胞系注射小鼠后能形成肿瘤,即所谓杂交瘤。

生长杂交瘤的小鼠血清和腹水中含有大量同质的抗体,即单克隆抗体。

这一技术建立后不久,在融合剂和所用的骨髓瘤细胞系等方面即得到改进。

最早仙台病毒被用做融合剂,后来发现聚乙二醇(PEG的融合效果更好,且避免了病毒的污染问题,从而得到广泛的应用。

随后建立的骨髓瘤细胞系如SP2/0-Ag14,X63-Ag8.653和NS0/1都是既不合成轻链又不合成重链的变种,所以由它们产生的杂交瘤细胞系,只分泌一种针对预定的抗原的抗体分子,克服了骨髓瘤细胞M0PC-2等的不足。

再后来又建立了大鼠、人和鸡等用于细胞融合的骨髓瘤细胞系,但其基本原理和方法是一样的。

(二)杂交瘤技术的基本原理细胞融合是一个随机的物理过程。

在小鼠脾细胞和小鼠骨髓瘤细胞混合细胞悬中,经融合后细胞将以多种形式出现,如融合的脾细胞和瘤细胞、融合的脾细胞和脾细胞、融合的瘤细胞和瘤细胞、未融合的脾细胞、未融合的瘤细胞以及细胞的多聚体形式等。

正常的脾细胞在培养基中存活仅5〜7天,无需特别筛选,细胞的多聚体形式也容易死去。

而未融合的瘤细胞则需进行特别的筛选去除。

在细胞融合后,要从上述五种细胞中筛选出杂交瘤细胞,一般使用HAT培养进行筛选,HAT培养基中含有次黄嘌吟(H)、氨基喋吟(A)和胸腺嘧啶(T)三种成分。

细胞的DNA合成有内源性途径(主要途径)和外源性途径(旁路途径)两种方式。

内源性途径就是利用谷氨酰胺或单磷酸尿苷酸在二氢叶酸还原酶的催化下来合成DNA而外源性途径则是利用次黄嘌吟或胸腺嘧啶在次嘌吟鸟嘌吟磷酸核糖转移酶(Hypoxanthine guznine phosphoribosyl transferase,HGPRT或胸腺嘧啶激酶(thymidine kinase,TK) 的催化下来补救合成DNAHAT培养基中氯基喋吟是二氢叶酸还原酶的抑制剂,能有效地阻断DNA合成的内源性途径。

B淋巴细胞具有HGPRTT这两种酶,因此在内源性途径被阻断后仍能利用HAT培养基中的次黄嘌吟和胸腺嘧啶来合成DNA可在HAT培养基中存活,但B淋巴细胞是正常细胞,故不能长期存活。

杂交瘤技术中所使用和SP2/0-Ag14骨髓瘤细胞为HGPRT的TK- 缺陷型,缺乏HGPR酶和TK酶在内源性途径被阻断后不能进行DNA的外源性合成,故不能在HAT培养基中存活。

杂交瘤细胞由于继承了B淋巴细胞和骨髓瘤细胞的双重特性,能够合成HGPR 酶和TK酶,故在HAT 养基中能长期存活。

因此将融合后的混合细胞在HAT培养基中培养两周后,只有杂交瘤细胞能存活下来,成为制造单克隆抗体的细胞源。

三、单克隆抗体制备的方法与步骤(一)单抗制备的基本流程单克隆抗体制备的主要步骤有:①正常小鼠免疫处理;②用物理、化学和生物方法促使细胞融合;③杂交瘤细胞的筛选与培养;④单克隆抗体的提纯。

(二)单克隆抗体制备的基本方法抗原提纯与动物免疫对抗原的要求是纯度越高越好,尤其是初次免疫所用的抗原。

如为细胞抗原,可取1X 107个细胞作腹腔免疫。

可溶性抗原需加完全福氏佐剂并经充分乳化,如为聚丙烯酰胺电泳纯化的抗原,可将抗原所在的电泳条带切下,研磨后直接用以动物免疫。

选择与所用骨髓瘤细胞同源的BALB/C健康小鼠,鼠龄在8〜12周,雌雄不限。

为避免小鼠反应而不佳或免疫过程中死亡,可同时免疫3〜4 只小鼠。

免疫过程和方法与多克隆抗血清制备基本相同,因动物、抗原形式、免疫途径不同而异,以获得高效价抗体为最终目的。

免疫间隔一般2〜3 周。

一般被免疫动物的血清抗体效价越高,融合后细胞产生高效价特异抗体的可能性越大,而且单克隆抗体的质量(如抗体的浓度和亲和力)也与免疫过程中小鼠血清抗体的效价和亲和力密切相关。

末次免疫后3〜 4 天,分离脾细胞融合。

骨髓瘤细胞及饲养细胞的制备选择瘤细胞株的最重要的一点是与待融合的B细胞同源。

如待融合的是脾细胞,各种骨髓瘤细胞株均可应用,但应用最多的是Sp2/0 细胞株。

该细胞株生长及融合效率均佳,此外,该细胞株本身不分泌任何免疫球蛋白重链或轻链。

细胞的最高生长刻度为9X 105/ml,倍增时间通常为10〜15h。

融合细胞应选择处于对数生长期、细胞形态和活性佳的细胞 (活性应大于95%)。

骨髓瘤细胞株在融合前应先用含8- 氮鸟嘌呤的培养基作适应培养,在细胞融合的前一天用新鲜培养基调细胞浓度为2105/ml ,次日一般即为对数生长期细胞。

在体外培养条件下,细胞的生长依赖适当的细胞密度,因而,在培养融合细胞或细胞克隆化培养时,还需加入其他饲养细胞( feedercell )。

常用的饲养细胞为小鼠的腹腔细胞,制备方法为用冷冻果糖液注入小鼠腹腔,轻揉腹部数次,吸出后的液体中即含小鼠腹腔细胞,其中在巨噬细胞和其他细胞。

亦有用小鼠的脾细胞、大鼠或豚鼠的腹腔细胞作为饲养细胞的。

在制备饲养细胞时,切忌针头刺破动物的消化器官,否则所获细胞会有严重污染。

饲养细胞调至1X 105/ml,提前一天或当天置板孔中培养。

细胞融合细胞融合是杂交瘤技术的中心环节,基本步骤是将两种细胞混合后加入PEG使细胞彼此融合。

其后吧培养液稀释PEG消除PEG勺作用。

将融合后的细胞适当稀释,分置培养板孔中培养。

融合过程中有几个问题应特别注意。

①细胞比例:骨髓瘤细胞与脾细胞的比值可从1:2到1:10不等,常用1:4的比例。

应保证两种细胞在融合前都具有较高活性。

② 反应时间:在两种细胞的混合细胞悬液中,第1min 滴加 4.5ml 培养液;间隔2min滴加5ml培养液,尔后加培养液50ml。

③培养液的成分:对融合细胞,良好的培养液尤其重要,其中的小牛血清、各种离子和营养成分均需严格配制。

如融合效率降低,应随时核查培养基情况。

有限稀释法筛选阳性株一般选用的骨髓瘤细胞为HAT敏感细胞株,所以只有融合的细胞才能待续存活一周以上。

融合细胞呈克隆生长,经有限稀释后(一般稀释至0.8 个细胞/ 孔),按Poisson 法计算,应有36%的孔为 1 个细胞/孔。

细胞培养至覆盖0 %〜20%孔底时,吸取培养上清用ELISA 检测抗体含量。

首先依抗体的分泌情况筛选出高抗体分泌孔,将孔中细胞再行克隆化,尔后进行抗原特异的ELISA测定,选高分泌特异性细胞株扩大培养或冻存。

单克隆抗体的制备和冻存筛选出的阳性细胞株应及早进行抗体制备,因为融合细胞随培养时间延长,发生污染、染包体丢失和细胞死亡的机率增加。

抗体制备有两种方法。

一是增量培养法,即将杂交瘤细胞在体外培养,在培养液中分离单克隆抗体。

该法需用特殊的仪器设备,一般应用无血清培养基,以利于单克隆抗体的浓缩和纯化。

最普遍采用的是小鼠腹腔接种法。

选用BALB/c 小鼠或其亲代小鼠,先用降植烷或液体石蜡行小鼠腹腔注射,一周后将杂交瘤细胞接种到小鼠腹腔中去。

通常在接种一周后即有明显的腹水产生,每只小鼠可收集5〜10ml 的腹水,有时甚至超过40ml。

该法制备的腹水抗体含量高,每毫升可达数毫克甚至数十毫克水平。

相关文档
最新文档