2020年初二数学上期末模拟试卷(带答案)

合集下载

2020年初二数学上期末模拟试卷带答案

2020年初二数学上期末模拟试卷带答案

2020年初二数学上期末模拟试卷带答案一、选择题1.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .42.下列边长相等的正多边形能完成镶嵌的是( )A .2个正八边形和1个正三角形B .3个正方形和2个正三角形C .1个正五边形和1个正十边形D .2个正六边形和2个正三角形 3.如果a c b d =成立,那么下列各式一定成立的是( ) A .a d c b = B .ac c bd b= C .11a c b d ++= D .22a b c d b d ++= 4.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 5.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+- 6.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2B .2C .4D .-4 7.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是( )A .3B .4C .5D .6 8.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A .1个B .2个C .3个D .4个9.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

2020-2021学年第一学期八年级数学上册期末模拟测试题一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( )A .1B .2C .3D .52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( ) A .13 B .8 C .25 D .643.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”笑脸右眼B 的坐标是( )A .(0,3)B .(0,1)C .(-1,2)D .(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P的度数是( )A.70°B.80°C.90°D.100°8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③不等式kx+b<x+a的解集为x<3中,正确的个数是( )A.0 B.1 C.2 D.39.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1,其中正确的是( )A.①②B.①③C.①④D.②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2二、填空题(每小题3分,共18分)11.16的平方根是____;-125的立方根是____.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为____.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是____.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为____m .16.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2;(3)23(375-12-27); (4)(3+2-1)(3-2+1).18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.22.在△ABC中,∠BAC=∠BCA,CD平分∠ACB,CE⊥AB,交AB的延长线于点E,∠BCE=48°,求∠CDE的度数.23.如图,在数轴上与3,5对应的点分别是A,B,点C也在数轴上,且AB=AC,设点C表示的数为x.(1)求x的值;(2)计算|x-3|+6x+5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?25.如图,一次函数y=-34x+3的图象与x轴和y轴分别交于点A和点B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与直线AB交于点D.(1)求A,B两点的坐标;(2)求OC的长;(3)设P是x轴上一动点,若使△PAB是等腰三角形,写出点P的坐标.参考答案一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( C )A.1 B.2 C.3 D.52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( B )A.13 B.8 C.25 D.643.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是( A)A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( C )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A ) A .a =4,b =0 B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( D )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P 的度数是( C )A .70°B .80°C .90°D .100°8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③不等式kx +b <x +a 的解集为x <3中,正确的个数是( B )A .0B .1C .2D .39.下列说法:①如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c(a >b =c),那么a 2∶b 2∶c 2=2∶1∶1,其中正确的是( C )A .①②B .①③C .①④D .②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( B )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2二、填空题(每小题3分,共18分)11.16的平方根是__±2__;-125的立方根是__-5__.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为__-1__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__2.5__.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为__480__m .17.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2; 解:- 2. 解:95.(3)23(375-12-27); (4)(3+2-1)(3-2+1). 解:60. 解:2 2.18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎨⎧x =2,y =-1. 解:⎩⎨⎧x =9,y =6. 解:⎩⎨⎧x =1,y =1.解:⎩⎨⎧x =1,y =-2,z =-1.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;解:因为点P (a -1,-b +2)关于x 轴的对称点为M ,所以M (a -1,b -2),因为点P (a -1,-b +2)关于y 轴的对称点为N ,所以N (-a +1,-b +2),因为点M 与点N 的坐标相等,所以a -1=-a +1,b -2=-b +2,解得a =1,b =2.(2)猜想点P 的位置并说明理由.解:点P 的位置是原点.理由:因为a =1,b =2,所以点P (a -1,-b +2)的坐标为(0,0),即P 点为原点.20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解:由题意,易知AD ∥BC ,所以∠2=∠3.因为△BC′D 与△BCD 关于直线BD 对称,所以∠1=∠2.所以∠1=∠3.所以EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB 2+AE 2=BE 2,所以42+(8-x )2=x 2.所以x =5.所以DE =5.所以S △BED =12DE·AB =12×5×4=10.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题: (1)请分别计算甲、乙、丙的得票数;解:甲的票数是200×34%=68(票),乙的票数是200×30%=60(票),丙的票数是200×28%=56(票).(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.解:甲的平均成绩:68×2+92×5+85×32+5+3=85.1(分),乙的平均成绩:60×2+90×5+95×32+5+3=85.5(分),丙的平均成绩:56×2+95×5+80×32+5+3=82.7(分),因为乙的平均成绩最高,所以应该推荐乙.22.在△ABC 中,∠BAC =∠BCA ,CD 平分∠ACB ,CE ⊥AB ,交AB 的延长线于点E ,∠BCE =48°,求∠CDE 的度数.解:∵CE ⊥AB ,∴∠E =90°.在△BEC 中,∠CBE =180°-∠E -∠BCE =42°,∵∠BAC =∠BCA ,∠CBE =∠BAC +∠BCA ,∴∠BAC =∠BCA =12∠CBE =21°,又∵CD平分∠ACB ,∴∠ACD =12∠ACB =10.5°,∴∠CDE =∠ACD +∠BAC =10.5°+21°=31.5°.23.如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;解:因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC ,所以3-x =5-3,解得x =23- 5.(2)计算|x -3|+6x +5.解:原式=|23-5-3|+623-5+5=5-3+3= 5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.如图,一次函数y =-34x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D.(1)求A ,B 两点的坐标;解:令y =0,则x =4;令x =0,则y =3,故点A 的坐标为(4,0),点B 的坐标为(0,3).(2)求OC 的长;解:设OC =x ,则AC =CB =4-x ,∵∠BOA =90°,∴OB 2+OC 2=CB 2,32+x 2=(4-x )2,解得x =78,∴OC =78.(3)设P 是x 轴上一动点,若使△PAB 是等腰三角形,写出点P 的坐标.解:设P 点坐标为(x ,0),当PA =PB 时,(x -4)2=x 2+9,解得x =78;当PA =AB 时,(x -4)2=42+32,解得x =9或x =-1;当PB =AB 时,x 2+32=42+32,解得x =-4(x =4,舍去).∴P 点坐标为(错误!,0),(-1,0)或(9,0),(-4,0).1、三人行,必有我师。

2020年初二数学上期末一模试卷带答案

2020年初二数学上期末一模试卷带答案

2020年初二数学上期末一模试卷带答案一、选择题1.下列边长相等的正多边形能完成镶嵌的是( )A .2个正八边形和1个正三角形B .3个正方形和2个正三角形C .1个正五边形和1个正十边形D .2个正六边形和2个正三角形 2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣63.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .8 4.下列运算正确的是( ) A .a 2+2a =3a 3B .(﹣2a 3)2=4a 5C .(a+2)(a ﹣1)=a 2+a ﹣2D .(a+b)2=a 2+b 2 5.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤B .3m <C .3m >-D .3m ≥- 6.等腰三角形一腰上的高与另一腰的夹角为60o ,则顶角的度数为( )A .30oB .30o 或150oC .60o 或150oD .60o 或120o 7.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 8.如果2x +ax+1 是一个完全平方公式,那么a 的值是()A .2B .-2C .±2D .±1 9.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .2010.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1 11.下列计算正确的是( ) A .2a a a += B .33(2)6a a = C .22(1)1a a -=- D .32a a a ÷=12.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)二、填空题13.如图,△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,请你添加一个适当的条件:_____,使△AEH ≌△CEB .14.分解因式:39a a -= __________15.如果24x kx ++是一个完全平方式,那么k 的值是__________.16.数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x>5),则x =________.17.当m=____时,关于x 的分式方程2x m -1x-3+=无解. 18.若m 为实数,分式()22x x x m ++不是最简分式,则m =______.19.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB= .20.若n 边形内角和为900°,则边数n= .三、解答题21.如图,在ABC ∆中(1)画出BC 边上的高AD 和角平分线AE .(2)若30B ∠=°,130ACB ∠=°,求BAD ∠和CAD ∠的度数.22.已知:如图,在△ABC 中,AB=2AC ,过点C 作CD ⊥AC ,交∠BAC 的平分线于点D .求证:AD=BD .23.龙人文教用品商店欲购进A 、B 两种笔记本,用160元购进的A 种笔记本与用240元购进的B 种笔记本数量相同,每本B 种笔记本的进价比每本A 种笔记本的进价贵10元.(1)求A 、B 两种笔记本每本的进价分别为多少元?(2)若该商店准备购进A 、B 两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进A 种笔记本多少本?24.已知:如图,在△ABC 中,AB=AC ,∠BAC=90°,D 是BC 上一点,EC ⊥BC ,EC=BD ,DF=FE .求证:(1)△ABD ≌△ACE ;(2)AF ⊥DE .25.(1)计算:()108613333π-⎛⎫--÷+ ⎪⎝⎭ (2)因式分解:22312x y -【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。

2020年初二数学上期末模拟试题附答案

2020年初二数学上期末模拟试题附答案

2020年初二数学上期末模拟试题附答案一、选择题1.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .42.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+ 3.下列运算正确的是( )A .a 2+2a =3a 3B .(﹣2a 3)2=4a 5C .(a+2)(a ﹣1)=a 2+a ﹣2D .(a+b)2=a 2+b 2 4.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥- 5.下列判定直角三角形全等的方法,不正确的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个面积相等的直角三角形6.如图,在△ABC 中,∠ACB=90°,分别以点A 和B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,下列结论错误的是( )A .AD=BDB .BD=CDC .∠A=∠BED D .∠ECD=∠EDC 7.下列计算正确的是( ) A 235+=B .a a a +=222 C .(1)x y x xy +=+ D .236()mn mn =8.如图,ABC ∆是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为( )A .50°B .55°C .60°D .65°9.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .2010.若正多边形的一个内角是150°,则该正多边形的边数是( ) A .6 B .12 C .16 D .1811.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130° 12.下列运算正确的是( ) A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab =二、填空题13.如果24x kx ++是一个完全平方式,那么k 的值是__________.14.分解因式:2a 2﹣8=_____.15.若x 2+kx+25是一个完全平方式,则k 的值是____________.16.已知m n t y z x z x y x y z==+-+-+-,则()()()y z m z x n x y t -+-+-的值为________.17.求值:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-----= ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L ______. 18.若m 为实数,分式()22x x x m ++不是最简分式,则m =______.19.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6cm ,则△DEB 的周长是___;20.如图,030A B ∠=︒,点P 为AOB ∠内一点,8OP =.点M 、N 分别在OA OB 、上,则PMN V 周长的最小值为________.三、解答题21.如图,在ABC ∆中(1)画出BC 边上的高AD 和角平分线AE .(2)若30B ∠=°,130ACB ∠=°,求BAD ∠和CAD ∠的度数.22.(1)分解下列因式,将结果直接写在横线上:x 2+4x+4= ,16x 2+24x+9= ,9x 2﹣12x+4=(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax 2+bx+c(a >0)是完全平方式,则实数系数a 、b 、c 一定存在某种关系.①请你用数学式子表示a 、b 、c 之间的关系;②解决问题:若多项式x 2﹣2(m ﹣3)x+(10﹣6m)是一个完全平方式,求m 的值.23.解分式方程:33122x x x-+=--. 24.先化简代数式1﹣1x x -÷2212x x x-+,并从﹣1,0,1,3中选取一个合适的代入求值. 25.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】从一个多边形的一个顶点出发,能做(n-3)条对角线,把三角形分成(n-2)个三角形.【详解】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n 边形木架不变形,至少再钉上(n-3)根木条.故选:C.【点睛】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n-3.2.A解析:A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积. 3.C解析:C【解析】【分析】根据整式的混合运算法则与完全平方公式进行判断即可.【详解】解:A.a 2与2a 不是同类项,不能合并,故本选项错误;B.326 (2a )4a -=,故本选项错误;C.()()2a 2a 1a a 2+-=+-,正确; D.222 (a b)a 2ab b +=++,故本选项错误.故选C.【点睛】本题主要考查了整式的混合运算与完全平方公式,属于基础题,熟练掌握其知识点是解此题的关键.4.A解析:A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可【详解】213x m x -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x m x -=-的解是非正数,30x -≠, 30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤,故选:A .【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值5.D解析:D【解析】【分析】【详解】解:A 、正确,利用SAS 来判定全等;B 、正确,利用AAS 来判定全等;C 、正确,利用HL 来判定全等;D 、不正确,面积相等不一定能推出两直角三角形全等,没有相关判定方法对应. 故选D .【点睛】本题主要考查直角三角形全等的判定方法,关键是熟练掌握常用的判定方法有SSS 、SAS 、AAS 、HL 等.6.D解析:D【解析】【分析】根据题目描述的作图方法,可知MN 垂直平分AB ,由垂直平分线的性质可进行判断.【详解】∵MN 为AB 的垂直平分线,∴AD=BD ,∠BDE=90°;∵∠ACB=90°,∴CD=BD ;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED ;∵∠A≠60°,AC≠AD ,∴EC≠ED ,∴∠ECD≠∠EDC .故选D .【点睛】本题考查垂直平分线的性质,熟悉尺规作图,根据题目描述判断MN 为AB 的垂直平分线是关键.7.C解析:C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .8.A解析:A【解析】【分析】利用等边三角形三边相等,结合已知BC=BD ,易证ABD n 、CBD n 都是等腰三角形,利用等边对等角及三角形内角和定理即可求得BCD ∠的度数.【详解】Q ABC n 是等边三角形,BC AC AB ∴==,又Q BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒00000018018020206080CBD BAD BDA ABC∴∠=-∠-∠-∠=---=,BC BD =,11(180)(18080)5022BCE CBD ∠=⨯︒-∠=⨯︒-︒=︒, 故选:A .【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 9.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC 中,以点A 和点B 为圆心,大于二分之一AB 的长为半径画弧,两弧相交与点M,N ,则直线MN 为AB 的垂直平分线,则DA=DB,△ADC 的周长由线段AC,AD,DC 组成,△ABC 的周长由线段AB,BC,CA 组成而DA=DB,因此△ABC 的周长为10+7=17. 故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.10.B解析:B【解析】设多边形的边数为n ,则有(n-2)×180°=n×150°,解得:n=12, 故选B.11.C解析:C【解析】【分析】根据等边对等角可得∠B =∠ACB =50°,再根据三角形内角和计算出∠A 的度数,然后根据三角形内角与外角的关系可得∠BPC >∠A , 再因为∠B =50°,所以∠BPC <180°-50°=130°进而可得答案.【详解】∵AB =AC ,∠B =50°,∴∠B =∠ACB =50°,∴∠A =180°-50°×2=80°,∵∠BPC =∠A +∠ACP ,∴∠BPC >∠A ,∴∠BPC >80°. ∵∠B =50°,∴∠BPC <180°-50°=130°,则∠BPC 的值可能是100°. 故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.12.C解析:C【解析】【分析】根据单项式的乘法和除法法则,以及幂的乘方法则即可作出判断.【详解】A 、-3a 2•2a 3=-6a 5,故A 错误;B 、4a 6÷(-2a 3)=-2a 3,故B 错误;C 、(-a 3)2=a 6,故C 正确;D 、(ab 3)2=a 2b 6,故B 错误;故选:C .【点睛】本题考查了单项式的乘法、除法以及幂的乘方,正确理解幂的运算法则是关键.二、填空题13.±4【解析】【分析】这里首末两项是x 和2的平方那么中间项为加上或减去x 和2的乘积的2倍也就是kx 由此对应求得k 的数值即可【详解】∵是一个多项式的完全平方∴kx=±2×2⋅x∴k=±4故答案为:±4【解析:±4.【解析】【分析】这里首末两项是x 和2的平方,那么中间项为加上或减去x 和2的乘积的2倍也就是kx ,由此对应求得k 的数值即可.【详解】∵24x kx ++是一个多项式的完全平方,∴kx=±2×2⋅x , ∴k=±4. 故答案为:±4. 【点睛】此题考查完全平方式,解题关键在于掌握计算公式.14.2(a+2)(a﹣2)【解析】【分析】先提取公因式2再利用平方差公式继续分解【详解】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2)故答案为:2(a+2)(a﹣2)【点睛】本题考查了因式分解一解析:2(a+2)(a﹣2)【解析】【分析】先提取公因式2,再利用平方差公式继续分解.【详解】解:2a2﹣8=2(a2﹣4),=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点睛】本题考查了因式分解,一般是一提二套,先考虑能否提公式式,再考虑能不能用平方差公式和完全平方公式继续分解,注意要分解彻底.15.±10【解析】【分析】先根据两平方项确定出这两个数再根据完全平方公式的乘积二倍项即可确定k的值【详解】解:∵x2+kx+25=x2+kx+52∴kx=±2•x•5解得k=±10故答案为:±10【点睛解析:±10.【解析】【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵x2+kx+25=x2+kx+52,∴kx=±2•x•5,解得k=±10.故答案为:±10.【点睛】本题考查完全平方式,根据平方项确定出一次项系数是解题关键,也是难点,熟记完全平方公式对解题非常重要.16.0【解析】【分析】令=k(k≠0)列出方程组分别求出xyz的值代入求值即可【详解】令=k(k≠0)则有解得:∴===0故答案为:0【点睛】此题主要考查了分式的运算熟练掌握运算法则是解此题的关键解析:0【解析】【分析】令m n ty z x z x y x y z==+-+-+-=k(k≠0),列出方程组,分别求出x,y,z的值,代入()()()y z m z x n x y t -+-+-求值即可.【详解】 令m n t y z x z x y x y z==+-+-+-=k(k≠0),则有 m y z x k n z x y k t x y z k⎧+-=⎪⎪⎪+-=⎨⎪⎪+-=⎪⎩, 解得:222n t x k m t y k m n z k +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩, ∴()()()y z m z x n x y t -+-+- =222t n m t n m m n t k k k---++g g g =2tm nm mn tn nt mt k-+-+- =0.故答案为:0.【点睛】 此题主要考查了分式的运算,熟练掌握运算法则是解此题的关键.17.【解析】【分析】由题意平方差公式把每一项展开然后直接约分运算即可得出答案【详解】解:===故填【点睛】本题考查有理数幂的化简与求值熟练掌握平方差公式把每一项展开是解题的关键 解析:1120【解析】【分析】由题意平方差公式把每一项展开,然后直接约分运算即可得出答案.【详解】 解:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L =1111111111111111...1111223344991010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+-+ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=132435810911... 223344991010⨯⨯⨯⨯⨯⨯⨯⨯⨯=11 20故填11 20.【点睛】本题考查有理数幂的化简与求值,熟练掌握平方差公式把每一项展开是解题的关键. 18.0或-4【解析】【分析】由分式不是最简分式可得x或x+2是x2+m的一个因式分含x和x+2两种情况根据多项式乘以多项式的运算法则求出m的值即可【详解】∵分式不是最简分式∴x或x+2是x2+m的一个因解析:0或-4【解析】【分析】由分式()22x xx m++不是最简分式可得x或x+2是x2+m的一个因式,分含x和x+2两种情况,根据多项式乘以多项式的运算法则求出m的值即可.【详解】∵分式()22x xx m++不是最简分式,∴x或x+2是x2+m的一个因式,当x是x2+m的一个因式x时,设另一个因式为x+a,则有x(x+a)=x2+ax=x2+m,∴m=0,当x或x+2是x2+m的一个因式时,设另一个因式为x+a,则有(x+2)(x+a)=x2+(a+2)x+2a=x2+m,∴202am a+=⎧⎨=⎩,解得:24 am=-⎧⎨=-⎩,故答案为:0或-4.【点睛】本题考查最简分式的定义及多项式乘以多项式,根据题意得出x或x+2是x2+m的一个因式是解题关键.19.6cm【解析】【分析】先利用角角边证明△ACD和△AED全等根据全等三角形对应边相等可得AC=AECD=DE然后求出BD+DE=AE进而可得△DEB的周长【详解】解:∵DE⊥AB∴∠C=∠AED=9解析:6cm【解析】【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.【详解】解:∵DE⊥AB,∴∠C=∠AED=90°,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,C AEDCAD EADAD DA∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(AAS),∴AC=AE,CD=DE,∴BD+DE=BD+CD=BC=AC=AE,BD+DE+BE=AE+BE=AB=6,所以,△DEB的周长为6cm.故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.20.8【解析】【分析】分别作点P关于OAOB的对称点P1P2连接P1P2交OA于M交OB于N△PMN的周长=P1P2然后证明△O P1P2是等边三角形即可求解【详解】分别作点P关于OAOB的对称点P1P2解析:8【解析】【分析】分别作点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,△PMN的周长=P1P2,然后证明△OP1P2是等边三角形,即可求解.【详解】分别作点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N.连接OP,则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形.△PMN的周长=P1P2,∴P1P2=OP1=OP2=OP=8.故答案为8.【点睛】本题考查了轴对称﹣最短路线问题,正确作出辅助线,证明△OP 1P 2是等边三角形是关键.三、解答题21.(1)见解析; (2)60BAD ∠=° ,40CAD ∠=°【解析】【分析】(1)延长BC ,作AD ⊥BC 于D ;根据角平分线的做法作出角平分线AE 即可;(2)可根据三角形的内角和定理解答即可.【详解】解:(1)如图所示:AD,AE 即为所求;(2)在△ABD 中,AD ⊥BD ,即∠ADB=90°,∵∠B=30°,∴∠BAD=180°-90°-30°=60°;在△ABC 中,∠B+∠ACB+∠BAC=180°∴∠BAC=180°-30°-130°=20°∴∠CAD=60°-20°=40°.【点睛】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.22.(1)(x+2)2,(4x+3)2,(3x ﹣2)2;(2)①b 2=4ac ,②m=±1【解析】【分析】(1)根据完全平方公式分解即可;(2)①根据已知等式得出b 2=4ac ,即可得出答案;②利用①的规律解题.【详解】(1)x2+4x+4=(x+2)2,16x2+24x+9=(4x+3)2,9x2-12x+4=(3x-2)2,故答案为(x+2)2,(4x+3)2,(3x-2)2;(2)①b2=4ac,故答案为b2=4ac;②∵多项式x2-2(m-3)x+(10-6m)是一个完全平方式,∴[-2(m-3)]2=4×1×(10-6m),m2-6m+9=10-6mm2=1m=±1.【点睛】本题考查了对完全平方公式的理解和应用,能根据完全平方公式得出b2=4ac是解此题的关键.23.x=1.【解析】【分析】方程两边同时乘以x-2,化为整式方程,解整式方程后进行检验即可.【详解】方程两边同时乘以x-2,得x-3+x-2=-3,解得:x=1,检验:当x=1时,x-2≠0,所以原分式方程的解为x=1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法以及注意事项是解题的关键.24.-11x+,-14.【解析】试题分析:根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x的值代入即可解答本题.试题解析:原式=1﹣()()()21·11x xxx x x+-+-=1﹣21xx++=121x xx+--+=-11x+,当x=3时,原式=﹣131+=-14.25.赚了520元【解析】【分析】(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.【详解】(1)设第一次购书的单价为x元,根据题意得:1200x+10=1500(120)0x,解得:x=5,经检验,x=5是原方程的解,答:第一次购书的进价是5元;(2)第一次购书为1200÷5=240(本),第二次购书为240+10=250(本),第一次赚钱为240×(7﹣5)=480(元),第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),所以两次共赚钱480+40=520(元),答:该老板两次售书总体上是赚钱了,共赚了520元.【点睛】此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。

2020年初二数学上期末试卷(带答案)

2020年初二数学上期末试卷(带答案)

2020 年初二数学上期末试卷(带答案)一、选择题1 .世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056 盎司.将0.056用科学记数法表示为()A.5.6 ×10﹣1B. 5.6 ×10﹣2C. 5.6 ×10﹣3D.0.56 ×10﹣1 2.如图所示,小兰用尺规作图作△ ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的一半长为半径作弧两弧交于F;②作射线BF ,交边AC 于点H;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是()A.①②③④B.④③①②C.②④③①D.④③②①3.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别一点M 、N 为圆心,大于 1 MN 的长为半径画弧,两弧在第二象限交211于点P . 若点P 的坐标为, ,则a 的值为()a 4 2a 31A.a 1 B.a 7 C.a 1 D.a34.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1 B. 2 C. 3 D.85.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是()A.6 B.11 C.12 D.186.如图,在△ ABC 中,点D 在BC 上,AB=AD=DC ,∠B=80° ,则∠ C 的度数为()O 重合)为一个顶点的直角三角形与 Rt ABO 全等,且这 Rt ABO 有一条公共边,则所有符合的三角形个数为8 和 2,则这个三角形的第三边长可能是(7. 40°C .45°D . 60°A . 2x y) x 2y B.2x y) 2x y C . x 2y) x 2yD.2x y) 2x y8. 如图,若 x为正整数,则表示 x 22x 24x1 的值的点落在( 4x1A .段① 9. 下列计算正确的是( A . 2aaaB .段②)33B . (2a)36a 3C.段③ C .(a1)2D.段④2a 1D . a a a10. 下列条件中,不能作出唯一三角形的是 A .已知三角形两边的长度和夹角的度数 B .已知三角形两个角的度数以及两角夹边的长度 C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形三边的长度 11 . 在平面直角坐标系内,点 O 为坐标原点, A( 4,0) , B(0,3) ,若在该坐标平面内 A . 9 B . 7 C . 5 D . 3 A . 4 B . 6 C . 8 D . 10 二、填空题 13. 14. 3x(x 5) 2(5 x) 分解因式的结果为 . 等腰三角形的一个内角是 100 ,则这个三角形的另外两个内角的度数是 15. 12019+ 22020× ( 1 ) 2021 216. 分解因式: 2x 2-8x+8= ba 17. 已知 a+b = 5 , ab = 3, =ab18. 计算 ( 3 -2)( 3 +2)的结果是有以 点 P (不与点 A 、 B 、 12. 已知一个三角形的两边长分别为19.若分式的值为零,则x 的值为________ .20.如图,A0B 30 ,点P为AOB 内一点,OP 8 .点M、N 分别在OA、OB 上,则VPMN 周长的最小值为_________21.如图,已知在△ ABC 中,∠ BAC 的平分线与线段BC 的垂直平分线PQ相交于点P,过点P 分别作PN 垂直于AB 于点N,PM 垂直于AC 于点M,BN 和CM 有什么数量关系?请说明理由.22.为了改善生态环境,某乡村计划植树4000 棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?23.如图是作一个角的角平分线的方法:以的顶点为圆心,以任意长为半径画弧,分别交于两点,再分别以为圆心,大于长为半径作画弧,两条弧交于点,作射线,过点作交于点.1 )若,求的度数;2)若,垂足为,求证:.1 a2 424.先化简,再求值: 1 1 2a 4 ,其中a 3 .a 1 a2 2a 125.如图,VABO 与VCDO 关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.*** 试卷处理标记,请不要删除1. B解析:B【解析】【详解】2.B解析:B【解析】【分析】根据直线外一点作已知直线的垂线的方法作BH ⊥ AC 即可.【详解】用尺规作图作△ ABC 边AC 上的高BH ,做法如下:④取一点K 使K 和B 在AC 的两侧;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E;①分别以点 D 、E 为圆心,大于DE 的长为半径作弧两弧交于F;②作射线BF ,交边AC 于点H;故选B.【点睛】考查了复杂作图,关键是掌握线段垂直平分线、垂线的作法.3.D解析:D【解析】【分析】根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得 1 = 1 ,再根据P 点所在象限可得横纵坐标的和为a 4 2a 3 进而得到 a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,11故+ =0,a 4 2a 3解得:a= .3故答案选: D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.4.C解析:C【解析】【分析】根据三角形三边关系可得5﹣3< a< 5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3< a< 5+3,即2< a< 8,由此可得,符合条件的只有选项C,故选C.【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3< a< 5+3 是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.5.C解析:C【解析】试题分析:这个正多边形的边数:360° ÷ 30=° 12,故选C.考点:多边形内角与外角.6.B解析:B【解析】【分析】先根据等腰三角形的性质求出∠ADB 的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论.【详解】解:∵△ABD 中,AB=AD ,∠B=80° ,∴∠ B=∠ ADB=8°0 ,∴∠ADC=18°0 ﹣∠ADB=10°0 ,∵ AD=CD ,180 ∠ ADC 180 100∴∠ C= 40 .22故选 B .考点:等腰三角形的性质.7.A解析:A【解析】【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】解:A、由于两个括号中含x、y 项的系数不相等,故不能使用平方差公式,故此选项正确;B 、两个括号中,含y 项的符号相同, 1 的符号相反,故能使用平方差公式,故此选项错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;D 、两个括号中,y 相同,含2x 的项的符号相反,故能使用平方差公式,故此选项错误;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.8.B解析:B将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得正确答案.【详解】解析: D 【解析】 【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计 算即可. 【详解】解: A , a+a=2a≠a 2,故该选项错误;B ,( 2a ) 3=8a 3≠ 63a ,故该选项错误C ,( a ﹣ 1 ) 2=a 2﹣ 2a+1≠a 2﹣ 1,故该选项错误; D , a3 ÷ a=a 2,故该选项正确,故选 D .点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等 运算法则,熟练掌握这些法则是解此题的关键.10. C解析: C 【解析】【分析】 看是否符合所学的全等的公理或定理即可. 【详解】A 、符合全等三角形的判定 SAS ,能作出唯一三角形;B 、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA 判定全等,因而所作三角形是唯一的;C 、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;D 、符合全等三角形的判定SSS ,能作出唯一三角形;故选 C. 【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.11. A解析: A 【解析】 【分析】根据题意画出图形,分别以 OA 、 OB 、 AB 为边、根据直角三角形全等的判定定理作出符合条件的三角形即可.22解∵(x 2)21 (x 2)21x 24x 4 x 1 (x 2)2x 1又∵ x 为正整数,∴ 1 x < 1,故表示 2 x111x1 x x1 故选 B . 【点9. D(x 2)22x 4x 41 的值的点落在【详解】如图:分别以OA、OB、AB为边作与Rt△ ABO 全等的三角形各有3个,则则所有符合条件的三角形个数为9,故选:A.【点睛】本题考查的知识点是直角三角形全等的判定和坐标与图形性质,解题关键是注意不要漏解12. C解析:C【解析】【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm,则8﹣2< x< 2+8,6< x< 10,故选:C.【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.二、填空题13.(x-5 )(3x-2)【解析】【分析】先把代数式进行整理然后提公因式即可得到答案【详解】解:==;故答案为:【点睛】本题考查了提公因式法分解因式解题的关键是熟练掌握分解因式的几种方法解析:(x-5)(3x-2)【解析】【分析】先把代数式进行整理,然后提公因式(x 5),即可得到答案.【详解】解:3x(x 5) 2(5 x)= 3x(x 5) 2(x 5)=(x 5)(3x 2);故答案为:(x 5)(3x 2) .【点睛】本题考查了提公因式法分解因式,解题的关键是熟练掌握分解因式的几种方法.14.40° 40°【解析】【分析】因为等腰三角形的两个底角相等且三角形内角和为180° 100°只能为顶角所以剩下两个角为底角且为40°40°【详解】解:∵ 三角形内角和为180° ∴ 100°只能为顶角∴ 剩下两解析:40° 40 °【解析】【分析】因为等腰三角形的两个底角相等,且三角形内角和为180°,100°只能为顶角,所以剩下两个角为底角,且为40 °,40°.【详解】解:∵三角形内角和为180°,∴ 100 °只能为顶角,∴剩下两个角为底角,且它们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质和三角形的内角和,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.【解析】【分析】根据有理数的混合运算法则求解即可【详解】;故答案为【点睛】本题考查了有理数的混合运算熟练掌握有理数的混合运算法则是解题的关键1解析:-2【解析】【分析】根据有理数的混合运算法则求解即可.-12019+22020 ( 1 ) 2021=-1+22020 ( 1 ) 2020 12 221 2020 1=-1+( 2 ) 20202211 1=-1+=-;故答案为-.22 2本题考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.16.2(x-2)2【解析】【分析】先运用提公因式法再运用完全平方公式【详解】:2x2-8x+8=故答案为2(x-2)2【点睛】本题考核知识点:因式分解解题关键点:熟练掌握分解因式的基本方法解析:2(x-2) 2【解析】【分析】先运用提公因式法,再运用完全平方公式.【详解】22:2x 2-8x+8= 2 x24x 4 2 x 2 .故答案为2(x-2) 2.【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.17.【解析】【分析】将a+b=5ab=3代入原式=计算可得【详解】当a+b=5ab=3时原式====故答案为【点睛】本题主要考查分式的加减法解题的关键是熟练掌握分式的加减运算法则和完全平方公式19 解析:22 将a+b=5、ab=3代入原式= b aab 【详解】当a+b=5、ab=3时,22 baaba b 22ab ab52 2 3319 =.319故答案为.32a b 2ab ,计算可得.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式.18.-1 【解析】【分析】由于式子复合平方差公式的特点则由平方差公式展开可得()-2 即可解答【详解】由平方差公式得()-2 由二次根式的性质得3-2 计算得-1 【点睛】此题考查平方差公式的性质解题关键在于利用解析:-1【解析】【分析】由于式子复合平方差公式的特点,则由平方差公式展开可得( 3 )2-22即可解答【详解】由平方差公式,得( 3 ) 2-22由二次根式的性质,得3-2 2计算,得-1【点睛】此题考查平方差公式的性质,解题关键在于利用平方差公式的性质进行计算19.1【解析】试题分析:根据题意得|x|-1=0 且x- 1≠0 解得x=-1 考点:分式的值为零的条件解析:1【解析】试题分析:根据题意,得|x|-1=0 ,且x-1≠0 ,解得x=-1.考点:分式的值为零的条件.20.8【解析】【分析】分别作点P关于OAOB的对称点P1P2连接P1P2交OA于M 交OB于N△ PMN 的周长=P1P2然后证明△ OP1P2是等边三角形即可求解【详解】分别作点P关于OAOB的对称点P1P2解析:8【解析】【分析】分别作点P 关于OA、OB 的对称点P1、P2,连接P1P2交OA于M,交OB 于N,△ PMN 的周长=P1P2,然后证明△OP1P2是等边三角形,即可求解.【详解】分别作点P 关于OA、OB 的对称点P1、P2,连接P1P2交OA于M,交OB 于N.连接OP,则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,MP=P1M,PN=P2N,则△PMN 的周长的最小值=P1P2,∴∠P1OP2=2∠ AOB=60°,∴△OP1P2是等边三角形.△PMN 的周长=P1P2,∴P1P2=OP1=OP2=OP=8.故答案为8.【点睛】本题考查了轴对称﹣最短路线问题,正确作出辅助线,证明△OP1P2是等边三角形是关键.三、解答题21.BN=CM,理由见解析.【解析】【分析】连接PB,PC,根据角平分线性质求出PM=PN,根据线段垂直平分线求出PB=PC,根据HL 证Rt△ PMC≌ Rt△ PNB,即可得出答案.【详解】解:BN=CM,理由如下:如图,连接PB,PC,∵ AP 是∠BAC的平分线,PN⊥ AB,PM⊥ AC,∴ PM=P,∠N PMC∠= PNB=90°,∵P 在BC的垂直平分线上,∴ PC=PB,PC PB在Rt△ PMC和Rt△P NB中,,PM PN∴ Rt△ PMC≌ Rt△ PNB(HL),∴ BN=C.M本题考查了全等三角形的性质和判定,线段垂直平分线性质,角平分线性质等知识点,能正确地添加辅助线是解题的关键.22.原计划植树20 天.【解析】【分析】设原计划每天种x棵树,则实际每天种(1+20%) x棵,根据题意可得等量关系:原计划完成任务的天数-实际完成任务的天数=3,列方程即可.【详解】解:设原计划每天种x棵树,则实际每天种(1+20% x棵,400 4000 80依题意得:——-------------- 3x (1 20%)x解得x=200,经检验得出:x=200是原方程的解.4000 cc所以------ =20.200答:原计划植树20天.【点睛】此题主要考查了分式方程的应用,正确理解题意,找出题目中的等量关系,列出方程是解题关键.23.(1)35 ° ;(2)见解析.【解析】【分析】(1)首先根据OB//FD,可得/ OFD + Z AOB =180° ,进而得到/ AOB的度数,再根据作图可知OP 平分/ AOB ,进而算出/ DOB的度数即可;(2)首先证明AOD = Z ODF ,再由FMLOD可得/ OMF = Z DMF ,再加上公共边FM = FM ,可利用AAS 证明△ FMO^A FMD .【详解】(1)解:: OB // FD,・ ./ OFD + Z AOB = 180 ,又・. / OFD= 110° ,../AOB = 180° - Z OFD = 180 -110 ° = 70° ,由作法知,OP是/ AOB的平分线,1 1Z DOB = —Z ABO =- x 70° = 35°;2 2(2)证明:: OP平分/ AOB ,・ ./ AOD =Z DOB ,1.OB // FD,・./ DOB = Z ODF ,・./ AOD =Z ODF, 又.. FMLOD,・./ OMF = Z DMF , 在^ MFO和^ MFD中£AOD=^ODF(FM = FM∴△ MFO ≌△ MFD ( AAS ). 【点睛】此题主要考查了全等三角形的判定,以及角的计算,关键是正确理解题意,掌握角平分线 的作法,以及全等三角形的判定定理.a1 2 , a2 5根据分式的减法和除法可以化简题目中的式子,然后将 a 的值代入化简后的式子即可解答本题.2=a 1 1 a 1 a1 a2a2 a2 a1 =1 a2a2a1 a 2,31 2当 a=3时,原式 = 3 1 = 2 .3+2 5【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25. 详见解析【解析】 【分析】 根据中心对称得出 OB=OD , OA=OC ,求出 OF=OE ,根据 SAS 推出 △ DOF ≌△ BOE 即可. 【详解】证明:∵△ ABO 与 △ CDO 关于 O 点中心对称,∴ OB=OD , OA=OC .∵ AF=CE ,∴ OF=OE .OB OD∵在 △ DOF 和 △ BOE 中, DOF BOE ,OF OEDOF ≌△ BOE ( SAS ).∴ FD=BE .24.解:a1a 24a 22a 1。

2020年八年级数学上期末模拟试卷(附答案)

2020年八年级数学上期末模拟试卷(附答案)

2020年八年级数学上期末模拟试卷(附答案)一、选择题1.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+B .1515112x x -=+C .1515112x x -=- D .1515112x x -=- 2.已知三角形的两边长分别为4cm 和9cm,则下列长度的线段能作为第三边的是( ) A .13cm B .6cm C .5cm D .4m3.如果a c b d=成立,那么下列各式一定成立的是( ) A .a d c b = B .ac c bd b = C .11a c b d ++= D .22a b c d b d++= 4.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+5.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则a ∠的度数是( )A .42oB .40oC .36oD .32o6.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A .1个B .2个C .3个D .4个 7.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或08.如果30x y -=,那么代数式()2222x y x y x xy y +⋅--+的值为( ) A .27- B .27 C .72- D .72 9.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ 10.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .1811.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50° 12.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是( )A .3B .4C .5D .6 二、填空题13.等腰三角形的一个内角是100︒,则这个三角形的另外两个内角的度数是__________.14.如图,小新从A 点出发,沿直线前进50米后向左转30°,再沿直线前进50米,又向左转30°,…照这样下去,小新第一次回到出发地A 点时,一共走了__米.15.若实数,满足,则______.16.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.17.已知等腰三角形的两边长分别为4和6,则它的周长等于_______∠__________.18.如图,五边形ABCDE的每一个内角都相等,则外角CBF19.正六边形的每个内角等于______________°.20.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E, AE=3cm,△ADC•的周长为9cm,则△ABC的周长是____ ___三、解答题21.龙人文教用品商店欲购进A、B两种笔记本,用160元购进的A种笔记本与用240元购进的B种笔记本数量相同,每本B种笔记本的进价比每本A种笔记本的进价贵10元.(1)求A、B两种笔记本每本的进价分别为多少元?(2)若该商店准备购进A、B两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进A种笔记本多少本?22.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?23.计算:(1)4(x﹣1)2﹣(2x+5)(2x﹣5);(2)2214a a b b a b b ⎛⎫-÷ ⎪-⎝⎭n . 24.如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F 两点,BEF ∠的平分线交CD 于点G ,若72EFG ∠=o ,求EGF ∠的度数.25.如果230x x +-=,求代数式321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.2.B解析:B【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边可求得第三边取值范围.【详解】设第三边长度为a ,根据三角形三边关系9494a -<<+解得513a <<.只有B 符合题意故选B.【点睛】本题考查三角形三边关系,能根据关系求得第三边的取值范围是解决此题的关键.3.D解析:D【解析】 已知a c b d=成立,根据比例的性质可得选项A 、B 、C 都不成立;选项D ,由2a b b +=2c d d +可得22a c b d +=+,即可得a c b d=,选项D 正确,故选D. 点睛:本题主要考查了比例的性质,熟练运用比例的性质是解决问题的关键.4.A解析:A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积. 5.A解析:A【解析】【分析】根据正多边形的内角,角的和差,可得答案.【详解】解:正方形的内角为90°,正五边形的内角为(52)1801085︒︒-⨯=,正六边形的内角为(62)1801206︒︒-⨯=,∠1=360°-90°-108°-120°=42°, 故选:A .【点睛】本题考查多边形的内角与外角,解题关键是利用正多边形的内角进行计算.6.B解析:B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB =5,AC =3,BC =2,GD =5,DE =2,GE =3,DI =3,EI =5,所以G ,I 两点与点D 、点E 构成的三角形与△ABC 全等.故选B .点睛:本题考查了全等三角形的判定,关键是根据SSS 证明全等三角形.7.B解析:B【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】根据题意,得|x|-1=0且x+1≠0, 解得,x=1.故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.D解析:D【解析】【分析】先把分母因式分解,再约分得到原式=2x y x y +-,然后把x=3y 代入计算即可. 【详解】原式=()22x y x y +-•(x-y )=2x y x y+-,∴x=3y,∴原式=63y yy y+-=72.故选:D.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.9.D解析:D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.10.B解析:B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.11.C解析:C【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,∴AF=EF,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.12.C解析:C【解析】【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选C.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.二、填空题13.40°40°【解析】【分析】因为等腰三角形的两个底角相等且三角形内角和为180°100°只能为顶角所以剩下两个角为底角且为40°40°【详解】解:∵三角形内角和为180°∴100°只能为顶角∴剩下两解析:40° 40°【解析】【分析】因为等腰三角形的两个底角相等,且三角形内角和为180°,100°只能为顶角,所以剩下两个角为底角,且为40°,40°.【详解】解:∵三角形内角和为180°,∴100°只能为顶角,∴剩下两个角为底角,且它们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质和三角形的内角和,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.600【解析】【分析】【详解】解:根据题意可知:小新从A点出发沿直线前进50米后向左转30º再沿直线前进50米又向左转30º……照这样下去小新第一次回到出发地A点时小新走的路线围成一个正多边形且这个解析:600【解析】【分析】【详解】解:根据题意可知:小新从A点出发,沿直线前进50米后向左转30º,再沿直线前进50米,又向左转30º,……照这样下去,小新第一次回到出发地A点时,小新走的路线围成一个正多边形,且这个多边形的外角等于30º,所以这个正多边形的边数是12,小新一共走了12×50=600米,故答案为:600.15.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:5【解析】【分析】根据非负数的性质列式求出m,n的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:,∴∴;故答案为:.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值.16.40°【解析】试题分析:延长DE交BC于F点根据两直线平行内错角相等可知ABC==80°由此可得然后根据三角形的外角的性质可得=-=40°故答案为:40°解析:40°【解析】试题分析:延长DE交BC于F点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°. 故答案为:40°.17.14或16【解析】当4是底时三边为466能构成三角形周长为4+6+6=16;当6是底时三边为446能构成三角形周长为4+4+6=14故周长为16或14故答案为:16或14解析:14或16【解析】当4是底时,三边为4,6,6,能构成三角形,周长为4+6+6=16;当6是底时,三边为4,4,6,能构成三角形,周长为4+4+6=14.故周长为16或14.故答案为:16或14.18.【解析】【分析】多边形的外角和等于360度依此列出算式计算即可求解【详解】360°÷5=72°故外角∠CBF 等于72°故答案为:【点睛】此题考查了多边形内角与外角关键是熟悉多边形的外角和等于360度解析:72︒【解析】【分析】多边形的外角和等于360度,依此列出算式计算即可求解.【详解】360°÷5=72°.故外角∠CBF 等于72°.故答案为:72︒.【点睛】此题考查了多边形内角与外角,关键是熟悉多边形的外角和等于360度的知识点.19.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°∴正六边形的每个内角为:=120°考点:多边形的内角与外角解析:120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°, ∴正六边形的每个内角为:=120°.考点:多边形的内角与外角. 20.15cm 【解析】【分析】【详解】在△ABC 中边AB 的垂直平分线分别交BCAB 于点DEAE=3cmAE=BEAD=BD △ADC•的周长为9cm 即AC+CD+AD=9则△ABC 的周长=AB+BC+AC=解析:15cm【解析】【分析】【详解】在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,AE=BE ,AD=BD ,△ADC•的周长为9cm ,即AC+CD+AD=9,则△ABC 的周长=AB+BC+AC=AE+BE+BD+CD+AC=AE+BE+AD+CD+AC=6+9=15cm【点睛】本题考查垂直平分线,解答本题的关键是掌握垂直平分线的概念和性质,运用其来解答本题三、解答题21.(1)A 、B 两种笔记本每本的进价分别为 20 元、30 元;(2)至少购进 A 种笔记本 35 本【解析】【分析】(1)设A 种笔记本每本的进价为x 元,则每本B 种笔记本的进价为(x +10)元,根据用160元购进的A 种笔记本与用240元购进的B 种笔记本数量相同即可列出方程,解方程即可求出结果;(2)设购进A 种笔记本a 本,根据购进的A 种笔记本的价钱+购进的B 种笔记本的价钱≤2650即可列出关于a 的不等式,解不等式即可求出结果.【详解】(1)解:设A 种笔记本每本的进价为x 元,根据题意,得:16024010x x =+,解得:=20x . 经检验:=20x 是原分式方程的解,+10=20+10=30x .答:A 、B 两种笔记本每本的进价分别为20 元、30元.(2)解:设购进A 种笔记本a 本,根据题意,得:()20+301002650a a -≤,解得:35a ≥.∴至少购进A 种笔记本35本.【点睛】本题考查的是分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.22.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y 本科普书.依题意得550×8+12y≤10000, 解得24663y ≤, ∵y 为整数,∴y 的最大值为466∴至多还能购进466本科普书.23.(1)﹣8x +29;(2)()4a b a b - 【解析】【分析】(1)根据整式的乘除进行去括号,然后合并同类项,即可得出答案.(2)根据积的乘方进行去括号,然后根据分式的混合运算进行化简,即可得出答案.【详解】解:(1)原式=4x 2﹣8x +4﹣4x 2+25=﹣8x +29;(2)原式=22222224a 1a 44a 4a 4a 4a (a b )4a ===a b b b b (a-b )b b (a b )b b (a-b )------g g 【点睛】本题主要考察了整式的乘除、积的乘方以及分式的混合运算,正确运用法则进行运算是解题的关键.24.54o【解析】【分析】利用平行线的性质和角平分线的定义进行求解即可.【详解】解:∵AB//CD ,∠EFG=72°(已知) , ∴∠BEF=180°-∠EFG=108°(两直线平行,同旁内角互补) , ∵EG 平分∠BEF,∴∠BEG=12∠BEF=54° (角平分线定义) , ∵AB//CD , ∴∠EGF=∠BEG=54°(两直线平行,内错角相等). 【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.25.13【解析】【分析】 先根据分式的混合运算得到21x x+,再把230x x +-=变形为2=3x x +,再代入到化简结果中计算即可.【详解】321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭, =21(1)(1)1(1)x x x x x x x -++-⎛⎫÷ ⎪--⎝⎭=1(1)1(1)x x x x -⎛⎫⋅ ⎪-+⎝⎭ =1(1)x x + =21x x+ 当230x x +-=,即23+=x x 时,原式=13. 【点睛】 本题考查了分式的化简求值,在分式的化简过程中要注意运算顺序,化简后的最后结果要化成最简分式或整式.。

2020年初二数学上期末一模试卷(含答案)

2020年初二数学上期末一模试卷(含答案)

2020年初二数学上期末一模试卷(含答案)一、选择题1.已知三角形的两边长分别为4cm 和9cm,则下列长度的线段能作为第三边的是( ) A .13cmB .6cmC .5cmD .4m 2.下列因式分解正确的是( ) A .()2211x x +=+B .()22211x x x +-=-C .()()22x 22x 1x 1=-+-D .()2212x x x x -+=-+ 3.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+ 4.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)65.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤B .3m <C .3m >-D .3m ≥- 6.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠1 7.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .()x 2y)x 2y ---( D .() 2x y)2x y +-+( 8.下列计算正确的是( )A .235+=B .a a a +=222C .(1)x y x xy +=+D .236()mn mn = 9.若 x=3 是分式方程2102a x x --=- 的根,则 a 的值是 A .5 B .-5 C .3 D .-310.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE ⊥AB 于点E,则下列结论①CD=ED ;②∠ABD=12∠ABC ;③BC=BE ;④AE=BE 中,一定正确的是( )A.①②③B.①②④C.①③④D.②③④11.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A.5B.6C.7D.1012.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为( )A.10cm B.6cm C.4cm D.2cm二、填空题13.计算:24a3b2÷3ab=____.14.数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x,5,3(x >5),则x=________.15.已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为_____.16.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.17.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.18.计算:()201820190.1258-⨯=________.19.因式分解34x x -= .20.如图,030A B ∠=︒,点P 为AOB ∠内一点,8OP =.点M 、N 分别在OA OB 、上,则PMN V 周长的最小值为________.三、解答题21.如图,在△ABC 中,∠BAC=90°,AB=AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE=AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD=3,CF=4,求AD 的长.22.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等. (1)文学书和科普书的单价各多少钱? (2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?23.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.24.解分式方程2212323x x x +=-+. 25.如图在平面直角坐标系中,已知点A (0,23),△AOB 为等边三角形,P 是x 轴负半轴上一个动点(不与原点O 重合),以线段AP 为一边在其右侧作等边三角形△APQ .(1)求点B 的坐标;(2)在点P 的运动过程中,∠ABQ 的大小是否发生改变?如不改变,求出其大小:如改变,请说明理由;(3)连接OQ ,当OQ ∥AB 时,求P 点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边可求得第三边取值范围.【详解】设第三边长度为a ,根据三角形三边关系9494a -<<+解得513a <<.只有B 符合题意故选B.【点睛】本题考查三角形三边关系,能根据关系求得第三边的取值范围是解决此题的关键.2.C解析:C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.3.A解析:A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积. 4.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误;B 、122a a ÷= a 10,故此选项错误;C 、(a 3)3=a 9,故此选项错误;D 、(-a )6=a 6,故此选项正确.故选D .【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.5.A解析:A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可【详解】213x m x -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x m x -=-的解是非正数,30x -≠, 30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤,故选:A .【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值6.D解析:D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.7.A解析:A【解析】【分析】根据公式(a+b )(a-b )=a 2-b 2的左边的形式,判断能否使用.【详解】解:A 、由于两个括号中含x 、y 项的系数不相等,故不能使用平方差公式,故此选项正确;B 、两个括号中,含y 项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C 、两个括号中,含x 项的符号相反,y 项的符号相同,故能使用平方差公式,故此选项错误;D 、两个括号中,y 相同,含2x 的项的符号相反,故能使用平方差公式,故此选项错误; 故选:A .【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.8.C解析:C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .9.A解析:A【解析】把x=3代入原分式方程得,210332a --=-,解得,a=5,经检验a=5适合原方程. 故选A. 10.A解析:A【解析】【分析】由作法可知BD 是∠ABC 的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL 可得Rt △BDC≌Rt △BDE,故BC=BE ,③正确,【详解】解:由作法可知BD 是∠ABC 的角平分线,故②正确,∵∠C=90°, ∴DC ⊥BC ,又DE ⊥AB ,BD 是∠ABC 的角平分线,∴CD=ED ,故①正确,在Rt △BCD 和 Rt △BED 中,DE DC BD BD =⎧⎨=⎩, ∴△BCD≌△BED ,∴BC=BE ,故③正确.故选:A.【点睛】本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键. 11.C解析:C【解析】依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7, 故选C12.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .二、填空题13.8a2b 【解析】【分析】根据单项式的除法法则计算把系数和同底数幂分别相除作为商的因式对于只在被除式里含有的字母则连同它的指数作为商的一个因式计算后选取答案【详解】24a3b2÷3ab=(24÷3)a解析:8a 2b【解析】【分析】根据单项式的除法法则计算,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算后选取答案.【详解】24a 3b 2÷3ab ,=(24÷3)a 2b ,=8a 2b.故答案为8a 2b.【点睛】本题考查的知识点是同底数幂的除法,解题的关键是熟练的掌握同底数幂的除法. 14.15【解析】∵x >5∴x 相当于已知调和数15代入得13-15=15-1x 解得x=15 解析:15【解析】∵x >5∴x 相当于已知调和数15,代入得,解得,x=15.15.70°或40°或20°【解析】【分析】分三种情况:①当AC =AD 时②当CD′=AD′时③当AC =AD″时分别根据等腰三角形的性质和三角形内角和定理求解即可【详解】解:∵∠B =50°∠C =90°∴∠B解析:70°或40°或20°【解析】【分析】分三种情况:①当AC =AD 时,②当CD′=AD′时,③当AC =AD″时,分别根据等腰三角形的性质和三角形内角和定理求解即可.【详解】解:∵∠B =50°,∠C =90°,∴∠BAC =90°-50°=40°,如图,有三种情况:①当AC =AD 时,∠ACD =()1180402??=70°; ②当CD′=AD′时,∠ACD′=∠BAC =40°; ③当AC =AD″时,∠ACD″=12∠BAC =20°, 故答案为:70°或40°或20°【点睛】本题考查等腰三角形的判定和性质以及三角形的内角和定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.40°【解析】试题分析:延长DE 交BC 于F 点根据两直线平行内错角相等可知ABC==80°由此可得然后根据三角形的外角的性质可得=-=40°故答案为:40°解析:40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°. 故答案为:40°.17.28【解析】设这种电子产品的标价为x 元由题意得:09x−21=21×20解得:x=28所以这种电子产品的标价为28元故答案为28解析:28【解析】设这种电子产品的标价为x 元,由题意得:0.9x −21=21×20%, 解得:x=28,所以这种电子产品的标价为28元.故答案为28.18.8【解析】【分析】根据同底数幂的乘法底数不变指数相加可化成指数相同的幂的乘法根据积的乘方可得答案【详解】原式=(−0125)2018×820188=(−0125×8)20188=8故答案为:8【点睛解析:8【解析】【分析】根据同底数幂的乘法底数不变指数相加,可化成指数相同的幂的乘法,根据积的乘方,可得答案.【详解】原式= (−0.125)2018×82018⨯ 8= (−0.125×8)2018⨯8=8, 故答案为:8.【点睛】本题考查的知识点是幂的乘方与积的乘方及同底数幂的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方及同底数幂的乘方.19.【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式若有公因式则把它提取出来之后再观察是否是完全平方公式或平方差公式若是就考虑用公式法继续分解因式因此先提取公因式后继续应用平方 解析:()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-.20.8【解析】【分析】分别作点P关于OAOB的对称点P1P2连接P1P2交OA 于M交OB于N△PMN的周长=P1P2然后证明△OP1P2是等边三角形即可求解【详解】分别作点P关于OAOB的对称点P1P2解析:8【解析】【分析】分别作点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,△PMN的周长=P1P2,然后证明△OP1P2是等边三角形,即可求解.【详解】分别作点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N.连接OP,则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形.△PMN的周长=P1P2,∴P1P2=OP1=OP2=OP=8.故答案为8.【点睛】本题考查了轴对称﹣最短路线问题,正确作出辅助线,证明△OP1P2是等边三角形是关键.三、解答题21.(1)证明见解析;(2)结论:BD2+FC2=DF2.证明见解析;(3)35.【解析】【分析】(1)根据SAS,只要证明∠1=∠2即可解决问题;(2)结论:BD2+FC2=DF2.连接FE,想办法证明∠ECF=90°,EF=DF,利用勾股定理即可解决问题;(3)过点A作AG⊥BC于G,在Rt△ADG中,想办法求出AG、DG即可解决问题.【详解】(1)证明:如图,∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD 和△ACE 中12AB AC AD AE ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE .(2)结论:BD 2+FC 2=DF 2.理由如下:连接FE ,∵∠BAC=90°,AB=AC ,∴∠B=∠3=45°由(1)知△ABD ≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE 2+CF 2=EF 2,∴BD 2+FC 2=EF 2,∵AF 平分∠DAE ,∴∠DAF=∠EAF ,在△DAF 和△EAF 中AF AF DAF EAF AD AE ⎧⎪∠∠⎨⎪⎩===,∴△DAF ≌△EAF∴DF=EF∴BD 2+FC 2=DF 2.(3)过点A 作AG ⊥BC 于G ,由(2)知DF 2=BD 2+FC 2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC ,AG ⊥BC ,∴BG=AG=12BC=6, ∴DG=BG-BD=6-3=3, ∴在Rt △ADG 中,【点睛】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y 本科普书.依题意得550×8+12y≤10000, 解得24663y ≤, ∵y 为整数, ∴y 的最大值为466∴至多还能购进466本科普书.23.见解析.【解析】【分析】根据平行线的性质和角平分线的定义得到∠DOC=90°,进一步得到()CDO CBO ASA ∆≅∆,得出DO=BO,则CE 是BD 的垂直平分线,根据等腰三角形的三线合一的性质得出EC 平分∠BED ,从而得证.【详解】证明:∵AD ∥BC ,∴∠ADC+∠BCD=180°,∵DB 平分∠ADC ,CE 平分∠BCD ,∴∠ODC+∠OCD=11802︒⨯=90°, ∴∠DOC=90°,又CE 平分∠BCD ,CO=CO,易证()CDO CBO ASA ∆≅∆∴DO=BO,∴CE 是BD 的垂直平分线,∴EB=ED ,又∠DOC=90°,∴EC 平分∠BED ,∴点O 到EB 与ED 的距离相等.【点睛】本题考查的是平行线的性质、角平分线的性质,全等三角形的判定,掌握平行线的判定定理和性质定理是解题的关键.24.x=7.5【解析】【分析】先两边同乘(2x-3)(2x+3),得出整式方程,然后合并同类项,进行计算即可.【详解】解:方程两边同乘(2x﹣3)(2x+3),得4x+6+4x2﹣6x=4x2﹣9,解得:x=7.5,经检验x=7.5是分式方程的解.【点睛】本题主要考察了解分式方程,解题的关键是正确去分母.25.(1)点B的坐标为B(3,;(2)∠ABQ=90°,始终不变,理由见解析;(3)P的坐标为(﹣3,0).【解析】【分析】(1)如图,作辅助线;证明∠BOC=30°,OB=,借助直角三角形的边角关系即可解决问题;(2)证明△APO≌△AQB,得到∠ABQ=∠AOP=90°,即可解决问题;(3)根据点P在x的负半轴上,再根据全等三角形的性质即可得出结果【详解】(1)如图1,过点B作BC⊥x轴于点C,∵△AOB为等边三角形,且OA=∴∠AOB=60°,OB=OA=∴∠BOC=30°,而∠OCB=90°,∴BC=12OBOC3,∴点B的坐标为B(3;(2)∠ABQ=90°,始终不变.理由如下:∵△APQ、△AOB均为等边三角形,∴AP=AQ、AO=AB、∠P AQ=∠OAB,∴∠P AO=∠QAB,在△APO与△AQB中,{AP AQPAO QAB AO AB=∠=∠=,∴△APO≌△AQB(SAS),∴∠ABQ=∠AOP=90°;(3)如图2,∵点P在x轴负半轴上,点Q在点B的下方,∵AB∥OQ,∠BQO=90°,∠BOQ=∠ABO=60°.又OB=OA=23,可求得BQ=3,由(2)可知,△APO≌△AQB,∴OP=BQ=3,∴此时P的坐标为(﹣3,0).【点睛】本题考查了等边三角形的性质以及全等三角形的判定及性质以及梯形的性质,注意利用三角形全等的性质解题的关键.。

人教版上学期八年级数学期末模拟试卷及答案(2020年)

人教版上学期八年级数学期末模拟试卷及答案(2020年)

D. x <- 1 或 x> 2
11. 若 b 1 a 2 4a 4 ,则 [( 2)3 b 2 ]2 ( b )3 b 5a 3 ___________
12.函数 y
x 中自变量 x 的取值范围是 ___________
x1
13. 如图,在△ ABC中, AB=A,C ∠ A=40 ,AB的垂直平分线 MN
交 AC于 D. 连接 BD,则∠ DBC=
.
M
B 第 2页 共 9页
A
D N
C
2020年最新
14.
已知函数 y
3
(m
2) xm2
3
是一次函数,则
m=
过第
象限。
15.如图,已知 ACB DBC ,要使⊿ ABC ≌⊿ DCB , A
只需增加的一个条件是 _________.
;此图象经 D
B
C
16.如图, MN是正方形 ABCD的一条对称轴,点 P 是直线 MN上的一个动点,当 PC+PD最小
3
2
7.在实数
2 , 0 , 3 4 , , 9 中,无理数有 3


A. 1 个
B. 2 个
C. 3 个
D. 4 个
8. 如图,正方形 ABCD的边长为 4,P 为正方形边上一动点,运动路线是 A→D→C→B→A,设
P 点经过的路线为 x,以点 A、 P、 D 为顶点的三角形的面积是 y.则下列图象能大致反映 y
_______.
y
A3
A2 B2
A1
B1
O C1
C2
(第 20 题图)
三、解答下列各题(共 7 题,共 60 分)
B3

2020年初二数学上期末一模试卷含答案

2020年初二数学上期末一模试卷含答案

2020年初二数学上期末一模试卷含答案一、选择题1.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+B .1515112x x -=+C .1515112x x -=-D .1515112x x -=- 2.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=-B .120100x x 10=+C .120100x 10x =-D .120100x 10x =+ 3.在平面直角坐标系中,点A 坐标为(2,2),点P 在x 轴上运动,当以点A ,P 、O 为顶点的三角形为等腰三角形时,点P 的个数为( )A .2个B .3个C .4个D .5个 4.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠1 5.如图,已知△ABC 中,∠A=75°,则∠BDE+∠DEC =( )A .335°B .135°C .255°D .150°6.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .()x 2y)x 2y ---( D .() 2x y)2x y +-+( 7.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙 8.下列计算正确的是( ) A 235+=B .a a a +=222 C .(1)x y x xy +=+ D .236()mn mn =9.已知关于x 的分式方程12111m x x --=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3 B .m <4C .m ≤4且m ≠3D .m >5且m ≠6 10.下列计算正确的是( )A .2a a a +=B .33(2)6a a =C .22(1)1a a -=-D .32a a a ÷= 11.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4B .2C .0D .4 12.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是( )A .3B .4C .5D .6 二、填空题13.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.14.-12019+22020×(12)2021=_____________ 15.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC 外,若∠2=20º,则∠1的度数为 _______.16.若分式221x x -+的值为零,则x 的值等于_____. 17.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6cm ,则△DEB 的周长是___;18.正六边形的每个内角等于______________°.19.分式293x x --当x __________时,分式的值为零. 20.若=2m x ,=3n x ,则2m n x +的值为_____.三、解答题21.如图,在等边ABC V 中,点D 是AB 边上一点,连接CD ,将线段CD 绕点C 按顺时针方向旋转60o 后得到CE ,连接AE .求证://AE BC .22.已知,关于x 的分式方程1235a b x x x --=+-. (1)当1a =,0b =时,求分式方程的解; (2)当1a =时,求b 为何值时分式方程1235a b x x x --=+-无解: (3)若3a b =,且a 、b 为正整数,当分式方程1235a b x x x --=+-的解为整数时,求b 的值.23.如果230x x +-=,求代数式321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值. 24.已知3a b -=,求2(2)a a b b -+的值.25.解下列分式方程 (1)2233111x x x x +-=-+- (2)32122x x x =---【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.解析:A【解析】【分析】【详解】甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,120100 x x10=-.故选A.3.C解析:C【解析】【分析】先分别以点O、点A为圆心画圆,圆与x轴的交点就是满足条件的点P,再作OA的垂直平分线,与x轴的交点也是满足条件的点P,由此即可求得答案.【详解】如图,当OA=OP时,可得P1、P2满足条件,当OA=AP时,可得P3满足条件,当AP=OP时,可得P4满足条件,故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,正确的分类并画出图形是解题的关键. 4.D解析:D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.解析:C【解析】【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC =360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【点睛】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.6.A解析:A【解析】【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】解:A、由于两个括号中含x、y项的系数不相等,故不能使用平方差公式,故此选项正确;B、两个括号中,含y项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;D、两个括号中,y相同,含2x的项的符号相反,故能使用平方差公式,故此选项错误;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.7.B解析:B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS ,所以丙和△ABC 全等;不能判定甲与△ABC 全等;故选B .点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.C解析:C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .9.A解析:A【解析】【详解】方程两边同时乘以x -1得,1-m -(x -1)+2=0,解得x =4-m .∵x 为正数,∴4-m >0,解得m <4.∵x ≠1,∴4-m ≠1,即m ≠3.∴m 的取值范围是m <4且m ≠3.故选A .10.D解析:D【解析】【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.【详解】解:A ,a+a=2a≠a 2,故该选项错误;B ,(2a )3=8a 3≠6a 3,故该选项错误C ,(a ﹣1)2=a 2﹣2a+1≠a 2﹣1,故该选项错误;D ,a3÷a=a 2,故该选项正确,故选D .点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.11.D解析:D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4. 关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4 故选D .【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.C解析:C【解析】【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5, ∴这个多边形是五边形,故选C.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.二、填空题13.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数进而得出答案【详解】如图所示:∠1+∠2+∠6=180°∠3+∠4+∠7=180°∵∠1+∠2+∠3+∠4=220°∴∠1+∠2+∠ 解析:40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.14.【解析】【分析】根据有理数的混合运算法则求解即可【详解】;故答案为【点睛】本题考查了有理数的混合运算熟练掌握有理数的混合运算法则是解题的关键 解析:12- 【解析】【分析】根据有理数的混合运算法则求解即可.【详解】201920202021202020201111212222⨯⨯⨯-+()=-+() 202011=1222⨯⨯-+() 11=1=22-+-;故答案为12-. 【点睛】本题考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键. 15.100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°再利用三角形的内角和定理以及外角性质得∠3+解析:100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°-80°=100°.故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.16.2【解析】根据题意得:x﹣2=0解得:x=2此时2x+1=5符合题意故答案为2解析:2【解析】根据题意得:x﹣2=0,解得:x=2.此时2x+1=5,符合题意,故答案为2.17.6cm【解析】【分析】先利用角角边证明△ACD和△AED全等根据全等三角形对应边相等可得AC=AECD=DE然后求出BD+DE=AE进而可得△DEB的周长【详解】解:∵DE⊥AB∴∠C=∠AED=9解析:6cm【解析】【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.【详解】解:∵DE⊥AB,∴∠C=∠AED=90°,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,C AEDCAD EADAD DA∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(AAS),∴AC=AE,CD=DE,∴BD+DE=BD+CD=BC=AC=AE,BD+DE+BE=AE+BE=AB=6,所以,△DEB的周长为6cm.故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.18.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°∴正六边形的每个内角为:=120°考点:多边形的内角与外角解析:120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.19.=-3【解析】【分析】根据分子为0分母不为0时分式的值为0来解答【详解】根据题意得:且x-30解得:x=-3故答案为:=-3【点睛】本题考查的是分式值为0的条件易错点是只考虑了分子为0而没有考虑同时解析:= -3【解析】【分析】根据分子为0,分母不为0时分式的值为0来解答.【详解】根据题意得:290x -= 且x-3≠ 0解得:x= -3故答案为:= -3.【点睛】本题考查的是分式值为0的条件,易错点是只考虑了分子为0而没有考虑同时分母应不为0.20.18【解析】【分析】先把xm+2n 变形为xm (xn )2再把xm=2xn=3代入计算即可【详解】∵xm=2xn=3∴xm+2n=xmx2n=xm (xn )2=2×32=2×9=18;故答案为18【点睛】解析:18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18; 故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.三、解答题21.见解析【解析】【分析】根据等边三角形的性质得出60AC BC B ACB =∠=∠=︒,,根据旋转的性质得出60CD CE DCE =∠=︒,,根据SAS 推出BCD ACE ≅n n ,根据全等得出60B EAC ∠=∠=︒,根据平行线的判定定理即可证得答案.【详解】等边ABC V 中,∴60AC BC B ACB =∠=∠=︒,,∵线段CD 绕点C 按顺时针方向旋转60o 后得到CE ,∴60CD CE DCE =∠=︒,,∴DCE ACB ∠=∠,即1223∠+∠=∠+∠, ,∴13∠=∠,在BCD n 与ACE n 中,13BC AC CD CE =⎧⎪∠=∠⎨⎪=⎩∴BCD ACE ≅n n (SAS)∴60B EAC ∠=∠=︒,∴EAC ACB ∠=∠∴//AE BC【点睛】本题考查了平行线的判定、等边三角形的性质以及旋转的性质,利用全等三角形的证明是解题的关键.22.(1)1011x =-;(2)5b =或112;(3)3,29,55,185b = 【解析】【分析】 (1)将a ,b 的值代入方程得11235x x x +=+-,解出这个方程,最后进行检验即可; (2)把1a =代入方程得11235b x x x --=+-,分式方程去分母转化为整式方程为(112)310b x b -=-,由分式方程有增根,得11-2b=0,或230x +=(不存在),或50x -=求出b 的值即可;(3)把3a b =代入原方程得31235b b x x x --=+-,将分式方程化为整式方程求出x 的表达式,再根据x 是正整数求出b ,然后进行检验即可.【详解】 (1)当1a =,0b =时,分式方程为:11235x x x +=+- 解得:1011x =- 经检验:1011x =-时是原方程的解 (2)解:当1a =时,分式方程为:11235b x x x --=+- (112)310b x b -=-①若1120b -=,即112b =时,有:1302x •=,此方程无解②若1120b -≠,即112b ≠时,则 若230x +=,即310230112b b-⨯+=-,663320b b -=-,不成立 若50x -=,即31050112b b--=-,解得5b = ∴综上所述,5b =或112时,原方程无解 (3)解:当3a b =时,分式方程为:31235b b x x x --=+- 即(10)1815b x b +=-∵,a b 是正整数∴100b +≠ ∴181510b x b-=+ 即1951810x b=-+ 又∵,a b 是正整数,x 是整数. ∴3,5,29,55,185b =经检验,当5b =时,5x =(不符合题意,舍去)∴3,29,55,185b =【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.13【解析】【分析】 先根据分式的混合运算得到21x x+,再把230x x +-=变形为2=3x x +,再代入到化简结果中计算即可.【详解】321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭, =21(1)(1)1(1)x x x x x x x -++-⎛⎫÷ ⎪--⎝⎭=1(1)1(1)x x x x -⎛⎫⋅ ⎪-+⎝⎭=1(1)x x + =21x x+ 当230x x +-=,即23+=x x 时,原式=13. 【点睛】 本题考查了分式的化简求值,在分式的化简过程中要注意运算顺序,化简后的最后结果要化成最简分式或整式.24.【解析】【分析】将原式因式分解,然后代入求解即可.【详解】∵3a b -=,∴2(2)a a b b -+ 222a ab b =-+()2a b =-23==9.【点睛】本题考查了整式的化简求值,将原式进行适当的变形是解题的关键.25.(1)无解.(2)x=76 【解析】【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】 (1)2233111x x x x +-=-+- 去分母得,2(x+1)-3(x-1)=x+3,解方程,得,x=1,经检验,x=1是原方程的增根,原方程无解. (2)32122x x x =--- 去分母得,2x=3-2(2x-2)解方程得,x=76,经检验,x=76是原方程的解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。

2020年初二数学上期末模拟试卷附答案

2020年初二数学上期末模拟试卷附答案

2020年初二数学上期末模拟试卷附答案一、选择题1.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+2.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是A .(0,0)B .(0,1)C .(0,2)D .(0,3)3.下列计算正确的是( )A .2236a a b b ⎛⎫= ⎪⎝⎭B .1a b a b b a -=--C .112a b a b +=+D .1x y x y --=-+ 4.若b a b -=14,则a b 的值为( ) A .5B .15C .3D .13 5.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()n n A .2-B .1-C .2D .3 6.下列运算中,结果是a 6的是( ) A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)6 7.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙8.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A.8 B.9 C.10 D.119.若数a使关于x的不等式组() 3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5B.4C.3D.210.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为( )A.10cm B.6cm C.4cm D .2cm11.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°12.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是()A.4 B.6 C.8 D.10二、填空题13.把0.0036这个数用科学记数法表示,应该记作_____.14.若实数,满足,则______.15.如图,在△ABC 中,AB=AC=24厘米,BC=16厘米,点D 为AB 的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q 的运动速度为_______厘米/秒时,能够在某一时刻使△BPD 与△CQP 全等.16.已知等腰三角形的两边长分别为4和6,则它的周长等于_______17.若a+b=5,ab=3,则a 2+b 2=_____.18.如图,△ABC 中,EF 是AB 的垂直平分线,与AB 交于点D ,BF=12,CF=3,则AC = .19.已知16x x +=,则221x x+=______ 20.如图,ABC V 的三边AB BC CA 、、 的长分别为405060、、,其三条角平分线交于点O ,则::ABO BCO CAO S S S V V V =______.三、解答题21.△ABC 在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC 与关于y 轴对称的图形△A 1B 1C 1,并写出顶点A 1、B 1、C 1的坐标;(2)若将线段A 1C 1平移后得到线段A 2C 2,且A 2(a ,2),C 2(﹣2,b ),求a +b 的值.22.先化简,再求值:2321222x x x x x -+⎛⎫+-÷ ⎪++⎝⎭,其中2x =. 23.如图,已知90A E ∠=∠=︒,A C F E 、、、在一条直线上,,AF EC BC DF ==. 求证:(1)Rt Rt ABC EDF △≌△;(2)四边形BCDF 是平行四边形.24.已知:如图,ADC V 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于E .(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明25.先化简,再求值:()3212m m m ⎛⎫++÷+ ⎪-⎝⎭,其中22m -≤≤且m 为整数.请你从中选取一个喜欢的数代入求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.2.D解析:D【解析】【详解】解:作B 点关于y 轴对称点B′点,连接AB′,交y 轴于点C′,此时△ABC 的周长最小,∵点A 、B 的坐标分别为(1,4)和(3,0),∴B′点坐标为:(-3,0),则OB′=3过点A 作AE 垂直x 轴,则AE=4,OE=1则B′E=4,即B′E=AE ,∴∠EB′A=∠B′AE ,∵C′O ∥AE ,∴∠B′C′O=∠B′AE ,∴∠B′C′O=∠EB′A∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC 的周长最小.故选D .3.D解析:D【解析】【分析】根据分式的乘方、分式的加减运算法则及分式的性质逐一判断即可得答案.【详解】 A.22222()3(3)9a a a b b b ==,故该选项计算错误,不符合题意, B.a b a b a b a b b a a b a b a b +-=+=-----,故该选项计算错误,不符合题意, C.11b a a b a b ab ab ab++=+=,故该选项计算错误,不符合题意,D.()1x y x y x y x y---+==-++,故该选项计算正确,符合题意, 故选:D.【点睛】本题考查分式的运算,分式的乘方,要把分式的分子、分母分别乘方;同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减;熟练掌握分式的运算法则是解题关键.4.A解析:A【解析】 因为b a b -=14, 所以4b=a-b .,解得a=5b , 所以a b =55b b=. 故选A. 5.C解析:C【解析】分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算. 详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++, ∵2220m m +-=,∴222m m ,+= ∴原式=2.故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.6.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误;B 、122a a ÷= a 10,故此选项错误;C 、(a 3)3=a 9,故此选项错误;D 、(-a )6=a 6,故此选项正确.故选D.【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.7.B解析:B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.C解析:C【解析】【分析】【详解】试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b 的面积为10,故选C .考点:全等三角形的判定与性质;勾股定理;正方形的性质.9.D解析:D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可.【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .11.C解析:C【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.12.C解析:C【解析】【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm,则8﹣2<x<2+8,6<x<10,故选:C.【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.二、填空题13.6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解析:6×10﹣3【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】14.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:5【解析】【分析】根据非负数的性质列式求出m,n的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:,∴∴;故答案为:.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值.15.4或6【解析】【分析】求出BD根据全等得出要使△BPD与△CQP全等必须BD=CP或BP=CP得出方程12=16-4x或4x=16-4x求出方程的解即可【详解】设经过x秒后使△BPD与△CQP全等∵解析:4或6【解析】【分析】求出BD,根据全等得出要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16-4x或4x=16-4x,求出方程的解即可.【详解】设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16-4x或4x=16-4x,x=1,x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点睛】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程.16.14或16【解析】当4是底时三边为466能构成三角形周长为4+6+6=16;当6是底时三边为446能构成三角形周长为4+4+6=14故周长为16或14故答案为:16或14解析:14或16【解析】当4是底时,三边为4,6,6,能构成三角形,周长为4+6+6=16;当6是底时,三边为4,4,6,能构成三角形,周长为4+4+6=14.故周长为16或14.故答案为:16或14.17.19【解析】试题分析:首先把等式a+b=5的等号两边分别平方即得a2+2ab+b 2=25然后根据题意即可得解解:∵a+b=5∴a2+2ab+b2=25∵ab=3∴a2+b2=19故答案为19考点:完解析:19【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=19.故答案为19.考点:完全平方公式.18.15【解析】试题分析:因为EF是AB的垂直平分线所以AF=BF因为BF=12CF=3所以AF=BF=12所以AC=AF+FC=12+3=15考点:线段垂直平分线的性质解析:15【解析】试题分析:因为EF是AB的垂直平分线,所以AF=BF,因为BF=12,CF=3,所以AF=BF=12,所以AC =AF+FC=12+3=15.考点:线段垂直平分线的性质19.34【解析】∵∴=故答案为34 解析:34【解析】∵16xx+=,∴221xx+=22126236234xx⎛⎫+-=-=-=⎪⎝⎭,故答案为34.20.【解析】【分析】首先过点O作OD⊥AB于点D作OE⊥AC于点E作OF⊥BC 于点F由OAOBOC是△ABC的三条角平分线根据角平分线的性质可得OD=OE=OF 又由△ABC的三边ABBCCA长分别为40解析:4:5:6【解析】【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.【点睛】此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题21.(1)如图所示见解析,A1(2,3)、B1(3,2)、C1(1,1);(2)-1.【解析】【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【详解】(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(-2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=-1,b=0.∴a+b=-1+0=-1.【点睛】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.22.11xx+-,3.【解析】【分析】根据分式的运算法则即可求出答案.【详解】原式=2234(1)222x xx x x⎛⎫--+÷⎪+++⎝⎭=221(1)22x xx x--÷++=2(1)(1)22(1)x x xx x+-+⋅+-=11xx+-,∵|x|=2时,∴x=±2,由分式有意义的条件可知:x=2,∴原式=3.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.23.(1)详见解析;(2)详见解析.【解析】【分析】(1)由题意由“HL”可判定Rt△ABC≌Rt△EDF(2)根据一组对边平行且相等的四边形是平行四边形,可证四边形BCDF是平行四边形.【详解】证明:(1)∵AF=EC∴AC=EF又∵BC=DF,∴Rt△ABC≌Rt△EDF(2)∵Rt△ABC≌Rt△EDF∴BC=DF,∠ACB=∠DFE∴∠BCF=∠DFC∴BC∥DF,BC=DF∴四边形BCDF是平行四边形【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,关键是灵活运用性质和判定解决问题.24.(1)详见解析;(2)AC垂直平分BE【解析】【分析】(1)证明AC是∠EAB的角平分线,根据角平分线的性质即可得到结论;(2)先写出BE与AC的关系,再根据题意和图形,利用线段的垂直平分线的判定即可证明.【详解】(1)证明:∵AD=CD,∴∠DAC=∠DCA,∵AB∥CD,∴∠DCA=∠CAB,∴∠DAC=∠CAB,∴AC是∠EAB的角平分线,∵CE⊥AE,CB⊥AB,∴CE=CB;(2)AC垂直平分BE,证明:由(1)知,CE=CB,∵CE⊥AE,CB⊥AB,∴∠CEA=∠CBA=90°,在Rt △CEA 和Rt △CBA 中,CE CB AC AC =⎧⎨=⎩, ∴Rt △CEA ≌Rt △CBA (HL ),∴AE=AB ,CE=CB ,∴点A 、点C 在线段BE 的垂直平分线上,∴AC 垂直平分BE .【点睛】本题考查等腰三角形的性质、角平分线的性质、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.25.12m m --;当0m =时,原式12= 【解析】【分析】 根据分式的加法和除法可以化简题目中的式子,然后从22m -≤≤且m 为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:()3212m m m 骣÷ç++?÷ç÷ç桫-()()223121m m m m +-+=-+g 243211m m m -+=-+g ()()11112m m m m =-+-+g 21m m =--, ∵22m -≤≤且m 为整数, ∴当m=0时,原式011022--== 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.。

2020年初二数学上期末模拟试卷及答案

2020年初二数学上期末模拟试卷及答案

2020年初二数学上期末模拟试卷及答案一、选择题1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 2.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥- 3.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .14.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A .1个B .2个C .3个D .4个5.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按图中所标注的数据,计算图中实线所围成的面积S 是( )A.50B.62C.65D.686.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A.8 B.9 C.10 D.117.若 x=3 是分式方程212ax x--=-的根,则 a 的值是A.5B.-5C.3D.-38.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b29.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ10.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A .∠ABC =∠DCBB .∠ABD =∠DCAC .AC =DBD .AB =DC 11.下列计算正确的是( )A .2a a a +=B .33(2)6a a =C .22(1)1a a -=-D .32a a a ÷=12.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是A .射线OE 是∠AOB 的平分线B .△COD 是等腰三角形C .C 、D 两点关于OE 所在直线对称D .O 、E 两点关于CD 所在直线对称二、填空题13.若关于x 的分式方程x 2322m m x x++=--的解为正实数,则实数m 的取值范围是____.14.分解因式:2a 2﹣8=_____.15.如图,已知AB ∥DE ,∠ABC=80°,∠CDE=140°,则∠BCD=_____.16.求值:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-----= ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭______. 17.若分式方程22x m x x=--有增根,则m 的值为__________. 18.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB= .19.如图,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N分别是AD 和AB 上的动点,则BM+MN 的最小值是__________.20.如图,在△ABC 中,BF ⊥AC 于点F ,AD ⊥BC 于点D ,BF 与AD 相交于点E .若AD=BD ,BC=8cm ,DC=3cm .则 AE= _______________cm .三、解答题21.(1)分解下列因式,将结果直接写在横线上:x 2+4x+4= ,16x 2+24x+9= ,9x 2﹣12x+4= (2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax 2+bx+c(a >0)是完全平方式,则实数系数a 、b 、c 一定存在某种关系.①请你用数学式子表示a 、b 、c 之间的关系;②解决问题:若多项式x 2﹣2(m ﹣3)x+(10﹣6m)是一个完全平方式,求m 的值.22.已知:如图,点B ,E ,C ,F 在同一直线上,AB ∥DE ,且AB =DE ,BE =CF . 求证:ABC DEF △≌△.23.已知:如图,AB∥CD,E 是AB 的中点,CE=DE .求证:(1)∠AEC=∠BED;(2)AC=BD .24.先化简,再求值:211()22a a a a -+÷++,其中21a = 25.解方程:22161242x x x x +-=--+【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0, 故11+423a a -+=0, 解得:a=13. 故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.2.A解析:A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可【详解】213x m x -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-, 分式方程213x m x -=-的解是非正数,30x -≠,30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤,故选:A .【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值3.C解析:C【解析】【分析】如图,过点D 作DE AB ⊥于E ,根据已知求出CD 的长,再根据角平分线的性质进行求解即可.【详解】如图,过点D 作DE AB ⊥于E ,AC 8=,1DC AD 3=, 1CD 8213∴=⨯=+, C 90∠︒=,BD 平分ABC ∠,DE CD 2∴==,即点D 到AB 的距离为2,故选C .【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.4.B解析:B【解析】 分析:根据全等三角形的判定解答即可.详解:由图形可知:AB 5AC =3,BC 2,GD 5DE 2,GE =3,DI =3,EI 5G ,I 两点与点D 、点E 构成的三角形与△ABC 全等.故选B .点睛:本题考查了全等三角形的判定,关键是根据SSS证明全等三角形.5.A解析:A【解析】【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△AGB,所以AF=BG,AG=EF;同理证得△BGC≌△CHD,GC=DH,CH=BG.故可求出FH的长,然后利用面积的割补法和面积公式即可求出图形的面积.【详解】∵如图,AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90º,∠EAF+∠BAG=90º,∠ABG+∠BAG=90º⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△AGB,∴AF=BG,AG=EF.同理证得△BGC≌△CHD得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=12(6+4)×16−3×4−6×3=50.故选A.【点睛】此题考查全等三角形的性质与判定,解题关键在于证明△EFA≌△AGB和△BGC≌△CHD. 6.C解析:C【解析】【分析】【详解】试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.考点:全等三角形的判定与性质;勾股定理;正方形的性质.7.A解析:A【解析】把x=3代入原分式方程得,21332a--=-,解得,a=5,经检验a=5适合原方程.故选A.8.B解析:B【解析】图(4)中,∵S正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2,∴(a-b)2=a2-2ab+b2.故选B9.D解析:D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.10.D解析:D【解析】【分析】根据全等三角形的判定定理 逐个判断即可.【详解】A 、∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD +∠DBC =∠ACD +∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .11.D解析:D【解析】【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.【详解】解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.12.D解析:D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.∴C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.二、填空题13.m<6且m≠2【解析】【分析】利用解分式方程的一般步骤解出方程根据题意列出不等式解不等式即可【详解】方程两边同乘(x-2)得x+m-2m=3x-6解得x=由题意得>0解得m<6∵≠2∴m≠2∴m<6解析:m<6且m≠2.【解析】【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】x 2322m m x x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m , 由题意得,6-2m >0, 解得,m <6, ∵6-2m ≠2, ∴m≠2, ∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.14.2(a+2)(a ﹣2)【解析】【分析】先提取公因式2再利用平方差公式继续分解【详解】解:2a2﹣8=2(a2﹣4)=2(a+2)(a ﹣2)故答案为:2(a+2)(a ﹣2)【点睛】本题考查了因式分解一解析:2(a+2)(a ﹣2)【解析】【分析】先提取公因式2,再利用平方差公式继续分解.【详解】解:2a 2﹣8=2(a 2﹣4),=2(a+2)(a ﹣2).故答案为:2(a+2)(a ﹣2).【点睛】本题考查了因式分解,一般是一提二套,先考虑能否提公式式,再考虑能不能用平方差公式和完全平方公式继续分解,注意要分解彻底.15.40°【解析】试题分析:延长DE 交BC 于F 点根据两直线平行内错角相等可知A BC==80°由此可得然后根据三角形的外角的性质可得=-=40°故答案为:40° 解析:40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°. 故答案为:40°.16.【解析】【分析】由题意平方差公式把每一项展开然后直接约分运算即可得出答案【详解】解:===故填【点睛】本题考查有理数幂的化简与求值熟练掌握平方差公式把每一项展开是解题的关键 解析:1120【解析】【分析】由题意平方差公式把每一项展开,然后直接约分运算即可得出答案.【详解】 解:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =1111111111111111...1111223344991010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+-+ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132435810911 (223344991010)⨯⨯⨯⨯⨯⨯⨯⨯⨯ =1120故填1120. 【点睛】本题考查有理数幂的化简与求值,熟练掌握平方差公式把每一项展开是解题的关键.17.【解析】【分析】先将分式方程去分母转化为整式方程再由分式方程有增根得到然后将的值代入整式方程求出的值即可【详解】∵∴∵若分式方程有增根∴∴故答案是:【点睛】本题考查了分式方程的增根掌握增根的定义是解 解析:2-【解析】【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根得到2x =,然后将x 的值代入整式方程求出m 的值即可.【详解】∵22x m x x=-- ∴x m =-∵若分式方程22x m x x=--有增根 ∴2x =∴2m =- 故答案是:2-【点睛】本题考查了分式方程的增根,掌握增根的定义是解题的关键.18.85°【解析】试题分析:令A→南的方向为线段AEB→北的方向为线段BD 根据题意可知AEDB 是正南正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°考点:1方向角2三角解析:85°.【解析】试题分析:令A→南的方向为线段AE ,B→北的方向为线段BD ,根据题意可知,AE ,DB是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.19.【解析】【分析】从已知条件结合图形认真思考通过构造全等三角形利用三角形的三边的关系确定线段和的最小值【详解】如图在AC 上截取AE=AN 连接BE ∵∠BAC 的平分线交BC 于点D ∴∠EAM=∠NAM ∵AM解析:22【解析】【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】如图,在AC 上截取AE=AN ,连接BE∵∠BAC 的平分线交BC 于点D ,∴∠EAM=∠NAM ,∵AM=AM∴△AME ≌△AMN (SAS ),∴ME=MN .∴BM+MN=BM+ME≥BE .∵BM+MN 有最小值.当BE 是点B 到直线AC 的距离时,BE ⊥AC ,又AB=4,∠BAC=45°,此时,△ABE 为等腰直角三角形,∴BE=即BE取最小值为∴BM+MN的最小值是【点睛】解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN 进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.20.【解析】【分析】易证∠CAD=∠CBF 即可求证△ACD≌△BED 可得DE=CD 即可求得AE 的长即可解题【详解】解:∵BF⊥AC 于FAD⊥BC 于D∴∠CAD+∠C=90°∠CBF+∠C=90°∴∠CA解析:【解析】【分析】易证∠CAD=∠CBF ,即可求证△ACD ≌△BED ,可得DE=CD ,即可求得AE 的长,即可解题.【详解】解:∵BF ⊥AC 于F ,AD ⊥BC 于D ,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF ,∵在△ACD 和△BED 中,90CAD CBF AD BDADC BDE ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩∴△ACD ≌△BED ,(ASA )∴DE=CD ,∴AE=AD-DE=BD-CD=BC-CD-CD=2;故答案为2.【点睛】本题考查了全等三角形的判定和性质,本题中求证△ACD ≌△BED 是解题的关键.三、解答题21.(1)(x+2)2,(4x+3)2,(3x ﹣2)2;(2)①b 2=4ac ,②m=±1【解析】【分析】(1)根据完全平方公式分解即可;(2)①根据已知等式得出b 2=4ac ,即可得出答案;②利用①的规律解题.【详解】(1)x 2+4x+4=(x+2)2,16x 2+24x+9=(4x+3)2,9x 2-12x+4=(3x-2)2,故答案为(x+2)2,(4x+3)2,(3x-2)2;(2)①b 2=4ac ,故答案为b 2=4ac ;②∵多项式x 2-2(m-3)x+(10-6m )是一个完全平方式,∴[-2(m-3)]2=4×1×(10-6m ),m 2-6m+9=10-6mm 2=1m=±1.【点睛】本题考查了对完全平方公式的理解和应用,能根据完全平方公式得出b 2=4ac 是解此题的关键.22.证明见解析.【解析】试题分析:首先根据AB ∥DE 可得∠B=∠DEF .再由BE=CF 可得BC=EF ,然后再利用SAS 证明△ABC ≌△DEF .试题解析:∵AB ∥DE ,∴∠B=∠DEF .∵BE=CF ,∴BE+EC=FC+EC ,即BC=EF .在△ABC 和△DEF 中,AB DE B DEF BC EF ⎧⎪∠∠⎨⎪⎩===,∴△ABC ≌△DEF (SAS ).23.见解析【解析】(1)根据CE=DE 得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS 证明△AEC 与△BED 全等,再利用全等三角形的性质证明即可. 证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E 是AB 的中点,∴AE=BE,在△AEC 和△BED 中,AE=BE ,∠AEC=∠BED,EC=ED ,∴△AEC≌△BED(SAS ),∴AC=BD.24.11a a +- 1+ 【解析】【分析】 先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】211()22a a a a -+÷++ =2221221a a a a a ++++- =11a a +-当1a =时原式1 【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算是解题的关键.25.5x =-【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】()22162x x +-=-23100x x +-=解得15x =-,22x =经检验:2x =不符合题意.原方程的解为: 5.x =-【点睛】考查分式方程的解法,掌握分式方程的解题的步骤是解题的关键.注意检验.。

2020年八年级数学上期末模拟试卷(带答案)

2020年八年级数学上期末模拟试卷(带答案)

2020年八年级数学上期末模拟试卷(带答案)一、选择题1.若b a b -=14,则a b的值为( ) A .5B .15C .3D .13 2.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()n n A .2- B .1- C .2 D .33.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2B .2C .4D .-4 4.若(x ﹣1)0=1成立,则x 的取值范围是( ) A .x =﹣1B .x =1C .x≠0D .x≠1 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE AC ⊥于点E ,DF BC ⊥于点F ,且BC=4,DE=2,则△BCD 的面积是( )A .4B .2C .8D .6 7.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A .3B .1C .﹣1D .﹣3 8.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形9.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE ⊥AB 于点E,则下列结论①CD=ED ;②∠ABD=12∠ABC ;③BC=BE ;④AE=BE 中,一定正确的是( )A .①②③B .① ② ④C .①③④D .②③④10.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .1811.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .2 12.已知a 是任何实数,若M =(2a ﹣3)(3a ﹣1),N =2a (a ﹣32)﹣1,则M 、N 的大小关系是( )A .M ≥NB .M >NC .M <ND .M ,N 的大小由a 的取值范围 二、填空题13.腰长为5,高为4的等腰三角形的底边长为_____.14.如果24x kx ++是一个完全平方式,那么k 的值是__________.15.关于x 的分式方程12122a x x -+=--的解为正数,则a 的取值范围是_____. 16.-12019+22020×(12)2021=_____________ 17.已知m n t y z x z x y x y z==+-+-+-,则()()()y z m z x n x y t -+-+-的值为________.18.已知等腰三角形的两边长分别为4和6,则它的周长等于_______19.因式分解:3x 3﹣12x=_____.20.计算:2422a a a a -=++____________. 三、解答题21.如图是作一个角的角平分线的方法:以的顶点为圆心,以任意长为半径画弧,分别交于两点,再分别以为圆心,大于长为半径作画弧,两条弧交于点,作射线,过点作交于点.(1)若,求的度数; (2)若,垂足为,求证:. 22.先化简,再求值:21(1)11x x x -÷+-,其中 21x =+. 23.如图,在Rt V ABC 中,∠C =90º,BD 是Rt V ABC 的一条角一平分线,点O 、E 、F 分别在BD 、BC 、AC 上,且四边形OECF 是正方形,(1)求证:点O 在∠BAC 的平分线上;(2)若AC =5,BC =12,求OE 的长24.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF.小华的想法对吗?为什么?25.2020年2月22日深圳地铁10号线华南城站试运行,预计今年6月正式开通.在地铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元;已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】 因为b a b -=14, 所以4b=a-b .,解得a=5b , 所以a b =55b b=. 故选A. 2.C解析:C【解析】分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算. 详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++, ∵2220m m +-=,∴222m m ,+= ∴原式=2.故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.3.D解析:D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣2),得: m +2x =x ﹣2,由分母可知,分式方程的增根可能是2.当x =2时,m +4=2﹣2,m =﹣4,故选D.4.D解析:D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.5.B解析:B【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.6.A解析:A【解析】【分析】根据角平分线的性质定理可得DF=DE;最后根据三角形的面积公式求解即可.【详解】:∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DF=DE=2,∴1•124242BCDS BC DF=⨯=⨯⨯=V;故答案为:A.【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.7.D解析:D【解析】【分析】由11m n-=1利用分式的加减运算法则得出m-n=-mn,代入原式=222m mn nm mn n--+-计算可得.【详解】∵11m n-=1,∴n mmn mn-=1,则n mmn-=1,∴mn=n-m,即m-n=-mn,则原式=()22m n mnm n mn---+=22mn mnmn mn---+=3mnmn-=-3,故选D.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.8.D解析:D【解析】试题解析:∵(b﹣c)(a2+b2)=bc2﹣c3,∴(b﹣c)(a2+b2)﹣c2(b﹣c)=0,∴(b﹣c)(a2+b2﹣c2)=0,∴b﹣c=0,a2+b2﹣c2=0,∴b=c或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选D.9.A解析:A【解析】【分析】由作法可知BD是∠ABC的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL可得Rt△BDC≌Rt△BDE,故BC=BE,③正确,【详解】解:由作法可知BD是∠ABC的角平分线,故②正确,∵∠C=90°,∴DC⊥BC,又DE⊥AB,BD是∠ABC的角平分线,∴CD=ED,故①正确,在Rt △BCD 和 Rt △BED 中,DE DC BD BD=⎧⎨=⎩ , ∴△BCD≌△BED ,∴BC=BE ,故③正确.故选:A.【点睛】本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键. 10.B解析:B【解析】设多边形的边数为n ,则有(n-2)×180°=n×150°,解得:n=12, 故选B.11.D解析:D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可.【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.12.A解析:A【解析】【分析】将M,N 代入到M-N 中,去括号合并得到结果为(a ﹣1)2≥0,即可解答【详解】∵M =(2a ﹣3)(3a ﹣1),N =2a (a ﹣32)﹣1,∴M ﹣N=(2a ﹣3)(3a ﹣1)﹣2a (a ﹣32)+1, =6a 2﹣11a +3﹣2a 2+3a +1=4a 2﹣8a +4=4(a ﹣1)2∵(a ﹣1)2≥0,∴M ﹣N ≥0,则M ≥N .故选A .【点睛】此题考查整式的混合运算,解题关键是在于把M,N 代入到M-N 中计算化简得到完全平方式为非负数,从而得到结论. 二、填空题13.6或或【解析】【分析】根据不同边上的高为4分类讨论即可得到本题的答案【详解】解:①如图1当则∴底边长为6;②如图2当时则∴∴∴此时底边长为;③如图3:当时则∴∴∴此时底边长为故答案为:6或或【点睛】 解析:6或25或45.【解析】【分析】根据不同边上的高为4分类讨论即可得到本题的答案.【详解】解:①如图1当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2.当5AB AC ==,4CD =时,则3AD =,∴2BD =, ∴222425BC =+=,∴此时底边长为25; ③如图3:当5AB AC ==,4CD =时, 则223AD AC CD -=,∴8BD =, ∴45BC =∴此时底边长为45故答案为:6或2545【点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论.14.±4【解析】【分析】这里首末两项是x 和2的平方那么中间项为加上或减去x 和2的乘积的2倍也就是kx 由此对应求得k 的数值即可【详解】∵是一个多项式的完全平方∴kx=±2×2⋅x∴k=±4故答案为:±4【解析:±4.【解析】【分析】这里首末两项是x 和2的平方,那么中间项为加上或减去x 和2的乘积的2倍也就是kx ,由此对应求得k 的数值即可.【详解】∵24x kx ++是一个多项式的完全平方,∴kx=±2×2⋅x , ∴k=±4. 故答案为:±4. 【点睛】此题考查完全平方式,解题关键在于掌握计算公式.15.且【解析】【分析】直接解分式方程进而利用分式方程的解是正数得出的取值范围进而结合分式方程有意义的条件分析得出答案【详解】去分母得:解得:解得:当时不合题意故且故答案为:且【点睛】此题主要考查了分式方 解析:5a <且3a ≠【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.【详解】去分母得:122a x -+=-,解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意,故5a <且3a ≠.故答案为:5a <且3a ≠.【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.16.【解析】【分析】根据有理数的混合运算法则求解即可【详解】;故答案为【点睛】本题考查了有理数的混合运算熟练掌握有理数的混合运算法则是解题的关键 解析:12- 【解析】【分析】根据有理数的混合运算法则求解即可.【详解】201920202021202020201111212222⨯⨯⨯-+()=-+() 202011=1222⨯⨯-+() 11=1=22-+-;故答案为12-. 【点睛】本题考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键. 17.0【解析】【分析】令=k(k≠0)列出方程组分别求出xyz 的值代入求值即可【详解】令=k(k≠0)则有解得:∴===0故答案为:0【点睛】此题主要考查了分式的运算熟练掌握运算法则是解此题的关键解析:0【解析】【分析】 令m n t y z x z x y x y z ==+-+-+-=k(k≠0),列出方程组,分别求出x ,y ,z 的值,代入()()()y z m z x n x y t -+-+-求值即可.【详解】 令m n t y z x z x y x y z==+-+-+-=k(k≠0),则有 m y z x k n z x y k t x y z k⎧+-=⎪⎪⎪+-=⎨⎪⎪+-=⎪⎩, 解得:222n t x k m t y k m n z k +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩, ∴()()()y z m z x n x y t -+-+- =222t n m t n m m n t k k k---++g g g =2tm nm mn tn nt mt k-+-+- =0.故答案为:0.【点睛】 此题主要考查了分式的运算,熟练掌握运算法则是解此题的关键.18.14或16【解析】当4是底时三边为466能构成三角形周长为4+6+6=16;当6是底时三边为446能构成三角形周长为4+4+6=14故周长为16或14故答案为:16或14 解析:14或16【解析】当4是底时,三边为4,6,6,能构成三角形,周长为4+6+6=16;当6是底时,三边为4,4,6,能构成三角形,周长为4+4+6=14.故周长为16或14.故答案为:16或14.19.3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x 然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x (x2﹣4)=3x (x+2)(x ﹣2)故答案为3x (x+2)(x ﹣2)【点睛】本题考查解析:3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.20.【解析】【分析】根据分式的加减运算的法则先因式分解复杂的因式找到最简公分母通分然后按同分母的分式相加减的性质计算在约分化为最简二次根式【详解】解:=====故答案为:【点睛】本题考查分式的加减运算 解析:2a a- 【解析】【分析】根据分式的加减运算的法则,先因式分解复杂的因式,找到最简公分母,通分,然后按同分母的分式相加减的性质计算,在约分,化为最简二次根式.【详解】 解:2422a a a a-++ =42(2)a a a a -++ =24(2)(2)a a a a a -++ =24(2)a a a -+ =(2)(2)(2)a a a a +-+ =2a a-. 故答案为:2a a -. 【点睛】本题考查分式的加减运算.三、解答题21.(1)35°;(2)见解析.【解析】(1)首先根据OB∥FD,可得∠OFD+∠AOB=18O°,进而得到∠AOB的度数,再根据作图可知OP平分∠AOB,进而算出∠DOB的度数即可;(2)首先证明∴∠AOD=∠ODF,再由FM⊥OD可得∠OMF=∠DMF,再加上公共边FM=FM,可利用AAS证明△FMO≌△FMD.【详解】(1)解:∵OB∥FD,∴∠OFD+∠AOB=18O°,又∵∠OFD=110°,∴∠AOB=180°−∠OFD=180°−110°=70°,由作法知,OP是∠AOB的平分线,∴∠DOB=∠ABO=;(2)证明:∵OP平分∠AOB,∴∠AOD=∠DOB,∵OB∥FD,∴∠DOB=∠ODF,∴∠AOD=∠ODF,又∵FM⊥OD,∴∠OMF=∠DMF,在△MFO和△MFD中∴△MFO≌△MFD(AAS).【点睛】此题主要考查了全等三角形的判定,以及角的计算,关键是正确理解题意,掌握角平分线的作法,以及全等三角形的判定定理.22.原式2【解析】分析:先把括号内通分和除法运算化为乘法运算,再约分得到原式=x-1,然后再把x的值代入x-1计算即可.详解:原式=21111x xx x +--⨯+=(1)(1)1x x xx x+-⨯+=x-1;当2+1时,原式2+12.点睛:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.23.(1)证明见解析;(2)2.【解析】【分析】(1)考察角平分线定理的性质,及直角三角形全等的判断方法,“HL”;(2)利用全等得到线段AM=BE,AM=AF,利用正方形OECF,得到四边都相等,从而利用OE与BE、AF及AB的关系求出OE的长【详解】解:(1)过点O作OM⊥AB于点M∵正方形OECF∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E∴OM=OE=OF∵OM⊥AB于M, OE⊥BC于E∴∠AMO=90°,∠AFO=90°∵OM OF AO AO=⎧⎨=⎩∴Rt△AMO≌Rt△AFO∴∠MA0=∠FAO∴点O在∠BAC的平分线上(2)∵Rt△ABC中,∠C=90°,AC=5,BC=12∴AB=13∴BE=BM,AM=AF又BE=BC-CE,AF=AC-CF,而CE=CF=OE∴BE=12-OE,AF=5-OE∴BM+AM=AB即BE+AF=1312-OE+5-OE=13解得OE=2【点睛】本题考查角平分线的判定,全等三角形的判定及性质,掌握HL定理的判定方法及全等三角形的性质是本题的解题关键.24.对,理由见解析.【解析】【分析】通过全等三角形得到内错角相等,得到两直线平行,进而得到同旁内角互补.【详解】解:∵O是CF的中点,∴CO=FO(中点的定义)在△COB和△FOE中CO FOCOB EOF EO BO=⎧⎪∠=∠⎨⎪=⎩,∴△COB≌△FOE(SAS)∴BC=EF,∠BCO=∠F∴AB∥DF(内错角相等,两直线平行)∴∠ACE和∠DEC互补(两直线平行,同旁内角互补),【点睛】本题考查了三角形的全等的判定和性质;做题时用了两直线平行内错角相等,同旁内角互补等知识,要学会综合运用这些知识.25.(1)甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)应选甲工程队单独完成;理由见解析.【解析】【分析】(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x 天,根据甲工程队完成的工作量+乙工程队完成的工作量=整项工程,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,根据甲、乙两工程队合作12天共需费用27720元,即可得出关于y的一元一次方程,解之即可得出两队每天所需费用,再求出两队单独完成这些工程所需总费用,比较后即可得出结论.【详解】解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x 天,依题意,得:12121.5x x+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.【点睛】本题主要考查了分式方程的实际应用,解题的关键是合理设出未知数,找到等量关系,列出方程.。

2020年初二数学上期末模拟试卷(带答案)(1)

2020年初二数学上期末模拟试卷(带答案)(1)

2020年初二数学上期末模拟试卷(带答案)(1)一、选择题1.如果a c b d =成立,那么下列各式一定成立的是( ) A .a d c b = B .ac c bd b = C .11a c b d ++= D .22a b c d b d ++= 2.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=-B .120100x x 10=+C .120100x 10x =-D .120100x 10x=+ 3.若b a b -=14,则a b 的值为( ) A .5 B .15 C .3 D .134.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+- 5.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是( ) A . B . C . D .6.下列运算中,结果是a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 3)3D .(﹣a)67.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .18.2019年7月30日阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150km ,现在高速路程缩短了20km ,若走高速的平均车速是走国道的2.5倍,所花时间比走国道少用1.5小时,设走国道的平均车速为/xkm h ,则根据题意可列方程为( )A .15020150 1.52.5x x --=B .15015020 1.52.5x x--=C .15015020 1.52.5x x--= D .15020150 1.52.5x x--= 9.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE AC ⊥于点E ,DF BC ⊥于点F ,且BC=4,DE=2,则△BCD 的面积是( )A .4B .2C .8D .6 10.下列计算正确的是( ) A .235+= B .a a a +=222 C .(1)x y x xy +=+ D .236()mn mn =11.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ12.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)二、填空题13.腰长为5,高为4的等腰三角形的底边长为_____.14.如图,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是__________.15.如图ABC V ,24AB AC ==厘米,B C ∠=∠,16BC =厘米,点D 为AB 的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,若点Q 的运动速度为v 厘米/秒,则当BPD △与CQP V 全等时,v 的值为_____厘米/秒.16.-12019+22020×(12)2021=_____________ 17.已知m n t y z x z x y x y z==+-+-+-,则()()()y z m z x n x y t -+-+-的值为________.18.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是_____. 19.分解因式:2288a a -+=_______ 20.因式分解34x x -= .三、解答题21.为支援灾区,某校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品共1000件.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同.(1)求A 、B 两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B 型学习用品多少件?22.如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠B =42°,∠DAE =18°,求∠C 的度数.23.为迎接“均衡教育大检查”,县委县府对通往某偏远学校的一段全长为1200 米的道路进行了改造,铺设草油路面.铺设400 米后,为了尽快完成道路改造,后来每天的工作效率比原计划提高25%,结果共用13天完成道路改造任务.(1)求原计划每天铺设路面多少米;(2)若承包商原来每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资增长了20%,完成整个工程后承包商共支付工人工资多少元?24.2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米每小时?25.(1)计算:2(m+1)2﹣(2m+1)(2m ﹣1);(2)先化简,再求值.[(x+2y )2﹣(x+y )(3x ﹣y )﹣5y 2]÷2x ,其中x =﹣2,y =12.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】 已知a c b d=成立,根据比例的性质可得选项A 、B 、C 都不成立;选项D ,由2a b b +=2c d d +可得22a c b d +=+,即可得a c b d=,选项D 正确,故选D. 点睛:本题主要考查了比例的性质,熟练运用比例的性质是解决问题的关键.2.A解析:A【解析】【分析】【详解】甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同, 所以,120100x x 10=-. 故选A. 3.A解析:A【解析】 因为b a b -=14, 所以4b=a-b .,解得a=5b ,所以ab=55bb=.故选A.4.C解析:C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】()321a a a a-=-=a(a+1)(a-1),故A错误;2(1)b ab b b b a++=++,故B错误;2212(1)x x x-+=-,故C正确;22x y+不能分解因式,故D错误,故选:C.【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.5.C解析:C【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误;B 、122a a ÷= a 10,故此选项错误;C 、(a 3)3=a 9,故此选项错误;D 、(-a )6=a 6,故此选项正确.故选D .【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.7.C解析:C【解析】【分析】如图,过点D 作DE AB ⊥于E ,根据已知求出CD 的长,再根据角平分线的性质进行求解即可.【详解】如图,过点D 作DE AB ⊥于E ,AC 8=Q ,1DC AD 3=, 1CD 8213∴=⨯=+, C 90∠︒=Q ,BD 平分ABC ∠, DE CD 2∴==,即点D 到AB 的距离为2,故选C .【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.8.C解析:C【解析】【分析】根据“走高速用的时间比走国道少花1.5小时”列出方程即可得出答案.【详解】根据题意可得,走高速所用时间150202.5x -小时,走国道所用时间150x小时即15015020 1.52.5x x--= 故答案选择C.【点睛】 本题考查的是分式方程在实际生活中的应用,根据公式“路程=速度×时间”及其变形列出等式是解决本题的关键.9.A解析:A【解析】【分析】根据角平分线的性质定理可得DF=DE ;最后根据三角形的面积公式求解即可.【详解】:∵CD 平分∠ACB ,DE ⊥AC ,DF ⊥BC ,∴DF=DE=2, ∴1•124242BCD S BC DF =⨯=⨯⨯=V ; 故答案为:A .【点睛】 此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.10.C解析:C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .11.D解析:D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.12.B解析:B【解析】【分析】根据四边形的内角和为360°、平角的定义及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【详解】∵在四边形ADA′E 中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+(180°-∠2)+(180°-∠1)=360°,∴可得2∠A=∠1+∠2.故选:B【点睛】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.二、填空题13.6或或【解析】【分析】根据不同边上的高为4分类讨论即可得到本题的答案【详解】解:①如图1当则∴底边长为6;②如图2当时则∴∴∴此时底边长为;③如图3:当时则∴∴∴此时底边长为故答案为:6或或【点睛】 解析:6或25或45.【解析】【分析】根据不同边上的高为4分类讨论即可得到本题的答案.【详解】解:①如图1当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2.当5AB AC ==,4CD =时,则3AD =,∴2BD =, ∴222425BC =+=,∴此时底边长为25;③如图3:当5AB AC ==,4CD =时,则223AD AC CD =-=,∴8BD =,∴45BC =,∴此时底边长为45.故答案为:6或25或45.【点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论.14.【解析】【分析】从已知条件结合图形认真思考通过构造全等三角形利用三角形的三边的关系确定线段和的最小值【详解】如图在AC 上截取AE=AN 连接BE∵∠BAC 的平分线交BC 于点D∴∠EAM=∠NAM∵AM解析:22【解析】【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】如图,在AC 上截取AE=AN ,连接BE∵∠BAC 的平分线交BC 于点D ,∴∠EAM=∠NAM ,∵AM=AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=即BE取最小值为∴BM+MN的最小值是【点睛】解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.15.4或6【解析】【分析】此题要分两种情况:①当BD=PC时△BPD与△CQP 全等计算出BP的长进而可得运动时间然后再求v;②当BD=CQ时△BDP≌△QCP 计算出BP的长进而可得运动时间然后再求v【详解析:4或6【解析】【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.【详解】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=12AB=12cm,∵BD=PC,∴BP=16-12=4(cm),∵点P在线段BC上以4厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=4cm,∴v=4÷1=4厘米/秒;当BD=CQ时,△BDP≌△QCP,∵BD=12cm,PB=PC,∴QC=12cm,∵BC=16cm,∴BP=4cm,∴运动时间为4÷2=2(s ), ∴v=12÷2=6厘米/秒. 故答案为:4或6.【点睛】此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS 、SAS 、ASA 、AAS 、HL .16.【解析】【分析】根据有理数的混合运算法则求解即可【详解】;故答案为【点睛】本题考查了有理数的混合运算熟练掌握有理数的混合运算法则是解题的关键 解析:12- 【解析】【分析】根据有理数的混合运算法则求解即可.【详解】201920202021202020201111212222⨯⨯⨯-+()=-+() 202011=1222⨯⨯-+() 11=1=22-+-;故答案为12-. 【点睛】本题考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键. 17.0【解析】【分析】令=k(k≠0)列出方程组分别求出xyz 的值代入求值即可【详解】令=k(k≠0)则有解得:∴===0故答案为:0【点睛】此题主要考查了分式的运算熟练掌握运算法则是解此题的关键解析:0【解析】【分析】 令m n t y z x z x y x y z==+-+-+-=k(k≠0),列出方程组,分别求出x ,y ,z 的值,代入()()()y z m z x n x y t -+-+-求值即可.【详解】令m n t y z x z x y x y z==+-+-+-=k(k≠0),则有 m y z x k n z x y k t x y z k⎧+-=⎪⎪⎪+-=⎨⎪⎪+-=⎪⎩, 解得:222n t x k m t y k m n z k +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩, ∴()()()y z m z x n x y t -+-+- =222t n m t n m m n t k k k---++g g g =2tm nm mn tn nt mt k-+-+- =0.故答案为:0.【点睛】 此题主要考查了分式的运算,熟练掌握运算法则是解此题的关键.18.且【解析】分式方程去分母得:2(2x-a )=x-2去括号移项合并得:3x=2a-2解得:∵分式方程的解为非负数∴且解得:a≥1且a≠4解析:1a ≥-且2a ≠【解析】分式方程去分母得:2(2x -a )=x -2,去括号移项合并得:3x =2a -2, 解得:223a x -=, ∵分式方程的解为非负数,∴2203a -≥且 22203a --≠, 解得:a ≥1 且a ≠4 . 19.【解析】=2()=故答案为解析:22(2)a -【解析】22a 8a 8-+=2(2a 4a 4-+)=()22a 2-.故答案为()22a 2-. 20.【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式若有公因式则把它提取出来之后再观察是否是完全平方公式或平方差公式若是就考虑用公式法继续分解因式因此先提取公因式后继续应用平方 解析:()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-. 三、解答题21.(1)A 型学习用品20元,B 型学习用品30元;(2)800.【解析】(1)设A 种学习用品的单价是x 元,根据题意,得,解得x =20.经检验,x =20是原方程的解.所以x +10=30.答:A 、B 两种学习用品的单价分别是20元和30元.(2)设购买B 型学习用品m 件,根据题意,得30m +20(1000-m )≤28000,解得m ≤800.所以,最多购买B 型学习用品800件.22.∠C =78°. 【解析】【分析】由AD 是BC 边上的高,∠B=42°,可得∠BAD=48°,在由∠DAE=18°,可得∠BAE=∠BAD-∠DAE=30°,然后根据AE 是∠BAC 的平分线,可得∠BAC=2∠BAE=60°,最后根据三角形内角和定理即可推出∠C 的度数.【详解】解:∵AD 是BC 边上的高,∠B=42°,∴∠BAD=48°,∵∠DAE=18°,∴∠BAE=∠BAD-∠DAE=30°,∵AE 是∠BAC 的平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°-∠B-∠BAC=78°.考点:1.三角形内角和定理;2.三角形的角平分线、3.中线和高.23.(1)80;(2)21900.【分析】(1)设原计划每天铺设路面x 米,则提高工作效率后每天完成(1+25%)x 米,根据等量关系“利用原计划的速度铺设400 米所用的时间+提高工作效率后铺设剩余的道路所用的时间=13”,列出方程,解方程即可;(2)先求得利用原计划的速度铺设400 米所用的时间和提高工作效率后铺设剩余的道路所用的时间,根据题意再计算总工资即可.【详解】(1)设原计划每天铺设路面x 米,根据题意可得:()400120040013125%x x-+=+ 解得:80x =检验:80x =是原方程的解且符合题意,∴ 80x =答:原计划每天铺设路面80米.原来工作400÷80=5(天). (2)后来工作()()120040080120%8⎡⎤-÷⨯+=⎣⎦(天).共支付工人工资:1500×5+1500×(1+20%)×8=21900(元) 答:共支付工人工资21900元.【点睛】本题考查了分式方程的应用,根据题意正确找出等量关系,由等量关系列出方程是解决本题的关键.24.提速前的速度为200千米/小时,提速后的速度为350千米/小时,【解析】【分析】设列车提速前的速度为x 千米每小时和列车提速后的速度为1.5千米每小时,根据关键语句“100千米缩短了10分钟”可列方程,解方程即可.【详解】设提速前后的速度分别为x 千米每小时和1.5x 千米每小时,根据题意得:100100101.560x x -= 解得:x=200,经检验:x=200是原方程的根,∴1.5x=300,答:提速前后的速度分别是200千米每小时和300千米每小时.【点睛】考查了分式方程的应用,解题关键是弄懂题意,找出等量关系,列出方程.25.(1)﹣2m 2+4m+3;(2)﹣x+y ,52.【分析】(1)直接利用乘法公式化简进而合并同类项即可;(2)直接利用多项式的乘法运算进而结合整式的混合运算法则计算得出答案.【详解】(1)原式=2(m2+2m+1)﹣(4m2﹣1)=2m2+4m+2﹣4m2+1=﹣2m2+4m+3;(2)原式=(x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=﹣x+y,当x=﹣2,y=12时,原式=2+12=52.【点睛】此题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键.。

2020年初二数学上期末试卷带答案

2020年初二数学上期末试卷带答案

2020年初二数学上期末试卷带答案一、选择题1.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1 B .2 C .3 D .82.如图,已知每个小方格的边长为1,A ,B 两点都在小方格的顶点上,请在图中找一个顶点C ,使△ABC 为等腰三角形,则这样的顶点C 有( )A .8个B .7个C .6个D .5个3.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-44.下列运算正确的是( ) A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab = 5.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A .1个B .2个C .3个D .4个 6.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A .3 B .1 C .﹣1 D .﹣37.等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为( )A .30B .30或150C .60或150D .60或120 8.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等 C .90BOC A ∠=+∠D .设OD m =,AE AF n +=,则12AEF S mn ∆= 9.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .210.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24° 11.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .AB .BC .CD .D 12.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4二、填空题13.已知23a b =,则a b a b -+=__________.14.若分式11x x --的值为零,则x 的值为______. 15.如图,在△ABC 中,∠ACB=90°,CD 是高,∠A=30°,若AB=20,则BD 的长是 .16.因式分解:3x 3﹣12x=_____.17.因式分解:3a 2﹣27b 2=_____.18.如图,△ABC 中,EF 是AB 的垂直平分线,与AB 交于点D ,BF=12,CF=3,则AC = .19.计算(3-2)(3+2)的结果是______.20.若分式的值为零,则x 的值为________. 三、解答题21.如图,已知在△ABC 中,∠BAC 的平分线与线段BC 的垂直平分线PQ 相交于点P,过点P 分别作PN 垂直于AB 于点N,PM 垂直于AC 于点M,BN 和CM 有什么数量关系?请说明理由.22.解分式方程2212323x x x +=-+. 23.如图,ABC 是等腰三角形,AB AC =,点D 是AB 上一点,过点D 作DE BC ⊥交BC 于点E ,交CA 延长线于点F .(1)证明:ADF 是等腰三角形;(2)若60B ∠=︒,4BD =,2AD =,求EC 的长.24.先化简代数式1﹣1x x -÷2212x x x-+,并从﹣1,0,1,3中选取一个合适的代入求值. 25.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF.小华的想法对吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形三边关系可得5﹣3<a <5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a <5+3,即2<a <8,由此可得,符合条件的只有选项C ,故选C .【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a <5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.2.A解析:A【解析】【分析】分AB 为腰和为底两种情况考虑,画出图形,即可找出点C 的个数.【详解】解:当AB 为底时,作AB 的垂直平分线,可找出格点C 的个数有5个,当AB 为腰时,分别以A 、B 点为顶点,以AB 为半径作弧,可找出格点C 的个数有3个; ∴这样的顶点C 有8个.故选:A .【点睛】本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.3.D解析:D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣2),得: m +2x =x ﹣2,由分母可知,分式方程的增根可能是2.当x =2时,m +4=2﹣2,m =﹣4,故选D .4.C解析:C【解析】【分析】根据单项式的乘法和除法法则,以及幂的乘方法则即可作出判断.【详解】A 、-3a 2•2a 3=-6a 5,故A 错误;B 、4a 6÷(-2a 3)=-2a 3,故B 错误;C 、(-a 3)2=a 6,故C 正确;D 、(ab 3)2=a 2b 6,故B 错误;故选:C .【点睛】本题考查了单项式的乘法、除法以及幂的乘方,正确理解幂的运算法则是关键.5.B解析:B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB 5AC =3,BC 2,GD 5DE 2,GE =3,DI =3,EI 5G ,I 两点与点D 、点E 构成的三角形与△ABC 全等.故选B.点睛:本题考查了全等三角形的判定,关键是根据SSS证明全等三角形.6.D解析:D【解析】【分析】由11m n-=1利用分式的加减运算法则得出m-n=-mn,代入原式=222m mn nm mn n--+-计算可得.【详解】∵11m n-=1,∴n mmn mn-=1,则n mmn-=1,∴mn=n-m,即m-n=-mn,则原式=()22m n mnm n mn---+=22mn mnmn mn---+=3mnmn-=-3,故选D.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.7.B解析:B【解析】【分析】等腰三角形一腰上的高与另一腰的夹角为60,则顶角的度数为【详解】解:如图1,∵∠ABD=60°,BD 是高,∴∠A=90°-∠ABD=30°;如图2,∵∠ABD=60°,BD 是高,∴∠BAD=90°-∠ABD=30°,∴∠BAC=180°-∠BAD=150°;∴顶角的度数为30°或150°.故选:B .【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.8.C解析:C【解析】【分析】利用角平分线的性质、等腰三角形的判定与性质逐一判定即可.【详解】∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O∴∠OBC=12∠ABC ,∠OCB=12∠ACB ,∠A+∠ABC+∠ACB=180°, ∴∠OBC+∠OCB=90°-12∠A ∴∠BOC=180°-(∠OBC+∠OCB )=90°+12∠A ,故C 错误; ∵∠EBO=∠CBO ,∠FCO=∠BCO ,//EF BC ∴∠EBO=∠EOB ,∠FCO=∠FOC ,∴BE=OE ,CF=OF∴EF=EO+OF=BE+CF ,故A 正确;由已知,得点O 是ABC ∆的内心,到ABC ∆各边的距离相等,故B 正确;作OM ⊥AB ,交AB 于M ,连接OA ,如图所示:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O∴OM=OD m = ∴()11112222AEF AOE AOF S S S AE OM AF OD OD AE AF mn =+=⋅+⋅=⋅+=△△△,故D 选项正确;故选:C.【点睛】此题主要考查运用角平分线的性质、等腰三角形的判定与性质,解题关键是注意数形结合思想的运用. 9.D解析:D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可.【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】 本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.C解析:C【解析】【分析】易得△ABD 为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD ,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB ﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.11.C解析:C【解析】试题分析:根据轴对称图形的定义可知,只有选项C 是轴对称图形,故选C.12.D解析:D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4. 关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4 故选D .【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.二、填空题13.【解析】【分析】由已知设a=2t 则b=3t 代入所求代数式化简即可得答案【详解】设a=2t ∵∴b=3t ∴==故答案为:【点睛】本题考查了代数式的求值把a=b代入后计算比较麻烦采用参数的方法使运算简便灵解析:1 5 -【解析】【分析】由已知设a=2t,则b=3t,代入所求代数式化简即可得答案.【详解】设a=2t,∵23ab=,∴b=3t,∴a ba b-+=2323t tt t-+=15-.故答案为:1 5 -【点睛】本题考查了代数式的求值,把a=23b代入后,计算比较麻烦,采用参数的方法,使运算简便,灵活运用参数方法是解题关键.14.-1【解析】【分析】【详解】试题分析:因为当时分式的值为零解得且所以x=-1考点:分式的值为零的条件解析:-1【解析】【分析】【详解】试题分析:因为当10{-10-=≠xx时分式11xx--的值为零,解得1x=±且1x≠,所以x=-1.考点:分式的值为零的条件.15.5【解析】【分析】【详解】试题分析:根据同角的余角相等知∠BCD=∠A=30°所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD解:∵在直角△ABC中∠ACB=90°解析:5【解析】【分析】【详解】试题分析:根据同角的余角相等知,∠BCD=∠A=30°,所以分别在△ABC和△BDC中利用30°锐角所对的直角边等于斜边的一半即可求出BD.解:∵在直角△ABC中,∠ACB=90°,∠A=30°,且CD⊥AB ∴∠BCD=∠A=30°,∵AB=20,∴BC=12AB=20×12=10,∴BD=12BC=10×12=5.故答案为5.考点:含30度角的直角三角形.16.3x(x+2)(x﹣2)【解析】【分析】先提公因式3x然后利用平方差公式进行分解即可【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案为3x (x+2)(x﹣2)【点睛】本题考查解析:3x(x+2)(x﹣2)【解析】【分析】先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.17.3(a+3b)(a﹣3b)【解析】【分析】先提取公因式3然后再利用平方差公式进一步分解因式【详解】3a2-27b2=3(a2-9b2)=3(a+3b)(a-3b)【点睛】本题考查了提公因式法和公式法解析:3(a+3b)(a﹣3b).【解析】【分析】先提取公因式3,然后再利用平方差公式进一步分解因式.【详解】3a2-27b2,=3(a2-9b2),=3(a+3b)(a-3b).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.15【解析】试题分析:因为EF是AB的垂直平分线所以AF=BF因为BF=12CF=3所以AF=BF=12所以AC=AF+FC=12+3=15考点:线段垂直平分线的性质解析:15【解析】试题分析:因为EF是AB的垂直平分线,所以AF=BF,因为BF=12,CF=3,所以AF=BF=12,所以AC =AF+FC=12+3=15.考点:线段垂直平分线的性质19.-1【解析】【分析】由于式子复合平方差公式的特点则由平方差公式展开可得()-2即可解答【详解】由平方差公式得()-2由二次根式的性质得3-2计算得-1【点睛】此题考查平方差公式的性质解题关键在于利用解析:-1【解析】【分析】由于式子复合平方差公式的特点,则由平方差公式展开可得 )2-22即可解答【详解】由平方差公式,得2-22由二次根式的性质,得3-22计算,得-1【点睛】此题考查平方差公式的性质,解题关键在于利用平方差公式的性质进行计算20.1【解析】试题分析:根据题意得|x|-1=0且x-1≠0解得x=-1考点:分式的值为零的条件解析:1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.三、解答题21.BN=CM,理由见解析.【解析】【分析】连接PB,PC,根据角平分线性质求出PM=PN,根据线段垂直平分线求出PB=PC,根据HL证Rt△PMC≌Rt△PNB,即可得出答案.【详解】解:BN=CM,理由如下:如图,连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,PC PB PM PN=⎧⎨=⎩,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.【点睛】本题考查了全等三角形的性质和判定,线段垂直平分线性质,角平分线性质等知识点,能正确地添加辅助线是解题的关键.22.x=7.5【解析】【分析】先两边同乘(2x-3)(2x+3),得出整式方程,然后合并同类项,进行计算即可.【详解】解:方程两边同乘(2x﹣3)(2x+3),得4x+6+4x2﹣6x=4x2﹣9,解得:x=7.5,经检验x=7.5是分式方程的解.【点睛】本题主要考察了解分式方程,解题的关键是正确去分母.23.(1)见详解(2)4【解析】【分析】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【详解】证明:(1)∵AB=AC∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,又∵∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=12BD=2∵AB=AC∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC-BE=4【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等,根据余角性质求得相等的角是解题关键.24.-11x+,-14.【解析】试题分析:根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x的值代入即可解答本题.试题解析:原式=1﹣()()()21·11x xxx x x+-+-=1﹣21xx++=121x xx+--+=-11x+,当x=3时,原式=﹣131+=-14.25.对,理由见解析.【解析】【分析】通过全等三角形得到内错角相等,得到两直线平行,进而得到同旁内角互补.【详解】解:∵O是CF的中点,∴CO=FO(中点的定义)在△COB和△FOE中CO FOCOB EOF EO BO=⎧⎪∠=∠⎨⎪=⎩,∴△COB≌△FOE(SAS)∴BC=EF,∠BCO=∠F∴AB∥DF(内错角相等,两直线平行)∴∠ACE和∠DEC互补(两直线平行,同旁内角互补),【点睛】本题考查了三角形的全等的判定和性质;做题时用了两直线平行内错角相等,同旁内角互补等知识,要学会综合运用这些知识.。

2020-2021初二数学上期末模拟试卷(及答案)

2020-2021初二数学上期末模拟试卷(及答案)

8.如图,在△ABC 中,AB=AC,∠A=30°,AB 的垂直平分线 l 交 AC 于点 D,则 ∠CBD 的度数为( )
A.30°
B.45°
C.50°
D.75°
9.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
如图是按上述要求排乱顺序的规作图:
6.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,DE⊥AB 于 E,DE 平分∠ADB,则∠B= ()
A.40°
B.30°
C.25°
D.22.5〫
7.下列各式中不能用平方差公式计算的是( )
A. (2x y)x 2y
B. ( 2x y)2x y
C. ( x 2y)x 2y
D. (2x y)2x y
故答案选择 C.
【点睛】
本题考查的是分式方程在实际生活中的应用,根据公式“路程=速度×时间”及其变形列
出等式是解决本题的关键.
6.B
解析:B
【解析】
【分析】
利用全等直角三角形的判定定理 HL 证得 Rt△ACD≌Rt△AED,则对应角
∠ADC=∠ADE;然后根据已知条件“DE 平分∠ADB”、平角的定义证得 ∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.
3.D
解析:D 【解析】 试题分析:A、连接 CE、DE,根据作图得到 OC=OD,CE=DE.
∵在△EOC 与△EOD 中,OC=OD,CE=DE,OE=OE, ∴△EOC≌△EOD(SSS). ∴∠AOE=∠BOE,即射线 OE 是∠AOB 的平分线,正确,不符合题意. B、根据作图得到 OC=OD, ∴△COD 是等腰三角形,正确,不符合题意. C、根据作图得到 OC=OD,

2020年八年级数学上期末一模试卷及答案

2020年八年级数学上期末一模试卷及答案

2020年八年级数学上期末一模试卷及答案一、选择题1.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠ D .12OCED S CD OE =⋅四边形 2.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=- 3.下列因式分解正确的是( ) A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 4.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是A .(0,0)B .(0,1)C .(0,2)D .(0,3) 5.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .8 6.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=-B .120100x x 10=+C .120100x 10x =-D .120100x 10x=+ 7.下列运算正确的是( )A .a 2+2a =3a 3B .(﹣2a 3)2=4a 5C .(a+2)(a ﹣1)=a 2+a ﹣2D .(a+b)2=a 2+b 2 8.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是( ) A . B . C . D .9.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A .1个B .2个C .3个D .4个10.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按图中所标注的数据,计算图中实线所围成的面积S 是( )A .50B .62C .65D .6811.如图,在Rt△ABC 中,∠ACB=90°,∠B=30°,CD 是斜边AB 上的高,AD =3 cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm 12.若代数式4x x -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4 C .x ≠0 D .x ≠4二、填空题13.若一个多边形的内角和是900º,则这个多边形是 边形.14.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n ),且x+1=2128,则n=______.15.若关于x的分式方程2122x ax-=-的解为非负数,则a的取值范围是_____.16.如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.17.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是___;18.已知9y2+my+1是完全平方式,则常数m的值是_______.19.因式分解34x x-=.20.分解因式2m2﹣32=_____.三、解答题21.龙人文教用品商店欲购进A、B两种笔记本,用160元购进的A种笔记本与用240元购进的B种笔记本数量相同,每本B种笔记本的进价比每本A种笔记本的进价贵10元.(1)求A、B两种笔记本每本的进价分别为多少元?(2)若该商店准备购进A、B两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进A种笔记本多少本?22.A、B 两种机器人都被用来搬运化工原料,A 型机器人比 B 型机器人每小时多搬运60kg.A 型机器人搬运 1200kg 所用时间与 B 型机器入搬运 900kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?23.先化简再求值:(a+2﹣52a-)•243aa--,其中a=12-.24.化简:(1)﹣12x2y3÷(﹣3xy2)•(﹣13 xy);(2)(2x+y)(2x﹣y)﹣(2x﹣y)2.25.先化简,再求值:211()22aaa a-+÷++,其中21a=【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE 是AOB ∠的角平分线,∴∠COE=∠DOE ,∵OC=OD ,OE=OE ,OM=OM ,∴△COE ≌△DOE ,∴∠CEO=∠DEO ,∵∠COE=∠DOE ,OC=OD ,∴CM=DM ,OM ⊥CD ,∴S 四边形OCED =S △COE +S △DOE =111222OE CM OE DM CD OE +=g g g , 但不能得出OCD ECD ∠=∠,∴A 、B 、D 选项正确,不符合题意,C 选项错误,符合题意,故选C .【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.2.B解析:B【解析】【分析】设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.3.C解析:C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.4.D解析:D【解析】【详解】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(-3,0),则OB′=3过点A作AE垂直x轴,则AE=4,OE=1则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,∵C′O∥AE,∴∠B′C′O=∠B′AE,∴∠B′C′O=∠EB′A∴B′O=C′O=3,∴点C′的坐标是(0,3),此时△ABC的周长最小.故选D.5.C解析:C【解析】【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a <8,由此可得,符合条件的只有选项C ,故选C .【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a <5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.6.A解析:A【解析】【分析】【详解】甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同, 所以,120100x x 10=-. 故选A. 7.C解析:C【解析】【分析】根据整式的混合运算法则与完全平方公式进行判断即可.【详解】解:A.a 2与2a 不是同类项,不能合并,故本选项错误;B.326 (2a )4a -=,故本选项错误;C.()()2a 2a 1a a 2+-=+-,正确; D.222 (a b)a 2ab b +=++,故本选项错误.故选C.【点睛】本题主要考查了整式的混合运算与完全平方公式,属于基础题,熟练掌握其知识点是解此题的关键.8.C解析:C【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.B解析:B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB=5,AC=3,BC=2,GD=5,DE=2,GE=3,DI=3,EI=5,所以G,I两点与点D、点E构成的三角形与△ABC全等.故选B.点睛:本题考查了全等三角形的判定,关键是根据SSS证明全等三角形.10.A解析:A【解析】【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△AGB,所以AF=BG,AG=EF;同理证得△BGC≌△CHD,GC=DH,CH=BG.故可求出FH的长,然后利用面积的割补法和面积公式即可求出图形的面积.【详解】∵如图,AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90º,∠EAF+∠BAG=90º,∠ABG+∠BAG=90º⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△AGB,∴AF=BG,AG=EF.同理证得△BGC≌△CHD得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=12(6+4)×16−3×4−6×3=50.故选A.【点睛】此题考查全等三角形的性质与判定,解题关键在于证明△EFA≌△AGB和△BGC≌△CHD. 11.D解析:D【解析】【分析】先求出∠ACD=30°,然后根据30°所对的直角边等于斜边的一半解答.【详解】在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD+∠DCB=90°,∠B+∠DCB=90°,∴∠ACD=∠B=30°.∵AD=3cm.在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm,∴AB的长度是12cm.故选D.【点睛】本题主要考查直角三角形30°角所对的直角边等于斜边的一半的性质.12.D解析:D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.二、填空题13.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.14.64【解析】试题分析:先在前面添加因式(2﹣1)再连续利用平方差公式计算求出x 然后根据指数相等即可求出n 值解:(1+2)(1+22)(1+24)(1+28)…(1+2n )=(2﹣1)(1+2)(1+解析:64【解析】试题分析:先在前面添加因式(2﹣1),再连续利用平方差公式计算求出x ,然后根据指数相等即可求出n 值.解:(1+2)(1+22)(1+24)(1+28)…(1+2n ),=(2﹣1)(1+2)(1+22)(1+24)(1+28)…(1+2n ),=(22﹣1)(1+22)(1+24)(1+28)…(1+2n ),=(2n ﹣1)(1+2n ),=22n ﹣1,∴x+1=22n ﹣1+1=22n ,2n=128,∴n=64.故填64.考点:平方差公式点评:本题考查了平方差公式,关键是乘一个因式(2﹣1)然后就能依次利用平方差公式计算了.15.且【解析】分式方程去分母得:2(2x-a )=x-2去括号移项合并得:3x=2a-2解得:∵分式方程的解为非负数∴且解得:a≥1且a≠4解析:1a ≥-且2a ≠【解析】分式方程去分母得:2(2x -a )=x -2,去括号移项合并得:3x =2a -2, 解得:223a x -=, ∵分式方程的解为非负数,∴ 2203a -≥且 22203a --≠,解得:a≥1 且a≠4 .16.65°【解析】【分析】根据已知条件中的作图步骤知AG是∠CAB的平分线根据角平分线的性质解答即可【详解】根据已知条件中的作图步骤知AG是∠CAB 的平分线∵∠CAB=50°∴∠CAD=25°;在△AD解析:65°【解析】【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【详解】根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.17.6cm【解析】【分析】先利用角角边证明△ACD和△AED全等根据全等三角形对应边相等可得AC=AECD=DE然后求出BD+DE=AE进而可得△DEB的周长【详解】解:∵DE⊥AB∴∠C=∠AED=9解析:6cm【解析】【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.【详解】解:∵DE⊥AB,∴∠C=∠AED=90°,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,C AEDCAD EADAD DA∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(AAS),∴AC=AE,CD=DE,∴BD+DE=BD+CD=BC=AC=AE,BD+DE+BE=AE+BE=AB=6,所以,△DEB的周长为6cm.故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.18.±6【解析】【分析】利用完全平方公式的结构特征确定出m 的值即可【详解】∵9y2+my+1是完全平方式∴m=±2×3=±6故答案为:±6【点睛】此题考查完全平方式熟练掌握完全平方公式是解本题的关键解析:±6【解析】【分析】利用完全平方公式的结构特征确定出m 的值即可.【详解】∵9y 2+my+1是完全平方式,∴m=±2×3=±6, 故答案为:±6. 【点睛】此题考查完全平方式,熟练掌握完全平方公式是解本题的关键.19.【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式若有公因式则把它提取出来之后再观察是否是完全平方公式或平方差公式若是就考虑用公式法继续分解因式因此先提取公因式后继续应用平方 解析:()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-. 20.2(m+4)(m ﹣4)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(m2﹣16)=2(m+4)(m ﹣4)故答案为2(m+4)(m ﹣4)【点睛】本题考查了提公因式法与公式法的综合解析:2(m +4)(m ﹣4)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(m 2﹣16)=2(m +4)(m ﹣4),故答案为2(m +4)(m ﹣4).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.(1)A 、B 两种笔记本每本的进价分别为 20 元、30 元;(2)至少购进 A 种笔记本 35 本【解析】【分析】(1)设A 种笔记本每本的进价为x 元,则每本B 种笔记本的进价为(x +10)元,根据用160元购进的A 种笔记本与用240元购进的B 种笔记本数量相同即可列出方程,解方程即可求出结果;(2)设购进A 种笔记本a 本,根据购进的A 种笔记本的价钱+购进的B 种笔记本的价钱≤2650即可列出关于a 的不等式,解不等式即可求出结果.【详解】(1)解:设A 种笔记本每本的进价为x 元,根据题意,得:16024010x x =+,解得:=20x . 经检验:=20x 是原分式方程的解,+10=20+10=30x .答:A 、B 两种笔记本每本的进价分别为20 元、30元.(2)解:设购进A 种笔记本a 本,根据题意,得:()20+301002650a a -≤,解得:35a ≥.∴至少购进A 种笔记本35本.【点睛】本题考查的是分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.22.A 型机器人每小时搬运240kg ,则B 型机器人每小时搬运180kg .【解析】【分析】设B 型机器人每小时搬运xkg ,则A 型机器人每小时搬运()60x + kg ,根据A 型机器人搬运 1200kg 所用时间与 B 型机器入搬运 900kg 所用时间相等,列方程求解.【详解】设B 型机器人每小时搬运xkg ,则A 型机器人每小时搬运()60x + kg120090060x x=+, 方程两边乘()60x x +,得120090054000x x =+,解得:180x =校验:当600x =时,()600x x +≠所以,原分式方程的解为180x =60240x +=,答:A 型机器人每小时搬运240kg ,则B 型机器人每小时搬运180kg .【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.﹣2a ﹣6,-5【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,然后约分得到最简结果,再把a 的值代入计算即可.【详解】解:(a +2﹣52a -)•243a a -- =(2)(2)52(2)×223-a a a a a a +--⎡⎤-⎢⎥--⎣⎦ =(3)(3)2(2)×23-a a a a a +--⎡⎤⎢⎥-⎣⎦=﹣2a ﹣6,当a =12-时,原式=﹣2a ﹣6=﹣5. 【点睛】 本题考查了分式的化简求值,熟练掌握分式的运算法则是解本题的关键.24.(1)﹣43x 2y 2;(2)4xy ﹣2y 2. 【解析】【分析】(1)原式利用单项式乘除单项式法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【详解】解:(1)原式=4xy •(﹣13xy )=﹣43x 2y 2; (2)原式=4x 2﹣y 2﹣4x 2+4xy ﹣y 2=4xy ﹣2y 2.【点睛】考核知识点:整式乘法.熟记乘法公式是关键.25.11a a +- 1+ 【解析】【分析】 先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】211()22a a a a -+÷++ =2221221a a a a a ++++-g =11a a +-当1a =时原式1 【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算是解题的关键.。

2020年初二数学上期末一模试题(附答案)(1)

2020年初二数学上期末一模试题(附答案)(1)

2020年初二数学上期末一模试题(附答案)(1)一、选择题1.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠ D .12OCED S CD OE =⋅四边形 2.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上( )根木条.A .1B .2C .3D .4 3.如果a cb d =成立,那么下列各式一定成立的是( ) A .a dc b = B .ac c bd b = C .11a c b d ++= D .22a b c d b d++= 4.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣65.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+6.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 7.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙8.已知关于x 的分式方程12111m x x --=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3 B .m <4C .m ≤4且m ≠3D .m >5且m ≠6 9.如图,在△ABC 中,∠C=90°,以点B 为圆心,任意长为半径画弧,分别交AB 、BC 于点M 、N 分别以点M 、N 为圆心,以大于12MN 的长度为半径画弧两弧相交于点P 过点P 作线段BD,交AC 于点D,过点D 作DE ⊥AB 于点E,则下列结论①CD=ED ;②∠ABD=12∠ABC ;③BC=BE ;④AE=BE 中,一定正确的是( )A .①②③B .① ② ④C .①③④D .②③④10.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为A .B .C .D .11.下列计算正确的是( )A .2a a a +=B .33(2)6a a =C .22(1)1a a -=-D .32a a a ÷= 12.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( )A .3B .4C .6D .12 二、填空题13.3(5)2(5)x x x -+-分解因式的结果为__________.14.若一个多边形的内角和是900º,则这个多边形是 边形. 15.如图,直线a ∥b ,∠l =60°,∠2=40°,则∠3=______.16.若分式方程22x m x x=--有增根,则m 的值为__________. 17.若分式242x x --的值为0,则x 的值是_______. 18.分解因式:2288a a -+=_______19.若a+b=5,ab=3,则a 2+b 2=_____.20.因式分解:328x x -=______.三、解答题21.化简:2221211x x x x x x x ++⎛⎫-÷ ⎪--⎝⎭,并从﹣1,0,1,2中选择一个合适的数求代数式的值.22.(1)计算:()108613333π-⎛⎫--÷+ ⎪⎝⎭ (2)因式分解:22312x y -23.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?24.如图,四边形ABCD 中,∠A =∠C =90°,BE ,DF 分别是∠ABC ,∠ADC 的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE 与DF 有什么关系?请说明理由.25.先化简,再求值:(442aa--﹣a﹣2)÷2444aa a--+.其中a与2,3构成△ABC的三边,且a为整数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE是AOB∠的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四边形OCED=S△COE+S△DOE=111222OE CM OE DM CD OE+=g g g,但不能得出OCD ECD∠=∠,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.2.C解析:C【解析】【分析】从一个多边形的一个顶点出发,能做(n-3)条对角线,把三角形分成(n-2)个三角形.【详解】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n边形木架不变形,至少再钉上(n-3)根木条.【点睛】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n-3.3.D解析:D【解析】 已知a c b d=成立,根据比例的性质可得选项A 、B 、C 都不成立;选项D ,由2a b b +=2c d d +可得22a c b d +=+,即可得a c b d=,选项D 正确,故选D. 点睛:本题主要考查了比例的性质,熟练运用比例的性质是解决问题的关键.4.B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.5.A解析:A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积. 6.C解析:C【解析】【分析】根据等腰直角三角形的性质以及斜边上的中线的性质,易证得△CDF ≌△ADE ,即可判断①②;利用SSS 即可证明△BDE ≅△ADF ,故可判断③;利用等量代换证得BE CF AB +=,从而可以判断④.∵△ABC 为等腰直角三角形,且点在D 为BC 的中点,∴CD=AD=DB ,AD ⊥BC ,∠DCF =∠B=∠DAE=45°,∵∠EDF=90︒,又∵∠C DF +∠FDA=∠CDA=90︒,∠EDA+∠EDA=∠EDF=90︒,∴∠C DF =∠EDA ,在△CDF 和△ADE 中,DF DCF C EDA CD AD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF ≌△ADE ,∴DF=DE ,且∠EDF=90︒,故①DEF n 是等腰直角三角形,正确;CF=AE ,故②正确;∵AB=AC ,又CF=AE ,∴BE=AB-AE=AC-CF=AF ,在△BDE 和△ADF 中,BE AF DE DF BD DC =⎧⎪=⎨⎪=⎩,∴△BDE ≅△ADF ,故③正确;∵CF=AE ,∴BE CF BE AE AB EF +=+=≠,故④错误;综上:①②③正确故选:C .【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.7.B解析:B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC 全等,甲与△ABC 不全等. 详解:乙和△ABC 全等;理由如下:在△ABC 和图乙的三角形中,满足三角形全等的判定方法:SAS ,所以乙和△ABC 全等;在△ABC 和图丙的三角形中,满足三角形全等的判定方法:AAS ,所以丙和△ABC 全等;不能判定甲与△ABC 全等;点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.A解析:A【解析】【详解】方程两边同时乘以x -1得,1-m -(x -1)+2=0,解得x =4-m .∵x 为正数,∴4-m >0,解得m <4.∵x ≠1,∴4-m ≠1,即m ≠3.∴m 的取值范围是m <4且m ≠3.故选A .9.A解析:A【解析】【分析】由作法可知BD 是∠ABC 的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL 可得Rt △BDC≌Rt △BDE,故BC=BE ,③正确,【详解】解:由作法可知BD 是∠ABC 的角平分线,故②正确,∵∠C=90°, ∴DC ⊥BC ,又DE ⊥AB ,BD 是∠ABC 的角平分线,∴CD=ED ,故①正确,在Rt △BCD 和 Rt △BED 中,DE DC BD BD =⎧⎨=⎩, ∴△BCD≌△BED ,∴BC=BE ,故③正确.故选:A.【点睛】本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键. 10.B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.11.D解析:D【解析】【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.【详解】解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.12.B解析:B【解析】【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数,即可得方程:x+x=180,解此方程即可求得答案.【详解】设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数,∴这个正多边形的一个内角为: x°,∴x+x=180,解得:x=900,∴这个多边形的边数是:360°÷90°=4.故选B.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,方程思想的应用是解题的关键.二、填空题13.(x-5)(3x-2)【解析】【分析】先把代数式进行整理然后提公因式即可得到答案【详解】解:==;故答案为:【点睛】本题考查了提公因式法分解因式解题的关键是熟练掌握分解因式的几种方法解析:(x-5)(3x-2)【解析】【分析】先把代数式进行整理,然后提公因式(5)x -,即可得到答案.【详解】解:3(5)2(5)x x x -+-=3(5)2(5)x x x ---=(5)(32)x x --;故答案为:(5)(32)x x --.【点睛】本题考查了提公因式法分解因式,解题的关键是熟练掌握分解因式的几种方法. 14.七【解析】【分析】根据多边形的内角和公式列式求解即可【详解】设这个多边形是边形根据题意得解得故答案为【点睛】本题主要考查了多边形的内角和公式熟记公式是解题的关键解析:七【解析】【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.15.80°【解析】【分析】根据平行线的性质求出∠4再根据三角形内角和定理计算即可【详解】∵a ∥b ∴∠4=∠l=60°∴∠3=180°-∠4-∠2=80°故答案为80°【点睛】本题考查了平行线的性质三角形解析:80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a ∥b ,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.16.【解析】【分析】先将分式方程去分母转化为整式方程再由分式方程有增根得到然后将的值代入整式方程求出的值即可【详解】∵∴∵若分式方程有增根∴∴故答案是:【点睛】本题考查了分式方程的增根掌握增根的定义是解 解析:2-【解析】【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根得到2x =,然后将x 的值代入整式方程求出m 的值即可.【详解】 ∵22x m x x=-- ∴x m =- ∵若分式方程22x m x x=--有增根 ∴2x =∴2m =-故答案是:2-【点睛】本题考查了分式方程的增根,掌握增根的定义是解题的关键. 17.-2【解析】【分析】根据分式值为零的条件可得x2-4=0且x ﹣2≠0求解即可【详解】由题意得:x2-4=0且x ﹣2≠0解得:x=﹣2故答案为:-2【点睛】此题主要考查了分式的值为零的条件需同时具备两解析:-2【解析】【分析】根据分式值为零的条件可得x 2-4=0,且x ﹣2≠0,求解即可.【详解】由题意得:x 2-4=0,且x ﹣2≠0,解得:x=﹣2故答案为:-2【点睛】此题主要考查了分式的值为零的条件,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.18.【解析】=2()=故答案为解析:22(2)a -【解析】22a 8a 8-+=2(2a 4a 4-+)=()22a 2-.故答案为()22a 2-. 19.19【解析】试题分析:首先把等式a+b=5的等号两边分别平方即得a2+2ab+b 2=25然后根据题意即可得解解:∵a+b=5∴a2+2ab+b2=25∵ab=3∴a2+b2=19故答案为19考点:完解析:19【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a 2+2ab+b 2=25,然后根据题意即可得解.解:∵a+b=5,∴a 2+2ab+b 2=25,∵ab=3,∴a 2+b 2=19.故答案为19.考点:完全平方公式.20.【解析】【分析】提取公因式2x 后再利用平方差公式因式分解即可【详解】故答案为:【点睛】本题考查了因式分解熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键解析:()()222x x x +-【解析】【分析】提取公因式2x 后再利用平方差公式因式分解即可.【详解】()()()322824?222x x x x x x x -=-=+-.故答案为:()()222x x x +-.【点睛】本题考查了因式分解,熟练运用提公因式法和运用公式法进行因式分解是解决问题的关键.三、解答题21.1x x +,x=2时,原式=23. 【解析】【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=2代入计算即可求出值.【详解】 解:2221211x x x x x x x ++⎛⎫-÷ ⎪--⎝⎭=2221(1)(1)(1)x x x x x x x ⎡⎤+-÷⎢⎥--⎣⎦=21(1)x x x --•22(1)x x + =(1)(1)(1)x x x x +--•22(1)x x + =1x x + 由题意可知,x ≠0,±1 ∴当x=2时,原式=23. 【点睛】本题考查分式的化简求值及分式成立的条件.22.(1)5-;(2)3(2)(2)x y x y +-.【解析】【分析】(1)先算幂的运算,再算乘除,加减;(2)先提公因式,再运用平方差公式.【详解】(1)解:原式2133=-+193=-+5=-(2)解:原式223(4)x y =-3(2)(2)x y x y =+-考核知识点:整式运算,因式分解.掌握基本方法是关键.23.(1)该种干果的第一次进价是每千克5元.(2)超市销售这种干果共盈利5820元.【解析】【分析】【详解】试题分析:(1)、设第一次进价x元,第二次进价为1.2x,根据题意列出分式方程进行求解;(2)、根据利润=销售额-进价.试题解析:(1)、设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得9000(120%)x+=2×3000x+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)、[30009000-55(120%)⨯+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.考点:分式方程的应用.24.(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,考点:平行线的判定与性质.25.﹣a 2+2a ,-3【解析】分析:先算减法,再把除法变成乘法,算乘法,求出a ,最后代入请求出即可. 详解:原式22(44)(4)(2)24a a a a a ----=⋅--, 22(4)(2)2.24a a a a a a a ---=⋅=-+-- ∵a 与2,3构成△ABC 的三边,且a 为整数,∴a 为2、3、4,当a =2时,a −2=0,不行舍去;当a =4时,a −4=0,不行,舍去;当a =3时,原式=−3.点睛:考查分式混合运算以及三角形的三边关系,掌握分式混合运算的法则是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用.
11.A
解析:A 【解析】
【分析】
利用等边三角形三边相等,结合已知 BC=BD,易证 ABD 、 利用等边对等角及三角形内角和定理即可求得 BCD 的度数.
【详解】
CBD 都是等腰三角形,
ABC 是等边三角形,
AC AB BC, 又 BC BD , AB BD , BAD BDA 20
24.如图, AB / /CD ,直线 EF 分别交 AB、CD 于 E、F 两点, BEF 的平分线交 CD 于 点 G,若 EFG 72 ,求 EGF 的度数.
25.已知 a= m +2012,b= m +2013,c= m +2014,求 a2+b2+c2-ab-bc-ca 的值.
2014
2014
(2)
2a b
2
1 ab. ab b 4
22.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如
“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的 6 位
数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个
多项式分解因式,如多项式:x3+2x2﹣x﹣2 因式分解的结果为(x﹣1)(x+1)(x+2), 当 x=18 时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码 171920. (1)根据上述方法,当 x=21,y=7 时,对于多项式 x3﹣xy2 分解因式后可以形成哪些数 字密码?(写出两个)
④取一点 K 使 K 和 B 在 AC 的两侧;
所以 BH 就是所求作的高.其中顺序正确的作图步骤是( )
A.①②③④
B.④③①②
C.②④③①
D.④③②①
3.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )
A. (a b)(a b) a2 b2
B. (a b)2 a2 2ab b2
16.数学家们在研究 15,12,10 这三个数的倒数时发现: - = - .因此就将具有 这样性质的三个数称为调和数,如 6,3,2 也是一组调和数.现有一组调和数:x,5,3(x >5),则 x=________.
17.若分式方程 x m 有增根,则 m 的值为__________. x2 2x
∴CM=DM,OM⊥CD,
∴S 四边形 OCED=S△COE+S△DOE= 1 OE CM 1 OE DM 1 CD OE ,
2
2
2
但不能得出 OCD ECD ,
∴A、B、D 选项正确,不符合题意,C 选项错误,符合题意,
故选 C. 【点睛】 本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面 积等,熟练掌握 5 种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线 段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.
A. CEO DEO
B. CM MD
C. OCD ECD
D. S四边形OCED
1 CD OE 2
2.如图所示,小兰用尺规作图作△ABC 边 AC 上的高 BH,作法如下:
①分别以点 DE 为圆心,大于 DE 的一半长为半径作弧两弧交于 F;
②作射线 BF,交边 AC 于点 H;
③以 B 为圆心,BK 长为半径作弧,交直线 AC 于点 D 和 E;
A.∠ABC=∠DCB
பைடு நூலகம்
B.∠ABD=∠DCA
C.AC=DB
二、填空题
D.AB=DC
13.分解因式: 3a3 27a ___________________.
14.如果 x2 kx 4 是一个完全平方式,那么 k 的值是__________.
15.如图,小新从 A 点出发,沿直线前进 50 米后向左转 30°,再沿直线前进 50 米,又向 左转 30°,…照这样下去,小新第一次回到出发地 A 点时,一共走了__米.
5.A
解析:A 【解析】 【分析】 【详解】 甲队每天修路 xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,
所以, 120 100 . x x 10
故选 A.
6.C
解析:C 【解析】 【分析】 先分别以点 O、点 A 为圆心画圆,圆与 x 轴的交点就是满足条件的点 P,再作 OA 的垂直 平分线,与 x 轴的交点也是满足条件的点 P,由此即可求得答案. 【详解】 如图,当 OA=OP 时,可得 P1、P2 满足条件, 当 OA=AP 时,可得 P3 满足条件, 当 AP=OP 时,可得 P4 满足条件, 故选 C.
4.C
解析:C 【解析】 【分析】 根据三角形三边关系可得 5﹣3<a<5+3,解不等式即可求解. 【详解】 由三角形三边关系定理得:5﹣3<a<5+3,
即 2<a<8, 由此可得,符合条件的只有选项 C, 故选 C. 【点睛】 本题考查了三角形三边关系,能根据三角形的三边关系定理得出 5﹣3<a<5+3 是解此题的 关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.
A.4 B.6 C.8 D.10
10.已知 1 1 =1,则代数式 2m mn 2n 的值为( )
mn
m 2mn n
A.3
B.1
C.﹣1
D.﹣3
11.如图, ABC 是等边三角形, BC BD, BAD 200 ,则 BCD 的度数为( )
A.50°
B.55°
C.60°
D.65°
12.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB 的是( )
A. 120 100 x x 10
B. 120 100 x x 10
C. 120 100 x 10 x
D. 120 100 x 10 x
6.在平面直角坐标系中,点 A 坐标为(2,2),点 P 在 x 轴上运动,当以点 A,P、O 为
顶点的三角形为等腰三角形时,点 P 的个数为( )
A.2 个
CBD 1800 BAD BDA ABC
,
1800 200 200 600 800 BC BD ,
BCE 1 (180 CBD) 1 (180 80) 50 ,
2
2
故选:A.
【点睛】
本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌
握性质和定理是正确解答本题的关键.
mn
m 2mn n
得.
【详解】
∵ 1 1 =1, mn
∴ n m =1, mn mn
则 n m =1, mn
∴mn=n-m,即 m-n=-mn,
则原式= 2m n mn = 2mn mn = 3mn =-3,
m n 2mn mn 2mn mn
故选 D.
【点睛】
本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运
B.3 个
C.4 个
D.5 个
7.在平面直角坐标系内,点 O 为坐标原点, A(4, 0) , B(0,3) ,若在该坐标平面内有
以 点 P (不与点 A、B、O 重合)为一个顶点的直角三角形与 RtABO 全等,且这个
以点 P 为顶点的直角三角形 RtABO 有一条公共边,则所有符合的三角形个数为
18.分解因式:x2-16y2=_______.
19.若 xm = 2 , xn = 3 ,则 xm2n 的值为_____.
20.如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC,若 AD=6,则 CD=_______.
三、解答题
21.计算:
(1)4(x﹣1)2﹣(2x+5)(2x﹣5);
( )。
A. 9
B. 7
C. 5
D. 3
8.如图,在△ABC 中,CD 平分∠ACB 交 AB 于点 D, DE AC 于点 E, DF BC 于
点 F,且 BC=4,DE=2,则△BCD 的面积是( )
A.4
B.2
C.8
D.6
9.已知一个三角形的两边长分别为 8 和 2,则这个三角形的第三边长可能是( )
则则所有符合条件的三角形个数为 9,
故选:A.
【点睛】
本题考查的知识点是直角三角形全等的判定和坐标与图形性质,解题关键是注意不要漏解.
8.A
解析:A 【解析】
【分析】
根据角平分线的性质定理可得 DF=DE;最后根据三角形的面积公式求解即可. 【详解】
:∵CD 平分∠ACB,DE⊥AC,DF⊥BC, ∴DF=DE=2,
(2)若多项式 x3+(m﹣3n)x2﹣nx﹣21 因式分解后,利用本题的方法,当 x=27 时可以 得到其中一个密码为 242834,求 m、n 的值. 23.如图,四边形 ABCD 中,∠B=90°, AB//CD,M 为 BC 边上的一点,AM 平分∠BAD, DM 平分∠ADC,
求证:(1) AM⊥DM; (2) M 为 BC 的中点.
2.B
解析:B 【解析】 【分析】 根据直线外一点作已知直线的垂线的方法作 BH⊥AC 即可. 【详解】 用尺规作图作△ABC 边 AC 上的高 BH,做法如下: ④取一点 K 使 K 和 B 在 AC 的两侧; ③以 B 为圆心,BK 长为半径作弧,交直线 AC 于点 D 和 E; ①分别以点 D、E 为圆心,大于 DE 的长为半径作弧两弧交于 F; ②作射线 BF,交边 AC 于点 H; 故选 B. 【点睛】 考查了复杂作图,关键是掌握线段垂直平分线、垂线的作法.
∴S
BCD
1 2
• BC DF
1 4 2 2
相关文档
最新文档