多项式乘多项式练习题最新版本
多项式乘以多项式训练题
五、解答题 1.证明 (a-1)(a 2-3)+a 2(a+1)-2(a 3-2a-4)-a 的值与 a 无关.
2.已知多项式 (x 2+ px+q)(x 2- 3x+2) 的结果中不含 x3 项和 x2 项,求 p 和 q 的值.
3. 若 (x 2+ ax- b)(2x 2- 3x+1) 的积中, x 3 的系数为 5, x2 的系数为- 6,求 a, b.
3. 当 k= __________ 时,多项式 x- 1 与 2- kx 的乘积不含一次项.
4. 在长为 (3a +2) 、宽为 (2a + 3) 的长方形铁皮上剪去一个边长为 (a - 1) 的小正方形, 则剩余部
分的面积为 ___________.
5.已知 ( x y) 2 1 , ( x y) 2 49 ,则 x 2 y2 =
三、计算题
1. (3m-n)(m-2n) .
2
. (x+2y)(5a+3b) .
3. (x+y)(x 2-xy+y 2) .
4
. (x+3y+4)(2x-y) .
四、化简求值
1. m 2(m+ 4) + 2m(m2-1) - 3m(m2+ m- 1) ,其中 m= 2 5
2.( a- 2)( a+ 2)+ 3( a+ 2)2 -6a( a+2) , 其中 a= 5.
3. x(x 2- 4) -(x + 3)(x 2-3x+ 2) -2x(x - 2) ,其中 x = 3 . 2
4. (x-2)(x-3)+2(x+6)(x-5)-3(x
2-7x+13) ,其中 x= 3 1 2
5. y n(y n+9y-12)-3(3y n+1-4y n) ,其中 y=-3 , n=2.
多项式乘多项式专项练习30题选择解答(有答案)ok
多项式乘多项式专项练习30题选择解答(有答案)ok1.若 $(x-1)(x+3)=x+mx+n$,则 $m$,$n$ 的值分别为()。
A。
$m=1$,$n=3$ B。
$m=4$,$n=5$ C。
$m=2$,$n=-3$ D。
$m=-2$,$n=3$2.下列各式中,计算结果是 $x+7x-18$ 的是()。
A。
$(x-1)(x+18)$ B。
$(x+2)(x+9)$ C。
$(x-3)(x+6)$ D。
$(x-2)(x+9)$3.若 $(x-a)(x+2)$ 的展开项中不含 $x$ 的一次项,则$a$ 的值为()。
A。
$a=-2$ B。
$a=2$ C。
无法确定4.如果 $(x-3)(2x+4)=2x-mx+n$,那么 $m$,$n$ 的值分别是()。
A。
$m=2$,$n=12$ B。
$m=-2$,$n=12$ C。
$m=2$,$n=-12$ D。
$m=-2$,$n=-12$5.已知$m+n=2$,$mn=-2$,则$(1-m)(1-n)$ 的值为()。
A。
$1-3$ B。
$-1$ C。
$5$6.先化简,再求值:$5(3xy-xy)-4(-xy+3xy)$,其中$x=-2$,$y=3$。
7.计算:1)$3-2+(-3)-(\frac{3}{2})$2)$(-2ab)+(-a)\cdot(2b)$3)$x(2x+1)(1-2x)-4x(x-1)(1-x)$4)$(2a-b+3)(2a+b-3)$5)$\frac{x^2-1}{2}(2x+1)$8.计算:1)$(-7x-8y)\cdot(-x+3y)$2)$(3x-2y)(y-3x)-(2x-y)(3x+y)$9.计算:$a(a+2)(a-3)$10.计算:$(a+b)(a-ab+b)$11.计算:$(2x-3y)(x+4y)$12.计算:1)$(2x+3y)(3y-4x)$2)$(-4x-3y)(3y-4x)$13.计算:$(2x+5y)(3x-2y)-2x(x-3y)$14.$5x-(x-2)(3x+1)-2(x+1)(x-5)$15.已知多项式$6x-7xy-3y+14x+y+a=(2x-3y+b)(3x+y+c)$,试确定 $a$,$b$,$c$ 的值。
多项式乘以多项式练习题
多项式与多项式相乘一、选择题1.计算(2a-3b)(2a+3b)的正确结果是()A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b22.若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+b B.-a-b C.a-b D.b-a3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是()A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y34.(x2-px+3)(x-q)的乘积中不含x2项,则()A.p=q B.p=±q C.p=-q D.无法确定5.若0<x<1,那么代数式(1-x)(2+x)的值是()A.一定为正B.一定为负C.一定为非负数D.不能确定6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是()A.2(a2+2)B.2(a2-2)C.2a3D.2a67.方程(x+4)(x-5)=x2-20的解是()A.x=0 B.x=-4 C.x=5 D.x=408.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1C.a=2,b=1,c=-2 D.a=2,b=-1,c=29.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()A.36 B.15 C.19 D.2110.(x+1)(x-1)与(x4+x2+1)的积是()A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1二、填空题1.(3x-1)(4x+5)=__________.2.(-4x-y)(-5x+2y)=__________.3.(x+3)(x+4)-(x-1)(x-2)=__________.4.(y-1)(y-2)(y-3)=__________.5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.6.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.7.若a2+a+1=2,则(5-a)(6+a)=__________.8.当k=__________时,多项式x-1与2-kx的乘积不含一次项.9.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,则a=_______,b=_______.10.如果三角形的底边为(3a+2b),高为(9a2-6ab+4b2),则面积=__________.三、解答题1、计算下列各式(1)(2x+3y)(3x-2y) (2)(x+2)(x+3)-(x+6)(x-1)(3)(3x2+2x+1)(2x2+3x-1) (4)(3x+2y)(2x+3y)-(x-3y)(3x+4y) 2、求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001.3、2(2x-1)(2x+1)-5x(-x+3y)+4x(-4x2-52y),其中x=-1,y=2.四、探究创新乐园1、若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.2、根据(x+a)(x+b)=x2+(a+b)x+ab,直接计算下列题(1)(x-4)(x-9) (2)(xy-8a)(xy+2a)五、数学生活实践一块长a m,宽b m的玻璃,长、宽各裁掉c m后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?六、思考题:请你来计算:若1+x+x2+x3=0,求x+x2+x3+…+x2000的值.平方差公式练习题一、选择题1、下列多项式乘法,能用平方差公式进行计算的是( )A.(x+y)(-x -y)B.(2x+3y)(2x -3z)C.(-a -b)(a -b)D.(m -n)(n -m)2、下列运算中,正确的是( )A. 224)2)(2(b a b a b a -=+--B. 222)2)(2(b a b a b a --=-+-C. 222)2)(2(b a b a b a --=-+D. 224)2)(2(b a b a b a -=+---3、下列多项式乘法,不能用平方差公式计算的是( )A.(-a -b)(-b+a)B.(xy+z)(xy -z)C.(-2a -b)(2a+b)D.(0.5x -y)(-y -0.5x)4、在下列各式中,运算结果是2236y x -的是( )A. )6)(6(x y x y --+-B. )6)(6(x y x y -+-C. )9)(4(y x y x -+D. )6)(6(x y x y ---5、(4x 2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算( )A.-4x 2-5yB.-4x 2+5yC.(4x 2-5y)2D.(4x+5y)26、有下列运算:①2229)3(a a = ②2251)51)(15(m m m -=++-③532)1()1()1(--=--a a a④626442++=⨯⨯n m n m ,其中正确的是( ) A. ①② B. ②③ C.③④ D. ②④7、a 4+(1-a)(1+a)(1+a 2)的计算结果是( )A.-1B.1C.2a 4-1D.1-2a 48、若m ,n 是整数,那么22)()(n m n m --+值一定是( )A. 正数B. 负数C. 非负数D. 4的倍数9、对于任意的正整数n ,能整除代数式(3n+1)(3n-1)-(3-n )(3+n )的整数是( )A .3B .6C .10D .910、若(x-5)2=x 2+kx+25,则k=( )A .5B .-5C .10D .-1011、如果x 2+4x+k 2恰好是另一个整式的平方,那么常数k 的值为( )A .4B .2C .-2D .±212、若a-b=2,a-c=1,则(2a-b-c )2+(c-b )2的值为( )A .10B .9C .2D .1二、填空题1、 9.8×10.2=________; )(23(b a + 2294)a b -=;(12x+3)2 -(12x-3)2=______.)(37(22y x - -=449)x ; (x-y+z )(x+y+z )=________2、已知622=-y x ,3=+y x ,则=-y x3、)(2)(2(a x a x -+ 4416)a x -=4、若a 2+2a=1,则(a+1)2=_________.5、--+)2)(2(y x y x xy y 242--=三、计算题1、运用平方差公式计算(1) )52)(52(22--+-x x (2) )4)(4(-+ab ab(3))49)(23)(23(22b a b a b a ++- (4) )1)(1)(1)(1(42a a a a +++-(5) ))((c b a c b a --++ (6) ))()()((b a b a b a b a --++--(7) 9982-4 (8) 20.1×19.9 (9) 2003×2001-200222、解方程: )17)(17()2)(2(3)12)(12(+-=-+++-x x x x x x3、计算:)12()12)(12)(12(42++++n 2481511111(1)(1)(1)(1)22222+++++4、化简求值:(x+5)2-(x-5)2-5(2x+1)(2x-1)+x ·(2x)2,其中x=-1.四、解答题1、已知2422=-y x ,6-=+y x ,求代数式y x 35+的值2、已知9621-可以被在60至70之间的两个整数整除,则这两个整数是多少?。
多项式乘多项式课堂练习题
多项式乘以多项式类型一(3m-n)(m-2n). (x+2y)(5a+3b). ()()5332--x x()()y x y x 2332+- ()()y x x y 5323-- ()()y x y x 432--()()()()2315332---+-x x x x ()()⎪⎭⎫ ⎝⎛----213265312x x x x()()()()y x y x y x y x -----3222332 ()()()y x x y x y x 5624334--+-类型二()()23++x x ()()56++x x ()()53--x x ()()61--x x()()53+-x x ()()58+-x x ()()56+-x x ()()2010+-x x 总结归纳()()=++b x a x三化简求值:1. m2(m+4)+2m(m2-1)-3m(m2+m-1),其中m=252.x(x2-4)-(x+3)(x2-3x+2)-2x(x-2),其中x=3.23.(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=四选择题1.若(x+m)(x-3)=x2-nx-12,则m、n的值为( )A.m=4,n=-1 B.m=4,n=1C.m=-4,n=1 D.m=-4,n=-12.若(x-4)·(M)=x2-x+(N),M为一个多项式,N为一个整数,则( ) A.M=x-3,N=12 B.M=x-5,N=20C.M=x+3.N=-12 D.M=x+5,N=-203.已知(1+x)(2x2+ax+1)的结果中x2项的系数为-2,则a的值为( )A.-2 B.1 C.-4 D.以上都不对4.若M=(a+3)(a-4),N=(a+2)(2a-5),其中a为有理数,则M与N的大小关系为( )A.M>N B.M<N C.M=N D.无法确定5 若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+b B.-a-b C.a-b D.b-a6.(x2-px+3)(x-q)的乘积中不含x2项,则()A.p=q B.p=±q C.p=-q D.无法确定7.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1C.a=2,b=1,c=-2 D.a=2,b=-1,c=28.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()A.36 B.15 C.19 D.21五.填空题1.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.2.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.3.当k=__________时,多项式x-1与2-kx的乘积不含一次项.4.在长为(3a+2)、宽为(2a+3)的长方形铁皮上剪去一个边长为(a-1)的小正方形,则剩余部分的面积为______________.5.如图,正方形卡片A类、B类和长方形卡片C类各有若干张,如果要拼一个长为(a+2b)、宽为(a+b)的大长方形,那么需要C类卡片_______张.六、解答题1.已知多项式(x2+px+q)(x2-3x+2)的结果中不含x3项和x2项,求p和q的值.2.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,求a和b的值3、若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.4.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.5.如图,AB =a ,P 是线段AB 上的一点,分别以AP 、BP 为边作正方形.(1)设AP =x ,求两个正方形的面积之和S .(2)当AP 分别为3a 和2a 时,比较S 的大小.。
《多项式与多项式相乘》练习题
第2课时 多项式与多项式相乘一、填空题(每小题3分,共24分)1.若a b c x x x x =2008x ,则c b a ++=______________.2.(2)(2)a b ab --=__________,2332()()a a --=__________.3.如果2423)(a a a x =⋅,则______=x .4.计算:(12)(21)a a ---= .5.有一个长9104⨯mm ,宽3105.2⨯mm ,高3610⨯mm 的长方体水箱,这个水箱的容积是______________2mm .6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据右图写出一个代数恒等式是:________________.7.若3230123)x a a x a x a x =+++,则220213()()a a a a +-+的值为. 8.已知:A =-2ab ,B =3ab (a +2b ),C =2a 2b -2ab 2 ,3AB -AC 21=__________.二、选择题(每小题3分,共24分)9.下列运算正确的是( ).A .236x x x =B .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --=10.如果一个单项式与3ab -的积为234a bc -,则这个单项式为( ). A .14ac B .214a c C .294a c D .94ac 11.计算233[()]()a b a b ++的正确结果是( ).A .8()a b +B .9()a b +C .10()a b +D .11()a b +12.长方形的长为(a -2)cm ,宽为(3a +1) cm ,那么它的面积是多少?( ).A .2(352)a a cm --B .2(352)a a cm -+C .2(352)a a cm +-D .2(32)a a cm +-13.下列关于301300)2(2-+的计算结果正确的是( ). A .3003013003016012(2)(2)(2)(2)+-=-+-=-B .1301300301300222)2(2-=-=-+C .300300300301300301300222222)2(2-=⨯-=-=-+D .601301300301300222)2(2=+=-+14.下列各式中,计算结果是2718x x +-的是( ).A .(1)(18)x x -+B .(2)(9)x x -+C .(3)(6)x x -+D .(2)(9)x x ++15.下列各式,能够表示图中阴影部分的面积的是( ).①()at b t t +- ②2at bt t +- ③()()ab a t b t --- ④2()()a t t b t t t -+-+A .只有①B .①和②C .①、②和③D .①、②、③、④16.已知:有理数满足0|4|)4(22=-++n n m ,则33m n 的值为( ). A.1 B.-1 C. ±1 D. ±2三、解答题(共52分)17.计算:(1)3243-ab c 2⎛⎫ ⎪⎝⎭ (2)()2232315x y-xy -y -4xy 426⎛⎫ ⎪⎝⎭18.解方程:2(10)(8)100x x x +-=-19.先化简,再求值:(1)()()()2221414122x x x x x x ----+-,其中x =-2.(2)()()()()5.0232143++--+a a a a ,其中a =-3.20.一个长方形的长为2xcm ,宽比长少4cm ,若将长方形的长和宽都扩大3cm ,长方形比原来增大的面积是多少?拓广探索21.在计算时我们如果能总结规律,并加以归纳,得出数学公式, 一定会提高解题的速度,在解答下面问题中请留意其中的规律.(1)计算后填空:()()=++21x x ; ()()=-+13x x ;(2)归纳、猜想后填空:()()()()++=++x x b x a x 2(3)运用(2)猜想的结论,直接写出计算结果:()()=++m x x 2 .22.有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答下面的问题.用这种方法不仅可比大小,也能解计算题哟!例 若x =123456789×123456786,y =123456788×123456787,试比较x 、y 的大小.解:设123456788=a ,那么()()2122x a a a a =+=---,()21y a a a a ==--, ∵()()222x y a a a a =-----=-2,∴x <y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:若x =20072007200720112007200820072010⨯-⨯,y =20072008200720122007200920072011⨯-⨯,试比较x 、y 的大小.参考答案一、填空题1.2007 2.2242a b ab -+、12a - 3.18 4.214a -5.16610⨯ 6.()ab a b a a 2222+=+ 7.1 8.32231638a b a b --二、选择题9.D 10.A 11.B 12.A 13.C 14.B 15.D 16.B三、解答题(共56分)17.(1)3612278a b c - (2)3324510323x y x y xy -++ 18.2281080100x x x x -+-=-,220x =-,∴10x =-.19.(1)324864x x x +--,8 (2)26a --,020.(23)(21)x x +--2(24)x x -=2(4623)x x x +---2(48)x x -=2244348x x x x +--+=123x -答:增大的面积是(123)x cm -.21.(1)232x x ++、223x x +- (2)a b +、ab (3)2(2)2x m x m +++ 拓广探索22.设20072007=a ,x =(4)(1)(3)a a a a +-++=224(43)a a a a +-++=-3, y =(1)(5)(2)(4)a a a a ++-++=2265(68)a a a a ++-++=-3,∴x =y .。
《多项式乘以多项式》典型例题(答案)
《多项式乘以多项式》典型例题例 1 计算(3x4 3x2 1)(x4 x2 2)例2计算(3x 1)(x 1) (2x 1)(x 1) 3x(x 2) 2x( 3x)例3 利用(x a)(x b) x2 (a b)x ab,写出下列各式的结果;(1)(x 5)(x 6)(2)(3x 2)( 3x 5)例4 计算(x 1)( x 1)(x21)例5 已知x2 x 1 0,求x3 2x 4的值。
例6 计算题:(1)(2x 5y)(3x 4y);(2) (x2y)(x2 y);(3)(2x 3y)(3x 4y)1 1 (4) (-x 4)(- x 3).2 2例7 已知计算(x3mx n)(x2 5x 3)的结果不含x3和x2项,求m,n的值。
例8 计算(1) (x 7)(x 9) ; (2) (x 10)(x 20);(3) (x 2)(x 5) ; (3) (x a)(x b)。
参考答案例 1 解:原式3x8 3x6 6x4 3x6 3x4 6x2x4x2 23x8 8x4 7x2 2说明:多项式乘法在展开后合并同类项前,要检查积的项数是否等于相乘的两项式项数的积,防止“重”、“漏”。
例 2 解:原式3x23x x 1 (2x22x x 1) 3x26x 6x23x2 3x x 1 2x2 2x x 1 3x26x 6x24x2 13x说明:本题中(2x 1)(x 1)前面有“-”号,进行多项式乘法运算时,应把结果写在括号里,再去括号,以防出错。
例 3 解:(1) (x 5)(x 6)x2 (5 6)x 5 ( 6)x2 x 30(2) ( 3x 2)( 3x 5)( 3x)2(2 5)( 3x) 2 529x221x 10说明:(2)题中的( 3x) 即相当于公式中x例 4 解:(x 1)(x 1)(x2 1)[x2( 1 1)x ( 1) 1](x21)22(x21)(x21)2 2 2(x2)2( 1 1)x2( 1) 1 x41说明:三个多项式相乘,可先把两个多项式相乘,再把积与剩下的一个多项式相乘。
多项式乘多项式简单练习题-带答案
多项式乘多项式一、选择题1.下列计算错误的是( )A .(x+1)(x+4)=x 2+5x+4;B .(m-2)(m+3)=m 2+m-6;C .(y+4)(y-5)=y 2+9y-20;D .(x-3)(x-6)=x 2-9x+18.2.t 2-(t+1)(t-5)的计算结果正确的是( ) A .-4t-5; B .4t+5; C .t 2-4t+5; D .t 2+4t-5.3.若(x +m)(x -3)=x 2-nx -12,则m 、n 的值为 ( )A .m =4,n =-1B .m =4,n =1C .m =-4,n =1D .m =-4,n =-14. 若(x +a)(x +b)=x 2-kx +ab ,则k 的值为( ) A .a +b B .-a -b C .a -b D .b -a二、填空题5.多项式与多项式相乘,现用一个多项式的每一项乘另一个多项式的 ,再把所得的积 。
6.计算:=-⋅+)5()3(x x 。
)3)(3(+-ab ab 的计算结果是 。
7.已知:32a b +=,1ab =,(2)(2)a b --的结果是 . 8.若b x x x a x +-=+⋅+5)2()(2,a =__________,b =__________.9.若()()4-+x a x 的积中不含x 的一次项,a =______________三、计算题(1)(x+3)(x+5)(2)(x-3)(x+5) (3)(x+3)(x-5) (4)(x-3)(x-5)(5)(-x+3)(-x+5) (6)(-x-3)(-x+5)(7)(-x+3)(x-5) (8)(2x-y+3)(-x+y) (9)(a+b-2)(c+3)(10)(x+y)2(11) (2a-3b)2(12) (-3m-2)2(13)(2x+3)(-x-1) (14)(-2m-1)(3m-2) (15)(0.5x+0.1)(x-0.2)四、计算题(1)(x+2)(x+3) (2)(x-2)(x+3) (3)(x+2)(x-3)(4)(x-2)(x-3) (5)(x+6)(x+7) (6)(x-4)(x-5)观察以上6道题的结果,请回答以下问题:①结果中的多项式是________次__________项式;②结果中的多项式的一次项系数有什么特点?(此题可不回答,找到规律即可)③结果中的多项式的常数项有什么特点?(此题可不回答,找到规律即可)④对于关于x的算式,(x+a)(x+b)的结果是________次__________项式,它的一次项系数等于____________,常数项等于_________________。
多项式乘以多项式练习题
3.多项式与多项式相乘姓名一、选择题1.计算(2a-3b)(2a+3b)的正确结果是()A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b22.若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+b B.-a-b C.a-b D.b-a3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是()A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y34.(x2-px+3)(x-q)的乘积中不含x2项,则()A.p=q B.p=±q C.p=-q D.无法确定5.若0<x<1,那么代数式(1-x)(2+x)的值是()A.一定为正B.一定为负C.一定为非负数D.不能确定6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是()A.2(a2+2)B.2(a2-2)C.2a3D.2a67.方程(x+4)(x-5)=x2-20的解是()A.x=0 B.x=-4 C.x=5 D.x=408.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1C.a=2,b=1,c=-2 D.a=2,b=-1,c=29.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()A.36 B.15 C.19 D.2110.(x+1)(x-1)与(x4+x2+1)的积是()A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1二、填空题1.(3x-1)(4x+5)=__________.2. 2.(-4x-y)(-5x+2y)=__________.3.(x+3)(x+4)-(x-1)(x-2)=__________.4.(y-1)(y-2)(y-3)=__________.5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.6.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.7.若a2+a+1=2,则(5-a)(6+a)=__________.8.当k=__________时,多项式x-1与2-kx的乘积不含一次项.9.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,则a=_______,b=_______.10.如果三角形的底边为(3a+2b),高为(9a2-6ab+4b2),则面积=__________.三、解答题1、计算下列各式(1)(2x+3y)(3x-2y) (2)(x+2)(x+3)-(x+6)(x-1)(3)(3x2+2x+1)(2x2+3x-1) (4)(3x+2y)(2x+3y)-(x-3y)(3x+4y)2、求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001.3、2(2x-1)(2x+1)-5x(-x+3y)+4x(-4x2-52y),其中x=-1,y=2.4、解方程组⎩⎪⎨⎪⎧(x-1)(2y+1)=2(x+1)(y-1)x(2+y)-6=y(x-4)四、探究创新乐园1、若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.2、根据(x+a)(x+b)=x2+(a+b)x+ab,直接计算下列题(1)(x-4)(x-9) (2)(xy-8a)(xy+2a)五、思考题:请你来计算:若1+x+x2+x3=0,求x+x2+x3+…+x2000的值.1。
多项式乘多项式(含答案)
多项式乘多项式◆随堂检测1、多项式与多项式相乘,现用一个多项式的每一项乘另一个多项式的 ,再把所得的积 。
2、计算:=-⋅+)5()3(x x 。
3、)3)(3(+-ab ab 的计算结果是 。
◆典例分析例题:将一多项式[(17x 2-3x +4)-(ax 2+bx +c )],除以(5x +6)后,得商式为(2x +1),余式为0。
求a -b -c =?A .3B .23C .25D .29分析:①被除数=除数⨯商,②两个多项式相等即同类项的系数相等解:∵ 6171016261525)12()65(2++=⋅+⋅+⋅+⋅=+⋅+x x x x x x x x ∵[(17x 2-3x +4)-(ax 2+bx +c )]=)4()3()17(2c x b x a -+--+- ∴=++617102x x )4()3()17(2c x b x a -+--+-∴⎪⎩⎪⎨⎧=-=--=-641731017c b a 得⎪⎩⎪⎨⎧-=-==2207c b a ∴29)2()20(7=----=--c b a故选D◆课下作业●拓展提高1、若b x x x a x +-=+⋅+5)2()(2,求a ,b 的值。
2、若()()4-+x a x 的积中不含x 的一次项,求a 的值。
3、若()()53--=x x M ,()()62--=x x N ,试比较M ,N 的大小。
4、计算:)2)(1()3)(3(---++xxxx5、已知2514x x-=,求()()()212111x x x---++的值●体验中考1、(2009年福州)化简:(x-y)(x+y)+(x-y)+(x+y).2、(2009宁夏)已知:32a b+=,1a b=,化简(2)(2)a b--的结果是.参考答案:◆随堂检测1、 每一项,相加2、 =-⋅+)5()3(x x 1521535)5(33)5(22--=-+-=-⋅+⋅+⋅-+⋅x x x x x x x x x3、)3)(3(+-ab ab 933)3()3(322222-=-=⋅-+-++⋅=b a b a ab ab ab ab◆课下作业●拓展提高1、解:a x a x a x x a x x x a x 2)2(22)2)((2+++=⋅+⋅+⋅+⋅=++即52-=+a ,b a =2 所以7-=a ,14-=b2、解:()()4-+x a x a x a x a x ax x 4)4(4422--+=--+=不含x 的一次项即04=-a ,所以4=a3、解:()()158)5)(3(535322+-=--+--=--x x x x x x x()()128)6)(2(626222+-=--+--=--x x x x x x x 所以M >N4、解:原式=()226932x x x x ++--+=226932x x x x ++-+-=97x +.5、()()()212111x x x ---++=22221(21)1x x x x x --+-+++=22221211x x x x x --+---+=251x x -+当2514x x -=时,原式=2(5)114115x x -+=+=●体验中考1、原式=y x y x y x ++-+-22=x y x 222+-.2、2(2)(2)a b --4)(2422++-=+--=b a ab a b ab ,将32a b +=,1a b =代入, 得24)23(21=+⋅-。
多项式乘以多项式练习题A3(通用版)(5篇材料)
多项式乘以多项式练习题A3(通用版)(5篇材料)第一篇:多项式乘以多项式练习题 A3(通用版)13.2.3多项式乘多项式习题一、选择题1.计算(2a-3b)(2a+3b)的正确结果是()A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b22.若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+bB.-a-bC.a-bD.b-a3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是()A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y34.(x2-px+3)(x-q)的乘积中不含x2项,则()A.p=qB.p=±qC.p=-qD.无法确定5.若0<x<1,那么代数式(1-x)(2+x)的值是()A.一定为正B.一定为负C.一定为非负数D.不能确定6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是()A.2(a2+2)B.2(a2-2)C.2a3D.2a67.方程(x+4)(x-5)=x2-20的解是()A.x=0B.x=-4C.x=5D.x=408.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()A.a=2,b=-2,c=-1B.a=2,b=2,c=-1 C.a=2,b=1,c=-2D.a=2,b=-1,c=29.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()A.36B.15C.19D.2110.(x+1)(x-1)与(x4+x2+1)的积是()A.x6+1B.x6+2x3+1C.x6-1D.x6-2x3+1二、填空题1.(3x-1)(4x+5)=__________.2.(-4x-y)(-5x+2y)=__________.3.(x+3)(x+4)-(x-1)(x-2)=__________.4.(y-1)(y-2)(y-3)=__________.5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.6.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.7.若a2+a+1=2,则(5-a)(6+a)=__________.8.当k=__________时,多项式x-1与2-kx的乘积不含一次项.9.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,则a=_______,b=_______. 10.如果三角形的底边为(3a+2b),高为(9a2-6ab+4b2),则面积=__________.三、解答题1、计算下列各式(1)(2x+3y)(3x-2y)(2)(x+2)(x+3)-(x+6)(x-1)(3)(3x2+2x+1)(2x2+3x-1)(4)(3x+2y)(2x+3y)-(x-3y)(3x +4y)(5)(-4a)•(ab2+3a3b-1);(6)(-1x3y2)(4y+8xy32);(7)a(a-b)-b(b-a);(8)3x(x2-2x+1)-2x2(x-1).2、求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001.3、2(2x-1)(2x+1)-5x(-x+3y)+4x(-4x2-52),其中x=-1,y=2.4、解方程组⎧⎪⎨(x-1)(2y+1)=2(x+1)(y-1)⎪⎩x(2+y)-6=y(x-4)5、先化简,再求值:x-2(1-32x)-2x3x(2-2),其中x=26、若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.7、若(x2+mx+8)(x2-3x+n)的展开式中不含x3和x2项,求m和n的值8、根据(x+a)(x+b)=x2+(a+b)x+ab,直接计算下列题(1)(x-4)(x-9)(2)(xy-8a)(xy+2a)9、已知:A=-2ab,B=3ab(a+b),C=2a2b-3ab2,且a、b 异号,a 是绝对值最小的负整数,b=2,求3A·B-12A·C的值.第二篇:《多项式乘以多项式》教案专题教案【教学目标】:知识与技能:理解并掌握多项式乘以多项式的法则.过程与方法:经历探索多项式与多项式相乘的过程,通过导图,理解多项与多项式的结果,能够按多项式乘法步骤进行简单的多项式乘法的运算,达到熟练进行多项式的乘法运算的目的.情感与态度:培养数学感知,体验数学在实际应用中的价值,树立良好的学习态度.【教学重点】:多项式乘以多项式法则的形成过程以及理解和应用【教学难点】:多项式乘以多项式法则正确使用【教学关键】:多项式的乘法应先转化为单项式与多项式相乘进行运算,进一步再转化为单项式的乘法,紧紧扣住这一线索.【教具】:多媒体课件【教学过程】:一、情境导入(一)回顾旧知识。
多项式乘以多项式练习题-多项式乘多项式计算题及答案_
••••••••••••••当前位置:›多项式乘以多项式练习题-多项式乘多项式计算题及答案多项式乘以多项式练习题-多项式乘多项式计算题及答案3?多项式与多项式相乘、选择题1. 计算(2a — 3b)( 2a + 3b)的正确结果是()2 2 2 2 2 2 A . 4a + 9b B . 4a — 9b C . 4a + 12ab + 9b2. 若(x + a)( x + b) = x 2— kx + ab ,则 k 的值为()A . a + bB . — a — bC . a — bD . b — a3. 计算(2x — 3y)( 4x 2 + 6xy + 9y 2)的正确结果是()2 23 3 3 3A . (2x — 3y)2B . (2x + 3y) 2C . 8x 3— 27y 3D . 8x 3 + 27y 34. (x 2— px + 3)( x — q)的乘积中不含x 2项,则()A . p = qB . p =± qC . p = — qD .无法确定5. 若O v x v 1,那么代数式(1— x)( 2 + x)的值是()A . 一定为正B . 一定为负C . 一定为非负数D .不能确定6. 计算(a 2+ 2)( a 4— 2a 2 + 4) + (a 2— 2)( a 4 + 2a 2 + 4)的正确结果是()A . 2( a 2 + 2)B . 2( a2 — 2)C . 2a 3D . 2a 67. 方程(x + 4)( x — 5) = x 2— 20 的解是()A . x = 0B . x = — 4C . x = 5D . x = 408. 若 2x 2 + 5x + 1 — a(x + 1)2+ b(x + 1) + c ,那么 a , b , c 应为()A . a — 2, b —— 2, c —— 1B . a — 2, b — 2, c —— 1C . a — 2, b — 1, c —— 2D . a — 2, b —— 1, c — 29. 若 6x 2— 19x + 15— (ax + b)( cx + b),贝U ac + bd 等于()A . 36B . 15C . 19D . 214 2 10. (x + 1)( x — 1)与(x + x + 1)的积是()A . x 6+ 1B . x 6 + 2x 3 + 1C . x 6— 1D . x 6— 2x 3 + 1、填空题1. (3x — 1)( 4x + 5) — _________ .2. ( — 4x — y)( — 5x + 2y) — _______ .3. (x + 3)( x + 4) — (x — 1)( x — 2) — _______ . 2 2D . 4a 2— 12ab +4. (y—1)( y —2)( y—3) —_________ .5. (x + 3x + 4x—1)( x —2x+ 3)的展开式中,x的系数是___________ .6. 若(x+ a)( x+ 2) = x —5x+ b,贝U a = ________ , b= __________ .7. 若a2+ a+ 1 = 2,则(5—a)( 6+ a) = __________ .8. 当k= __________ 寸,多项式x—1与2 —kx的乘积不含一次项.9. 若(x2+ ax+ 8)( x2—3x+ b)的乘积中不含x2和x3项,贝U a= _____ , b = ______10. 如果三角形的底边为(3a+ 2b),高为(9a2—6ab+ 4b2),则面积二___________ .三、解答题1、计算下列各式(1)( 2x+ 3y)( 3x—2y) ( 2)( x+ 2)( x+ 3) —(x+ 6)( x—1)(3)( 3x2+ 2x+ 1)( 2x2+ 3x—1) ( 4)( 3x+ 2y)( 2x+ 3y) —(x —3y)( 3x+ 4y) 2、求(a+ b)2—(a—b)2—4ab 的值,其中a = 2002,b=2001.23、2(2x—1)( 2x+ 1) —5x( —x+ 3y) + 4x( —4x —4、解方程组(x—1)(2y+ 1)= 2(x+ 1)(y—1) x(2 + y) —6= y(x —4)四、探究创新乐园1、若(x2+ ax—b)(2x2—3x+ 1)的积中,x3的系数为5, x2的系数为一6,求a, b.2、根据(x+ a)( x+ b) = x2+ (a+ b)x+ ab,直接计算下列题(1)( x —4)( x—9) ( 2)( xy—8a)( xy+ 2a)五、数学生活实践一块长am,宽bm的玻璃,长、宽各裁掉cm后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?六、思考题:请你来计算:若1 + x+ x2+ x3= 0,求x + x2+ x3+…+ x2000的值.下载文档原格式(Word原格式,共3页)相关文档相关文档推荐:••••••••••••••••••••••••••••••••© 2022 本站资源均为网友上传分享,本站仅负责分类整理,如有任何问题可通过上方投诉通道反馈。
多项式乘多项式练习题
多项式乘多项式练习题篇一:多项式乘多项式精选(二)附多项式乘多项式试题精选(二)一.填空题(共13小题) 1.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要C类卡片 _________ 张. 2.(x+3)与(2x﹣m)的积中不含x的一次项,则m=. 3.若(x+p)(x+q)=x+mx+24,p,q为整数,则m的值等于 4.如图,已知正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片 _________ 张,B类卡片 _________ 张,C类卡片 _________ 张.2 5.计算:(﹣p)?(﹣p)=(6+a)= _________ . 6.计算(x﹣3x+1)(mx+8)的结果中不含x项,则常数m的值为 _________ . 7.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖2223=2xy?()=﹣6xyz;(5﹣a)2 8.若(x+5)(x﹣7)=x+mx+n,则m=,n=. 9.(x+a)(x+)的计算结果不含x项,则a的值是 10.一块长m 米,宽n米的地毯,长、宽各裁掉2米后,恰好能铺盖一间房间地面,问房间地面的面积是平方米. 11.若(x+m)(x+n)=x﹣7x+mn,则﹣m﹣n的值为_________ . 12.若(x+mx+8)(x﹣3x+n)的展开式中不含x和x项,则mn 的值是 _________ . 13.已知x、y、a都是实数,且|x|=1﹣a,y=(1﹣a)(a ﹣1﹣a),则x+y+a+1的值为. 223223222 二.解答题(共17小题) 14.若(x+2nx+3)(x﹣5x+m)中不含奇次项,求m、n的值. 22 15.化简下列各式:(1)(3x+2y)(9x2﹣6xy+4y2);(2)(2x﹣3)(4x2+6xy+9);(3)(m﹣)(m2+m+);(4)(a+b)(a2﹣ab+b2)(a﹣b)(a2+ab+b2). 16.计算:(1)(2x﹣3)(x ﹣5);(2)(a2﹣b3)(a2+b3) 17.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)] (2)(a+b)(a2﹣ab+b2) 18.(x+7)(x﹣6)﹣(x﹣2)(x+1) 19.计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4). 20.计算:(a﹣b)(a+ab+b) 21.若(x+px ﹣)(x﹣3x+q)的积中不含x项与x项,(1)求p、q的值;(2)求代数式(﹣2pq)+(3pq)+p 2222﹣12222320122014q的值. 22.先化简,再求值:5(3xy﹣xy)﹣4(﹣xy+3xy),其中x=﹣2,y=3. 23.若(x﹣1)(x+mx+n)=x ﹣6x+11x﹣6,求m,n的值. 24.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面 2积的不同表示可以用来验证等式a(a+b)=a+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式 _________ ;(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.23222 25.小明想把一长为60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为xcm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积. 26.(x ﹣1)(x﹣2)=(x+3)(x﹣4)+20. 27.若(x﹣3)(x+m)=x+nx﹣15,求2的值. 28.小明在进行两个多项式的乘法运算时(其中的一个多项式是b﹣1),把“乘以(b﹣1)”错看成“除以(b﹣1)”,结果得到(2a﹣b),请你帮小明算算,另一个多项式是多少? 29.有足够多的长方形和正方形的卡片如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义. 30.(1)填空:(a﹣1)(a+1)= (a﹣1)(a+a+1)= (a ﹣1)(a+a+a+1)= nn﹣12(2)你发现规律了吗?请你用你发现的规律填空:(a ﹣1)(a+a+…+a+a+1)= _________ 201220112010(3)根据上述规律,请你求4+4+4+…+4+1的值. 232 多项式乘单项式试题精选(二)参考答案与试题解析一.填空题(共13小题) 1.如图,正方形卡片A类、B类和长方形卡片C 类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要C类卡片 3 张.2.(x+3)与(2x﹣m)的积中不含x的一次项,则m=.3.若(x+p)(x+q)=x+mx+24,p,q为整数,则m的值等于2篇二:多项式乘多项式课堂练习题多项式乘以多项式类型一(3m-n)(m-2n). (x+2y)(5a+3b). ?2x?3??3x?5? ?2x?3y??3x?2y??3y?2x??3x? 5y? ?2x?y??3x?4y? 1??2????2x?13x?5?6xx??? ?2x?3??3x?5???x?1??3x?2??32? ?2x?3y??3x?2y??2 ?2x?y??3x?y? ?4x?3y??3x?4y??2x?6x?5y? 类型二 ?x?3??x?2? ?x?6??x?5? ?x?3??x?5??x?1??x?6? ?x?3??x?5??x?8??x?5? ?x ?6??x?5? ?x?10??x?20? 归纳 ?x?a??x?b?? 三化简求值: 1. m2(m+4)+2m(m2-1)-3m(m2+m-1),其中m=2 5 2. x(x2-4)-(x+3)(x2-3x+2)-2x(x-2),其中x=3. 2 3. (x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x= 四选择题 1.若(x+m)(x-3)=x2-nx-12,则m、n的值为 ( ) A.m=4,n=-1B.m=4,n=1 C.m=-4,n=1D.m=-4,n=-1 2.若(x-4)·(M)=x2-x+(N),M为一个多项式,N为一个整数,则 ( ) A.M=x-3,N=12 B.M =x-5,N=20 C.M=x+3.N=-12D.M=x+5,N=-20 3.已知(1+x)(2x2+ax+1)的结果中x2项的系数为-2,则a的值为 ( ) A.-2 B.1C.-4D.以上都不对 4.若M=(a+3)(a-4),N=(a+2)(2a-5),其中a为有理数,则M 与N的大小关系为( )A.M N B.M NC.M=ND.无法确定 5 若(x+a)(x+b)=x2-kx+ab,则k的值为( ) A.a+bB.-a-bC.a-bD.b-a 6.(x2-px+3)(x -q)的乘积中不含x2项,则( ) A.p=q 7. 若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为( ) A.a=2,b=-2,c=-1 C.a=2,b=1,c=-2 B.a=2,b=2,c=-1 B.p=±q C.p=-qD.无法确定 D.a=2,b=-1,c=2 8. 若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于( ) A.36 五.填空题 1.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________. 2.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________. 3.当k=__________时,多项式x-1与2-kx的乘积不含一次项. 4.在长为(3a+2)、宽为(2a+3)的长方形铁皮上剪去一个边长为(a-1)的小正方形,则剩余部分的面积为______________. 5.如图,正方形卡片A类、B类和长方形卡片C类各有若干张,如果要拼一个长为(a+2b)、宽为(a+b)的大长方形,那么需要C类卡片_______张.B.15C.19D.21 六、解答题 1.已知多项式(x2+px+q)(x2-3x+2)的结果中不含x3项和x2项,求p和q的值. 2.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,求a和b的值 3、若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b. 4.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值. 5.如图,AB =a,P是线段AB上的一点,分别以AP、BP为边作正方形. (1)设AP=x,求两个正方形的面积之和S. (2)当AP分别为a和a时,比较S的大小.32篇三:多项式乘以多项式练习题多项式与多项式相乘一、选择题 1. 计算(2a-3b)(2a+3b)的正确结果是( ) A.4a2+9b2 B.4a2-9b2 C.4a2+12ab+9b2 D.4a2-12ab+9b2 2. 若(x+a)(x+b)=x2-kx+ab,则k的值为( ) A.a+bB.-a -bC.a-bD.b-a 3. 计算(2x-3y)(4x2+6xy+9y2)的正确结果是( ) A.(2x-3y)2 B.(2x+3y)2 C.8x3-27y3D.8x3+27y3 4. (x2-px+3)(x-q)的乘积中不含x2项,则( ) A.p=qB.p=±q C.p=-q D.无法确定 5. 若0<x <1,那么代数式(1-x)(2+x)的值是( ) A.一定为正 B.一定为负 C.一定为非负数D.不能确定 6. 计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是( ) A.2(a2+2) B.2(a2-2) C.2a3 D.2a6 7. 方程(x+4)(x-5)=x2-20的解是( ) A.x=0 B.x=-4C.x=5D.x=40 8. 若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为( ) A.a=2,b=-2,c=-1 C.a =2,b=1,c=-2 B.a=2,b=2,c=-1 D.a=2,b=-1,c=2 9. 若6x2-19x+15=(ax+b)(cx+d),则ac+bd等于( ) A.36B.15C.19D.21 10. (x +1)(x-1)与(x4+x2+1)的积是( ) A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1 二、填空题 1. (3x-1)(4x+5)=_________. 2. (-4x-y)(-5x +2y)=__________. 3. (x+3)(x+4)-(x-1)(x-2)=__________. 4. (y -1)(y-2)(y-3)=__________. 5. (x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.6. 若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.7. 若a2+a+1=2,则(5-a)(6+a)=__________. 8. 当k=__________时,多项式x-1与2-kx的乘积不含一次项. 9. 若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,则a=_______,b=_______. 10. 如果三角形的底边为(3a+2b),高为(9a2-6ab+4b2),则面积=__________.三、解答题 1、计算下列各式 (1)(2x+3y)(3x-2y) (2)(x +2)(x+3)-(x+6)(x-1) (3)(3x2+2x+1)(2x2+3x-1) (4)(3x+2y)(2x+3y)-(x-3y)(3x+4y) 2、求(a+b)2-(a-b)2-4ab的值,其中a=2009,b =2010. 53、求值:2(2x-1)(2x+1)-5x(-x+3y)+4x(-4x2-2),其中x =-1,y=2. ?(x-1)(2y+1)=2(x+1)(y-1)?4、解方程组? ??x(2+y)-6=y(x-4) 四、探究创新乐园1、若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b. 2、根据(x+a)(x+b)=x2+(a+b)x+ab,直接计算下列题 (1)(x-4)(x-9) (2)(xy-8a)(xy+2a). 五、数学生活实践一块长acm,宽bcm的玻璃,长、宽各裁掉1 cm后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少? 六、思考题:请你来计算:若1+x +x2+x3=0,求x+x2+x3+…+x2012的值.《幂的运算》提高练习题一、选择题(共5小题,每小题4分,满分20分) 1、计算(﹣2)100+(﹣2)99所得的结果是() A、﹣299 B、﹣2 C、299 D、2 2、当m是正整数时,下列等式成立的有()(1)a2m=(am)2;(2)a2m=(a2)m;(3)a2m=(﹣am)2;(4)a2m=(﹣a2)m. A、4个 B、3个 C、2个 D、1个 3、下列运算正确的是() A、2x+3y=5xy B、(﹣3x2y)3=﹣9x6y3 D、(x﹣y)3=x3﹣y3 C、错误!未找到引用源。
多项式乘以多项式练习题
14.1.4(3)多项式乘以多项式②之阿布丰王创作一、选择题1.下列计算毛病的是( )A.(x+1)(x+4)=x2+5x+4; B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20; D.(x-3)(x-6)=x2-9x+18.2.t2-(t+1)(t-5)的计算结果正确的是( )A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.3.若(x+m)(x-3)=x2-nx-12,则m、n的值为 ( )A.m=4,n=-1 B.m=4,n=1 C.m=-4,n=1 D.m=-4,n=-14.已知(1+x)(2x2+ax+1)的结果中x2项的系数为-2,则a的值为 ( )A.-2 B.1 C.-4 D.以上都分歧毛病5.若(x+a)(x+b)=x2-kx+ab,则k的值为( ) A.a+bB.-a-b C.a-b D.b-a6.(x2-px+3)(x-q)的乘积中不含x2项,则( )A.p=qB.p=±q C.p=-q D.无法确定7.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为( )A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1C.a=2,b=1,c=-2D.a=2,b=-1,c=28.若M =(a +3)(a -4),N =(a +2)(2a -5),其中a 为有理数,则M 与N 的年夜小关系为( )A .M>NB .M<NC .M =ND .无法确定二、填空题1.(x 3+3x 2+4x -1)(x 2-2x +3)的展开式中,x 4的系数是__________.2.若(x +a)(x +2)=x 2-5x +b,则a =__________,b =__________.3.当k =__________时,多项式x -1与2-kx 的乘积不含一次项.4.在长为(3a +2)、宽为(2a +3)的长方形铁皮上剪去一个边长为(a -1)的小正方形,则剩余部份的面积为___________.5.已知49)(,1)(22=-=+y x y x ,则22y x +=;xy=.6. 若6x 2-19x +15=(ax +b)(cx +b),则ac +bd=__________.7.如图,正方形卡片A 类、B 类和长方形卡片C 类各有若干张,如果要拼一个长为(a +2b)、宽为(a +b)的年夜长方形,那么需要C 类卡片_______张.三、计算题1.(3m-n)(m-2n). 2.(x+2y)(5a+3b). 3.(x+y)(x 2-xy+y 2). 4.(x+3y+4)(2x-y).四、化简求值1. m 2(m +4)+2m(m 2-1)-3m(m 2+m -1),其中m =252.(a-2)(a+2)+3(a+2)2-6a(a+2),其中a=5.3. x(x2-4)-(x+3)(x2-3x+2)-2x(x-2),其中x4.(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),其中5. y n(y n+9y-12)-3(3y n+1-4y n),其中y=-3,n=2.五、解答题1.证明(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.2.已知多项式(x2+px+q)(x2-3x+2)的结果中不含x3项和x2项,求p和q的值.3.若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.4.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.5.如图,AB=a,P是线段AB上的一点,分别以AP、BP为边作正方形.(1)设AP=x,求两个正方形的面积之和S.。
多项式乘以多项式训练题
三、计算题
1. (3m-n)(m-2n) .
2
. (x+2y)(5a+3b) .
3. (x+y)(x 2-xy+y 2) .
4
. (x+3y+4)(2x-y) .
四、化简求值
1. m 2(m+ 4) + 2m(m2-1) - 3m(m2+ m- 1) ,其中 m= 2 5
2.( a- 2)( a+ 2)+ 3( a+ 2)2 -6a( a+2) , 其中 a= 5.
3. x(x 2- 4) -(x + 3)(x 2-3x+ 2) -2x(x - 2) ,其中 x = 3 . 2
4. (x-2)(x-3)+2(x+6)(x-5)-3(x
2-7x+13) ,其中 x= 3 1 2
5. y n(y n+9y-12)-3(3y n+1-4y n) ,其中 y=-3 , n=2.
C . p=- q
D.无法确定
7. 若 2x2+ 5x + 1=a(x + 1) 2+b(x + 1) +c ,那么 a, b, c 应为 ( )
A. a=2, b=- 2, c=- 1
B. a= 2, b= 2, c=- 1
C. a=2, b= 1, c=- 2
D. a= 2, b=- 1, c= 2
多项式乘以多项式训练题
ห้องสมุดไป่ตู้
一、选择题
1.下列计算错误的是 ( )
A. (x+1)(x+4)=x 2+5x+4;
B
.(m-2)(m+3)=m 2+m-6;
2
C. (y+4)(y-5)=y +9y-20 ;