空间角的计算
高一数学空间角的知识点
高一数学空间角的知识点在高一数学的学习中,我们会接触到许多重要的概念和知识点。
其中,空间角作为数学中的一个重要概念,起着非常关键的作用。
本文将通过对空间角的介绍和相关知识点的探讨,帮助读者深入理解和掌握高一数学中的空间角。
一、什么是空间角?空间角是指位于同一平面内的两条射线之间的夹角。
它可以用来描述物体的旋转或者两个线段之间的方向关系。
空间角的大小通常用角的弧度或者度数来表示。
在几何学中,我们通常使用度数来度量空间角。
二、空间角的计算方法计算空间角时,我们需要先确定两条射线的起始点、共同点和终点。
在具体计算时,可以借助坐标轴或者向量的方法来帮助我们进行求解。
下面通过几个具体的例子来说明空间角的计算方法。
1. 用坐标轴计算空间角假设有两条射线分别为AB和AC,我们可以在坐标轴上确定它们的位置。
设A点的坐标为(0,0,0),B点的坐标为(x1,y1,z1),C 点的坐标为(x2,y2,z2)。
首先计算向量AB和向量AC的点积,即(x1,y1,z1)·(x2,y2,z2)。
然后计算向量AB和向量AC的模长,即|AB|和|AC|。
最后计算空间角,使用向量的点积公式cosθ =(x1,y1,z1)·(x2,y2,z2) / (|AB|·|AC|)。
2. 用向量计算空间角利用向量的方法,我们可以将空间角转化为向量间的夹角。
首先计算向量AB和向量AC的内积,即AB·AC。
然后计算向量AB 和向量AC的模长,即|AB|和|AC|。
最后计算空间角,使用向量的内积公式cosθ = AB·AC / (|AB|·|AC|)。
三、空间角的性质空间角具有一些重要的性质,这些性质有助于我们更深入地理解和应用空间角。
1. 空间角的值域空间角的值域为[-1, 1]。
当两条射线共线时,空间角等于0;当两条射线垂直时,空间角等于1或者-1,具体取决于旋转方向。
2. 空间角的加法公式空间角的加法公式是指当两个角相加时,结果等于新的角的余角。
空间角的计算
空间角的求法(一)异面直线所成的角:]2,0(平移法:平移其中一条或两条使之成为相交直线所成的角。
题型一 求异面直线所成的角例1:正方体ABCD —A 1B 1C 1D 1中, (1) 求AC 与D A 1所成角的大小;(2)若E 、F 分别为AB 、AD 的中点,求A 1C 1与EF 所成角的大小. 练习1.如图, 正方体ABCD -A 1B 1C 1D 1中, 异面直线A 1B 与AD 1所成角的余弦值为 ;异面直线A 1B 与DC 1所成角为 ;异面直线A 1B 与CC 1所成角为 。
2.在长方体ABCD -A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3求异面直线A 1B 与B 1C 所成角的余弦值。
3.如图,在四棱锥P —ABCD 中,PO ⊥底面ABCD , O 为AD 中点,侧棱P A =PD =2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD , AD =2AB =2BC=2,. (1)求异面直线PB 与CD 所成角的余弦值;b ′Oba(二)直线和平面所成的角[0,2π] 定义法:(1)经过斜线上一点作面的垂线;(2)找出斜线在平面内的射影,从而找出线面角;(3)解直角三角形 题型二 求线面角例2:如图,正方体ABCD -A 1B 1C 1D 1中,求直线BC 1与平面ABCD 所成角的大小。
练习1:在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是BC 1的中点.求直线DE 与平面ABCD 所成角的θ大小(用三角函数值表示).D1C1A1B1ABCDE(三)二面角[0,180]oo定义1(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角 定义2(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角二面角的平面角的特点:1) 角的顶点在棱上 ;2)角的两边分别在两个面内 ;3)角的边都要垂直于二面角的棱。
周帅数学 空间角度计算
周帅数学空间角度计算周帅数学空间角度计算在数学中,空间角度是指两个向量之间的夹角。
空间角度的计算在几何学和物理学中有着广泛的应用,特别是在三维空间中的向量运算和几何图形的研究中。
本文将介绍周帅数学空间角度计算的方法和应用。
一、空间角度的定义空间角度是指三维空间中两个向量之间的夹角。
在直角坐标系中,可以使用向量的内积来计算空间角度。
设有两个向量A和B,它们的夹角θ满足以下关系式:cosθ = (A·B) / (|A|·|B|)其中,A·B表示向量A和向量B的内积,|A|和|B|分别表示向量A 和向量B的模(即长度)。
二、计算空间角度的方法1. 基于内积的计算方法根据上述定义,可以直接使用向量的内积公式来计算空间角度。
首先计算向量A和向量B的内积,然后计算向量A和向量B的模,最后将内积除以模的乘积,得到cosθ的值。
通过反余弦函数可以求得角度θ。
2. 基于坐标的计算方法除了使用内积公式,还可以通过向量的坐标来计算空间角度。
设向量A的坐标为(x1, y1, z1),向量B的坐标为(x2, y2, z2),则可以使用以下公式计算空间角度:cosθ = (x1*x2 + y1*y2 + z1*z2) / (sqrt(x1^2 + y1^2 + z1^2) * sqrt(x2^2 + y2^2 + z2^2))其中,sqrt表示平方根。
三、空间角度的应用空间角度的计算在几何学和物理学中有着广泛的应用。
以下是一些典型的应用场景:1. 向量运算:空间角度可以用于判断两个向量的方向是否相似,以及它们之间的夹角大小。
在向量的加法、减法和标量乘法中,空间角度的计算是很常见的。
2. 几何图形的研究:在三维几何图形的研究中,空间角度的计算可以帮助确定图形的形状、方向和位置。
例如,在计算三角形的面积和判断是否共面时,空间角度的计算是必不可少的。
3. 物理学中的力学问题:在物理学中,空间角度的计算可以用于解决力学问题。
3.2.3空间的角的计算
我们知道,两个平面所成的角是用二面角的平面角来度 量.这就是说,空间的二面角最终可以通过转化,用两条相交 直线所成的角来度量.
如何用向量的方法来求空间二面角的大小呢?
1
建构数学
在定义了平面的法向量之后,我们就可以用平面的法向量来求两个 平面所成的角.
方法一:转化为分别是在二面角的两个半平面内且与棱都垂直的两 条直线上的两个向量的夹角(注意:要特别关注两个向量的方向).
如图:二面角 α-l-β 的大小为 θ,A,B∈l,AC α,BD β, AC⊥l,
BD⊥l ,则 θ=< AC , BD >=< CA , DB >.
l
A
ቤተ መጻሕፍቲ ባይዱ
C
B D
2
数学应用
例 3 在正方体 ABCD A1B1C1D1 中, 求二面角 A1 BD C1 的大小.
3
练一练
如图,在三棱锥 P-ABC 中,PA⊥底面 ABC,PA=AB,∠ABC=60°, ∠BCA=90°,点 D,E 分别在棱 PB 和 PC 上,且 DE//BC.
①求证:BC⊥平面 PAC; ②当 D 为 PB 的中点时,求 AD 与平面 PAC 所成的角的大小; ③是否存在点 E,使得二面角 A-DE-P 为直二面角?并说明理由.
4
回顾小结
本节课学习了以下内容: 1.用向量方法解决二面角的计算问题. 2.注重数形结合,注重培养我们的空间想象能力.
5
向量法证明: 空间中角与距离的计算
→ (3)解 ∵平面 A1CC1 的一个法向量是BO=(1,1,0). 设平面 A1B1C 的一个法向量是 → n=(x,y,z),A C=(-2,2,-2),A B =(-2,0,0),
1 1 1
→ 则 n· A1C=(x,y,z)· (-2,2,-2) =-2x+2y-2z=0,① n· A1B1=(x,y,z)· (-2,0,0) =-2x=0,∴x=0.② 代入①并令 z=1 得 y=1,∴n=(0,1,1), → n · BO 1 1 → 〉= ∴cos〈n,BO = = , →| 2× 2 2 |n|· |BO → ∴〈n,BO〉=60° ,即二面角 B1—A1C—C1 的大二面角的大小,可以不作 出平面角,如图所示, 〈m,n〉即为所 求二面角的平面角. ②对于易于建立空间直角坐标系的几何体,求二面角的大 小时,可以利用这两个平面的法向量的夹角来求. 如图所示,二面角 α-l-β,平面 α 的法向量为 n1,平面 β 的法向量为 n2, 〈n1,n2〉=θ,则二面角 α-l-β 的大 小为 θ 或 π-θ.
(2011· 北京)如图,在四棱
锥 P-ABCD 中,PA⊥平面 ABCD,底 面 ABCD 是菱形,AB=2,∠BAD=60° . (1)求证:BD⊥平面 PAC; (2)若 PA=AB,求 PB 与 AC 所成角的余弦值; (3)当平面 PBC 与平面 PDC 垂直时,求 PA 的长.
(1)证明 因为四边形 ABCD 是菱形,所以 AC⊥BD. 又因为 PA⊥平面 ABCD,所以 PA⊥BD. 所以 BD⊥平面 PAC. (2)解 设 AC∩BD=O, 因为∠BAD=60° ,PA=AB=2, 所以 BO=1,AO=CO= 3.
向量法:空间中角的计算
思考:
高中数学空间的角的计算
面-线-面
0,2
语言叙述
二面角 半平面-线-半平面
0,
语言叙述或符号表示
要点三:直线和平面的夹角 1. 有关概念 斜线:一条直线和一个平面相交,但不和这个平面垂直,这条直线叫作平面的斜.线.,斜 线和平面的交点叫作斜.足.. 射影:过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫作斜线在这个平 面上的射影. 斜线与平面的夹角:平面的一条斜线与它在该平面内的射影的夹角叫作该直线与此平面 的夹角. 如图, l 是平面 的一条斜线,斜足为 O , OA 是 l 在平面 内的射影, POA 就是直 线 l 与平面 的夹角.
3. “平面间的夹角”不同于“二面角” (1)二面角的有关概念 半平面:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫半平面. 二面角:从一条直线出发的两个半平面所组成的图形叫二面角. 如图,可记作二面角 -a- 或 - AB - .
2
(2)区别: 构成 范围
表示法
平面间的夹角
2
5
举一反三:
【变式 1】 如图,在四棱锥 P ABCD 中,底面 ABCD 是正方形,侧棱 PD ⊥底面 ABCD , PD DC ,点 E 是 PC 的中点,作 EF ⊥ PB 交 PB 于点 F .
(1)求证: PB ⊥平面 EFD ;
(2)求平面 与平面 的夹角的大小.
【变式 2】在四棱锥 P ABCD 中,侧面 PCD ⊥底面 ABCD ,PD ⊥ CD ,E 为 PC 中点, 底面 ABCD 是直角梯形, AB ∥ CD , ADC=90 , AB AD PD 1, CD 2 . 设 Q 为侧
11
一、选择题
S
C
B
D
A
35.空间角的计算
§5.10空间角的计算【基础知识梳理】一. 异面直线所成的角1.过空间任一点O 分别作异面直线a 与b 的平行线,''b a 与那么直线''b a 与所成的 的角,叫做异面直线a 与b 所成的角.2.设异面直线a 与b 的方向向量分别为m 和n ,则异面直线a 与b 所成的角=θ .3.异面直线所成角的范围是 . 二. 直线和平面所成的角1. 直线和平面所成的角是指 .2. 设直线a 的方向向量和平面α的法向量分别为m 和n ,则直线a 和平面α所成的角=θ .3. 直线和平面所成角的范围是 .三. 平面与平面所成的角1.在二面角βα--l 的棱上任取一点O ,在两个半平面内分别作射线 , , 则AOB ∠叫做二面角βα--l 的平面角. 设 , ,面角相等或互补.2. 二面角的平面角的范围是 .【基础知识检测】1. 直线1l 的方向向量()1,1v 1-=;直线2l 的方向向量()2,2v 2-=,则直线1l 与2l 的位置关系是( )A. 平行B. 相交C.相交但不垂直D.相交且垂直2. 若平面βα、的法向量分别为)6,6,3(v ),2,2,1(u --=-=,则 ( ) A. βα// B. β⊥α C. βα、,相交但不垂直 D. 以上均不正确.3. 如果平面的一条斜线与它在这个平面上的射影的方向向量分别是)1,1,0(b ),1,0,1(a ==,那么,这条斜线与平面所成的角是( ) A.60 B.30 C.45 D.90NO.35【典型例题探究】题型1:(异面直线所成的角) 在正方体1111D C B A ABCD -中E 、F 分别为BB 1、CC 1的中点,求AE 、BF 所成角的余弦值.变式训练: 长方体1111D C B A ABCD -中,AB=BC=2a ,,a AA 1=E 、H 分别为111BBB A 和的中点,求EH 和AD 1所成角的余弦值.题型 2 :(直线与平面所成的角)在四棱锥ABCDP -中,底面为直角梯形,AD//BC ,90BAD =∠,ABCD PA 底面⊥且PA=AD=AB=2BC ,M 、N 分别为PC 、PB 的中点.(Ⅰ)证明:;DM PB ⊥(Ⅱ)求CD 与平面ADMN 所成的角.变式训练:如图,在正三棱柱ABC-A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是 .题型3: 在四面体P-ABC 中,ABC PC 平面⊥,AB=BC=CA=PC ,求二面角B-AP-C 的大小.变式训练:如图,在三棱锥S A B C -中,侧面SA B 与侧面S A C 均为等边三角形,90B A C ∠=°,O 为B C 中点.(1)证明:SO ⊥面ABC;(2)求二面角A SC B --的余弦值.【限时过关检测】 班级______ 学号______ 姓名______ 分数______一、选择题( 每小题9分 )1. 在正三棱柱111C B A ABC -中,若1BB 2AB =,则1AB 与B C 1所成角的大小为 ( )A. 60B. 90C. 105D. 752. 三棱锥P-ABC 的底面是以AC 为斜边的直角三角形,顶点P 在底面的射影恰好是ABC ∆的外心,PA=AB=1,BC=2,则PB 与底面ABC 所成角为( ) A.60 B.30 C.45 D.903. 已知三条射线PA ,PB ,PC 两两夹角都是60,则二面角A-PB-C 的余弦值为( )A. 31 B. 36 C.23 D.33二、填空题( 每小题9分 )4.给出下列四个命题:① 对确定的两条异面直线,过空间任意一点有且只有一个平面与这两条异面直线都平行 ②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行; ③过平面外一点,作与该平面成θ角的直线一定有无穷多条;OSBAC④对两条异面直线,存在无穷多个平面与这两条直线所成的角相等; 其中正确的命题序号为 .5. 已知正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角等于 三、解答题(17分+20分)6.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。
空间角的计算
D1
C1
y
D
C
0 1 0 3 B1C1 求得n = (1, -1, -1), cos n, 1 3 3
3 所以B1C1与面AB1C所成的角的正弦值为 . 3
三、面面角:
二面角的范围: [0, ]
①将二面角转化为分别在二面角的两个面内且垂直于二面 角的棱的两个向量的夹角.如图,设二面角 l 的大 小为 ,其中 l , AB , CD l , CD
2 n
O
A
n
O
B
B
结论:sin
| cos n, AB |
例2:在长方体 ABCD A1B1C1D1 中, AB= 5,AD 8,
AA1 4, M 为B1C1上的一点,且B1M 2,点N在线段A1D上,
A1D AN. (1)求证:A1D AM . (2)求AD与平面ANM 所成的角的正弦值.
空间的角的计算
空间向量的引入为代数方法处理立体 几何问题提供了一种重要的工具和方法, 解题时,可用定量的计算代替定性的分析, 从而避免了一些繁琐的推理论证.求空间 角与距离是立体几何的一类重要的问题, 也是高考的热点之一.我们主要研究怎么 样用向量的办法解决空间角的问题.
空间的角:
空间的角常见的有:线线角、线面角、面面角. 空间两条异面直线所成的角可转化为两条相 交直线所成的锐角或直角.故我们研究线线角 ] 时,就主要求[0, 范围内的角;
y x 0 2 yz0 2
y x 2 z y 2
任取n2 (1,2,1)
典例分析
高中空间几何求各种角的公式
在高中的空间几何学习中,常见的几何形状包括点、线、面、体等,涉及到各种角的计算。
以下是一些常见的角的公式:
1. 平面内的角:
-顶点在圆心的圆心角和半圆角:圆心角等于对应的圆周角,半圆角为180度。
-对顶角:对顶角相等。
-同位角:同位角相等。
-内错角和内错角互补:内错角之和等于180度,内错角互补。
2. 空间内的角:
-平行线与截线:平行线与截线的对应角相等。
-直线与平面:直线与平面的夹角等于其倾斜角。
-平面与平面:两平面的夹角等于它们法向量的夹角。
3. 立体几何中的角:
-直线与立体的交角:直线与平面或立体的夹角等于90度减去它们的夹角余补角。
-两平面之间的夹角:两平面的夹角是它们的法线之间的夹角。
这些公式是空间几何中常见的角度计算原则,通过理解和掌握这些规律,可以更好地解决空间几何题目中涉及到的各种角度问题。
空间角计算
床坐标系的 X、Y、Z 轴分别旋转 A、B、C 后,与子坐标系 ML 方向一致。若绕 X、Y、Z
0 0 1 AM= 0 cos(A) sin(A) 0 − sin(A) cos(A)
绕 Y 轴旋转的变换矩阵 BM:
cos(B) 0 − sin(B) 1 0 BM= 0 sin(B) 0 cos(B)
空间角
Author:glocier
空间角是指将一个坐标系绕固定坐标系的 X、Y、Z 轴依次进行旋转,以使原坐标系 与固定坐标系重合。其中: 绕 X 轴旋转的角度记为 A; 绕 Y 轴旋转的角度记为 B; 绕 Z 轴旋转的角度记为 C。 注意旋转的先后顺序,必须是先绕 X 轴,然后绕 Y 轴,最后绕 Z 轴进行旋转。 在五轴定位加工中,建立主坐标系与机床坐标系方向一致,建立子坐标系以用于定轴 加工,此时需要将主坐标系经过旋转变换,与局部坐标系重合。其中,旋转变换的方式多 种多样,这里主要记述空间角的算法。
1 0 0 m0 记主坐标系为 MM = 0 1 0 ,子坐标系为 ML = m3 0 0 1 m 6
轴的变换矩阵记为:AM、BM、CM,则有: MM* AM* BM* CM =ML 绕 X 轴旋转的变换矩阵 AM:
m1 m4 m7
m2 m5 。主坐标系 MM 绕机 m8
绕 Z 轴旋转的变换矩阵 CM:
cos(C) sin(C) 0 CM= − sin(C) cos(C) 0 0 0 1
矩阵 AM、BM、CM 的点乘积为:
0 0 cos(B) 0 − sin(B) cos(C) sin(C) 0 1 1 0 − sin(C) cos(C) 0 AM* BM* CM= 0 cos(A) sin(A) 0 0 − sin(A) cos(A) sin(B) 0 cos(B) 0 0 1 0 − sin(B) cos(B) = sin(A) sin(B) cos(A) sin(A) cos(B) cos(A) sin(B) − sin(A) cos(A) cos(B) cos(C) sin(C) 0 − sin(C) cos(C) 0 0 0 1
空间角的求法
PCDBA 空间角的求法空间角,能比较集中反映空间想象能力的要求,历来为高考命题者垂青,几乎年年必考。
空间角是异面直线所成的角、直线与平面所成的角及二面角总称。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三计算。
异面直线所成的角的范围:090θ<≤ (一)平移法【例1】已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=,PA ⊥平面AC ,且2BC =,1PA AD AB ===,求异面直线PC 与BD 所成角的余弦值的大小。
【解】过点C 作//CE BD 交AD 的延长线于E ,连结PE,则PC 与BD 所成的角为PCE ∠或它的补角。
CEBD ==PE=∴由余弦定理得 222cos 2PC CE PE PCE PC CE +-∠==⋅∴PC 与BD 所成角的余弦值为63 (二)补形法【变式练习】已知正三棱柱111ABC A B C -的底面边长为8,侧棱长为6,D 为AC 中点。
求异面直线1AB与1BC 所成角的余弦值。
【答案】125A 1C 1CBAB 1 DCP二、直线与平面所成角直线与平面所成角的范围:090θ≤≤ 方法:射影转化法(关键是作垂线,找射影)【例2】如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点P 在平面ABC内的射影O 在AB 上,求直线PC 与平面ABC 所成的角的大小。
【解】连接OC ,由已知,OCP ∠为直线PC 与平面ABC 所成角设AB 的中点为D ,连接,PD CD 。
AB BC CA ==,所以CD AB ⊥90,60APB PAB ∠=∠=,所以PAD ∆为等边三角形。
不妨设2PA =,则1,3,4OD OP AB ===2223,13CD OC OD CD ∴==+=在Rt OCP ∆中,339tan 13OP OCP OC ∠===【变式练习1】如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形。
高中数学中的立体几何空间角与空间距离计算方法
高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。
在立体几何中,空间角和空间距离是非常关键的概念。
本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。
一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。
空间角的大小是依据两个向量的夹角计算得来的。
2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。
设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。
接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。
二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。
2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。
设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。
三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。
比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。
在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。
在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。
空间角的范围
空间角的范围什么是空间角空间角是物体之间相对位置的一种度量,用于描述在三维空间中两个向量之间的夹角。
它是向量的方向性特征的量化表示。
在数学上,空间角可以通过向量的点积和模长来计算。
给定两个向量A和B,它们的空间角θ可以通过以下公式计算:θ = arccos(A·B / |A|·|B|)其中,A·B表示向量A和向量B的点积,|A|和|B|分别表示向量A和向量B的模长。
空间角的范围空间角的范围是从0到π之间的实数。
这是因为点积的值范围是从-1到1之间,而空间角θ的取值范围是从0到π之间。
当两个向量的方向相同时,它们的空间角为0。
当两个向量的方向完全相反时,它们的空间角为π。
当两个向量的方向相互垂直时,它们的空间角为π/2。
在实际应用中,空间角的范围可以用于描述物体之间的相对位置关系。
例如,在机器人技术中,空间角可以用于判断机器人的朝向和目标位置之间的夹角,从而实现精确的导航和定位。
空间角的应用空间角在物理学、工程学和计算机图形学等领域中具有广泛的应用。
在物理学中,空间角被用于描述光线的传播方向和反射方向之间的夹角。
通过测量空间角,可以计算出光线的折射角和反射角,从而研究光的传播规律和光学器件的设计。
在工程学中,空间角被用于描述机械零件之间的相对位置关系。
通过测量空间角,可以确定机械零件的装配方式和运动轨迹,从而实现机械系统的设计和优化。
在计算机图形学中,空间角被用于描述三维模型之间的相对位置关系。
通过计算空间角,可以确定三维模型的旋转角度和投影方向,从而实现计算机图形的渲染和动画效果。
总结空间角是一种用于描述物体之间相对位置的度量,可以通过向量的点积和模长来计算。
空间角的范围是从0到π之间的实数,用于表示两个向量之间的夹角。
空间角在物理学、工程学和计算机图形学等领域中具有广泛的应用,可以用于研究光的传播规律、机械系统的设计和优化,以及计算机图形的渲染和动画效果等方面。
通过深入理解空间角的概念和应用,我们可以更好地理解和应用三维空间中的向量和位置关系。
空间中的角度计算与应用
空间中的角度计算与应用角度是空间中一种重要的几何概念,可以用来描述物体之间的相对位置和方向关系。
在工程、物理、建筑、航天等领域中,角度计算和应用都扮演着重要的角色。
本文将介绍空间中角度的计算方法和几个相关应用。
一、空间中的角度计算方法在二维平面中,我们可以使用直尺和量角器等工具来测量角度。
但在空间中,由于有长度、高度和深度三个方向的变化,所以需要使用更高级的工具和方法来计算角度。
1. 三维空间中的角度计算方法在三维空间中,我们通常使用向量来表示方向和位置。
一个向量可以用起点和终点来表示,这两个点在三维坐标系中分别有三个坐标值。
设两个向量A和B,它们的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz)。
我们可以使用向量的点积和模长计算它们之间的夹角θ。
点积的计算公式为:A·B = Ax·Bx + Ay·By + Az·Bz向量的模长计算公式为:|A| = √(Ax^2 + Ay^2 + Az^2)两个向量的夹角θ的余弦值可表示为:cosθ = (A·B) / (|A|·|B|)通过反余弦函数可求得夹角θ的值,即θ = arccos(cosθ)2. 四元数计算法四元数是一种用于表示旋转的数学工具,它可以用一个实部和三个虚部来表示。
四元数既可以描述物体的姿态和旋转角度,也可以用来计算两个物体之间的旋转或夹角。
具体计算步骤如下:1)定义两个四元数q1和q2,分别表示两个物体的姿态;2)求解它们的乘积p = q1 * q2的实部,得到一个新的四元数;3)通过arccos函数计算p的实部的绝对值,得到两个物体之间的夹角。
二、空间中角度的应用在物理和工程领域,空间中的角度计算和应用非常广泛,下面介绍几个常见的应用场景。
1. 机械设计与运动控制在机械设计和运动控制领域,角度的计算和控制是非常重要的。
例如,在机器人运动控制中,需要根据机器人末端执行器的位置和姿态,计算出各个关节的角度,以实现期望的运动轨迹。
空间角的求法方法归纳
空间角的求法方法归纳
空间角的求法方法归纳
在数学和物理学中,空间角是一种非常重要的概念。
物体在空间中的角度关系经常被用到各种计算和分析中。
因此,求解空间角的方法也变得尤为重要。
本文将按类划分,总结空间角的求法方法。
立体角的求法
立体角是三维空间中用来描述四面体的角度大小的量,并且与其各个顶点相对应。
求解四面体的立体角可以通过以下公式进行计算:
V5 = 1/3(arccos(A1) + arccos(A2) + arccos(A3) - π )
其中V5指四面体的立体角,A1、A2、A3为三个向量的夹角余弦,pi 为圆周率。
平面角的求法
平面角是在二维平面中两个射线之间的角度大小,于是端点重合,两条射线叫做角的顶点,并记为O。
平面角的计算公式如下:
cosθ = a·b / |a||b|
其中,a和b分别表示两个向量,|a|和|b|表示向量的模,lala和lblb都为0,则cosθ没有定义。
球面角的求法
球面角是指在球面上相互靠近的两条弧(或线)之间的角度大小。
求解球面角需要先计算其对应的球面扇形的面积,然后进行换算即可,具体公式如下:
S = R²θ
其中R表示球体半径,θ表示对应的球面角。
总结
空间角的求法方法主要包括立体角、平面角和球面角三种。
其中立体角的求解需要根据四面体的三个向量夹角余弦值计算,平面角的计算需要先计算两个向量的点积并除以其模,而球面角的求解则需要先计算出对应的球面扇形面积。
这些空间角的求法方法可以帮助我们更准确地分析并解决各类问题。
空间角的计算方法
空间角的计算方法当建立空间直角坐标系后,空间图形顶点的坐标容易得出且比较简单时,三类空间角的计算可利用空间向量来处理.但是,当用空间向量处理起来比较困难时,我们还要学会用其它方式来处理.三类空间角的计算有别于平面几何中计算,它要充分地“说理”.因为空间图形不可能像平面图形那样明确、直接,有时看起来是“锐角”或“钝角”的图形,实际上是直角.因此,在立体几何中实施角的计算时,要认真做好三步工作“作——证——算”.“作”——即作出符合要求的平面角;“证”——即证明所作平面角是所求的角;“算”——通过解三角形求出该平面角的大小.本单元我们重点讨论用常规方法,来处理三类空间角的计算问题.【异面直线所成的角】求两异面直线所成角的问题是立体几何中常见且重要的计算之一,其方法通常是在其中一条直线上取一个特殊点通过三角形中位线或平行四边形引另一条直线的平行线来实现平行移动,然后通过余弦定理或解直角三角形来求解;对不易平移的问题可通过补形的方式来求解,也可考虑利用三余弦公式求解.两异面直线所成角θ的取值范围为θ∈(0,π2]. 例1.在正四面体ABCD 中,E 、F 分别是BC 、AD 的中点,求DE 和BF 所成角的余弦值. 解法1(平移).如图2.5—1.联结AE ,取AE 的中点M ,联结MF 、MB , ∵ M 、F 分别为AE 、AD 的中点,∴ M F ∥DE ,故∠MFB 为DE 和BF 所成的角或补角. 设正四面体ABCD 的棱长为a ,则由平面几何知识易知BF=√3a 2,MF=√3a4. 在Rt ∆BEM 中,MB=.47)43()2(22a a a =+由余弦定理可得,.324323216716343cos 222=⋅⋅-+=∠aa aa a MFB 解法2(补形). 如图2.5—2.将原正四面体补形为三棱柱.取AC 1的中点M ,联结D 1M 、BM ,BD 1,易知F 是空间角的求法异面直线所成的角 ①利用中位线或平行四边形平移. ③三余弦公式. 直线与平面所成的角二面角①直接法. ②等积转换法. ③三余弦公式法.①直接法——利用三垂线定理或棱的垂面. ②利用等腰三角形底边上的中线. ③利用面积的射影定理.②补形.A BCDF E图2.5—1 M ABCDF E 图2.5—2C 1D 1MBD 1的中点,MD 1∥DE ,∴∠MD 1B 为DE 和BF 所成的角或补角. 设正四面体ABCD的棱长为a.易求得,MD 1=√3a 2,BD 1=√3a ,BM=√7a2(可由余弦定理求得).再由余弦定理可得 cos ∠MD 1B= 23.例2.如图2.5—3.在正方体ABCD—A 1B 1C 1D 1中,M 、N 分别是BB 1与C 1C 的中点,设DM与A 1N 所成的角为θ,求cosθ的值. 解:在原正方体ABCD—A 1B 1C 1D 1的前面补一个相同的正方体,如图2.5—3.联结A 2M 、A 2D ,易知A 2M ∥A 1N , ∴ ∠A 2MD 为DM 与A 1N 所成的角θ或补角. 设正方体棱长为a. ∵ DM=A 2M=√(√2a)2+(a2)2=3a 2,A 2D=a a a 5)2(22=+.由余弦定理可得cos ∠A 2MD = - 19. ∴ cosθ= 19.说明:①由于两异面直线所成角的取值范围为θ∈(0,π2],所以cosθ不可能为负值,当计算得出角的余弦值为“—”时,应将最后结果改为“+”.这是因为在平移时,所得的平面角可能是两异面直线所成角的补角,而互为补角的两角的余弦值互为相反数.②当我们试图在原图形的表面或其中作“平移”较困难时,可考虑“补形”.一般补形方式为:①三棱锥补形为三棱柱;②三棱柱补形为四棱柱;③四棱柱可在某一个侧面或底面“拼”一个相同的四棱柱.三余弦公式:平面α的斜线a 与α内一直线b 相交成θ角,a 与α相交成ϕc 与b 相交成ϕ2角,则有θϕϕcos cos cos 21=证明:设点P 在平面α上的射影为O ,过点O 作O B ⊥b 于B ,连接PB , 由三垂线定理知AB ⊥PB.如图2.5—4. ∴ θϕϕcos cos cos 21==⋅=APAB AOAB APAO .在此公式中,直线a 和b 可以是相交直线,也可以是异面直线. 我们不妨把ϕ1叫做线 面角,θ叫做线线角,ϕ2叫做线影角.很明显,线线角是这三个角中最大的一个角.例3.(1)如图2.5—5(1),MA ⊥平面ABCD ,四边形ABCD 是正方形,且MA=AB=a ,试求异面直线MB 与AC 所成的角.(2)如图2.5—5(2).在立体图形P -ABCD 中,底面ABCD 是一个直角梯形.∠BAD=900,AD//BC ,AB=BC=a ,AD=2a ,且PA ⊥底面ABCD ,PD 与底面成300角,AE ⊥PD 于D.求异面直线AE 与CD 所成角的余弦值.解:(1)由图2.5—5(1)可知,直线MB 在平面ABCD 内的射影为AB ,直线MB 与平面ABCD所成的角为450,直线AC 与直线MB 的射影AB 所成的角为450,所以直线AC 与直MB 所成的角为θ,满足cosθ=cos45°· cos45°= 12,∴ 直线AC 与MB 所成的角为600.ACDA 1B 1C 1D 1 NM BA 2 图2.5—3图2.5—4ϕ2ϕ1cba θP αO AB(2)如图2.5—5(2),过E 作PA 的平行线EF 交AD 于F ,由PA ⊥底面ABCD 可知,直线AE 在平面ABCD 内的射影为AD ,直线AE 与平面ABCD 所成的角为∠DAE ,其大小为600,射影AD 与直线CD 所成的角为∠CDA ,其大小为450,∴ 直线AE 与直线CD 所成的角θ满足:cosθ=cos60°· cos45°= √24. 即AE 与CD 所成角的余弦值 √24.想一想①:1.正四面体SABC 的棱长为a ,E ,F 分别是SC 和AB 的中点. 求异面直线SA 和EF 所成角.2.如图2.5—6.A 1B 1C 1—ABC 是直三棱柱,∠BCA=900,点D 1、F 1 分别是A 1B 1、A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成 角的余弦值.【直线与平面所成的角】直线与平面所成的角也是立体几何中常见且重要的计算问题之一.它一般可通过解Rt △ 来求解.其解法通常有①直接法;②三棱锥体积等积变形法;③三余弦公式法——此法主要用于解选填题,若用于解答题,则要给出三余弦公式的简略证明.例4.如图2.5—7.在正方体AC 1中.(1)求BC 1与平面ACC 1A 1所成的角.(2)求A 1B 1与平面A 1BC 1所成的角的余弦值.解:(1)联结BD 交AC 于O ,∵ BO ⊥AC ,BO ⊥A 1A ,由线面垂直的判定定理可得BO ⊥平面ACC 1A 1, ∴ ∠OC 1B 为BC 1与平面ACC 1A 1所成的角. 在Rt ∆BOC 1中,∵ sin ∠OC 1B=OB BC 1=12,且∠OC 1B 为锐角,∴ BC 1与平面ACC 1A 1所成的角为300. (2)法1.如图1.6—7. 联结BC 1、B 1C 交于点E. 易知BC 1⊥平面A 1B 1C.又∵ BC 1⊂平面A 1BC 1,∴ 平面A 1BC 1⊥平面A 1B 1C. 过B 1作B 1H ⊥A 1E 于H ,联结A 1H ,∵ 平面A 1BC 1∩平面A 1B 1C=AE, ∴ B 1H ⊥平面A 1BC 1,因此,∠B 1A 1E 是A 1B 1与平面A 1C 1B 所成的角. ∵ tan ∠B 1A 1E= B 1EA 1B 1=√22,∴ cos ∠B 1A 1E=√63.法2.过B 1作B 1H ⊥平面A 1BC 1于H ,联结A 1H ,∴∠B 1A 1H 是A 1B 1与平面A 1C 1B 所成的角.∵ △A 1BC 1是正三角形,且A 1B 1=B 1C 1=BB 1. ∴ 棱锥B 1—A 1BC 1是正三棱锥. 可得点H 是△A 1B 1C 1的外心.设A 1B 1=a,则A 1B=√2a ,得A 1H= √63a. ∴ cos ∠B 1A 1H=A 1H A 1B 1=√63,即所求角的余弦值为√63.说明:F 1 A B D 1C 1A 1B 1图2.5—6C 图2.5—7 PE DFA B C图2.5—5(2)图2.5—5(1) A B C D M1.当题设条件中或由已知可推出两个平面互相垂直时,要作出线面角, 可利用两平面垂直的性质,在一个平面内作交线的垂线即可.2.在求线面角时,很多时候垂线位置的确定,是很费“周折”的.而利用三棱锥体积等积变形可简化此不必要的麻烦. 其思路和原理如下:如图2.5—8.设PA 是平面α的斜线,PB 为平面α的垂线段,其长为h ,则θ为PA 与平面α所成的角.由于sin θ= hPA .一般地PA 之长往往是已知的,因此要求出sin θ就只需要求出点P 到平面α的距离h 即可.这里的h 值可通过三棱锥体积等积变形得到.例5.如图2.5—9所示,在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD=900.AD ∥BC ,PA=AB=BC=a ,AD=2a ,PA ⊥底面ABCD. (1)求证:CD ⊥平面PAC.(2)求直线AD 与平面PCD 所成角的正弦值. 解:(1)在直角梯形ABCD 中,∵ ∠BAD=900,AD ∥BC ,AB=BC , 取AD 的中点E ,联结CE ,知四边形ABCE 是正方形,又∵ AD=2a ,∴ CE=ED ,即∠ECD=450,∴ AC ⊥CD. ∵ PA ⊥底面ABCD ,CD ⊂底面ABCD ,∴ CD ⊥PA ,又∵ PA∩AC=C , PA 、AC ⊂平面PAC ,∴ CD ⊥平面PAC. (2)法1.设点A 到平面PCD 的距离为h ,直线AD 与平面PCD 所成角为θ,则有ADh =θsin .∵ .36,21312131a h CD AC PA CD PC h V V ACD P PCD A =⇒⨯⋅⋅⋅=⨯⋅⋅⋅⇒=,——又∵ AD=2a ,∴66sin ==AD h θ.即直线AD 与平面PCD 所成角的正弦值为66.法2.由(1)知,平面PAC ⊥平面PDC ,平面PA C ∩平面PDC=PC ,过点A 作AH ⊥PC 于H ,则AH ⊥平面PDC ,联结DH ,知∠ADH 为直线AD 与平面PCD 所成角. 在Rt △PAC 中,AC=,2a PA=a ,PC=,3a 由Rt △PAC 的面积等积变形得, AH=36a . 又∵ AD=2a ,∴ 66sin ==AD h θ.即AD 与面PCD 所成角的正弦值为66.【一个结论的应用】结论:若平面α的一条斜线PA 与平面α内∠BAC 的两边BA 、BC 所成的角相等,则PA 在平面α上的射影为∠BAC 的角平分线 .例6.(1)有一东西方向的河流,离河岸若干米处有一探照灯,照着岸边的某点B ,探照灯在点B 的东北方向.灯光与地面成600角,求灯光与岸边所成角的余弦值.(2)在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AB ,C 1D 1的中点,求直线A 1B 1与平面A 1ECF 所成角的余弦值.解:(1)如图2.5—10(1).由已知,∠DBA=ϕ1=600, ∠ABC=ϕ2=450,∠DBC=θ,由三余弦公式得,cosθ=cos450·cos600= √24, ∴ 灯光与岸边所成角的余弦值为 √24.图2.5—9B P ACD EHPA θB 图2.5—8αD BCA东图2.5—10(1)ABC DB 1C 1D 1A 1FE图2.5—10(2)(2) 如图2.5—10(2).∵ A 1B 1与A 1E 、A 1F 所成角∠B 1A 1E=∠B 1A 1F ,∴ 直线A 1B 1在平面A 1ECF 上的射影为∠FA 1E 的平分线. 又由已知可推得四边形A 1ECF 为菱形,∴∠FA 1E 的平分线为A 1C. ∵ cos ∠B 1A 1E=sin ∠AA 1E= AEA1E=√55,由余弦定理可得cos ∠CA 1E=√155. 设直线A 1B 1与平面A 1ECF 所成的角为ϕ1,由三余弦公式得cos ϕ1= √33. ∴ 直线A 1B 1与平面A 1ECF 所成的角的余弦值为 √33.注:(2)也可以联结B 1C ,由上述分析知,直线A 1B 1与平面A 1ECF 所成角为∠B 1A 1C ,在Rt △A 1B 1C 中,易求得cos ∠B 1A 1C = √33.想一想②:1.在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为AA 1、AB 的中点,则EF 与平面AA 1C 1C 所成的角为( ). 2.如图2.5—11.空间四边形PABC 中,PA 、PB 、PC 两两相互垂直, ∠PBA=450,∠PBC=600.则cos ∠ABC=( ).3.正方体ABCD ﹣A 1B 1C 1D 1中,若E 为棱AB 的中点,则直线C 1E 与平面ACC 1A 1所成角的正弦值为( ).4.求例5中PB 与平面PCD 所成角的正弦值.【二面角】二面角的计算是三类空间角计算中的难点,解决它的关键在于合理、有效地找出二面角的平面角,常用的方法有如下几种:1.直接法——⎪⎩⎪⎨⎧.)(中线作出平面角利用等腰三角形底边的面角;利用作棱的垂面作出平定理作出平面角;或逆利用三垂线 2.间接法——利用面积的射影定理. 对于无棱的二面角(只给出了两个半平面的一个公共点),则要先确定棱的位置. 二面角的取值范围为θ∈[0,π].例7.(1)如图2.5—12(1). PC ⊥平面ABC ,AB =BC=CA =PC=a ,求二面角B -PA -C 的平面角的正切值.(2)如图2.5—12(2).已知二面角α-AB -β为1200,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,AB =AC =BD =a ,求CD 的长为.解:(1)法1(三垂线定理法).∵ PC ⊥平面ABC, ∴ 平面PAC ⊥平面ABC ,交线为AC.作BD ⊥AC 于点D ,据面面垂直性质定理知BD ⊥平面PAC ,作DE ⊥PA 于E ,连BE ,由三垂线定理,得BE ⊥PA ,从而∠BED 是二面角B -PA -C 的平面角.设PC =a ,依题意知三角形ABC 是边长为aPA BC图2.5—11 图2.5—12(1)P ABCDE图2.5—12(2)的正三角形,∴ D 是AC 的中点且BD=√32a ,∵ PC =CA=a ,∠PCA=900, ∴ ∠PAC =450. 在Rt △DEA 中,ED=ADsin450= √24a , ∴ tan ∠BED= BD ED =√6, 即二面角B -PA -C 的平面角的正切值为√6. 法2.(面积的射影定理法).同法1,作BD ⊥AC 于点D ,可知BD ⊥平面PAC ,∴ 三角形ABP 在平面PAC 上的射影为三角形PDA.设所求二面角为θ,则cos θ=S∆PAD S ∆PBA . 由已知易求得PB=PA=√2a , AB=a ,PC=PA=a ,∴ S ∆PDC =12S ∆PAC =14a 2,S ∆PAB =√74a 2,因此cos θ=S ∆PAD S ∆PBA= √77,从而可得二面角B -PA -C 的平面角的正切值为√6.(2)在平面β内,作AD′∥BD ,连DD′,则DD′∥AB. ∵ AC ⊥AB ,D′A ⊥AB ,∴ ∠D′AC 为二面角α-AB -β的平面角, 即∠D′AC =120°.∵ AB =AC =BD =a ,∴ CD′=3a ,又AB ⊥平面ACD′,DD′∥AB , ∴ DD′⊥平面ACD′,∴ DD′⊥D′C ,又 DD′=a ,∴ CD =DD′2+D′C 2=2a.例8.(1)如图2.5—13(1).在600二面角M -a -N 内有一点P ,P 到平面M 、N 的距离分别为1和2,求点P 到直线a 的距离.(2)如图2.5—13(2).正方体AC 1的棱长为a ,求二面角D —A1B —C 的余弦值.解:(1)设PA 、PB 分别为点P 到平面M 、N 的距离,过PA 、PB 作平面α,分别交M 、N于AQ 、BQ.(相当于作棱的垂面). ∵ PA ⊥M ,a ⊂M ,∴ PA ⊥a. 同理,有PB ⊥a , ∵ PA∩PB=P ,PA 、PB ⊂平面PAQB , ∴ a ⊥平面PAQB 于Q.又 AQ 、BQ ⊂平面PAQB ,∴ a ⊥AQ ,a ⊥BQ. 即 ∠AQB 是二面角M -a -N 的平面角. ∴ ∠AQB =60°.联结PQ ,则PQ 是P 到a 的距离,在平面图形PAQB 中,有∠PAQ =∠PBQ=90°,∴ P 、A 、Q 、B 四点共圆,且PQ 是四边形PAQB 的外接圆的直径2R. 在△PAB 中,∵ PA=1,PB=2,∠BPA =120°,由余弦定理得,AB=√7. 由正弦定理:PQ=2R=.3212237sin ==∠APBAB(2)取A 1B 的中点E ,过点E 作EF ∥BC 交A 1C 与F ,联结DF 、DE.在正方体AC 1中易知 BC ⊥A 1B ,∵ EF ∥BC ∴ EF ⊥A 1B ,又∵A 1D=DB ,E 为A 1B 的中点,∴ EF ⊥A 1B ,因此∠DEF 为二面角D —A 1B —C 的平面角. ∵ DE= √32A 1B = √6a2,EF= BC 2=a2,DF=A 1C 2=√32a.由余弦定理可得,cos ∠DEF=√63.即二面角D —A1B —C 的余弦值为√63.想一想③:1.在正四面体ABCD 中,求相邻两个平面所成二面角的平面角的余弦值PN ABQMa 图2.5—13(1)A BC DA 1B 1C 1D 1图2.5—13(2) EF2.自二面角内的一点到两个平面的距离都是6cm ,两个垂足间的距离也是6cm ,求此二面角的度数.3.在四面体ABCD 中,AC=AB=BC=1,CD=BD=√132,AD=3.求二面角A—BC—D 的余弦值.例9.长方体ADCD—A 1B 1C 1D 1中,底面ABCD 是正方形,过对角线AC 1的一个截面是锐角为α的菱形,若底面与截面AEC 1F 成θ角,求证:cos θ=tan α2.证法1:如图2.5—14.联结AC 、BD. ∵ 过对角线AC 1的一个截面是菱形,由长方体的特性知, BD ∥EF ,且EF=BD. 由线面平行的判定定理知BD ∥截面AEC 1F ,再由线面 平行的性质定理知BD ∥过点A 的直线l . 其中l 为平面ABCD 与截面AEC 1F 的交线,即下底面与截面所成二面角的棱为直线l .∵ AC 1⊥EF ,AC ⊥BD ,∴ AC ⊥l ,AC 1⊥l ,即∠C 1AC 为底面与截面AEC 1F 所成角,即 ∠C 1AC=θ,∵ cos θ= ACA 1C ,tan α2=EF AC 1=BD AC 1=ACAC 1,∴ cos θ=tan α2.证法2.设底面与截面AEC 1F 成θ角,由面积射影定理知,cosθ=S ∆BCDS ∆EC 1E=BD×AC EF×AC 1=AC AC 1. 下同法1.略.例10.如图2.5—15.在△ABC 中,AB ⊥BC ,S 为平面ABC 外的一点,SA ⊥平面ABC ,∠ACB =600,SA =AC =a.求二面角A -SC -B 的余弦值. 解: ∵ SA ⊥平面ABC ,SA 平面SAC ,∴ 平面SAC ⊥平面ABC. 过点B 作BD ⊥AC 于D ,平面SAC 平面∩ABC=AC , ∴ BD ⊥平面SAC ,联结SD. 设二面角A -SC -B=θ, ∵ SA =AC =a ,∠ACB =600,BC ⊥SB ,∴ BC=a2,CD =BC 2=a4,SB=√7a2,∴ cos θ=S ∆SDC S ∆SBC=SA×CD SB×BC=√77. 即二面角A -SC -B的余弦值为√77.想一想④:如图2.5—16所示.在四棱锥P—ABCD 中,底面ABCD 是一直角梯形,∠BAD=900,AD ∥BC ,PA=AB=BC=a ,AD=2a ,PA ⊥底面ABCD. 求:(1)二面角P—CD—A 的余弦值.(2)平面PCD 与平面PAB 所成二面角的余弦值.【线面角、二面角的一个统一求法】如图2.5—17,设平面α的斜线PA 与平面α所成的角为θ,点P 到平面α的距离为h ,则 有, sin θ=hPA . 其中h 可利用三棱锥体积等积变形求得.图2.5—16BPA C DABCS图2.5—15D 图2.5—14 A BC A 1B 1C 1D 1DFE l如图2.5—18.在平面β内取一点P ,过点P 作PA ⊥平面α于A ,过点A 作AB ⊥l 于B ,联结PB ,由三垂线定理易知∠PBA =θ为二面角α—l —β的平面角(或补角),设点P 到平面α的距离为h ,则有,sin θ=hPB . 其中h 可利用三棱锥体积等积变形求得,PB 为点P 到棱l 的距离,可通过三角形面积等积变形求得.这样一来,求线面角和二面角的问题可统一为,先利用三棱锥的体积等积变形求出点面距h ,再由已知或利用三角形面积等积变形求出点线距,从而易得所成角的正弦值.例11.如图2.5—19.在四棱锥P —ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,PA=4,AC=2√3,BD=2.又点E 在侧棱PC 上,且PC ⊥平面BDE. (1)求线段CE 的长.(2)且二面角A —PD —C 的余弦值.解:(1)设AC ∩BD =O ,联结OE ,由已知条件易得PC=2√7.∵ PC ⊥平面BDE ,∴ OE ⊥PC.在Rt ∆PAC 和Rt∆OEC 中, cos ∠OCE=ECOC =ACPC ,⇒EC =3√77.(2)由已知可求得菱形的边长为2,PD=2√5. 设点A 到平面PDC 的距离为h ,点A 到二面角A —PD —C 的棱PD 距离为d ,二面角A —PD —C 的平面角(或补角)为θ,则sin θ=hd . 在∆PDC 中,S ∆PDC =12DP ×DC ×sin∠PDC =12DP ×DC ×√1−cos 2∠PDC =√19,∵ V A—PDC = V P—ADC ,可求得h=4√5719,又在∆PAD 中利用面积等积变形可得d=4√55, ∴ sin θ=hd =√15√19,∵ 二面角A —PD —C 是钝二面角,故二面角A —PD —C 的余弦值为-2√1919.例12.如图2.5—20.四棱锥P —ABCD 的底面是一个边长为4的菱形,其中∠ADC=600,顶点在底面上的射影恰好为AD 的中点E ,若PA=√7. (1)求直线PB 与平面PAD 所成角的正弦值.(2)求平面PBC 与平面PAD 所成二面角的余弦值.解:(1)设点B 到平面PAD 的距离为h ,直线PB 与平面PAD 所成角为θ,则sin θ=hPB ..∵ PE ⊥平面ABCD ,且E 为AD 的中点,由PA=√7,AD=4,∴ PE=√3. 又∵ V B—PAD = V P—BAD ,得 h =PE×S ∆ABDS ∆APD=2√3,在∆AEB 中,由余弦定理得EB=2√7,再由勾股定理得PB=√31, ∴ sin θ=hPB =2√3√31=2√9331. 即直线PB 与平面PAD 所成角的正弦值为2√9331. (2)设平面PBC 与平面PAD 所成二面角为α,点C 到平面PAD 的距离为h ,点C 到二面角的棱l 的距离为h 1,则 ,sin α=hh 1. ∵ BC ∥AD ,由线面平行的判定和性质知,平面PBC 与平面PAD 的交线l ∥BC ,∴ h 1为∆P CB 的底边BC 边上的高.由AD ⊥平面PEC ,知AD ⊥PC ,又∵ AD ∥BC ,∴ BC ⊥PC ,即h 1=PC.联结CE 、AC 由已知易得∆ACD 为αP A Bθh图2.5—17αP A h 图2.5—18Bθ βlP AEBCD l图2.5—20.PDECBA 图2.5—19.O正三角形,∴ PC=√PE 2+EC 2=√15,由BC ∥平面PAD 和(1)知h=2√3, ∴ sin α=h h 1=2√55,故平面PBC 与平面PAD 所成二面角的余弦值为2√55.例13.如图2.5—21,在四棱锥P —ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥ 底面ABCD ,且PA=PD=√22AD ,在线段AB 上是否存在一点G ,使二面角C —PD —G 的正弦值为2√23,说明理由. 解:取AD 的中点E ,联结PE 、CE ,∵ 侧面PAD ⊥底面ABCD ,底面ABCD 是边长为2的正方形,且PA=PD= √22AD , ∴ PD ⊥AB ,DP ⊥平面PAB ,从而可得,DP ⊥P G ,EC=√5, PC=√6, PA =PD =√2,PE =1.设AG=a ,点G 到平面PDC 的距离为h ,二面角C —PD —G 的平面角(或补角)为θ,则sin θ=h PG.由V G—PDC = V P—DGC ,得 h =S ∆DGCS ∆PDC=√2,又∵ PG=√2+a 2,∴ sin θ=hPG =√2√2+a 2=2√23,⇒a =12. 故存在点G 满足题设条件,且AG= 12.想一想⑤:在正方体ABCD —A 1B 1C 1D 1中,点M 、N 、O 分别在棱CD 、BC 、CC 1上,且CM=CN=OC 1, 当OM 与平面ABCD 所成角的余弦值为√22时,求二面角N —MO —C 的余弦值.(请用多种方法)习题2.51.四面体ABCD 中,AC ⊥BD ,且AC =4,BD =3,M 、N 分别是AB 、CD 的中点,则MN 和BD 所成角的正切值为( ).2.在四面体ABCD 中,AB ⊥BC ,AB ⊥BD ,BC ⊥CD ,且AB =BC =6,BD =8,E 是AD 中点,则BE 与CD 所成角的余弦值是( ).3.正三棱柱的九条棱都相等,M 、N 分别是BC 和A 1C 1的中点. 则MN 与CC 1所成角的余弦值是( ).4.不共面的三条射线OA 、O1B 、OC 两两成600的角,则OC 与平面AOB 所成角的余弦值为( ).5.正四棱柱ABCD ﹣A 1B 1C 1D 1中,对角线BD 1=8,BD 1与侧面BC 1所成的角为30°,则BD 1和底面ABCD 所成的角为( ). A.30°. B.60°. C.45°. D.90°.6.设P 是边长为1的正△ABC 所在平面外一点,且PA=PB=PC= 23,那么PC 与平面ABC 所成的角为( ). A.30°. B.45°. C.60° D.90°.7.长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2cm ,AD=1cm ,求异面直线A 1C 1与BD 1所成角的余弦值.(要求用三种不同的方法).8.已知ABCD 是正方形,PB 平面ABCD ,PB=AB=1,求二面角A —PD —C 的大小.9.如图2.5—22.空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o , ∠ACB=90o,求二面角B -PC -A 的余弦值.10.在四棱锥P -ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与PBα CAE F D图2.5—22 图2.5—21PDAB ECG平面PDC 所成二面角的大小.11.设M 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面BMD 1与底面ABCD 所成的二面角的余弦值. 12.AC ⊂α,BD ⊂β,α与β所成的角为600,AC ⊥l 于C ,BD ⊥l 于B ,AC =3,BD =4,CD =2,求A 、B 两点间的距离.【参考答案】想一想①:1. 45°.2.1015.提示,法1.联结D 1F 1,过F 1作F 1M ∥BD 1角BC 与M.法2.在左侧面“拼”一个相同的三棱柱. 3..2222222cb a b a b a ++⋅+-利用三余弦公式,联结AC 、BD 交于O ,其中AC C 11∠=ϕ,COB ∠=2ϕ. 想一想②:1.300.提示,相当于求A 1B 平面AA 1C 1C 所成的角.2.√24.换个角度画图.由已知知CP ⊥平面PBA.∠ABC=θ,∠PBA=450=φ1,∠PBC=600=φ2.由三余弦公式可得.3.√26.直接法或等积变形. V E—ACC 1= V C 1—ACE . 4. √26.等积变形. V B—PCD = V P—BCD .想一想③:1.13.法1.过一个顶点作对面的垂线,由三垂线定理得到二面角的平面角,再求之. 法2.利用等腰三角形的特性作出二面角的平面角. 法3.利用面积的射影定理亦可求解. 2.1200.仿例8(1)作棱的垂面求解. 3.−√74. 利用等腰三角形的特性作出二面角的平面角.想一想④:(1) √63.法1.联结AC ,先证CD ⊥平面PAC.可知∠PCA 为平面角,再计算. 法2.利用面积的射影定理求.(cos θ=S∆ACD S ∆PCD).(2) √66.法1.延长DC 交AB 于点E ,则PE 为二面角的棱.再用直接法求之.法2. 利用面积的射影定理求. (cos θ=S∆PAB S ∆PCD).想一想⑤: √33. 习题2.51. 43.. 2. √75. 3.2√55. 4. √33.利用三余弦公式. 5.C. 6.A. 7. √558.1200.注意到∆PCD ≌∆PAD ,过点C 作CE ⊥PD,联结AE,则AE ⊥PD ,∴ ∠AEC 为二面角 A —PD —C 的平面角,利用直角三角形PCD 面积等积变形可求得CE=AE=√63下略.9.13.提示:在射线CP上取点D,作平面DEF ⊥CP.即棱的垂面.10.450.法1.∵ CD∥AB,由线面平行的判断和性质可推得二面角的棱为过点P且平行于AB的直线,又∵ AB⊥平面PAD,可知∠APD为二面角的平面角.法2.利用面积的射影定理. cosθ=S∆PABS∆PCD11.√63.利用面面平行的性质可知过三点B、M、D1的截面如图D2.5—1所示.此二面角的棱l为过点B且MN∥l∥AC的直线.也可用面积的射影定理求.12.√17.仿例7(2)的方法求解.A BCDA1B1C1D1图D2.5—1NM11。
空间角公式
空间角公式空间角公式是三维空间中两个向量之间的夹角,也称为向量夹角。
在三维空间中,向量的方向和大小都很重要,因此空间角公式是非常重要的数学工具。
空间角公式可以用余弦定理来表示。
假设有两个向量a和b,它们的夹角为θ,那么它们的余弦值可以表示为:cosθ = (a·b) / (|a|·|b|)其中,a·b表示向量a和向量b的点积,|a|和|b|分别表示向量a和向量b的模长。
这个公式可以用来计算任意两个向量之间的夹角。
空间角公式还可以用向量的坐标表示。
假设有两个向量a和b,它们的坐标分别为(a1, a2, a3)和(b1, b2, b3),那么它们的夹角可以表示为:cosθ = (a1b1 + a2b2 + a3b3) / (sqrt(a1^2 + a2^2 + a3^2)·sqrt(b1^2 + b2^2 + b3^2))其中,sqrt表示平方根。
这个公式可以用来计算任意两个向量之间的夹角,只需要知道它们的坐标。
空间角公式在三维计算机图形学中有广泛的应用。
例如,在计算机游戏中,需要计算物体之间的碰撞,就需要用到空间角公式来计算它们之间的夹角。
在计算机辅助设计中,也需要用到空间角公式来计算物体之间的相对位置和方向。
除了空间角公式,还有一些其他的向量公式也非常重要。
例如,向量的叉积公式可以用来计算两个向量的垂直向量,向量的投影公式可以用来计算一个向量在另一个向量上的投影长度。
这些公式都是三维空间中向量计算的基础,对于理解和应用三维计算机图形学非常重要。
空间角公式是三维空间中向量计算的重要工具,它可以用来计算任意两个向量之间的夹角。
在三维计算机图形学中,空间角公式是非常重要的数学工具,它可以用来计算物体之间的相对位置和方向,对于计算机游戏和计算机辅助设计等领域都有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节 空间角的计算
空间角,能比较集中反映空间想象能力的要求,历来为高考命题者垂青,几乎年年必考。
空间角是异面直线所成的角、直线与平面所成的角及二面角总称。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三计算。
例 1 已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=,PA ⊥平面AC ,且
2BC =,1PA AD AB ===,求异面直线PC 与BD 所成角的余弦值。
图形的画法位置转换一下呢?
小结:求异面直线所成角的方法:
变式 如图,点P 是边长为1的正方形ABED 所在
平面外的一点,且PA⊥平面ABED ,PA=1,又PB EM 2
1
//,
求异面直线PM 与BD 所成角的余弦值;
例 2 如图,在四棱锥ABCD P -中,⊥PA 平面
ABCD ,CD AB //,090=∠DAB ,1===DC AD PA ,2=AB ,M 为PB 的中点. 求直线CM 与平面PAC 所成角的余弦值.
小结:求斜线与平面所成角的方法:
变式1 如图,在平行四边形ABCD 中,AB =2BC ,∠ABC=120°,E 为线段AB 的中线,将△ADE 沿直线DE 翻折成△A′DE,使平面A′DE⊥平面BCD ,F 为线段A′C 的中点.
E
M
B
P
D
A
求FM 与平面A′DE 所成角的大小。
变式 2 已知四边形ABCD
90,PA ,且
2BC =,1PA AD AB
===,取PC 的中点M 求直线DM 与平面PBD 所成角的正弦值。
例3 如图,点P 是边长为1的正方形所在
平面外的一点,且PA⊥平面ABED ,PA=1,
ABED
PB EM 2
1
//
,且∠DME=90°,求平面PDM 与平面所成角的余弦值。
小结:求二面角的方法:
变式1 如图4,四边形ABCD 为正方形,PD⊥平
面
ABCD ,∠DPC=0
30,AF⊥PC 于点F ,FE∥CD,交PD 于点E.
(1)证明:CF⊥平面ADF ;
(2)求二面角D -AF -E 的余弦值.
变式2 如图,在四棱锥BCDE A -中,平面⊥
ABC 平面BCDE,∠CDE=∠BED=90°, AB=CD=2,DE=BE=1,2=AC .
(1)证明:⊥DE 平面ACD ;
(2)求二面角E AD B --的大小
课后练习:
E
A
E
A
F
B
1、如图所示,在直角梯形ABCP 中,AP//BC ,AP ⊥AB ,AB=BC=
22
1
=AP ,D 是AP 的中点,E ,F ,G 分别为PC 、PD 、CB 的中点,将PCD ∆沿CD 折起,使得⊥PD 平面ABCD . (Ⅰ)求证:AP //平面EFG ; (Ⅱ) 求二面角D EF G --的大小. (III )求FG 与平面PBC 所成角的正弦值;
(IV )取CD 的中点M 2、如图所示的几何体BC ,且
AE BD BC AC 2===, M 是AB
的中点. (1) 求证: EM CM ⊥
(2) 求CD 与平面ABDE 所成的角
(3) 求DM 与平面EMC 所成的角
3、在四棱柱ABCD-1111D C B A 中,底ABCD 为矩形,侧面⊥1AD 底面AC ,侧面1CD 与底面AC 所成二面角的大小为 60,=1BB BC=2AB ,M
为
CD 的中点.
(1)求证:平面⊥1MBD 平面1ABD ;
(2)求MB 与平面1ABD 所成角的正弦值;
(3)求AB 与平面1MBD 所成角的正弦值. 4、在直三棱柱111ABC A B C -中,
C B G A B G C C
E D A
B
M
90BAC ∠=,11AB BB ==,直线1B C 与平面ABC 成30 角,求二面角1B B C A --的正弦
值。
5、如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点P 在平面ABC 内的射影O 在AB 上,
(1)求直线PC 与平面ABC 所成的角的大小。
(2)求二面角B AP C --的大小。