(2015-2017)三年高考真题精编解析-椭圆及其综合应用
三年高考(2015-2017)高考数学试题解析14椭圆及其相关的综合问题文
专题14 椭圆及其相关的综合问题1。
【2017浙江,2】椭圆22194x y +=的离心率是A .133B .53C .D .【答案】B【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于c b a,,的方程或不等式,再根据c b a ,,的关系消掉得到c a,的关系式,建立关于c b a ,,的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2。
【2017课标1,文12】设A 、B 是椭圆C :2213x y m +=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .(0,3[9,)+∞C .(0,1][4,)+∞D .(0,3][4,)+∞【答案】A 【解析】试题分析:当03m <<,焦点在轴上,要使C 上存在点M 满足120A M B ∠=,则ta n603a b ≥=,即33m ,得01m <≤;当3m >,焦点在y轴上,要使C 上存在点M满足120A M B ∠=,则ta n603a b ≥=,33m ,得9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A .【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题.解答问题的关键是利用条件确定b a ,的关系,求解时充分借助题设条件120=∠AMB 转化为360tan =≥ b a ,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论. 3。
【2017课标3,文11】已知椭圆C :22221x y a b +=,(a 〉b 〉0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20b x a ya b -+=相切,则C 的离心率为( )A .63 B .33C .23D .【答案】A【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等。
三年高考2015_2017高考数学试题分项版解析专题01集合理20171102354
专题01 集合1.【2017课标1,理1】已知集合A={x|x<1},B={x|3x 1},则()A.A B {x|x 0}B.A B RC.A B {x|x 1}D.A B【答案】A【解析】由3x 1可得3x 30,则x 0,即B {x|x 0},所以A B {x|x 1}{x|x 0}{x|x 0},A B {x|x 1}{x|x 0}{x|x 1},故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2.【2017课标II,理】设集合A1,2,4,.若A1,则x x24x m0()A.1,3B.1,0 C.1,3 D.1,5【答案】C【解析】由A 1得1B,即x 1是方程x24x m 0的根,所以14m 0,m 3,B1,3,故选C.【考点】交集运算,元素与集合的关系3.【2017课标3,理1】已知集合A =(x,y│)x y 1,B =(x,y│)y x,则A B中22元素的个数为()A.3 B.2 C.1 D.0【答案】B【解析】集合中的元素为点集,由题意,结合A 表示以0,0为圆心,为半径的单位圆上所有点组成的集合,集合B表示直线y x上所有的点组成的集合,圆x2y21与直线y x11,1,1,1,则A B中有两个元素.故选B.相交于两点【考点】交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.【2017北京,理1】若集合A={x|–2<x<1},B={x|x<–1或x>3},则A B=()(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}【答案】A【解析】利用数轴可知A B x2x1,故选A.【考点】集合的运算5.【2017浙江,1】已知P{x|1x1},Q{0x2},则P Q()A.(1,2)B.(0,1)C.(1,0)D.(1,2)【答案】A【解析】利用数轴,取P,Q所有元素,得P Q(1,2).【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.【2017天津,理1】设集合A{1,2,6},B{2,4},C{x R|1x5},则(A B)C()(A){2}(B){1,2,4}(C){1,2,4,6}(D){x R|1x5}【答案】B【解析】(A B)C{1,2,4,6}[1,5]{1,2,4},选B.【考点】集合的运算2【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进 行处理.7.【 2016课 标 1,理 1】 设 集 合 Ax xx,x 2x 30,则 AB24 3 0( )3(A )3,2 3(B ) 3, 23(C ) 1,23 (D ),3 2【答案】D 【解析】因为{ | 2 -4 3 0}={ |1 3}, ={ | 3}, A x x xx xB x x所以23 3A B ={x |1 x 3}{x |x }={x | x 3}, 故选 D.2 2考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要 把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集 之间的运算,常借助数轴进行运算. 8.【2016新课标 3理数】设集合 Sx | (x 2)(x 3)0,Tx | x,则 S T( )(A) 2,3] (B)(-,2]U 3,+ ) (C) 3,+) (D)(0,2]U 3,+ )【答案】D 【解析】由 (x 2)(x 3)0解得 x 3或 x 2 ,所以 S {x | x 2│ x 3},所以 ST {x | 0 x 2│ x 3},故选 D .考点:1、不等式的解法;2、集合的交集运算.9.【2016新课标 2理数】已知集合 A {1,2, 3}, B{x | (x 1)(x 2) 0, xZ },则A B ( )(A ){1}(B ){1,2}(C ){0,1,2,3}(D ){1,0,1,2,3}【答案】C【解析】3试题分析:集合B{x|1x2,x Z}{0,1},而A{1,2,3},所以A B{0,1,2,3},故选C.考点:集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.10. 【2016山东理数】设集合A{y|y2x,x R},B{x|x210},则A B=()(A)(1,1)(B)(0,1)(C)(1,)(D)(0,)【答案】C【解析】试题分析:A{y|y0},B{x|1x1},则A B(-1,+),选C.考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.11.【2016浙江理数】已知集合P x R x Q x R x2则P(Q)13,4,ðR()A.2,3] B.( -2,3 ] C.1,2) D.(,2][1,)【答案】B【解析】试题分析:根据补集的运算得ðR Q x x24(2,2),P(ðR Q)(2,2)1,32,3.故选B.考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,x2的系数一定要保证为正数,若x2的系数是负数,一定要化为正数,否则很容易出错.12.【2016年北京理数】已知集合A{x||x|2},B{1,0,1,2,3},则A B4()A.{0,1}B.{0,1,2}C.{1,0,1}D.{1,0,1,2}【答案】C【解析】试题分析:由A{x|2x2},得A B{1,0,1},故选C.考点:集合交集.13.【2016年四川理数】设集合A{x|2x2},Z为整数集,则A Z中元素的个数是()(A)3 (B)4 (C)5 (D)6【答案】C【解析】由题意,A Z{2,1,0,1,2},故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.14.【2015重庆,理1】已知集合A=1,2,3,B=2,3,则()A、A=BB、A B=C、AØBD、BØA 【答案】D【解析】由于2A,2B,3A,3B,1A,1B,故A、B、C均错,D是正确的,选D.【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.515.【2015天津,理1】已知全集U1,2,3,4,5,6,7,8,集合A2,3,5,6,集合B ,则集合1,3,4,6,7AðB ( )U(A )2,5(B )3,6(C )2,5,6(D )2,3,5,6,8【答案】A【解析】ð{2,5,8},所以{2,5}U BAðB,故选A.U【考点定位】集合的运算.【名师点睛】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题.16.【2015四川,理1】设集合A {x|(x 1)(x 2)0},集合B {x |1x 3},则A B=()(A){x|1x 3}(B){x|1x 1}(C){x |1x 2} (D){x|2x 3}【答案】A【解析】A {x|1x 2},B {x |1x 3},A B {x|1x 3},选A.【考点定位】集合的基本运算.17.【2015广东,理1】若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M N=()A.B .1,4C.0D .1,4【答案】A.【解析】因为Mx|x4x 104,1,Nx|x4x101,4,所以M N,故选A.【考点定位】一元二次方程的解集,集合的基本运算.【名师点睛】本题主要考查一元二次方程的解集,有限集合的交集运算和运算求解能力,属于容易题.618.【2015浙江,理1】已知集合P{x x22x0},Q{x1x2},则(ð)R P Q()A.[0,1)B. (0,2]C. (1,2)D. [1,2]【答案】C.【解析】由题意得,C P(0,2)R,∴(ðR P)Q(1,2),故选C.27. 【2016天津理数】已知集合A{1,2,3,4},B{y|y3x2,x A},则A B=()(A){1}(B){4}(C){1,3}(D){1,4}【答案】D【解析】试题分析:B{1,4,7,10},A B{1,4}.选D.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.28. 【2015陕西,理1】设集合M{x|x2x},N{x|lg x0},则M N()A.[0,1]B.(0,1]C.[0,1)D.(,1]【答案】A【解析】,x lg x0x0x1,所以0,1,x x2x0,1故选A.【考点定位】1、一元二次方程;2、对数不等式;3、集合的并集运算.【名师点晴】本题主要考查的是一元二次方程、对数不等式和集合的并集运算,属于容易题.解题时要看清楚是求“”还是求“”和要注意对数的真数大于,否则很容易出现错误.729.【2015新课标2,理1】已知集合A {2,1,0,1,2},Bx(x 1)(x 20,则A B ()A.A1,0B .0,1C .1,0,1D .0,1,2【答案】A【解析】由已知得Bx 2x 1,故A B1,0,故选A.【考点定位】集合的运算.【名师点睛】本题考查一元二次不等式解法和集合运算,要求运算准确,属于基础题.综上所述,“存在集合C使得A C,B C C是“A B”的充要条件.U30.【2015福建,理1】若集合Ai i2i3i 4(是虚数单位),B1,1,则A B等,,,于( )A .1B .1C .1,1D.【答案】C【解析】由已知得Ai ,1,i,1,故A B1,1,故选C.【考点定位】1、复数的概念;2、集合的运算.【名师点睛】本题考查复数的概念和集合的运算,利用i21和交集的定义求解,属于基础题,要注意运算准确度.31.【2017江苏,1】已知集合A {1,2},B {a,a23},若A B {1}则实数的值为▲.【答案】1【解析】由题意1B,显然a233,所以a 1,此时a234,满足题意,故答案为1.【考点】元素的互异性8满足“互异性”而导致解题错误.(3)防范空集.在解决有关A B,A B等集合问题时,往往忽略空集的情况,一定先考虑是否成立,以防漏解.32.【2016江苏卷】已知集合A{1,2,3,6},B{x|2x3},则A B=________▲________.1,2【答案】【解析】试题分析:A B{1,2,3,6}{x|2x3}{1,2}考点:集合运算33.【2015江苏,1】已知集合A1,2,3,B2,4,5,则集合A B中元素的个数为_______.【答案】5【解析】A B{1,2,3}{2,4,5}{1,2,3,4,5},,,则集合A B中元素的个数为5个.【考点定位】集合运算【名师点晴】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A或属于集合B的元素的个数. 本题需注意检验集合的元素是否满足互异性,否则容易出错.9。
三年高考(2015-2017)数学(理)试题分项版解析+Word版含解析-专题01 集合
1.【2017课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则( )A .{|0}AB x x =<B .A B =RC .{|1}A B x x =>D .A B =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以 {|1}{|0}{|0}A B x x x x x x =<<=< ,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.【考点】集合的运算,指数运算性质.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =( ) A.{}1,3- B.{}1,0 C.{}1,3 D.{}1,5【答案】C【解析】由{}1A B = 得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =,故选C.【考点】 交集运算,元素与集合的关系3.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为( )A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意,结合A 表示以()0,0 为圆心, 为半径的单位圆上所有点组成的集合,集合B 表示直线y x = 上所有的点组成的集合,圆221x y += 与直线y x = 相交于两点()1,1 ,()1,1-- ,则A B 中有两个元素.故选B .【考点】 交集运算;集合中的表示方法.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.【2017北京,理1】若集合A ={x |–2<x <1},B={x |x <–1或x >3},则A B =( )(A ){x |–2<x <–1} (B ){x |–2<x <3}(C ){x |–1<x <1} (D ){x |1<x <3}【答案】A 【解析】利用数轴可知{}21A B x x =-<<- ,故选A.【考点】集合的运算5.【2017浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P ( )A .)2,1(-B .)1,0(C .)0,1(-D .)2,1(【答案】A【解析】利用数轴,取Q P ,所有元素,得=Q P )2,1(-.【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.6.【2017天津,理1】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =( )(A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R 【答案】B【解析】(){1246}[15]{124}A B C =-= ,,,,,, ,选B.【考点】 集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.7.【2016课标1,理1】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫⎪⎝⎭ 【答案】D 【解析】因为23{|-430}={|13},={|},2A x x x x xB x x =+<<<>所以33={|13}{|}={|3},22A B x x x x x x <<><< 故选D. 考点:集合的交集运算【名师点睛】集合是每年中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.8.【2016新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T = ( )(A) 2,3] (B)(-∞ ,2]U 3,+∞) (C) 3,+∞) (D)(0,2]U 3,+∞)【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥ 或,故选D .考点:1、不等式的解法;2、集合的交集运算.9.【2016新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,,【答案】C【解析】试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}= ,故选C.考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.10. 【2016山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞(D )(0,)+∞【答案】C【解析】试题分析:}0|{>=y y A ,}11|{<<-=x x B ,则A B =∞ (-1,+),选C.考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.11.【2016浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( )A .2,3]B .( -2,3 ]C .1,2)D .(,2][1,)-∞-⋃+∞【答案】B【解析】 试题分析:根据补集的运算得{}[](]24(2,2),()(2,2)1,32,3=<=-∴=-=- R R Q x x P Q 痧.故选B . 考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,2x 的系数一定要保证为正数,若2x 的系数是负数,一定要化为正数,否则很容易出错.12.【2016年北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B = ( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-【答案】C【解析】试题分析:由}22|{<<-=x x A ,得}1,0,1{-=B A ,故选C.考点:集合交集.13.【2016年四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )6【答案】C【解析】由题意,{2,1,0,1,2}A Z =-- ,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.14.【2015重庆,理1】已知集合A ={}1,2,3,B ={}2,3,则( )A 、A =B B 、A ⋂B =∅C 、A ØBD 、B ØA【答案】D【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D .【考点定位】本题考查子集的概念,考查学生对基础知识的掌握程度.【名师点晴】考查集合的关系,涉及集合的相等.集合的交集运算,子集等概念,是送分题.15.【2015天津,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B = ð( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8【答案】A【解析】{2,5,8}U B =ð,所以{2,5}U A B = ð,故选A. 【考点定位】集合的运算.【名师点睛】本题主要考查集合的运算,涉及全集、补集、交集相关概念和求补集、交集的运算,是基础题.16.【2015四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B = ( )(){|13}A x x -<<(){|11}B x x -<< (){|12}C x x <<(){|23}D x x <<【答案】A【解析】 {|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<< ,选A.【考点定位】集合的基本运算.17.【2015广东,理1】若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N = ( )A .∅B .{}1,4--C .{}0D .{}1,4【答案】A .【解析】因为()(){}{}|4104,1M x x x =++==--,()(){}{}|4101,4N x x x =--==,所以M N =∅ ,故选A .【考点定位】一元二次方程的解集,集合的基本运算.【名师点睛】本题主要考查一元二次方程的解集,有限集合的交集运算和运算求解能力,属于容易题. 18.【2015浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q = ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]【答案】C.【解析】由题意得,)2,0(=P C R ,∴()(1,2)R P Q = ð,故选C.27. 【2016天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( )(A ){1} (B ){4} (C ){1,3}(D ){1,4}【解析】试题分析:{1,4,7,10},A B {1,4}.B == 选D .考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.28. 【2015陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A 【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N = ,故选A .【考点定位】1、一元二次方程;2、对数不等式;3、集合的并集运算.【名师点晴】本题主要考查的是一元二次方程、对数不等式和集合的并集运算,属于容易题.解题时要看清楚是求“ ”还是求“ ”和要注意对数的真数大于,否则很容易出现错误.29.【2015新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B = ( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2【答案】A 【解析】由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A .【考点定位】集合的运算.【名师点睛】本题考查一元二次不等式解法和集合运算,要求运算准确,属于基础题. 综上所述,“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的充要条件.30.【2015福建,理1】若集合{}234,,,A i i i i = (是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .【解析】由已知得{},1,,1A i i =--,故A B = {}1,1-,故选C .【考点定位】1、复数的概念;2、集合的运算.【名师点睛】本题考查复数的概念和集合的运算,利用21i =-和交集的定义求解,属于基础题,要注意运算准确度.31.【2017江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B = 则实数的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】元素的互异性满足“互异性”而导致解题错误.(3)防范空集.在解决有关,A B A B =∅⊆ 等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.32.【2016江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ________▲________.【答案】{}1,2-【解析】试题分析:{1,2,3,6}{|23}{1,2}A B x x =--<<=-考点:集合运算33.【2015江苏,1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5A 中元素的个数为5个.【解析】{123}{245}{12345}A B==,,,,,,,,,,,则集合B【考点定位】集合运算【名师点晴】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A或属于集合B的元素的个数. 本题需注意检验集合的元素是否满足互异性,否则容易出错.。
专题25 选修部分—三年高考(2015-2017)数学(文)真题分项版解析(解析版)
1.【2017课标1,文22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数).(1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到la .【答案】(1)(3,0),2124(,)2525-;(2)8a =或16a =-.试题解析:(1)曲线C 的普通方程为2219x y +=.当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩.从而C 与l 的交点坐标为(3,0),2124(,)2525-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l的距离为d =.当4a ≥-时,d=8a =;当4a <-时,d=16a =-.综上,8a =或16a =-.【考点】参数方程【名师点睛】本题为选修内容,先把直线与椭圆的参数方程化为直角坐标方程,联立方程,可得交点坐标,利用椭圆的参数方程,求椭圆上一点到一条直线的距离的最大值,直接利用点到直线的距离公式,表达椭圆上的点到直线的距离,利用三角有界性确认最值,进而求得参数a 的值.2【2017课标1,文23】已知函数4)(2++-=ax x x f ,|1||1|)(-++=x x x g .(1)当1=a 时,求不等式)()(x g x f ≥的解集;(2)若不等式)()(x g x f ≥的解集包含[–1,1],求a 的取值范围.【答案】(1){|1x x -<≤;(2)[1,1]-.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而1x <≤所以()()f x g x ≥的解集为{|1x x -<≤.(2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤.所以a 的取值范围为[1,1]-.【考点】不等式选讲【名师点睛】形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞(此处设a b <)三个部分,在每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)图像法:作出函数1||||y x a x b =-+-和2y c =的图像,结合图像求解.3.【2017课标II ,文22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。
20152017解析几何全国卷高考真题
2015-2017解析几何全国卷高考真题2015-2017解析几何全国卷高考真题1、(2015年1卷5题)已知M (0,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值范围是( )(A )(-3333) (B )(-3636)(C )(2222) (D )(2323) 【答案】A 【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF •=0000(3,)(3,)x y x y --•- =2220003310x y y +-=-<,解得033y << A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.2、(2015年1卷14题)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【答案】22325()24x y -+=【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=.考点:椭圆的几何性质;圆的标准方程3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N 两点, (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 【答案】0ax y a --=0ax y a ++=(Ⅱ)存在【解析】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得(2,)M a a ,(22,)N a -,或(22,)M a -,(2,)N a a .∵12y x'=,故24x y =在x =22a处的到数值为a C 在(22,)a a 处的切线方程为(2)y a a x a --0ax y a --=.故24x y =在x =-22a处的到数值为a C 在(22,)a a -处的切线方程为(2)y a a x a -=-+0ax y a ++=. 故所求切线方程为ax y a --=0ax y a ++=.(Ⅱ)存在符合题意的点,证明如下: 设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k .将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x xk x x a+==-. ∴121212y b y bk kx x --+=+=1212122()()kx xa b x x x x +-+=()k a b a +.当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM=∠OPN ,所以(0,)P a -符合题意. 考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力4、(2015年2卷7题)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【解析】由已知得321143ABk-==--,27341CBk+==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得262y =±-,所以46MN =,故选C .考点:圆的方程.5、(2015年2卷11题).已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A .5 B .2 C .3 D .2 【解析】设双曲线方程为22221(0,0)x y a b a b -=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a=,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222ab ac ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.6、(2015年2卷20题)(本题满分12分)已知椭圆222:9(0)C xy m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M.(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y . 将y kx b=+代入2229xy m +=得2222(9)20kx kbx b m +++-=,故12229M x x kbx k +==-+,299M M by kx b k =+=+.于是直线OM 的斜率9M OMM y kx k==-,即9OM k k ⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值.(Ⅱ)四边形OAPB 能为平行四边形.因为直线l 过点(,)3m m ,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠.由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为Px .由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981Pk m xk =+,即239Pxk =+.将点(,)3mm 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2PMxx =239k =+2(3)23(9)mk k k -⨯+.解得147k =247k=因为0,3iik k >≠,1i =,2,所以当l 的斜率为4747OAPB 为平行四边形.考点:1、弦的中点问题;2、直线和椭圆的位置关系.7、(2016年1卷5题)(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )()1,3- (B )(3- (C )()0,3 (D )(3 【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c不是c,这一点易出错.8、(2016年1卷10题)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=2,|DE|=25则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.9、(2016年1卷20题)(本小题满分12分)设圆222150xy x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程; (II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[试题解析:(Ⅰ)因为||||AC AD =,AC EB //,故ADCACD EBD ∠=∠=∠,所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+. 又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ).(Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k .则3482221+=+k k x x ,341242221+-=k k x x . 所以34)1(12||1||22212++=-+=k k x x k MN .过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积341112||||212++==k PQ MN S .可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.10、(2016年2卷4题)圆2228130xy x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=(A )43- (B )34- (C 3 (D )2 【解析】A 圆化为标准方程为:,2228130xy x y +--+=()()22144x y -+-=故圆心为,,解得,故选A .11、(2016年2卷11题)已知1F ,2F 是双曲线E :22221x y a b -=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin2113MF F ∠=,则E 的离心率为2(B )32(C 3 (D )2 【解析】A 离心率,由正弦定理得.12、(2016年2卷20题)(本小题满分12分) 已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围. 【解析】 ⑴当时,椭圆E 的方程为,A点坐标为,则直线AM 的方程为.()14,24111a d a +-==+43a =-1221F F e MF MF =-12211222sin 321sin sin 13F F M e MF MF F F ====---4t =22143x y +=()20-,()2y k x =+联立并整理得,解得或,则因为,所以因为,, ,整理得, 无实根,所以.所以的面积为.⑵直线AM 的方程为, 联立并整理得,解得或所以所以因为()221432x y y k x ⎧+=⎪⎨⎪=+⎩()2222341616120k xk x k +++-=2x =-228634k x k -=-+2222286121213434k AM k k k k -=++=+++AM AN ⊥2221121211413341AN k k k kk ⎛⎫=+-=+ ⎪⎝⎭⎛⎫++⋅- ⎪⎝⎭AM AN =0k >2221212114343k k k k k++++()()21440k k k --+=2440k k -+=1k =AMN △22111214*********AM ⎫=+=⎪+⎭(y k x t =+(2213x y t y k x t ⎧+=⎪⎨⎪=+⎩()222223230tk xtk x t k t +++-=x t =23t tk t x -=2223611t tk t tAM k t k -+=+2613t AN k k k=++2AM AN =所以,整理得,.因为椭圆E 的焦点在x 轴,所以,即,整理得.13、(2016年3卷11题)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;22662113t t k k k k+=++23632k k t k -=-3t >236332k kk ->-()()231202kk k +-<-322k <(2)建立,,a b c的齐次等式,求得ba或转化为关于e的等式求解;(3)通过特殊值或特殊位置,求出e.14、(2016年3卷16题)已知直线l:330mx y m++=与圆2212x y+=交于,A B两点,过,A B分别做l的垂线与x轴交于,C D两点,若23AB=,则||CD=__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.15、(2016年3卷20题)已知抛物线C:22y x=的焦点为F,平行于x轴的两条直线12,l l分别交C于,A B两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.试题解析:由题设)0,21(F .设by la y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---.记过BA ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分(Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR的斜率为1k ,FQ的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=,所以AR FQ. ......5分(Ⅱ)设l 与x 轴的交点为)0,(1x D , 则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆.由题设可得221211b a x a b -=--,所以01=x (舍去),11=x.设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DEABk k =可得)1(12≠-=+x x yb a .而y ba =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点. 16、(2017年1卷15题)已知双曲线2222:x y C a b-,(0a >,b >)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N两点,若60MAN ∠=︒,则C 的离心率为_______.23【解析】如图,OA a=,AN AM b ==∵60MAN ∠=︒,∴3AP =,222234OP OA PA a b =--∴2232tan 34AP OP a b θ==-又∵tan b aθ=223234b a a b =-,解得223ab =∴22123113b e a ++17、(2017年1卷20题)已知椭圆C :22221x y a b+=()0a b >>,四点()111P ,,()201P ,,331P ⎛- ⎝⎭,,431P ⎛ ⎝⎭,中恰有三点在椭圆C 上.(1)求C 的方程; (2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点将()233011P P ⎛- ⎝⎭,,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a=,21b= ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,, 221121A A P A P B y y k k m m m----+=+==-得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设()1l y kx b b =+≠∶()()1122A x y B x y ,,,联立22440y kx bx y =+⎧⎨+-=⎩,整理得()222148440k xkbx b +++-=122814kbx x k -+=+,21224414b x x k -⋅=+则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kb k b k --++=-+()()()811411k b b b -==-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.∴直线l 的方程为21y kx k =-- 当2x =时,1y =-所以l 过定点()21-,.18、(2017年2卷9题)若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C的离心率为( ) A .2 B .3 C .2D .233【命题意图】主要考查双曲线的性质及直线与圆的位置关系,意在考查考生的转化与化归思想. 【解析】解法一:常规解法根据双曲线的标准方程可求得渐近线方程为b y x a =±,根据直线与圆的位置关系可求得圆心到 渐进线的距离为3,∴ 圆心到渐近线的距离为221bab a ⋅⎛⎫+ ⎪⎝⎭,即2231b ab a ⋅=⎛⎫+ ⎪⎝⎭,解得2e =.解法二:待定系数法设渐进线的方程为y kx =,根据直线与圆的位置关系可求得圆心到渐进线的距离为3, ∴ 圆心到渐近线的距离为221k k+,即2231k k=+,解得23k=;由于渐近线的斜率与离心率 关系为221k e =-,解得2e =.19、(2017年2卷16题)已知F 是抛物线C :28yx=的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M为F N 的中点,则F N = .【命题意图】本题主要考查抛物线的定义及直线与抛物线的位置关系,意在考查考生的转化与 化归思想运算求解的能力 【解析】解法一:几何法∵ 点M 为线段NF 的中点 ∴ 1Mx=∴ 23MMF x=+=∴ 26NF MF ==【知识拓展】本题从抛物线定义入手,定比分点求坐标,这是基础概念题,课本习题常有练习.20、(2017年2卷20题)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM=.(1) 求点P 的轨迹方程;(2) 设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 【命题意图】椭圆,定值问题的探索;运算求解能力【基本解法】(Ⅰ)解法一:相关点法求轨迹:设()0,M x y ,()0,0N x ,(),P x y ,则:()0,NP x x y =-,()00,NM y =.又2NP NM=,所以:())0,20,x x y y -=,则:0,2x x y ==.又()0,M x y 在椭圆C 上,所以:220012x y +=。
2015-2017解析几何全国卷高考真题版
2015-2017解析几何全国卷高考真题1、(2015年1卷5题)已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值围是( )(A )(-3,3) (B )(-6,6)(C )(3-,3) (D )() 【答案】A【解析】由题知12(F F ,220012x y -=,所以12MF MF •=0000(,),)x y x y -•- =2220003310x y y +-=-<,解得033y -<<,故选 A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.2、(2015年1卷14题)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 【答案】22325()24x y -+=【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 考点:椭圆的几何性质;圆的标准方程3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N 两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.【答案】0y a --=0y a ++=(Ⅱ)存在【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.试题解析:(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x=C在,)a 处的切线方程为y a x -=-0y a --=.故24x y =在x=-处的到数值为C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力4、(2015年2卷7题)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .10 【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±,所以MN =C .考点:圆的方程.5、(2015年2卷11题).已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为()A.5 B.2 C.3 D.2【解析】设双曲线方程为22221(0,0)x ya ba b-=>>,如图所示,AB BM=,0120ABM∠=,过点M作MN x⊥轴,垂足为N,在Rt BMN∆中,BN a=,3MN a=,故点M的坐标为(2,3)M a a,代入双曲线方程得2222a b a c==-,即222c a=,所以2e=,故选D.考点:双曲线的标准方程和简单几何性质.6、(2015年2卷20题)(本题满分12分)已知椭圆222:9(0)C x y m m+=>,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(Ⅰ)证明:直线OM的斜率与l的斜率的乘积为定值;(Ⅱ)若l过点(,)3mm,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率,若不能,说明理由.【解析】(Ⅰ)设直线:l y kx b=+(0,0)k b≠≠,11(,)A x y,22(,)B x y,(,)M MM x y.将y kx b=+代入2229x y m+=得2222(9)20k x kbx b m+++-=,故12229Mx x kbxk+==-+,299M Mby kx bk=+=+.于是直线OM的斜率9MOMMykx k==-,即9OMk k⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm ,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k =-.设点P 的横坐标为P x .由2229,9,y x kx y m ⎧=-⎪⎨⎪+=⎩得2222981Pk m x k =+,即P x =.将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x ==2(3)23(9)mk k k -⨯+.解得14k =24k =.因为0,3i i k k >≠,1i =,2,所以当l的斜率为4或4+OAPB 为平行四边形.考点:1、弦的中点问题;2、直线和椭圆的位置关系.7、(2016年1卷5题)(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值围是(A )()1,3- (B)(- (C )()0,3 (D)( 【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c,这一点易出错.8、(2016年1卷10题)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E两点.已知|AB |=,|DE|=则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.9、(2016年1卷20题)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值围.【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[ 试题解析:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,341242221+-=k k x x .所以34)1(12||1||22212++=-+=k k x x k MN . 过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以 1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值围为)38,12[. 考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试容,主要由求值、求方程、求定值、最值、求参数取值围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.10、(2016年2卷4题)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=(A )43- (B )34- (C(D )2【解析】A圆化为标准方程为:,故圆心为,,解得,故选A .11、(2016年2卷11题)已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(B )32(C(D )2 【解析】A离心率,由正弦定理得. 12、(2016年2卷20题)(本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值围.2228130x y x y +--+=()()22144x y -+-=()14,1d ==43a =-1221F F e MF MF =-122112sin 31sin sin 13F F Me MF MF F F ====---【解析】 ⑴当时,椭圆E 的方程为,A 点坐标为, 则直线AM 的方程为.联立并整理得, 解得或,则因为,所以 因为,,,整理得, 无实根,所以. 所以的面积为. ⑵直线AM 的方程为,联立并整理得,解得或所以 所以因为所以,整理得,. 4t =22143x y +=()20-,()2y kx =+()221432x y y k x ⎧+=⎪⎨⎪=+⎩()2222341616120k x k x k +++-=2x =-228634k x k -=-+222861223434k AMk k -=+=++AM AN ⊥21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭AM AN =0k >212124343k k k=++()()21440k k k --+=2440k k -+=1k =AMN △221112144223449AM⎫==⎪+⎭(y k x =(2213x y t y k x ⎧+=⎪⎨⎪=+⎩()222223230tk x x t k t +++-=x =x =AM =+=3AN k k+2AM AN =23k k+23632k k t k -=-因为椭圆E 的焦点在x 轴,所以,即,整理得.13、(2016年3卷11题)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12 (C )23 (D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e的值;(2)建立,,a b c 的齐次等式,求得b a 或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .14、(2016年3卷16题)已知直线l :30mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若AB =,则||CD =__________________.【答案】43t >236332k k k ->-()()231202k k k +-<-2k <考点:直线与圆的位置关系. 【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.15、(2016年3卷20题)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点. (I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.试题解析:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且 )2,21(),,21(),,21(),,2(),0,2(22ba Rb Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分 (Ⅰ)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=,所以AR FQ . ......5分(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆.由题设可得221211b a x a b -=--,所以01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E .当AB 与x 轴不垂直时,由DE ABk k =可得)1(12≠-=+x x yb a .而y ba =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分 考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.16、(2017年1卷15题)已知双曲线2222:x y C a b-,(0a >,0b >)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,若60MAN ∠=︒,则C 的离心率为_______.【解析】如图,OA a =,AN AM b ==∵60MAN ∠=︒,∴AP =,OP =∴tan AP OP θ==又∵tan b aθ=b a =,解得223a b =∴e ==17、(2017年1卷20题)已知椭圆C :22221x y a b+=()0a b >>,四点()111P ,,()201P ,,31P ⎛- ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点 将()23011P P ⎛- ⎝⎭,,代入椭圆方程得 222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b = ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,, 221121A A P A P B y y k k m m m----+=+==- 得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶()()1122A x y B x y ,,,联立22440y kx b x y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-= 122814kb x x k -+=+,21224414b x x k -⋅=+则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠ 21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立. ∴直线l 的方程为21y kx k =-- 当2x =时,1y =-所以l 过定点()21-,.18、(2017年2卷9题)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .233【命题意图】主要考查双曲线的性质及直线与圆的位置关系,意在考查考生的转化与化归思想. 【解析】解法一:常规解法根据双曲线的标准方程可求得渐近线方程为by x a=±,根据直线与圆的位置关系可求得圆心到渐进线的距离为3,∴ 圆心到渐近线的距离为221b ab a ⋅⎛⎫+ ⎪⎝⎭,即2231b ab a ⋅=⎛⎫+ ⎪⎝⎭,解得2e =.解法二:待定系数法设渐进线的方程为y kx =,根据直线与圆的位置关系可求得圆心到渐进线的距离为3,∴ 圆心到渐近线的距离为221k k +,即2231k k =+,解得23k =;由于渐近线的斜率与离心率关系为221k e =-,解得2e =.19、(2017年2卷16题)已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = .【命题意图】本题主要考查抛物线的定义及直线与抛物线的位置关系,意在考查考生的转化与 化归思想运算求解的能力 【解析】解法一:几何法习. 20、(2017年2卷20题)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1) 求点P 的轨迹方程;(2) 设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【命题意图】椭圆,定值问题的探索;运算求解能力【基本解法】(Ⅰ)解法一:相关点法求轨迹:设()00,M x y ,()0,0N x ,(),P x y ,则:()0,NP x x y =-,()00,NM y =. 又2NP NM =,所以:())00,0,x x y y -=,则:00,x x y ==.又()00,M x y 在椭圆C 上,所以:220012x y +=。
全国卷历年高考解析几何解答题真题归类分析(含答案)
全国卷历年高考解析几何解答题真题归类分析(含答案)一、椭圆(2015年2卷)已知椭圆C:9x 2+y 2=m 2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值.(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.分析:(1)将直线y=kx+b(k≠0,b≠0)与椭圆C:9x 2+y 2=m 2(m>0)联立,结合根与系数的关系及中点坐标公式证明.(2)由四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分求解证明. 解析】:(1)设直线l :y=kx+b(k≠0,b≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ). 将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故92221+-=+=k kbx x x M , 992+=+=k b b k y M M .于是直线OM 的斜率kx y k M M OM 9-== 即k OM ·k=-9,所以直线OM 的斜率与l 的斜率的积是定值.(2)四边形OAPB 能为平行四边形,因为直线l 过点(,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k≠3,由(1)得OM 的方程为y=-x. 设点P 的横坐标为x p .由⎪⎩⎪⎨⎧=+-=22299m y x x k y ,得8192222+=k m k x p ,即932+±=k km x p . 将点),3(m m 的坐标代入l 的方程得3)3(k m b -=,因此)9(3)3(2+-=k k k x M 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相评分,即P M x x =2.=,解得k k 12==因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-或4+时,四边形OAPB 为平行四边形.(2016年1卷)设圆x 2+y 2+2x-15=0的圆心为A,直线l 过点B(1,0)且与x 轴不重合, l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E. (1)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.【解析】(1)圆A 整理为(x+1)2+y 2=16,点A 坐标为(-1,0),如图,∵BE ∥AC,则∠ACB=∠EBD,由|AC|=|AD|,则∠ADC=∠ACD,∴∠EBD=∠EDB,则|EB|=|ED|, ∴|AE|+|EB|=|AE|+|ED|=|AD|=4.所以E 的轨迹为一个椭圆,方程为2x 4+2y 3=1(y≠0);(2)C 1: 2x 4 +2y 3=1;设l :x=my+1,因为PQ ⊥l ,设PQ:y=-m(x-1),联立l 与椭圆C 1,22x my 1,x y 1,43⎧=+⎪⎨+=⎪⎩得(3m 2+4)y 2+6my-9=0; 则|MN|=M -y N |==()2212m13m 4++;圆心A 到PQ 距离d==,所以=,∴S MPNQ =12|MN|·|PQ|=12·()2212m 13m 4+⋅+=24[12,8).(2016年2卷)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA. (I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-=解得2x =-或228634k x k -=-+21234k + 因为AM AN ⊥,所以21212413341AN k kk ==⋅⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >212124343k k k=++, 整理得()()21440k k k --+=,2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM⎫==⎪+⎭. ⑵直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得, ()222223230tk x x t k t +++-=,解得x =或x =所以AM =,所以AN =因为2AM AN =,所以2=,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.(2017年1卷)已知椭圆()2222:=10x y C a b a b +>>,四点()111P ,,()201P ,,3–1P ⎛ ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过点2P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为–1,求证:l 过定点.解析:(1)根据椭圆对称性,必过3P ,4P ,又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点.将()23011P P ⎛- ⎝⎭,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =, 21b =,所以椭圆C 的方程为2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,, 221121A A P A P B y y k k m m m----+=+==-,得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,,联立22440y kx bx y =+⎧⎨+-=⎩, 消去y 整理得()222148440k x kbx b +++-=,122814kb x x k -+=+,21224414b x x k -⋅=+, 则22121211P A P By y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=22228888144414kb k kb kbk b k --++==-+ ()()()811411k b b b -=-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.所以直线l 的方程为21y kx k =--.当2x =时,1y =-,所以l 过定点()21-,.(2017年2卷)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.求证:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解析:(1)设点()P x y ,,易知(0)N x ,,(0)NP y =,,又0NM NP ⎛== ⎝,所以点M x y ⎛⎫ ⎪⎝⎭.又M 在椭圆C上,所以2212x +=,即222x y +=. (2)由题知()1,0F -,设()3,Q t -,(),P m n ,则()3,OQ t =-,()1,PF m n =---,33OQ PF m tn ⋅=+-,(),OP m n =,()3,PQ m t n =---,由1O P P Q ⋅=,得2231m m tn n --+-=.又由(1)知222m n +=,所以330m tn +-=,从而0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线的垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过曲线C 的左焦点()1,0F -. 二、抛物线(2015年1卷)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.解析:(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x=C在,)a 处的切线方程为y a x --0y a --=.故24x y =在x=-处的到数值为C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k .将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a +. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.(2016年3卷)已知抛物线C:y 2=2x 的焦点为F,平行于x 轴的两条直线l 1,l 2分别交C 于A,B 两点,交C 的准线于P,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【解析】(1)由题意可知F 1,02⎛⎫⎪⎝⎭,设l 1:y=a,l 2:y=b 且ab≠0,A 2a ,a 2⎛⎫ ⎪⎝⎭,B 2b ,b 2⎛⎫ ⎪⎝⎭P 1,a 2⎛⎫-⎪⎝⎭,Q 1,b 2⎛⎫- ⎪⎝⎭,R 1a b ,22⎛⎫+- ⎪⎝⎭,记过A,B 两点的直线方程为l,由点A,B 可得直线方程为2x-(a+b)y+ab=0,因为点F 在线段AB 上,所以ab+1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,所以k 1=2a b1a -+,k 2=b 1122--=-b,又因为ab+1=0, 所以k 1=22a b a b 1aba a 1a a abb ---====-+-,所以k 1=k 2,即AR ∥FQ. (2)设直线AB 与x 轴的交点为D ()1x ,0,所以S △ABF =1111a b FD a b x 222-=--, 又S △PQF =a b 2-,所以由题意可得S △PQF =2S △ABF 即:a b 2- =2×12·11x 2a b ⋅--,解得x 1=0(舍)或x 1=1.设满足条件的AB 的中点为E(x,y). 当AB 与x 轴不垂直时,由k AB =k DE 可得2ya b x 1=+-(x≠1).而21a b y=+,所以y 2=x-1(x≠1).当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为y 2=x-1.(2017年3卷)已知抛物线22C y x =:,过点()20,的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)求证:坐标原点O 在圆M 上;(2)设圆M 过点()42P -,,求直线l 与圆M 的方程.解析:(1)显然当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立222y xx my ⎧=⎨=+⎩,得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-. ⋅1212OA OB x x y y ⋅=+u u r u u u r 1212(2)(2)my my y y =+++21212(1)2()4m y y m y y =++++= 24(1)2240m m m -++⋅+=,所以⊥,即点O 在圆M 上.(2)若圆M 过点P ,则⋅,即1212(4)(4)(2)(2)0x x y y --+++=,即1212(2)(2)(2)(2)0my my y y --+++=,即21212(1)(22)()80m y y m y y +--++=,化简得2210m m --=,解得12m =-或1.①当12m =-时,:240l x y +-=,设圆心为00(,)Q x y ,则120122y y y +==-,0019224x y =-+=,半径||r OQ =,则圆229185:4216M x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. ②当1m =时,:20l x y --=,设圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径r OQ =22:(3)(1)10M x y -+-=.。
2015-2017全国新课标卷圆锥曲线 极坐标参数方程高考真题汇编【解析版】
2015圆锥曲线【答案】(I;(II ).试题分析:(I )先写过点,的直线方程,再计算原点到该直线的距离,进而可得椭圆的离心率;(II )先由(I )知椭圆的方程,设的方程,联立,消去,可得和的值,进而可得,再利用可得的值,进而可得椭圆的方程.试题解析:(I )过点(c,0),(0,b)的直线方程为, 则原点O 到直线的距离, 由,得.(II)解法一:由(I )知,椭圆E 的方程为. (1) 依题意,圆心M(-2,1)是线段AB 的中点,且.易知,AB不与x 轴垂直,设其直线方程为,代入(1)得设则 由,得解得. 从而.于是.由.故椭圆E 的方程为.解法二:由(I )知,椭圆E 的方程为. (2) 221123x y +=(),0c ()0,b O E E AB ()2222144y k x x y b⎧=++⎪⎨+=⎪⎩y 12x x +12x x k AB =2b E 0bx cy bc +-=bcd a==12d c =2a b ==2c a =22244x y b +=|AB|(2)1y k x =++2222(14)8(21)4(21)40k x k k x k b +++++-=1122(,y ),B(,y ),A x x 221212228(21)4(21)4,.1414k k k b x x x x k k++-+=-=-++124x x +=-28(21)4,14k k k +-=-+12k =21282x x b =-12|AB ||x x =-==|AB|=23b =221123x y +=22244x y b +=设则,, 两式相减并结合得. 易知,AB 不与x 轴垂直,则,所以AB 的斜率 因此AB 直线方程为,代入(2)得所以,.于是.由.故椭圆E 的方程为.考点:1、直线方程;2、点到直线的距离公式;3、椭圆的简单几何性质;4、椭圆的方程;5、圆的方程;6、直线与圆的位置关系;7、直线与圆锥曲线的位置.【分析及点评】本题题型较之往年几乎没有改变,第一问,求解曲线离心率,属于基础题型,稍微有点圆锥曲线基础的学生应该都能完成;第二问求解曲线方程,较之往年变换较大,无论从难度和出题角度都会对学生造成较大干扰。
高考数学十年真题专题解析—椭圆
椭圆年份题号考点考查内容2011理14椭圆方程椭圆的定义、标准方程及其几何性质文4椭圆的几何性质椭圆离心率的计算2012文理4椭圆的几何性质椭圆离心率的计算2013卷1理10椭圆方程直线与椭圆的位置关系,椭圆方程的求法文理20椭圆定义、标准方程及其几何性质椭圆的定义、标准方程及其几何性质,直线与椭圆位置关系卷2理20直线与椭圆位置关系椭圆的方程求法,直线与椭圆位置关系,椭圆最值问题的解法文5椭圆定义、几何性质椭圆的定义,椭圆离心率的求法2014卷1理20椭圆方程及几何性质椭圆的标准方程及其几何性质,直线与椭圆位置关系卷2理20椭圆方程及几何性质椭圆的标准方程及其几何性质,直线与椭圆位置关系2015卷1理14圆与椭圆椭圆的标准方程及其几何性质,过三点圆的方程的求法卷2理20直线与椭圆直线和椭圆的位置关系,椭圆的存在型问题的解法文20直线与椭圆椭圆方程求法,直线和椭圆的位置关系,椭圆的定值问题的解法2016卷1理20圆、直线与椭圆椭圆定义、标准方程及其几何性质,直线与圆、椭圆的位置关系卷2理20直线与椭圆椭圆的几何性质,直线与椭圆的位置关系文21直线与椭圆椭圆的几何性质,直线与椭圆的位置关系2017卷1理20直线与椭圆椭圆标准方程的求法,直线与椭圆的位置关系,椭圆的定点问题文12直线与椭圆椭圆的标准方程及其几何性质卷3文11理10直线与圆,椭圆的几何性质直线与圆的位置关系,椭圆的几何性质2018卷1理19直线与椭圆椭圆的几何性质,直线与椭圆的位置关系文4椭圆椭圆的几何性质2019卷1理10文12椭圆椭圆的定义、标准方程及其几何性质,椭圆标准方程的求法卷2理8文9椭圆与抛物线抛物线与椭圆的几何性质理21椭圆椭圆的标准方程及其几何性质,直线与椭圆的位置关系,椭圆的最值问题的解法文20椭圆椭圆的定义、标准方程及其几何性质卷3文理15椭圆椭圆的定义、标准方程及其几何性质2020卷1理20文21椭圆椭圆的标准方程及其几何性质,椭圆定点问题卷2理19椭圆、抛物线椭圆、抛物线方程的求法,椭圆离心率的求法,抛物线的定义考点89椭圆的定义及标准方程1.(2019全国Ⅰ文12)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n FAB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.222243,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .2.(2018高考上海13)设P 是椭圆 ²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为()A .22B .23C .25D .42【答案】C【解析】由椭圆的定义可知椭圆上任意点P 到两个焦点的距离之和为25a =,故选C .【考点分析】椭圆的定义,考查考生的识记及基本运算能力.3.(2013广东文)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 【答案】D 【解析】∵1,2,3c a b ===D .4.(2015新课标1理)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 的正半轴上,则该圆的标准方程为_________.【答案】22325()24-+=x y 【解析】由题意圆过(4,0),(0,2),(0,2)-三个点,设圆心为(,0)a ,其中0a >,由4-=a ,解得32a =,所以圆的方程为22325()24-+=x y .5.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --.【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c=1.又因为DF 1=52,AF 2⊥x 轴,所以DF 232==,因此2a=DF 1+DF 2=4,从而a=2.由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a=2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x=1代入圆F 2的方程(x−1)2+y 2=16,解得y=±4.因为点A 在x 轴上方,所以A(1,4).又F 1(−1,0),所以直线AF 1:y=2x+2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-.将115x =-代入22y x =+,得125y =-,因此1112(,55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =.又因为E 是线段BF 2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结E F 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∠BF 1E=∠B .因为F 2A=F 2B ,所以∠A=∠B ,所以∠A=∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-.因此3(1,2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.考点90椭圆的几何性质6.【2019年高考全国Ⅰ理】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.法二:由已知可设2F B n=,则212,3AF n BF AB n===,由椭圆的定义有121224,22a BF BF n AF a AF n=+=∴=-=.在12AF F△和12BF F△中,由余弦定理得2221222144222cos4422cos9n n AF F nn n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F∠∠互补,2121cos cos0AF F BF F∴∠+∠=,两式消去2121cos cosAF F BF F∠∠,,得223611n n+=,解得32n=.22224,,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.7.【2019年高考北京理】已知椭圆22221x ya b+=(a>b>0)的离心率为12,则A.a2=2b2B.3a2=4b2C.a=2b D.3a=4b【答案】B【解析】椭圆的离心率2221,2ce c a ba===-,化简得2234a b=,故选B.8.【2018·全国Ⅰ文】已知椭圆C:22214x ya+=的一个焦点为(20),,则C的离心率为A.13B.12C .22D .223【答案】C【解析】由题可得2c =,因为24b =,所以2228a b c =+=,即a =,所以椭圆C 的离心率22e ==,故选C .9.【2018·全国Ⅱ文】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .12-B .2-C .312-D 1-【答案】D【解析】在12F PF △中,122190,60F PF PF F ∠=∠=︒,设2PF m =,则12122,c F F m PF ===,又由椭圆定义可知1221)a PF PF m =+=+,则212c c e a a ====,故选D .10.(2018上海理)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为()A .B .C .D .【答案】C 【解析】由题意25=a ,=a .由椭圆的定义可知,P 到该椭圆的两个焦点的距离之和为2=aC .11.【2017·全国Ⅰ文】设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞ D .[4,)+∞【答案】A【解析】当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab≥= ,≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab ≥= ≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞ ,故选A .12.【2017·浙江卷】椭圆22194x y +=的离心率是()A .133B .53C .23D .59【答案】B【解析】椭圆22194x y +=的离心率94533e ==,故选B .13.(2015新课标1文)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB =A .3B .6C .9D .12【答案】B 【解析】∵抛物线C :28y x =的焦点坐标为(2,0),准线l 的方程为2x =-①,设椭圆E 的方程为22221(0)x y a b a b +=>>,所以椭圆E 的半焦距2c =,又椭圆的离心率为12,所以4,a b ==,椭圆E 的方程为2211612x y +=②,联立①②,解得(2,3),(2,3)A B ---或(2,3),(2,3)A B ---,所以||6AB =,故选B .14.(2015广东文)已知椭圆222125x y m+=(0m >)的左焦点为()14,0F -,则m =A .2B .3C .4D .9【答案】B 【解析】由题意得:222549m =-=,因为0m >,所以3m =,故选C .15.(2014福建文理)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .26【答案】D 【解析】由题意可设10,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为2222||(10cos )(sin 6)509(sin )50523CQ ααα=+-=-+=,当且仅当2sin 3α=-时取等号,所以max max ||||52262PQ CQ r +==≤,所以Q P ,两点间的最大距离是62.16.(2012新课标文理)设1F 、2F 是椭圆E :)0(12222>>=+b a b y a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆是底角为o30的等腰三角形,则E 的离心率为A .21B .32C .43D .54【答案】C 【解析】∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==,故选C .17.【2019·全国Ⅲ文】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(15【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又122201482415,4152MF F S y =⨯-=∴=△,解得015y =,2201513620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(15.18.【2019·浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x 轴的上方,求得315,22P ⎛⎫- ⎪ ⎪⎝⎭,所以15212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛⎫- ⎪ ⎪⎝⎭,所以212PF k ==19.(2012江西文理)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.【答案】55【解析】由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故55c e a ==.即椭圆的离心率为55.20.(2011浙江文理)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B = ;则点A 的坐标是.【答案】(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d.12(F F,可得1()F A m n =+,2()F B c d =,∵125F A F B = ,∴62,55m n c d +==,又点,A B 在椭圆上,∴2213m n +=,2262(5()135m n ++=,解得0,1m n ==±,∴点A 的坐标是(0,1)±.21.【2019年高考全国Ⅱ文】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(1)1-;(2)4b =,a的取值范围为)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF =,于是1221)a PF PF c =+=,故C的离心率是1ce a==-.(2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,①222x y c +=,②22221x y a b+=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥.当4b =,a ≥P ,所以4b =,a的取值范围为)+∞.22.(2015安徽理)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为510.(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.【解析】(1)由题设条件知,点M 的坐标为21(,)33a b,又10OM k =,从而210b a =,进而得,2a c b ==,故255c e a ==.(2)由题设条件和(I)的计算结果可得,直线AB1y b +=,点N 的坐标为51(,)22b b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T 的坐标为1517(,4244x b b +-+.又点T 在直线AB 上,且1NS ABk k ⋅=-,从而有151742441712252x b b b b ⎧+-+⎪+=⎨+⎪=⎪⎪⎪⎩,解得3b =,所以b =故椭圆E 的方程为221459x y +=.23.(2013安徽文理)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a ,b 的值.【解析】(Ⅰ)1216022c F AF a c e a ο∠=⇔=⇔==(Ⅱ)设2BF m =;则12BF a m =-,在12BF F ∆中,22212122122cos120BF BF F F BF F F ο=+-⨯⨯2223(2)5a m m a am m a ⇔-=++⇔=,1AF B ∆面积211133sin 60()10,5,2252S F F AB a a a a c b ο=⨯⨯⨯⇔⨯⨯+⨯=⇔===考点91直线与椭圆的位置关系24.【2018高考全国2理12】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △等腰三角形,12120F F P ∠= ,则C 的离心率为()A .23B .12C .13D .14【答案】D【解析】试题分析:先根据条件得22PF c =,再利用正弦定理得,a c 关系,即得离心率.试题解析:因为12PF F △为等腰三角形,12212120,2F F P PF F F c ∠=︒==,由AP 斜率为36得,222tan ,sin ,cos PAF PAF PAF ∠=∴∠=∴∠=,由正弦定理得22222sin 221,,4,sin 54sin 3PF PAF c a c e AF APF a c PAF ∠=∴==∴=∴=∠+-∠ ⎪⎝⎭,故选D .25.(2017新课标Ⅲ文理)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A .63B .33C .23D .13【答案】A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,63c e a ==,故选A .26.【2016·新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为()(A)13(B)12(C)23(D)34【答案】B【解析】如图,在椭圆中,11,,242OF c OB b OD b b ===⨯=,在Rt OFB △中,||||||||OF OB BF OD ⨯=⨯,且222a b c =+,代入解得224a c =,所以椭圆的离心率为12e =,故选B .27.(2016年全国III 文理)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .34【答案】A【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得||||()FM k a c =-,||||OE k a =,设OE 的中点为H ,由OBH FBM △∽△,得1||||2||||OE OB FM BF =,即||2||()k a a k a c a c=-+,整理得13c a =,所以椭圆离心率为13e =,故选A .28.(2016江苏理)如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是.【答案】3【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得0BF CF ⋅=,,22b BF c ⎛⎫=+- ⎪ ⎪⎝⎭,,22b CF c ⎛⎫=-- ⎪ ⎪⎝⎭ ,则22231044c a b -+=,由222b a c =-可得223142c a =,则3ce a ===.29.(2015福建文)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A.(0,2B .3(0,]4C.,1)2D .3[,1)4【答案】A 【解析】设椭圆的左焦点为1F ,半焦距为c ,连结1AF ,1BF ,则四边形1AF BF 为平行四边形,所以11||||||||4AF BF AF BF +=+=,根据椭圆定义,有11||||||||4AF AF BF BF a +++=,所以84a =,解得2a =.因为点M 到直线l :340x y +=的距离不小于45,即44,155b b ≥≥,所以21b ≥,所以2221,41a c c --≥≥,解得0c <所以02c a <≤,所以椭圆的离心率的取值范围为(0,2.30.(2013新课标1文理)已知椭圆22221(0)x y a b a b+=>>的右焦点为F(3,0),过点F 的直线交椭圆于A .B两点.若AB 的中点坐标为(1,-1),则E 的方程为A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=1【答案】D 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b +=①2222221x y a b +=②①-②得1212121222()()()()0x x x x y y y y a b +-+-+=,∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D .31.【2020年高考上海卷10】已知椭圆22:143x y C +=,直线l 经过椭圆右焦点F ,交椭圆C 于,P Q 两点(点P 在第二象限),若Q 关于x 轴对称的点为'Q ,且满足'PQ FQ ⊥,则直线l 的方程为.【答案】1y x =-+【解析】由条件可知FQQ ' 是等腰直角三角形,所以直线l 的倾斜角是135 ,所以直线l 的斜率是tan1351=- ,且过点()1,0F ,得到直线l 的方程为()1y x =--,即1y x =-+.故答案为:1y x =-+.32.(2018浙江理)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB = ,则当m =___时,点B 横坐标的绝对值最大.【答案】5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =得122x x -=,1212(1)y y -=-,所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=,所以224x +22324(m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤,当且仅当5m =时取最大值.33.(2018浙江文)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB = ,则当m =___时,点B 横坐标的绝对值最大.【答案】5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB = ,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤,所以当5m =时,点B 横坐标的绝对值最大,最大值为2.34.(2015浙江文)椭圆22221x y a b +=(0a b >>)的右焦点(),0F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是.【答案】22【解析】设左焦点为1F ,由F 关于直线by x c=的对称点Q 在椭圆上,得||||OQ OF =,又1||||OF OF =,所以1F Q QF ⊥,不妨设1||QF ck =,则||QF bk =,1||F F ak =,因此2c ak =,又2a ck bk =+,由以上二式可得22c a k a b c ==+,即c a a b c=+,即22a c bc =+,所以bc =,22e =.35.(2014江西文理)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b+=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于.【答案】22【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得1212121222()()()()0x x x x y y y y a b-+-++=,根据题意有12122,2x x y y +=+=,且121212y y x x -=--,所以22221(02a b +⨯-=,得222a b =,整理222a c =,所以22e =.36.(2014辽宁文)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=.【答案】12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.37.(2014江西文)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.【答案】33【解析】由题意可得2(,b A c a ,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,2b a -,由B F AD 1⊥,所以11AD F B k k ⋅=-232b ac =,解得33e =.38.(2014安徽文)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为____.【答案】22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b --将点B 坐标带入椭圆方程得22221()53()13b c b--+=,又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩,∴椭圆方程为22312x y +=.39.(2013福建文)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于.【答案】13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==ac e ,故答案为13-.40.【2020年高考全国Ⅲ文21理数20】已知椭圆()222:10525x y C m m +=<<的离心率为4,,A B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且,BP BQ BP BQ =⊥,求△APQ 的面积.【解析】解法一:(1)由c e a =,得2221b e a =-,即21511625m =-,∴22516m =,故C 的方程为221612525x y +=.(2)设点P 的坐标为(,)s t ,点Q 的坐标为(6,)n ,根据对称性,只需考虑0n >的情形,此时55s -<<,504t < .∵||||BP BQ =,∴有222(5)1s t n -+=+①.又∵BP BQ ⊥,∴50s nt -+=②.又221612525s t +=③.联立①、②、③,可得,312s t n =⎧⎪=⎨⎪=⎩或318s t n =-⎧⎪=⎨⎪=⎩.当312s t n =⎧⎪=⎨⎪=⎩时,(8,1)AP = ,(11,2)AQ =,∴15|82111|22APQ S ==⨯-⨯=△.同理可得,当318s t n =-⎧⎪=⎨⎪=⎩时,52APQ S =△.综上所述,可得APQ △的面积为52.解法二:(1) 222:1(05)25x y C m m +=<<,∴5a =,b m =,根据离心率4c e a ====,解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=.(2) 点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N,根据题意画出图形,如图,||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=.设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=, PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图,(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+,根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:15555252⨯=.②当P 点为(3,1)-时,故5+38MB ==, PMB BNQ ≅△△,∴||||8MB NQ==,可得:Q 点为(6,8),画出图象,如图,(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P到直线AQ 的距离为:()22831114055185185811d ⨯--⨯+===+,根据两点间距离公式可得:()()226580185AQ =++-=∴APQ 面积为:1518522185=.综上所述,APQ 面积为:52.41.【2020年高考天津卷18】已知椭圆22221(0)x y a b a b +=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【解析】(Ⅰ) 椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,所以椭圆的方程为221189x y +=.(Ⅱ) 直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在,设直线AB 的斜率为k ,则直线AB 的方程为3y kx +=,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+.将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++,所以点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭,由3OC OF = ,得点C 的坐标为()1,0,所以直线CP 的斜率为222303216261121CP k kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-.42.【2019年高考天津理】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55.(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.【解析】(1)设椭圆的半焦距为c ,依题意,524,5c b a ==,又222a b c =+,可得a =,2,b =1c =.所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P kx k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P p y k x k-=-.在2y kx =+中,令0y =,得2M x k=-.由题意得()0,1N -,所以直线MN 的斜率为2k -.由OP MN ⊥,得2451102k k k-⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而2305k =±.所以,直线PB 的斜率为2305或2305-.43.【2019年高考天津文】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,左顶点为A ,上顶点为B.已知|2||OA OB =(O 为原点).(1)求椭圆的离心率;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x=4上,且OC AP ∥,求椭圆的方程.【解析】(1)设椭圆的半焦距为c,由已知有2b =,又由222a b c =+,消去b 得22232a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =,所以椭圆的离心率为12.(2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221,433(),4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-.代入到l 的方程,解得1239,214y c y c ==-.因为点P 在x 轴上方,所以3,2P c c ⎛⎫ ⎪⎝⎭.由圆心C 在直线4x =上,可设(4, )C t .因为OC AP ∥,且由(1)知(2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l相切,得2=,可得=2c .所以,椭圆的方程为2211612x y +=.44.【2018高考全国III 文20】(12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0 .证明:2FP FA FB =+.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)设而不求,利用点差法进行证明;(2)解出m ,进而求出点P 的坐标,得到FP,再由两点间距离公式表示出,FA FB,得到直l 的方程,联立直线与椭圆方程由韦达定理进行求解.试题解析:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m =-.由题设得302m <<,故12k <-.(2)由题意得F(1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uur .于是1||22x FA ==-uur .同理2||=22x FB -uur .所以1214()32FA FB x x +=-+=uur uur ,故2FA FB FP +=uur uur uur .45.【2018高考天津文19】(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B.已知椭圆的离心率为3,AB =.(I)求椭圆的方程;(II)设直线():0l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点,P M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.【解析】试题分析:(I)由题意结合几何关系可求得3,2a b ==.则椭圆的方程为22194x y +=.(I I)设点P 的坐标为()11,x y ,点M 的坐标为()22,x y ,由题意可得215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩可得2632x k =+.由方程组221,94,x y y kx ⎧+=⎪⎨⎪=⎩可得1x =215x x =,可得89k =-,或12k =-.经检验 的值为12-.试题解析:(I)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由AB ==3,2a b ==.所以,椭圆的方程为22194x y +=.(II)设点P 的坐标为()11,x y ,点M 的坐标为()22,x y ,由题意,210x x >>,点 的坐标为()11,x y --.由BPM △的面积是BPQ △面积的2倍,可得2PM PQ =,从而()21112x x x x -=--⎡⎤⎣⎦,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+=⎪⎨⎪=⎩消去y,可得1x =.由215x x =,可得()532k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,211212,5x x ==,符合题意.所以,k 的值为12-.46.【2018高考江苏18】如图,在平面直角坐标系xOy 中,椭圆C过点12⎫⎪⎭,焦点())12,0,0F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为l的方程.【解析】试题分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得,a b ,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.试题解析:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b+=>>.又点12在椭圆C 上,2222311,43,a ba b ⎧+=⎪∴⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=,所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+.由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 直线l 与椭圆C 有且只有一个公共点,222222000000()()() 24443640(482)x x y y y x ∴∆=--+-=-=.0000,0,,1x y x y >∴== .因此,点P的坐标为),1.②OAB △,所以1 2AB OP ⋅=,从而427AB =.设1122,,()(),A x y B x y ,由(*)得001,2x =2221212()()AB y x x y ∴=-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.22003x y += ,22022016(2)32(1)49x AB x -∴==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P的坐标为(22.综上,直线l的方程为y =+.47.【2018高考全国1理19】(本小题满分12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为()2,0.(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.【解析】试题分析:(1)首先根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为1x =,代入椭圆方程求得点A 的坐标为21,2⎛⎫ ⎪ ⎪⎝⎭或21,2⎛⎫- ⎪ ⎪⎝⎭,利用两点式求得直线AM 的方程;(2)分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.试题解析:(1)由已知得()1,0F ,l 的方程为1x =.由已知可得,点A 的坐标为21,2⎛⎫ ⎪ ⎪⎝⎭或21,2⎛⎫- ⎪ ⎪⎝⎭.所以AM 的方程为222y x =-+222y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,OMA OMB ∴∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则122,2x x <<,直线MA MB ,的斜率之和为212122MA MB x x y yk k +=+--.由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.2212121333221222422441284,,23()40212121k k k k k k kk x x x x x x k k k k x x k ---+++==∴-++=∴=+++.从而0MA MB k k +=,故MA MB ,的倾斜角互补,OMA OMB ∴∠=∠.综上,OMA OMB ∠=∠.48.【2018高考全国3理20】(12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++= 0.证明:,,FA FP FB成等差数列,并求该数列的公差.【解析】试题分析:(1)设而不求,利用点差法进行证明;(2)解出m ,进而求出点P 的坐标,得到FP,再由两点间距离公式表示出,FA FB,得到直l 的方程,联立直线与椭圆方程由韦达定理进行求解.试题解析:(1)设()()1122,,,A x y B x y ,则222211221,14343x y x y +=+=.两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知12121,22x x y y m ++==,于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得()1,0F ,设()33,P x y ,则()()()()3311221,1,1,0,0x y x y x y -+-+-=.由(1)及题设得()()31231231,20x x x y y y m =-+==-+=-<.又点P 在C 上,34m ∴=,从而331,,22P FP ⎛⎫-= ⎪⎝⎭ .于是122xFA ==-= .同理222x FB =- ,()121432FA FB x x +=-+=∴ .2FP FA FB =+∴ ,即,,FA FP FB成等差数列.设该数列的公差为d ,则12122d FB FA x x =-=-=②将34m =代入①得1k =-,l ∴的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得28d=49.【2018高考天津理19】(本小题满分14分)设椭圆22221x x a b +=(a>b>0)的左焦点为F ,上顶点为B .已知椭圆的离心率为53,点A 的坐标为(,0)b ,且FB AB ⋅=.(I)求椭圆的方程;(II)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点),求k 的值.【解析】试题分析:(Ⅰ)由题意结合椭圆的性质可得,32a b ==.则椭圆的方程为22194x y +=.(Ⅱ)设点P 的坐标为()11,x y ,点Q 的坐标为()22,x y .由题意可得1259y y =.由方程组22{ 194y kx x y =+=,,可得1y =.由方程组{20y kx x y =+-=,,可得221ky k =+.据此得到关于k 的方程,解方程可得k 的值为12或1128试题解析:(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由222a b c =+,可得23a b =.由已知可得,FB a =,AB =,由FB AB ⋅=,可得6ab =,从而,32a b ==,∴椭圆的方程为22194x y +=.(Ⅱ)设点P 的坐标为()11,x y ,点Q 的坐标为()22,x y .由已知有120y y >>,故12PQ sin AOQ y y ∠=-.又2y AQ sin OAB =∠ ,而∠OAB=π4,故2AQ =.由sin 4AQ AOQ PQ =∠,可得1259y y =.由方程组22,194y kx x y =⎧⎪⎨+=⎪⎩消去x,可得1y =易知直线AB 的方程为20x y +-=,由方程组{20y kx x y =+-=,,消去x ,可得221ky k =+.由1259y y =,可得()15k +=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =,k ∴的值为12或1128.50.(2017天津文)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i)求直线FP 的斜率;(ii)求椭圆的方程.【解析】(Ⅰ)设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b ac =-,可得2220c ac a +-=,即2210e e +-=.又因为01e <<,解得12e =.所以,椭圆的离心率为12.(Ⅱ)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m.由(Ⅰ)知2a c =,可得直线AE 的方程为12x yc c+=,即220x y c +-=,与直线FP 的方程联立,可解得(22)3,22m c c x y m m -==++,即点Q 的坐标为(22)3(,)22m c cm m -++.。
三年高考2015_2017高考数学试题分项版解析专题17椭圆及其综合应用理20171102338
专题17 椭圆及其综合应用1.【2017浙江,2】椭圆22194x y +=的离心率是A B C .23D .59【答案】B 【解析】试题分析:e ==,选B .2.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3B .3C .3D .13【答案】A 【解析】试题分析:以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即:d a ==,整理可得223a b =,即()222223,23a a c a c =-=,从而22223c e a ==,椭圆的离心率c e a ===故选A .【考点】椭圆的离心率的求解;直线与圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式e =ca; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则()A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1【答案】A 【解析】4.【2016高考新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为()(A )13(B )12(C )23(D )34【答案】A 【解析】试题分析:由题意设直线的方程为()y k x a =+,分别令x c =-与0x =得点||()F M k ac =-,||OE ka =,由O B E C B ∆∆,得1||||2||||OE OB FM BC =,即2(c )k a ak a a c=-+,整理,得13c a =,所以椭圆离心率为13e =,故选A . 考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出.5.【2015高考新课标1,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为.【答案】22325()24x y -+=【解析】设圆心为(,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=.6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是.【解析】由题意得,),C(,),22b b B ,因此22222)()0322b c c a e -+=⇒=⇒ 考点:椭圆离心率【名师点睛】椭圆离心率的考查,一般分两个层次,一是由离心率的定义,只需分别求出,a c ,这注重考查椭圆标准方程中量的含义,二是整体考查,求,a c 的比值,这注重于列式,即需根据条件列出关于,a c 的一个齐次等量关系,通过解方程得到离心率的值.7.【2017课标1,理20】已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2,P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此134,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,在设直线l 的方程,当l 与x 轴垂直,通过计算,不满足题意,再设设l :y kx m =+(1m ≠),将y kx m=+代入2214x y +=,写出判别式,韦达定理,表示出12k k +,根据121k k +=-列出等式表示出和m的关系,判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b+>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。
三年高考2015_2017高考数学试题分项版解析专题4中综合问题理
专题24 立体几何中综合问题1.【2017课标1,理16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】【解析】【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.2.【2017课标3,理19】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.【答案】(1)证明略;【解析】(2)由题设及(1)知,,,OA OB OC 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz-.则()()()()1,0,0,0,3,0,1,0,0,0,0,1A B C D -由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得310,,22E ⎛⎫⎪ ⎪⎝⎭.故()()311,0,1,2,0,0,1,,2AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭.设()=x,y,z n 是平面DAE 的法向量,则AD AE ⎧=⎪⎨=⎪⎩0,0,n n 即0,3102x z x y z -+=⎧⎪⎨-++=⎪⎩。
专题三:椭圆高考真题赏析解析版
专题三:椭圆高考真题赏析一、单选题1.2017年全国普通高等学校招生统一考试理科数学(全国卷3正式版)的圆与直线20bx ay ab -+=相切,则C 的离心率为【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所2.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B 【解析】 【分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =. 【详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991 cos2233n n nF ABn n+-∠==⋅⋅.在12AF F△中,由余弦定理得2214422243n n n n+-⋅⋅⋅=,解得3n=.2222423,3,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.法二:由已知可设2F B n=,则212,3AF n BF AB n===,由椭圆的定义有121224,22a BF BF n AF a AF n=+=∴=-=.在12AF F△和12BF F△中,由余弦定理得2221222144222cos4,422cos9n n AF F nn n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F∠∠互补,2121cos cos0AF F BF F∴∠+∠=,两式消去2121cos cosAF F BF F∠∠,,得223611n n+=,解得32n=.2222423,3,312,a n ab a c∴==∴=∴=-=-=∴所求椭圆方程为22132x y+=,故选B.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.3.2018年全国普通高等学校招生统一考试理数(全国卷II)已知1F,2F是椭圆22221(0)x yC a ba b+=>>:的左,右焦点,A是C的左顶点,点P在过A3的直线上,12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为A .23B .12C .13D .14【答案】D 【解析】 【分析】 【详解】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c, 由AP斜率为6得,222tan sin cos 6PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以2221=4,54sin()3c a c e a c PAF =∴==+-∠,故选D. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 4.2019年全国统一高考数学试卷(理科)(新课标Ⅱ) 若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D . 【详解】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养. 二、填空题5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为___________. 【答案】22325()24x y -+= 【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 考点:椭圆的几何性质;圆的标准方程6.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)【答案】( 【解析】 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y ,22013620x ∴+=,解得03x =(03x =-舍去), M ∴的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.三、解答题7.2020年全国统一高考数学试卷(文科)(新课标Ⅰ)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析.【解析】 【分析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解. (2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)xE y aa+=>可得:(),0A a-,(),0B a,()0,1G∴(),1AG a=,(),1GB a=-∴218AG GB a⋅=-=,∴29a=∴椭圆方程为:2219xy+=(2)证明:设()06,P y,则直线AP的方程为:()()363yy x-=+--,即:()039yy x=+联立直线AP的方程与椭圆方程可得:()221939xyyy x⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y+++-=,解得:3x=-或223279yxy-+=+将223279yxy-+=+代入直线()039yy x=+可得:0269yyy=+所以点C的坐标为20022003276,99y yy y⎛⎫-+⎪++⎝⎭.同理可得:点D的坐标为2002200332,11y yy y⎛⎫--⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭. 故直线CD 过定点3,02⎛⎫⎪⎝⎭.【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.8.2020年全国统一高考数学试卷(理科)(新课标Ⅱ)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】 【分析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】 (1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,3b c =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533cMF c c =+==,解得3c =. 因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =. 【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.9.2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【答案】(1)AM 的方程为2y x =-+2y x =;(2)证明见解析. 【解析】 【分析】(1)首先根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为1x =,代入椭圆方程求得点A 的坐标为1,2⎛⎫ ⎪ ⎪⎝⎭或1,2⎛⎫-⎪ ⎪⎝⎭,利用两点式求得直线AM 的方程; (2)分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果. 【详解】(1)由已知得()1,0F ,l 的方程为1x =.由已知可得,点A 的坐标为1,2⎛ ⎝⎭或1,2⎛-⎝⎭.所以AM 的方程为2y x =-+2y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠. 当l 与x 轴不重合也不垂直时,设l 的方程为()()10y k x k =-≠,()()1122,,,A x y B x y ,则12x x <<直线MA 、MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y k k x y k x k =-=-得()()()12121223422MA MB kx x k x x kk k x x -+++=--.将()1y k x =-代入2212x y +=得()2222214220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+. 从而0MA MB k k +=,故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 【点睛】该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论. 10.2018年全国卷Ⅲ理数高考试题文已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.【答案】(1)12k <-(2)28或28- 【解析】分析:(1)设而不求,利用点差法进行证明.(2)解出m,进而求出点P 的坐标,得到FP ,再由两点间距离公式表示出,FA FB ,得到直l 的方程,联立直线与椭圆方程由韦达定理进行求解.详解:(1)设()()1122,,,A x y B x y ,则222211221,14343x y x y +=+=.两式相减,并由1212y y k x x -=-得 1212043x x y y k +++⋅=. 由题设知12121,22x x y y m ++==,于是 34k m=-.① 由题设得302m <<,故12k <-.(2)由题意得()1,0F ,设()33,P x y ,则()()()()3311221,1,1,0,0x y x y x y -+-+-=.由(1)及题设得()()31231231,20x x x y y y m =-+==-+=-<. 又点P 在C 上,所以34m =,从而31,2P ⎛⎫- ⎪⎝⎭,32FP =.于是(122x FA x ===-. 同理222x FB =-. 所以()121432FA FB x x +=-+=. 故2FP FA FB =+,即,,FA FP FB 成等差数列. 设该数列的公差为d ,则()212112||2d FB FA x x x x =-=-=+②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得d =.所以该数列的公差为28或28-. 点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到0FP FM +=,求出m 得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大. 11.2017年全国普通高等学校招生统一考试理科数学(新课标1卷)已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【答案】(1) 2214x y +=.(2)证明见解析. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x 轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩.故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且2t <,可得A ,B 的坐标分别为(t,2),(t,2-).则1222122k k t t +=-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得()222418440kx kmx m +++-=由题设可知()22=16410k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ ()()12121221kx x m x x x x +-+=.由题设121k k +=-,故()()()12122110k x x m x x ++-+=.即()()22244821104141m km k m k k --+⋅+-⋅=++. 解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即()1122m y x ++=--,所以l 过定点(2,1-)点睛:椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.12.2017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析.【解析】 【分析】 【详解】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00NP (x ,),NM 0,x y y =-=()由NP 2NM =得0002x y y ==,. 因为M (00,x y )在C 上,所以22x 122y +=.因此点P 的轨迹为222x y +=.由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则()()OQ 3t PF 1m n OQ PF 33m tn =-=---⋅=+-,,,,, ()OP m n PQ 3m t n ==---,,(,).由OP PQ 1⋅=得-3m-2m +tn-2n =1,又由(1)知222m n +=,故3+3m-tn=0. 所以OQ PF 0⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现. 13.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN 的面积AMNS11212144227749=⨯⨯⨯=.(Ⅱ)由题意3t >,0k >,()A .将直线AM 的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当k =因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->2k <<.因此k 的取值范围是)2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.14.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a>b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y +=(2)2y x =-【解析】试题分析:设出F ,由直线AF 的斜率为3求得c ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF的斜率为3,()0,2A -所以2c =c =又222c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即2k <-或2k >时 1212221612,1414k x x x x k k+==++. 所以PQ ===点O 到直线l 的距离d =所以21214OPQS d PQ k∆==+,0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++,当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或22y x =--. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.15.2020年全国统一高考数学试卷(理科)(新课标Ⅲ)已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ的面积. 【详解】(1)222:1(05)25x yC mm+=<<∴5 a=,b m =,根据离心率22154115c b mea a⎛⎫⎛⎫==-=-=⎪ ⎪⎝⎭⎝⎭,解得54m=或54m=-(舍),∴C的方程为:22214255x y⎛⎫⎪⎝⎭+=,即221612525x y+=;(2)不妨设P,Q在x轴上方点P在C上,点Q在直线6x=上,且||||BP BQ=,BP BQ⊥,过点P作x轴垂线,交点为M,设6x=与x轴交点为N根据题意画出图形,如图||||BP BQ=,BP BQ⊥,90PMB QNB∠=∠=︒,又90PBM QBN∠+∠=︒,90BQN QBN∠+∠=︒,∴PBM BQN∠=∠,根据三角形全等条件“AAS”,可得:PMB BNQ≅△△,221612525x y+=,∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=, 根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:1555252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+===+, 根据两点间距离公式可得:()()226580185AQ =++-= ∴APQ 面积为:1518522185=, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.6.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3m m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+.【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示; (2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kb x k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k ==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-.(2)四边形OAPB 能为平行四边形.∵直线l 过点(,)3m m ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = ∴239k =+2(3)23(9)mk k k -⨯+.解得147k =-,247k =+. ∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形.考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.。
2015年高考数学理一轮复习精品资料 专题9.5 椭圆含解析
2015年高考数学理一轮复习精品资料【新课标版】预测卷第九章 解析几何 第五节 椭圆一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【改编自2014年全国普通高等学校招生统一考试文科数学(江西卷)】设椭圆()2222:10x y C a b a b+=>>的左右焦点为12F F ,,作2F 作x 轴的垂线与C 交于A B ,两点,1F B 与y 轴交于点D ,若1AD F B ⊥,则椭圆C 的离心率等于( )A .3C .12. 【2015高考数学一轮配套特训】椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .14 B .12C .2D .43. 【2014届福建省福州市高三5月综合练习】已知P(x,y)为椭圆22:12516x y C +=上一点,F 为椭圆C 的右焦点,若点M 满足||1MF =且0MP MF ⋅=,则||PM 的最小值为( )125D.14. 【2015高考数学一轮配套特训】设圆(x +1)2+y 2=25的圆心为C ,A(1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( )A .2421x -2425y =1B .2421x +2425y =1C .2425x -2421y =1D .2425x +2421y =15. 【2014年高考数学考前复习】设F 1、F 2分别是椭圆22221x y a b +=(a >b >0)的左、右焦点,若在直线x=2a c 上存在P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A .0,2⎛ ⎝⎦B .0,3⎛ ⎝⎦ C .2⎫⎪⎪⎣⎭ D .3⎫⎪⎪⎣⎭6.【2014届安徽省“江淮十校协作体”四月联考】如图,一个底面半径为R 的圆柱被与其底面所成角为00(090)θθ<<的平面所截,截面是一个椭圆,当θ为30时,这个椭圆的离心率为( )A.1223 【答案】A【解析】由椭圆的性质得,椭圆的短半轴b R =,因为截面与底面所成角为θ,所以椭圆的长轴长22cos R a θ=,得3a R =c R === 所以椭圆的离心率12c e a == 故选A7. 【2015高考数学一轮配套特训】已知椭圆C :24x +22y b =1(b>0),直线l :y =mx +1,若对任意的m∈R ,直线l 与椭圆C 恒有公共点,则实数b 的取值范围是( ) A .[1,4) B .[1,+∞) C .[1,4)∪(4,+∞) D .(4,+∞) 【答案】C【解析】直线恒过定点(0,1),只要该点在椭圆内部或椭圆上即可,故只要b≥1且b≠4.8. 【2014届安徽省“江南十校”高三第二次模拟】设椭圆的方程为22221(0)x y a b a b +=>>右焦点为(,0)(0)F c c >,方程20ax bx c +-=的两实根分别为12,x x ,则12(,)P x x ( )A.必在圆222x y +=内 B.必在圆222x y +=外 C.必在圆221x y +=外D.必在圆221x y +=与圆222x y +=形成的圆环之间9. 【2015高考数学一轮配套特训】若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P(m ,n)的直线与椭圆29x +24y =1的交点个数是( )A .至多为1B .2C .1D .010. 【2014届河北省唐山市高三年级第三次模拟】椭圆2222:1x y C a b+=(0)a b >>的左、右焦点为12,F F ,过1F 作直线l 交C 于A ,B 两点,若2ABF ∆是等腰直角三角形,且0290AF B ∠=,则椭圆C 的离心率为( )A .2.12-C 1D .211. 【2015数学一轮复习迎战高考】[2014·福建调研]若点O 和点F 分别为椭圆24x +23y =1的中心和左焦点,点P 为椭圆上的任意一点,则OP ·FP 的最大值为( ) A.2 B.3 C.6 D.8∴OP ·FP =x 02+x 0+3(1-204x )=204x +x 0+3=14(x 0+2)2+2.∵-2≤x 0≤2,∴OP ·FP 的最大值在x 0=2时取得,且最大值等于6.12. 【改编自2014届安徽省“江南十校”高三第二次模拟】设1F 是椭圆2214y x +=的下焦点,O 为坐标原点,点P 在椭圆上,则1PF PO ⋅的最大值为( ).A .4+.4- C 1 D 1二、填空题(本大题共4小题,每小题5分,共20分。
2015年高考理科数学试题汇编(含答案):椭圆 大题
(重庆)21.(本小题满分12分,(1)小问5分,(2)小问7分)如题(21)图,椭圆()222210x y a b a b+=>>的左、右焦点分别为12,,F F 过2F 的直线交椭圆于,P Q 两点,且1PQ PF ⊥(1)若122PF =+,求椭圆的标准方程 (2)若1,PF PQ =求椭圆的离心率.e【答案】(1)22+y =14x ;(2(2)解法一:如图(21)图,设点P 00(,y )x 在椭圆上,且12PF PF ⊥,则22222000022y +=1,x x y c a b +=求得200=y .b x c±=± 由12|P F |=|||P F |PQ >,得0>0x ,从而()(22222221|PF |=22.b a b a c ⎛⎫⎫+=-+=+ ⎪⎪⎭⎝⎭由椭圆的定义,1212|PF ||PF |2,|QF ||QF |2a a+=+=,从而由122|PF |=|PQ |=|PF |+|QF |,有 11|QF |42|PF |a =-又由12PF PF ⊥,1|PF |=|PQ |知11|QF |PF |,因此(1|PF |=4a于是((24.a a =解得e ==解法二:如图(21)图由椭圆的定义,1212|PF ||PF |2,|QF ||QF |2a a +=+=,从而由122|PF |=|PQ |=|PF |+|QF |,有11|QF |42|PF |a =-又由12PF PF ⊥,1|PF |=|PQ |知11|QF |PF |,因此1142|PF |PF |a -,1|PF |a ,从而21|PF |=2-|PF |21)a a a a =-=由12PF PF ⊥,知22222122|PF ||P F ||PF |(2)4c c +===,因此ce a ===-考点:椭圆的标准方程,椭圆的几何性质.(20)(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由。
名师解读高考真题系列-高中数学理数:专题17 椭圆及其
一、选择题1.【椭圆的简单几何性质,双曲线的简单几何性质】【2016,浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1【答案】A2. 【椭圆方程与几何性质】【2016,新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13B.12C.23D.34【答案】A 二、非选择题3. 【椭圆离心率】【2016,江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是_______________.4. 【圆锥曲线综合问题】【2016,新课标1卷】设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[ 5. 【椭圆、抛物线的标准方程及其几何性质,直线与圆锥曲线的位置关系,二次函数的图象和性质】【2016,山东理数】平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>E :22x y =的焦点F 是C 的一个顶点.(I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)1422=+yx ;(Ⅱ)(i )略;(ii )12S S 的最大值为49,此时点P 的坐标为)41,22(6. 【椭圆的标准方程和几何性质,直线方程】【2016,天津理数】设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.【答案】(Ⅰ)22143x y +=(Ⅱ)),46[]46,(+∞--∞7. 【圆与椭圆的位置关系,椭圆的离心率】【2016,浙江理数】如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.【答案】(I )22221a k a k +(II )02e <≤.8. 【椭圆的性质,直线与椭圆的位置关系】【2016,新课标2理数】已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ)).9. 【椭圆方程及其性质,直线与椭圆的位置关系】【2016,北京理数】已知椭圆C :22221+=x y a b(0a b >>),(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1. (1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.【答案】(1)2214x y +=;(2)略. 10. 【椭圆的标准方程及其几何性质】【2016,四川理数】已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T . (Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PTPA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=.11. 【椭圆的几何性质,圆的方程】【2015,新课标1,理14】一个圆经过椭圆221164x y +=错误!未找到引用源。
高考数学试题分项版解析专题17椭圆及其综合应用理
【2019最新】精选高考数学试题分项版解析专题17椭圆及其综合应用理1.【2017浙江,2】椭圆的离心率是22194x y +=A .B .C .D 2359【答案】B 【解析】试题分析:,选B .e ==2.【2017课标3,理10】已知椭圆C :,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A222221x y a b+=为直径的圆与直线相切,则C 的离心率为20bx ay ab -+=A .B .C .D 313【答案】A 【解析】试题分析:以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,12A A ()0,0r a =222x y a +=直线与圆相切,所以圆心到直线的距离等于半径,即:,20bx ay ab -+=d a ==整理可得,即,223a b =()222223,23a a c a c =-=从而,椭圆的离心率,22223c e a ==3c e a ===故选A.【考点】椭圆的离心率的求解;直线与圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式e =;ca②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b2=a2-c2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a2转化为关于e 的方程(不等式),解方程(不等式)即可得e(e 的取值范围).3.【2016高考浙江理数】已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()22x m 22x nA .m>n 且e1e2>1B .m>n 且e1e2<1C .m<n 且e1e2>1D .m<n 且e1e2<1 【答案】A 【解析】4.【2016高考新课标3理数】已知为坐标原点,是椭圆:的左焦点,O F C 22221(0)x y a b a b+=>>,A B分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于C P C PF x ⊥A PF M y点.若直线经过的中点,则的离心率为()E BM OE C (A ) (B ) (C ) (D )13122334【答案】A 【解析】试题分析:由题意设直线的方程为,分别令与得点,,由,得,即,整理,得,所以椭圆离心率为,故选A .()y k x a =+x c =-0x =||()FM k a c =-||OE ka =OBE CBM∆∆1||||2||||OE OB FM BC =2(c)ka a k a a c =-+13c a =13e = 考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得的值,进而求得的值;(2)建立的齐次等式,求得或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出.,a c ,,a b cba5.【2015高考新课标1,理14】一个圆经过椭圆的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为.221164x y +=【答案】22325()24x y -+=【解析】设圆心为(,0),则半径为,则,解得,故圆的方程为.4a -222(4)2a a -=+32a =22325()24x y -+=6.【2016高考江苏卷】如图,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于两点,且,则该椭圆的离心率是.xOy F 22221()x y a b a b +=>>02by =,B C 90BFC ∠=【解析】由题意得,因此,),C(,),22b b B22222)()0322b c c a e -+=⇒=⇒ 考点:椭圆离心率【名师点睛】椭圆离心率的考查,一般分两个层次,一是由离心率的定义,只需分别求出,这注重考查椭圆标准方程中量的含义,二是整体考查,求的比值,这注重于列式,即需根据条件列出关于的一个齐次等量关系,通过解方程得到离心率的值.,a c ,a c ,a c7.【2017课标1,理20】已知椭圆C :(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C 上.2222=1x y a b+(1)求C 的方程;(2)设直线l 不经过P2点且与C 相交于A ,B 两点.若直线P2A 与直线P2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据,两点关于y 轴对称,由椭圆的对称性可知C 经过,两点.另外知,C 不经过点P1,所以点P2在C 上.因此在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P2A 与直线P2B 的斜率分别为k1,k2,在设直线l 的方程,当l 与x 轴垂直,通过计算,不满足题意,再设设l :(),将代入,写出判别式,韦达定理,表示出,根据列出等式表示出和的关系,判断出直线恒过定点.3P 4P 3P 4P 222211134a b a b+>+134,,P P P y kx m =+1m ≠y kx m =+2214x y +=12k k +121k k +=-m试题解析:(1)由于,两点关于y 轴对称,故由题设知C 经过,两点.3P 4P 3P 4P又由知,C 不经过点P1,所以点P2在C 上.222211134a b a b +>+因此,解得.222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎪⎨=⎪⎩故C的方程为.2214x y +=由题设可知.22=16(41)0k m ∆-+>设A (x1,y1),B (x2,y2),则x1+x2=,x1x2=.2841km k -+224441m k -+ 而12121211y y k k x x --+=+1212122(1)()kx x m x x x x +-+=.由题设,故.121k k +=-1212(21)(1)()0k x x m x x ++-+=即.222448(21)(1)04141m km k m k k --+⋅+-⋅=++解得.12m k +=-当且仅当时,,欲使l :,即,1m >-0∆>12m y x m +=-+11(2)2m y x ++=-- 所以l 过定点(2,)1-【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :上,过M 作x 轴的垂线,垂足为N ,点P 满足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.【2017浙江,2】椭圆22194x y +=的离心率是A B C .23D .592.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C D .133.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则()A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<14.【2016高考新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为() (A )13(B )12(C )23(D )345.【2015高考新课标1,理14】一个圆经过椭圆221164x y +=错误!未找到引用源。
的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为.6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。
(1) 求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=。
证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F 。
9.【2017山东,理21】在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.10.【2017天津,理19】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △AP 的方程.11.【2017江苏,17】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F , 2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .(1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.12.【2016高考新课标1卷】(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.13.【2016高考山东理数】(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>,抛物线E :22x y=的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(第17题)(i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.14.【2015江苏高考,18】(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于 点P ,C ,若PC =2AB ,求直线AB 的方程.15.【2016高考天津理数】(本小题满分14分)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA e OA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.16.【2015高考山东,理20】平面直角坐标系xoy 中,已知椭圆()2222:10x y C a b a b+=>>的离,左、右焦点分别是12,F F ,以1F 错误!未找到引用源。
为圆心以3为半径的圆与以2F 错误!未找到引用源。
为圆心以1为半径的圆相交,且交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 错误!未找到引用源。
为椭圆C 错误!未找到引用源。
上任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 错误!未找到引用源。
交椭圆E 于点Q .( i )求OQOP错误!未找到引用源。
的值; (ii )求ABQ ∆面积的最大值.17.【2015高考陕西,理20】(本小题满分12分)已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c . (I )求椭圆E 的离心率;(II )如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的 方程.18.【2016高考浙江理数】(本题满分15分)如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.19.【2015高考新课标2,理20】(本题满分12分)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.20.【2016高考新课标2理数】已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积;(Ⅱ)当2AM AN =时,求k 的取值范围.21.【2015高考四川,理20】如图,椭圆E :2222+1(0)x y a b a b =>>,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行与x 轴时,直线l 被椭圆E 截得的线段长为.(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PAQB PB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.22.【2016年高考北京理数】(本小题14分)已知椭圆C :22221+=x y a b(0a b >>),(,0)A a ,(0,)B b ,(0,0)O ,OAB∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.23.【2016年高考四川理数】(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T . (Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PTPA PB λ=⋅,并求λ的值.24.【2015高考重庆,理21】如题(21)图,椭圆()222210x y a b a b+=>>的左、右焦点分别为12,,F F过2F 的直线交椭圆于,P Q 两点,且1PQ PF ⊥(1)若1222PF PF =+=,求椭圆的标准方程 (2)若1,PF PQ =求椭圆的离心率.e25.【2015高考安徽,理20】设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB上,满足2BM MA =,直线OM 的斜率为. (I )求E 的离心率e ;(II )设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求 E 的方程.26.【2015高考福建,理18】已知椭圆E :22221(a0)x y b a b +=>>过点,.xy BAOG(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线1x my m R =-?,()交椭圆E 于A ,B 两点,判断点G 9(4-,0)与以线段AB 为直径的圆的位置关系,并说明理由.27.【2015湖南理20】已知抛物线21:4C x y =的焦点F 也是椭圆22222:1(0)y x C a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为. (1)求2C 的方程;(2)过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且AC 与BD 同向 (ⅰ)若||||AC BD =,求直线l 的斜率(ⅱ)设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形。