电磁感应电荷量问题

合集下载

巧用电荷量和电热解电磁感应问题

巧用电荷量和电热解电磁感应问题

◇ 江 苏 杜 维
电磁感 应 一直 以来都 是 高 考 的重 点 和 热点 ,从 近 几年 各地 高考 卷 中对该类 问题 的得 分 统 计来 看 ,得 分 率 都 不 高 .如 何 有 效 掌 握 电 磁 感 应 问题 抓 好 基 本 分 呢 ?笔者 认为 做好 对 电荷量 和 电热 的分 析 至关重 要.
(2)开 始运 动后 0.2 S内通过 导体 棒 的 电荷 量 q; (1)导体 棒 开始 运 动 时 ,回路 中产 生 的感 应
析 电 电动 动势 势 一 一 Blv , ,感 感 应 应 电 电流 流 J J一 一 一 一一 B 一y,,安
培力 F安一BIl,导 体 棒 匀 速 运 动 ,由平 衡 条 件 可 得 :
例 1 如 图 l,顶 角 为 90。的
光 滑金属 导轨 MON 固定 在水平 面 上 ,导 轨 MO、N0 的 长 度 相
等 ,M 、N 两点 间 的距 离 z一2 m,
整个 装 置 处 于 磁 感 应 强 度 大 小
B一0.5 T、方 向竖直 向下 的 匀强
磁 场 中.一 根 粗 细 均 匀 、单 位 长
- 学海导航 -
爱 ,使他 们树 立学 习信 心 ,取得 化 败 为胜 的成 功.在课 堂 上 ,教师要 时刻 注 意 情 感 的树 立 和 启 发 ,对 学 生 每 一 次积 极 的发 言 都 应 用期 待 的 眼 神或 适 度 的诱 导 进 行 激 发 ,用赞 许 的 目光 或 适 当 的表 扬 给 予 激 励 .一 旦 学 生获 得 了这种 期望 的信 息 ,便 会 产 生积 极 的“鼓 励 ” 效 应 ,形 成一 种 凝 聚 力 和 心 理 上 的 动 力 源 ,产 生 情 感 上 的共 鸣.

电磁感应中的能量转化及电荷量问题例题

电磁感应中的能量转化及电荷量问题例题

电磁感应中的能量转化及电荷量问题一、电磁感应电路中电荷量的求解回路中磁通量发生变化时,电荷发生定向移动而形成感应电流,在Δt内迁移的电荷量(感应电荷量)为q=I·Δt=ER·Δt=nΔΦΔt·1R·Δt=nΔΦR.其中n为匝数,R为总电阻.从上式可知,线圈匝数一定时,感应电荷量仅由回路电阻和磁通量的变化量决定,与时间无关.例1如图X31所示,导线全部为裸导线,半径为r的圆内有垂直于纸面的匀强磁场,磁感应强度为B,一根长度大于2r的导线MN以速度v在圆环上无摩擦地自左向右匀速滑动,电路的固定电阻为R,其余电阻忽略不计.试求MN从圆环的左端滑到右端的过程中电阻R上的电流的平均值及通过的电荷量.πBrv2RBπr2R[解析]由于ΔΦ=B·ΔS=B·πr2,完成这一变化所用的时间Δt=2rv,故E=ΔΦΔt=πBrv2,所以电阻R上的电流的平均值为I=ER=πBrv2R,通过R的电荷量为q=I·Δt=Bπr2R.二、电磁感应中的能量转化问题1.电磁感应中能量的转化电磁感应过程实质是不同形式的能量相互转化的过程,电磁感应过程中产生感应电流,在磁场中必定受到安培力作用,因此要维持感应电流,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式:同理,电流做功的过程,是电能转化为其他形式的能的过程,电流做了多少功就有多少电能转化为其他形式的能.2.解决电磁感应能量转化问题的基本方法(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;(2)画出等效电路,求出回路中电阻消耗电能的表达式;(3)分析导体机械能的变化,用能量守恒关系得到机械能的改变与回路中电能的改变所满足的方程.例2如图X32所示,固定的水平光滑金属导轨间距为L,左端接有阻值为R的电阻,处在方向竖直向下、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻可忽略.初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v 0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.(1)求初始时刻导体棒受到的安培力.(2)若导体棒从初始时刻到速度第一次为零时,弹簧弹性势能的增加量为E p ,则这一过程中安培力所做的功W 1和电阻R 上产生的热量Q 1分别为多少?(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R 上产生的热量Q 为多少?(1)B 2L 2v 0R ,方向水平向左 (2)E p -12mv 20 12mv 20-E p (3)初始位置 12mv 20[解析] (1)初始时刻导体棒中的感应电动势E =BLv 0,棒中的感应电流I =E R, 作用于棒上的安培力F 安=BIL ,联立以上各式得F 安=B 2L 2v 0R ,安培力方向水平向左.(2)由功能关系得,安培力做功W 1=E p -12mv 20, 电阻R 上产生的热量Q 1=12mv 20-E p . (3)由能量转化及平衡条件可知,棒最终静止于初始位置,电阻R 上产生的热量Q =12mv 20. 2.(电磁感应中的能量转化问题)(多选)如图X34所示,两根电阻不计的光滑平行金属导轨倾角为θ,导轨下端接有电阻R ,匀强磁场垂直斜面向上.质量为m 、电阻不计的金属棒ab 与导轨垂直并保持良好接触,在沿斜面与棒垂直的恒力F 作用下沿导轨匀速上滑,上升高度为h ,在这个过程中( )A .金属棒所受各力的合力所做的功等于零B .金属棒所受各力的合力所做的功等于mgh 和电阻R 上产生的热量之和C .恒力F 做的功与导体棒所受重力做的功之和等于棒克服安培力所做的功与电阻R 上产生的热量之和D .恒力F 做的功与导体棒所受重力做的功之和等于电阻R 上产生的热量AD [解析] 金属棒匀速上升的过程有三个力做功:恒力F 做正功,重力G 、安培力F 安做负功.根据动能定理,有W =W F +W G +W 安=0,故A 对,B 错;恒力F 做的功与金属棒所受重力做的功之和等于金属棒克服安培力做的功,而金属棒克服安培力做的功等于回路中电能(最终转化为热量)的增加量,克服安培力做的功与热量不能重复考虑,故C 错,D 对.3.(电磁感应中的能量转化问题)如图X35所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小.(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8 W ,求该速度的大小.(3)在上问中,若R =2 Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g 取10 m /s 2,sin 37°=0.6,cos 37°=0.8)(1)4 m /s 2 (2)10 m /s (3)0.4 T 方向垂直导轨平面向上[解析] (1)金属棒开始下滑时的速度为零,根据牛顿第二定律得mg sin θ-μmg cos θ=ma ,解得a =10×(0.6-0.25×0.8) m /s 2=4 m /s 2.(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F 安,棒在沿导轨方向受力平衡,有mg sin θ-μmg cos θ-F 安=0,此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率,即F 安v =P ,联立解得v=PF安=80.2×10×(0.6-0.25×0.8)m/s=10 m/s.(3)设电路中电流为I,两导轨间金属棒的长为l,磁场的磁感应强度为B,则I=Blv R,P=I2R,联立解得B=PRvl=8×210×1T=0.4 T,由楞次定律可知磁场方向垂直导轨平面向上.。

例析电磁感应现象中的电荷量问题

例析电磁感应现象中的电荷量问题
当 S置 于 R 一 边 时 , 电容 器 两 端 电 压 为
U1 一 V.
L , \
图3
×
电容器带电荷量为 q 一C 一3 ×1 0 C . 当 S置 于 R 。一 边 时 , 电容 器 两 端 电 压 为
不计 , 导 轨 左 端 接 有 R一 0 . 5 Q的 电 阻 , 量程为 0 ~3 . 0 A 的 电流 表 串 接 在 一 条 导 轨 上 , 量 程为 0 ~1 . 0 V 的 电 压 表
2 . 2 利用公式 q —J f 求 解 求 解 一 段 时 间 内通 过 导体 的 电荷 量 可 以利 用 电 流 的 定
义式 j 一旦 , 此时所 用 电 流为其 平 均值. 根据 q 一卜 一

电磁 感 应 现 象 中 感 应 电动 势 和 感 应 电 流 会 随 着 导 体
运 动 或 回路 中磁 通 量 的变 化 而 变 化 , 导 体 所 受 安 培 力 也 随 之变化 , 此 时可利用动量定理进行求解.
图 1
左运动 , 在 它 运 动 的 区 域 里 存在着垂直导轨平面 、 磁 感 应 强 度 B一 2 . 0 T的匀强磁 场. 若 电 键 S原 来 置 于 R 一 边 , 现 突然 扳 向 R 一 边 , 则 此 过 程中导轨 c 一 段 通 过 的 电荷 量 q为 多 少 ? 解析 : 由电磁感 应定 律 知 n 6向 左 切 割 磁 感 线 产 生 的
X l ×

X ×
×
金属 棒 C D 垂 直 跨 搁 在 位 于 水 平 面 上 的 两 条 平 行 金 属 导 轨上 . 两导 轨 间距 也是 , , 棒 与 导 轨 间 接 触 良好 , 导 轨 电阻

电磁感应中求解电荷量的几种方法

电磁感应中求解电荷量的几种方法

电磁感应中求解电荷量的几种方法
电磁感应中求解电荷量是电磁学研究中的重要内容。

求解电荷量的方法有很多种,主要有四种:
第一种是利用电磁势引力原理。

对于一组隐藏的静电荷,可以用电磁势引力原理,通过测量外加电场和它耦合的电势,来求出荷量的大小和分布。

第二种是利用量子测量原理。

将被测物体放在量子测量仪中,通过量子测量原理,用测量仪探测出量子势能,进而分析计算出电荷量大小。

第三种是利用电磁约束的原理。

当给定条件下,当外加电场约束物体电荷分布情况时,可以利用电磁约束原理,根据电场约束条件求出被约束物体的电荷量。

第四种是利用电荷倒置法。

当物体已经有了电荷时,可以先研究被测物体在某一条件下电势,再计算物体另一种条件下电势,从而求出电荷量大小。

总之,求解电荷量有很多种方法,以上四种是主要的求解电荷量的方法。

针对不同的应用需要,从上述方法中选择合适的方法,求解出物体上电荷量的大小及分布。

电磁感应电荷量和热量问题

电磁感应电荷量和热量问题

1法拉第电磁感应“电荷量和热量”问题(必做题) 姓名:1.如图所示,长L 1=1.0m ,宽L 2=0.50m 的矩形导线框,质量为m=0.20kg ,电阻R =2.0Ω.其正下方有宽为H (H >L 2),磁感应强度为B =1.0T ,垂直于纸面向里的匀强磁场.现在,让导线框从cd 边距磁场上边界h =0.70m 处开始自由下落,当cd 边进入磁场中,而ab 尚未进入磁场,导线框达到匀速运动。

(不计空气阻力,且g=10m/s 2) 求⑴线框进入磁场过程中安培力做的功是多少?⑵线框穿出磁场过程中通过线框任一截面的电荷量q 是多少?2.如图所示,足够长的光滑导轨ab 、cd 固定在竖直平面内,导轨间距为l ,b 、c 两点间接一阻值为R 的电阻。

ef 是一水平放置的导体杆,其质量为m 、有效电阻值为R ,杆与ab 、cd 保持良好接触。

整个装置放在磁感应强度大小为B 的匀强磁场中,磁场方向与导轨平面垂直。

现用一竖直向上的力拉导体杆,使导体杆从静止开始做加速度为0.5g 的匀加速运动,上升了h 高度,这一过程中b 、c 间电阻R 产生的焦耳热为Q ,g 为重力加速度,不计导轨电阻及感应电流间的相互作用。

求:(1)导体杆上升h 高度过程中通过杆的电荷量; (2)导体杆上升h 高度时所受拉力F 的大小; (3)导体杆上升h 高度过程中拉力做的功。

3.如图所示,一平面框架与水平面成θ=37°角,宽L=0.4 m,上、下两端各有一个电阻R 0=1Ω,框架的其他部分电阻不计,框架足够长。

垂直于框架平面的方向存在向上的匀强磁场,磁感应强度B=2 T 。

ab 为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r=0.5 Ω,金属杆与框架的动摩擦因数μ=0.5。

金属杆由静止开始下滑,直到速度达到最大的过程中,金属杆克服磁场力所做的功为W=1.5 J 。

已知sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2。

电磁感应电荷量q的三种公式

电磁感应电荷量q的三种公式

电磁感应电荷量q的三种公式电磁感应法是一种非接触的电荷测量技术,它基于电荷在磁场中运动时会感应电势的原理。

电磁感应法可以通过测量电势的变化来计算出被测电荷的大小。

在电磁感应法中,常用的三种公式包括:
1. 带点物体在磁场中运动时感应电荷量的公式:
q = Bvl
其中,q 表示感应电荷量;B 表示磁感应强度;v 表示带电物体的运动速度;l 表示物体在磁场中运动的长度。

这个公式的意义是,当一个带电物体在磁场中运动时,会在物体上感应出一定大小的电荷量,其大小与磁感应强度、带电物体的运动速度以及运动路径相关。

这个公式的应用范围较广,例如在电动机、发电机、电磁波等方面都有应用。

2. 磁场中匀速运动的导体的感应电荷量公式:
q = BAv
其中,q 表示导体中感应电荷量;B 表示磁感应强度;A 表示导体所覆盖的面积;v 表示导体匀速运动的速度。

这个公式的意义是,当一个导体以匀速运动穿过一个磁场时,会在导体的表面感应出电荷量,其大小与磁感应强度、导体面积以及运
动速度有关。

这个公式在电能表、电动车子、电子秤等设备中都有应用。

3. 磁场中匀速运动导体感应电荷量公式的另一种描述:
q = Blv
其中,q,B,l,v 分别与前面两个公式中的含义一样。

这个公式的意义是,当一个导体在磁场中以匀速运动时,在导体两端都会感应出电势差,其大小正比于磁感应强度、导体长度和运动速度。

这个公式在电感应式高度计、磁浮列车等领域中有应用。

以上三种公式都具有很强的指导意义,可以帮助科学家和工程师更好地进行相关领域的研究和应用。

同时,他们也为学生们深入了解电磁感应法提供了宝贵的参考。

电磁感应中,电荷量计算公式?

电磁感应中,电荷量计算公式?

电磁感应中,电荷量计算公式?在学习高中物理的时候往往会遇到很多关于物理问题,上课觉着什幺都懂了,可等到做题目时又无从下手。

以至于对于一些意志薄弱、学习方法不对的同学就很难再坚持下来。

过早的对物理没了兴趣,伤害了到高中的学习信心。

收集整理下面的这几个问题,是一些同学们的学习疑问,小编做一个统一的回复,有同样问题的同学,可以仔细看一下。

【问:电磁感应中,电荷量计算公式?】答:电荷量q=△Φ/r总;注意,这个公式不能直接用,需要做简单的推导。

具体如下:q=i△t=e*△t/r总=(△Φ/△t)*△t/r总=△Φ/r总;可见,电荷量转移的多少,只与磁通量的变化量和电路总电阻有关系。

【问:三个宇宙速度分别是什幺?】答:第一宇宙速度大小是7.9km/s,它是卫星的最小发射速度,同时它也是地球卫星的最大环绕速度。

第二宇宙速度大小是11.2km/s,它是使物体能挣脱地球引力束缚的最小发射速度,或者说是卫星逃逸地球的发射速度。

第三宇宙速度的大小是16.7km/s,它是使物体挣脱太阳引力束缚(逃逸太阳系)的最小发射速度。

【问:分子势能怎幺变?】答:由分子的相对位置决定的势能,叫做分子势能。

分子势能直接影响因素就是分子的距离,宏观上就是物体的体积大小。

当分子间的作用表现为引力时,随着分子间的距离增大分子势能逐渐变大;两分子间的作用表现为斥力为主时,随着分子间距离增大势能逐渐减小。

【问:简谐振动是什幺意思?】答:物体往复运动模式模式称之为机械振动,物体做简谐振动必须满足公式f=- kx,即物体所受的力跟位移成正比,并且力总是指向平衡位置,公式中的负号表示,力f的方向与位移x的方向始终相反。

简谐振动的最典型代表是小角度单摆与弹簧振子。

一个做匀速圆周运动的物体在一条直径上的投影所做的运动是严格的简谐运动。

【问:需要记录物理错题吗?】答:错题本是巩固。

电磁感应中的电量问题

电磁感应中的电量问题

浅谈电磁感应中的电量问题江西省铅山一中陈志锋一、在电磁感应现象中,只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流,设在时间△t内通过导线横截面的电荷电量为q,则根据电流的定义式I=q/△t及法拉第电磁感应定律E= n△φ/△t,得q= △t=E△t/R总=n△φ△t/R总△t=n△φ/R总。

如果闭合电路是一个单匝线圈(n=1),则q=△φ/R总。

由该式可知,在△t时间内通过导线横截面的电量由电路总电阻与磁通量变化决定,与发生磁通变化时间△t无关。

例1:(06年高考全国卷I)如图,在匀强磁场中固定放置一根串接一电阻R的直角金属形导轨aob(在纸面内),磁场方向垂直于纸面朝里,另有两根平行金属导轨c、d分别平行于oa、ob放置。

保持导轨之间接触良好,金属导轨的电阻不计。

现经历以下四个过程:(1)以速率V移动d,使它与ob的距离增大一倍;(2)再以速率V移动c,使它与oa的距离减小一半;(3)然后,再以速率2V移动C,使它回到原处;(4)最后以速率2V移动d,使它也回到原处,设上述四个过程中通过电阻R的电量大小依次为Q1、Q2、Q3和Q4,则A、Q1=Q2=Q3=Q4B、Q1=Q2=2Q3=2Q4C、2Q1=2Q2=Q3=Q4D、Q1≠Q2≠Q3≠Q4解析:经历题中所叙述的四个过程,闭合回路的面积都发生了变化,通过电阻的电量为Q=△φ/R=B△S/R,通过电阻的电量只与过程前后面积的变化量△S有关,与完成这一过程的速度无关。

设原来回路的面积为S,第一个过程将d移动使它与ob距离增大一倍,面积变为2S,变化量为S,第二个过程将c移动到与oa距离减小一半,面积又从2S变为S,变化量仍然为S,第三个过程将c移回原处,面积从S变为2S,变化量还是S,第四个过程将d移回原处,面积从2S 变为S,变化量也是S。

不难看出,四个过程中通过电阻的电量应该相等,故应选A。

二、在导体棒切割磁感应线发生电磁感应中,设在某段时间△t 内流过导体棒的电量为q,导体棒在运动方向上只受到安培力,则由动量定理得:F 安·△t=△p,而F安=B L。

人教版高中物理选择性必修第二册课后习题 第2章 电磁感应 电磁感应中的电路、电荷量和图像问题

人教版高中物理选择性必修第二册课后习题 第2章 电磁感应 电磁感应中的电路、电荷量和图像问题

分层作业11 电磁感应中的电路、电荷量和图像问题A组必备知识基础练题组一电磁感应中的电路问题1.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。

现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框的一边a、b两点间电势差的绝对值最大的是( )2.如图所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a、b两点间电压为U1,若将小环放入这个磁场中,大环在磁场外,a、b两点间电压为U2,则 ( )A.U1U2=1 B.U1U2=2C.U1U 2=4D.U 1U 2=14题组二 电磁感应中的电荷量问题3.如图所示,空间内存在垂直于纸面的匀强磁场,在半径为a 的圆形区域内部及外部,磁场方向相反,磁感应强度的大小均为B 。

一半径为b(b>a)、电阻为R 的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合。

在内、外磁场同时由B 均匀地减小到零的过程中,通过导线环截面的电荷量为( )A.πB |b 2-2a 2|R B.πB (b 2+2a 2)RC.πB (b 2-a 2)R D.πB (b 2+a 2)R4.(多选)(辽宁大连高二期中)如图所示,长直导线通以方向向上的恒定电流I,矩形金属线圈abcd 与导线共面,线圈的长宽比为2∶1,第一次将线圈由静止从位置Ⅰ平移到位置Ⅱ停下,第二次将线圈由静止从位置Ⅰ绕过d 点垂直纸面的轴线旋转90°到位置Ⅲ停下,两次变换位置的过程所用的时间相同,以下说法正确的是( )A.两次线圈所产生的平均感应电动势相等B.两次通过线圈导线横截面的电荷量相等C.两次线圈所产生的平均感应电动势之比为2∶1D.两次通过线圈导线横截面的电荷量之比为2∶15.(多选)(四川泸州高二期末)一跑步机的原理图如图所示,该跑步机水平底面固定有间距L=0.8 m的平行金属电极,外接有理想电压表和R=8 Ω的定值电阻,电极间充满磁感应强度大小B=0.5 T、方向竖直向下的匀强磁场。

电磁感应中的电路与电荷量问题

电磁感应中的电路与电荷量问题

第一讲电磁感应中的电路与电荷量问题电磁感应往往与电路问题联系在一起,解决电磁感应中的电路问题只需要三步:第一步:确定电源。

切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,则该导体或回路就相当于电源,利用求感应电动势的大小,利用右手定则或楞次定律判断电流方向。

如果在一个电路中切割磁感线的有几个部分但又相互联系,可等效成电源的串、并联。

第二步:分析电路结构(内、外电路及外电路的串并联关系),画等效电路图。

第三步:利用电路规律求解。

主要应用欧姆定律及串并联电路的基本性质等列方程求解。

感应电动势大小的计算——法拉第电磁感应定律的应用。

1、折线或曲线导体在匀强磁场中垂直磁场切割磁感线平动,产生的感应电动势:E=BLvsinθ;2、直导体在匀强磁场中绕固定轴垂直磁场转动时的感应电动势:;3、圆盘在匀强磁场中转动时产生的感应电动势:;4、线圈在磁场中转动时产生的感应电动势:(θ为S与B之间的夹角)。

2、电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;②求回路中电流强度;③分析研究导体受力情况(包含安培力,用左手定则确定其方向);④列动力学方程或平衡方程求解。

(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。

3、电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;②画出等效电路,求出回路中电阻消耗电功率表达式;③分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。

高中物理第12章电磁感应 微型专题能力突破 32(电磁感应中的电路 电荷量及图象问题)02

高中物理第12章电磁感应 微型专题能力突破 32(电磁感应中的电路 电荷量及图象问题)02

高中物理第12章电磁感应 微型专题能力突破 32电磁感应中的电路、电荷量及图象问题Lex Li一、电磁感应中的电路问题电磁感应问题常与电路知识综合考查,解决此类问题的基本方法是:(1)明确哪部分电路或导体产生感应电动势,该部分电路或导体就相当于电源,其他部分是外电路. (2)画等效电路图,分清内、外电路.(3)用法拉第电磁感应定律E =n ΔΦΔt 或E =Blv 确定感应电动势的大小,用楞次定律或右手定则确定感应电流的方向.在等效电源内部,电流方向从负极指向正极.(4)运用闭合电路欧姆定律、串并联电路特点、电功率、电热等公式联立求解.【例01】固定在匀强磁场中的正方形导线框abcd 边长为L ,其中ab 是一段电阻为R 的均匀电阻丝,其余三边均为电阻可以忽略的铜线.磁感应强度为B ,方向垂直纸面向里.现有一段与ab 段的材料、粗细、长度均相同的电阻丝PQ 架在导线框上(如图所示).若PQ 以恒定的速度v 从ad 滑向bc ,当其滑过L3的距离时,通过aP 段的电流是多大?方向如何?1.1、“电源”的确定方法:“切割”磁感线的导体(或磁通量发生变化的线圈)相当于“电源”,该部分导体(或线圈)的电阻相当于“内电阻”.1.2、电流的流向:在“电源”内部电流从负极流向正极,在“电源”外部电流从正极流向负极.【针对训练01】用均匀导线做成的正方形线框边长为0.2 m ,正方形的一半放在垂直纸面向里的匀强磁场中,如图所示.当磁场以10 T/s 的变化率增强时,线框上a 、b 两点间的电势差是 ( )A .U ab =0.1 VB .U ab =-0.1 VC .U ab =0.2 VD .U ab =-0.2 V二、电磁感应中的电荷量问题【例02】面积S =0.2 m 2、n =100匝的圆形线圈,处在如图所示的磁场内,磁感应强度B 随时间t 变化的规律是B =0.02t T ,R =3 Ω,C =30 μF ,线圈电阻r =1 Ω,求: (1)通过R 的电流方向和4 s 内通过导线横截面的电荷量; (2)电容器的电荷量.2.1、求解电路中通过的电荷量时,一定要用平均感应电动势和平均感应电流计算.2.2、设感应电动势的平均值为E ,则在Δt 时间内:E =n ΔΦΔt ,I =E R ,又q =I Δt ,所以q =n ΔΦR .其中ΔΦ对应某过程磁通量的变化,R 为回路的总电阻,n 为电路中线圈的匝数.【针对训练02】如图所示,空间存在垂直于纸面的匀强磁场,在半径为a 的圆形区域内部及外部,磁场方向相反,磁感应强度的大小均为B .一半径为b (b >a ),电阻为R 的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合.当内、外磁场同时由B 均匀地减小到零的过程中,通过导线环截面的电荷量为 ( )A. πB |b 2-2a 2|R B.22(2)B b a Rπ+C.22()B b a Rπ-D.22()B b a Rπ+三、电磁感应中的图象问题 3.1、问题类型(1)由给定的电磁感应过程选出或画出正确的图象. (2)由给定的图象分析电磁感应过程,求解相应的物理量. 3.2、图象类型(1)各物理量随时间t 变化的图象,即B -t 图象、Φ-t 图象、E -t 图象和I -t 图象. (2)导体切割磁感线运动时,还涉及感应电动势E 和感应电流I 随导体位移变化的图象, 即E -x 图象和I -x 图象.3.3、解决此类问题需要熟练掌握的规律:安培定则、左手定则、楞次定律、右手定则、法拉第电磁感应定律、欧姆定律等.【例03】将一段导线绕成图甲所示的闭合回路,并固定在纸面内,回路的ab 边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B 随时间t 变化的图象如图乙所示.用F 表示ab 边受到的安培力,以水平向右为F 的正方向,能正确反映F 随时间t 变化的图象是 ( )本类题目线圈面积不变而磁场发生变化,可根据E =nΔB Δt S 判断E 的大小及变化,其中ΔBΔt为B -t 图象的斜率,且斜率正、负变化时对应电流的方向发生变化.【例04】如图所示,在x ≤0的区域内存在匀强磁场,磁场的方向垂直于xOy 平面(纸面)向里.具有一定电阻的矩形线框abcd 位于xOy 平面内,线框的ab 边与y 轴重合.令线框从t =0时刻起由静止开始沿x 轴正方向做匀加速运动,则线框中的感应电流i (取逆时针方向的电流为正)随时间t 的变化图象正确的是 ( )01、如图所示,由均匀导线制成的半径为R 的圆环,以速度v 匀速进入一磁感应强度大小为B 的匀强磁场.当圆环运动到图示位置(∠aOb =90°)时,a 、b 两点的电势差为 ( )A. 2BRvB. 22BRv C. 24BRv D. 324BRv02、如图所示,将一半径为r 的金属圆环在垂直于环面的磁感应强度为B 的匀强磁场中用力握中间成“8”字形(金属圆环未发生翻转),并使上、下两圆环半径相等.如果环的电阻为R ,则此过程中流过环的电荷量为 ( )A. πr 2BRB. πr 2B2RC .0D. 34-πr 2BR03、如图所示,一底边为L ,底边上的高也为L 的等腰三角形导体线框以恒定的速度v 沿垂直于磁场区域边界的方向穿过长为2L 、宽为L 的匀强磁场,磁场方向垂直纸面向里.t =0时刻,三角形导体线框的底边刚进入磁场,取沿逆时针方向的感应电流为正,则在三角形导体线框穿过磁场区域的过程中,感应电流I 随时间t 变化的图象可能是 ( )04、如图所示,设磁感应强度为B ,ef 长为l ,ef 的电阻为r ,外电阻为R ,其余电阻不计.当ef 在外力作用下向右以速度v 匀速运动时,则ef 两端的电压为 ( )A .Blv B. BlvRR +rC. Blvr R +rD. BlvrR05、如图所示,将一个闭合金属圆环从有界磁场中匀速拉出,第一次速度为v ,通过金属圆环某一截面的电荷量为q 1,第二次速度为2v ,通过金属圆环某一截面的电荷量为q 2,则 ( )A .q1∶q 2=1∶2B .q 1∶q 2=1∶4C .q 1∶q 2=1∶1D .q 1∶q 2=2∶106、粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是 ( )07、如图所示,竖直平面内有一金属圆环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 用铰链连接长度为2a 、电阻为R2的导体棒AB ,AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,此时AB 两端电压大小为 ( )A. Bav3B. Bav 6C. 2Bav 3D .Bav08、如图(a )所示,线圈ab 、cd 绕在同一软铁芯上.在ab 线圈中通以变化的电流,用示波器测得线圈cd 间电压如图(b )所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab 中电流随时间变化关系的图中,可能正确的是( )09、物理实验中,常用一种叫做“冲击电流计”的仪器测定通过电路的电荷量.如图所示,探测线圈与冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈的匝数为n,面积为S,线圈与冲击电流计组成的回路电阻为R.若将线圈放在被测匀强磁场中,开始时线圈平面与磁场垂直,现把探测线圈翻转180°,冲击电流计测出通过线圈的电荷量为q,由上述数据可测出被测磁场的磁感应强度为()A. qR SB. qR nSC. qR 2nSD. qR 2S10、如图所示的区域内有垂直于纸面向里的匀强磁场,磁感应强度为B.一个电阻为R、半径为L、圆心角为45°的扇形闭合导线框绕垂直于纸面的O轴匀速转动(O轴位于磁场边界),周期为T,t=0时刻线框置于如图所示位置,则线框内产生的感应电流的图象为(规定电流顺时针方向为正)()11、如图所示,在空间中存在两个相邻的、磁感应强度大小相等、方向相反的有界匀强磁场,其宽度均为L.现将宽度也为L的矩形闭合线圈,从图示位置垂直于磁场方向匀速拉过磁场区域,则在该过程中,能正确反映线圈中所产生的感应电流或其所受的外力随时间变化的图象是()12、(多选)如图甲所示,一个闭合线圈固定在垂直纸面的匀强磁场中,设磁场方向向里为磁感应强度B的正方向,线圈中的箭头指向为电流I的正方向.线圈中感应电流i随时间变化的图线如图乙所示,则磁感应强度B随时间变化的图线可能是()13、如图所示,面积为0.2 m2的100匝线圈A处在磁场中,磁场方向垂直于线圈平面.磁感应强度B 随时间变化的规律是B=(6-0.2t)T,已知电路中的R1=4 Ω,R2=6 Ω,电容C=30 μF,线圈的电阻不计,求:(1)闭合S一段时间后,通过R2的电流大小及方向.(2)闭合S一段时间后,再断开S,S断开后通过R2的电荷量是多少?14、匀强磁场的磁感应强度B=0.2 T,磁场宽度l=4 m,一正方形金属框边长为l′=1 m,每边的电阻r=0.2 Ω,金属框以v=10 m/s的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图所示.求:(1)画出金属框穿过磁场区的过程中,各阶段的等效电路图;(2)画出金属框穿过磁场区的过程中,金属框内感应电流的i-t图线;(要求写出作图依据)(3)画出ab两端电压的U-t图线.(要求写出作图依据)高中物理第12章电磁感应 微型专题能力突破 32电磁感应中的电路、电荷量及图象问题Lex Li【例01】6BvL11R 方向由 P 到aPQ 在磁场中做切割磁感线运动产生感应电动势,由于是闭合回路,故电路中有感应电流,可将电阻丝PQ 视为有内阻的电源,电阻丝aP 与bP 并联,且R aP =13R 、R bP =23R ,于是可画出如图所示的等效电路图.电源电动势为E =BvL外电阻为R 外=R aP R bP R aP +R bP =29R .总电阻为R 总=R 外+r =29R +R ,即R 总=119R . 电路中的电流为:I =E R 总=9BvL11R .通过aP 段的电流为:I aP =R bP R aP +R bPI =6BvL11R ,方向由P 到a .【针对训练01】B解析:穿过正方形线框左半部分的磁通量变化而产生感应电动势,从而在线框中产生感应电流,把左半部分线框看成电源,设其电动势为E ,正方形线框的总电阻为r ,则内电阻为r2,画出等效电路如图所示.则a 、b 两点间的电势差即为电源的路端电压,设l 是边长,且依题意知ΔB Δt =10 T/s.由E =ΔΦΔt 得E =ΔBS Δt =ΔBl 22Δt =10×0.222 V =0.2 V ,所以U =I ·r 2=E r 2+r 2·r 2=0.2r ·r2V =0.1 V .由于a 点电势低于b 点电势,故U ab =-0.1 V ,即B 正确.【例02】(1)方向由b →a 0.4 C (2)9×10-6 C(1)由楞次定律可求得电流的方向为逆时针,通过R 的电流方向为b →a , q =I Δt =E R +r Δt =n ΔBS Δt R +r Δt =n ΔBS R +r =0.4 C.(2)由E =n ΔΦΔt =nS ΔBΔt =100×0.2×0.02 V =0.4 V ,I =E R +r =0.43+1 A =0.1 A , U C =U R =IR =0.1×3 V =0.3 V , Q =CU C =30×10-6×0.3 C =9×10-6 C. 【针对训练02】A 解析:开始时穿过导线环向里的磁通量设为正值,Φ1=B πa 2,向外的磁通量则为负值,Φ2=-B ·π(b 2-a 2),总的磁通量为它们的代数和(取绝对值)Φ=B ·π|b 2-2a 2|,末态总的磁通量为Φ′=0,由法拉第电磁感应定律得平均感应电动势为:E =ΔΦΔt ,通过导线环截面的电荷量为q =E R ·Δt =πB |b 2-2a 2|R,A 项正确.【例03】B 解析:由题图乙可知0~T 2时间内,磁感应强度随时间线性变化,即ΔBΔt =k (k 是一个常数),圆环的面积S 不变,由E =ΔΦΔt =ΔB ·SΔt 可知圆环中产生的感应电动势大小不变,则回路中的感应电流大小不变,ab 边受到的安培力大小不变,从而可排除选项C 、D ;0~T2时间内,由楞次定律 可判断出流过ab 边的电流方向为由b 至a ,结合左手定则可判断出ab 边受到的安培力的方向向左,为负值,故选项A 错误,B 正确.【例04】D 解析:因为线框做匀加速直线运动,所以感应电动势为E =Blv =Blat ,因此感应电流大小与时间成正比,由楞次定律可知电流方向为顺时针.01、D 设整个圆环电阻是r ,则其外电阻是圆环总电阻的34,而在磁场内切割磁感线的有效长度是2R ,其相当于电源,E =B ·2R ·v ,根据欧姆定律可得U =34r r E =324BRv ,选项D 正确.02、B 流过环的电荷量只与磁通量的变化量和环的电阻有关,与时间等其他量无关,ΔΦ=B πr 2-2·B π⎝⎛⎭⎫r 22=12B πr 2,因此,电荷量为q =ΔΦR =πr 2B2R .03、A04、B05、C 由q =I ·Δt =ΔΦΔtR ·Δt 得q =ΔΦR =B ·SR,S 为圆环面积,故q 1=q 2.06、B 在磁场中的线框与速度垂直的边等效为切割磁感线产生感应电动势的电源.四个选项中的感应电动势大小均相等,回路电阻也相等,因此电路中的电流相等,B 中a 、b 两点间电势差为路端电压,为电动势的34,而其他选项则为电动势的14.故B 正确.07、A 摆到竖直位置时,AB 切割磁感线的瞬时感应电动势E =B ·2a ·(12v )=Bav .由闭合电路欧姆定律有U AB =E R 2+R 4·R 4=13Bav ,故选A.08、C09、C q =I ·Δt =E R ·Δt =n ΔΦΔt R Δt =n ΔΦR =n 2BS R ,所以B =qR2nS .10、A 在本题中由于扇形导线框匀速转动,因此导线框进入磁场的过程中产生的感应电动势是恒定的.注意线框在进入磁场和离开磁场时,有感应电流产生,当完全进入时,由于磁通量不变,故无感应电流产生.由右手定则可判断导线框进入磁场时,电流方向为逆时针,故A 正确.11、D 当矩形闭合线圈进入磁场时,由法拉第电磁感应定律判断,当线圈处在两个磁场中时,两个边切割磁感线,此过程中感应电流的大小是最大的,所以选项A 、B 是错误的.由楞次定律可知,当矩形闭合线圈进入磁场和离开磁场时,磁场力总是阻碍线圈的运动,方向始终向左,所以外力F 始终水平向右.安培力的大小不同,线圈处在两个磁场中时安培力最大.故选项D 是正确的,选项C 是错误的.12、CD13、(1)0.4 A 由上向下通过R 2 (2)7.2×10-5 C(1)由于磁感应强度随时间均匀变化,根据B =(6-0.2t ) T ,可知⎪⎪⎪⎪ΔBΔt =0.2 T/s ,所以线圈中感应电动势的大小为E =n ΔΦΔt =nS ·⎪⎪⎪⎪ΔB Δt =100×0.2×0.2 V =4 V .通过R 2的电流大小为I =E R 1+R 2=44+6 A =0.4 A由楞次定律可知电流的方向自上而下通过R 2.(2)闭合S 一段时间后,电容器充电,此时两板间电压U 2=IR 2=0.4×6 V =2.4 V .再断开S ,电容器将放电,通过R 2的电荷量就是电容器原来所带的电荷量Q =CU 2=30×10-6×2.4 C =7.2×10-5 C.14、解、依题意得:(1)如图(a )所示,金属框的运动过程分为三个阶段:第Ⅰ阶段cd 相当于电源;第Ⅱ阶段cd 和ab 相当于开路时两并联的电源;第Ⅲ阶段ab 相当于电源,各阶段的等效电路图分别如图(b )、(c )、(d )所示.(2)、(3)第Ⅰ阶段,有I 1=E r +3r =Bl ′v4r =2.5 A.感应电流方向沿逆时针方向,持续时间为:t 1=l ′v =0.1 s. ab 两端的电压为U 1=I 1·r =2.5×0.2 V =0.5 V在第Ⅱ阶段,有I 2=0,ab 两端的电压U 2=E =Bl ′v =2 V t 2=l -l ′v =4-110 s =0.3 s在第Ⅲ阶段,有I 3=E4r =2.5 A感应电流方向为顺时针方向ab 两端的电压U 3=I 3·3r =1.5 V ,t 3=0.1 s 规定逆时针方向为电流正方向,故i -t 图象和ab 两端U -t 图象分别如图甲、乙所示.。

电磁感应中的电荷量

电磁感应中的电荷量

学案 电磁感应一、电磁感应中的电荷量典型例题1、如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。

求:将线圈以向右的速度v 匀速拉出磁场的过程中,(1)拉力的大小F ;(2)拉力的功率P ;(3)拉力做的功W ;(4)线圈中产生的电热Q ;(5)通过线圈某一截面的电荷量q 。

巩固题、如图所示,空间存在垂直于纸面的均匀磁场,在半径为a 的圆形区域内、外,磁场方向相反,磁感应强度的大小均为B .一半径为b 、电阻为R 的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合.在内、外磁场同时由B 均匀地减小到零的过程中,通过导线截面的电荷量q=________.二、转动产生的感应电动势典型例题2、如图,磁感应强度为B 的匀强磁场方向垂直于纸面向外,长L 的金属棒oa 以o 为轴在该平面内以角速度ω逆时针匀速转动。

求金属棒中的感应电动势。

巩固题1、如图所示,xoy 坐标系y 轴左侧和右侧分别有垂直于纸面向外、向里的匀强磁场,磁感应强度均为B ,一个围成四分之一圆形的导体环oab ,其圆心在原点o ,半径为R ,开始时在第一象限。

从t =0起绕o 点以角速度ω逆时针匀速转动。

试画出环内感应电动势E 随时间t 而变的函数图象(以顺时针电动势为正)。

巩固题2、如图所示,导线全都是裸导线,半径为r的圆内有垂直圆平面的匀强磁场,磁感强度为B。

一根长度大于2r的导线MN以速率v在圆环上无摩擦地自左端匀速滑动到右端,电路中的定值电阻为R,其余电阻不计。

求:MN从圆环的左端滑到右端的全过程中电阻R上的电流强度的平均值及通过R的电量q。

感应电流最大值为多少?三、电磁感应的图象问题典型例题3、如图所示,一个由导体做成的矩形线圈,以恒定速率v运动,从无磁场区进入匀强磁场区,然后出来。

若取逆时针方向为电流正方向,那么右图中的哪一个图线能正确地表示电路中电流与时间的函数关系?拓展、若图如下答案为()巩固题1(1999年上海高考试题)如图1所示,竖直放置的螺线管与导线abcd构成回路,导线所围区域内有一垂直纸面向里变化的均匀磁场,螺线管下方水平桌面上有一导体圆环,导体abcd所围区域内磁场的磁感强度按图2中哪一图线所示的方式随时间变化时,导体圆环将受到向上的磁场作用力()巩固题2(2000年上海高考试题)如图3所示,圆形线圈P静止在水平桌面上,其正上方悬挂一相同线圈Q,P与Q共轴,Q中通有变化电流,电流随时间变化的规律如图4所示,P所受的重力为G,桌面对P的支持力为N,则下列正确的是()A. t1时刻N > GB. t2时刻N > GC. t3时刻N< GD. t4时刻N = G解答:t 1时刻线圈Q 中电流在增大,电流产生的磁场也增强,穿过线圈P 的磁通量增加,由楞次定律可以判断P 有远离Q 的趋势,即P 受到Q 的排斥作用,因此P 对桌面的压力大于自身重力,所以N > G ,A 选项正确。

2024届高考物理二轮复习讲义:专题7+感应电荷量的应用

2024届高考物理二轮复习讲义:专题7+感应电荷量的应用

专题7 感应电荷量的应用1.安培力的冲量大小感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BIL。

方法1 微元法由于感应电流通常变化,所以安培力为变力,求时间t内安培力的冲量必须用微元法,在极短时间∆t内认为安培力为定值,则安培力冲量大小为I i=BI i L∆t = BLq i,求和可得全过程安培力冲量大小为I = BL∆q,其中∆q为此过程流过导体棒任意截面的电荷量。

方法2 平均电流法设此过程电流对时间的平均值为I,则∆q=It,所以安培力冲量通用表达式为:BILt BL q=∆,即感应电荷量与时间和安培力的冲量相联系。

2.感应电荷量在前面利用平均感应电流I=ER与和平均感应电动势E nt∆Φ=解得感应电荷量q=I t = nR∆Φ。

如果是由于导体棒切割产生的感应电荷量,则B S BLxq n nR R∆==,其中x为导体棒运动的距离,即感应电荷量与空间距离相联系。

3.感应电荷量的时空联系感应电荷量连接空间距离和安培力的冲量,因此在非匀变速运动中,如果题目求导体棒的位移,通常用感应电荷量和动量定理求解。

在分析电磁感应问题中,往往求解物体的初速度v0、末速度v、时间t、位移x、电荷量q 这5个物理量的时候,通常采用安培力的冲量,按此模型处理方法进行处理。

4.实例分析以2022年6月浙江选考19题第3问为例,如图1所示,用于推动模型飞机的动子(图中未画出)与线圈绝缘并固定,线圈带动动子,可在水平导轨上无摩擦滑动。

线圈位于导轨间的辐向磁场中,其所在处的磁感应强度大小均为B 。

开关S 与1接通,恒流源与线圈连接,动子从静止开始推动飞机加速,飞机达到起飞速度时与动子脱离;此时S 掷向2接通定值电阻R 0,同时施加回撤力F ,在F 和磁场力作用下,动子恰好返回初始位置停下。

若动子从静止开始至返回过程的v -t 图如图2所示,在t 1至t 3时间内F =(800-10v )N ,加速度不变恒为a =160m/s 2,t 3时撤去F 。

2025版《南方凤凰台5A教案基础版物理第11章 电磁感应含答案1

2025版《南方凤凰台5A教案基础版物理第11章 电磁感应含答案1

2025版《南方凤凰台5A 教案基础版物理第11章 电磁感应含答案微专题17 电磁感应中的电路和图像问题 电磁感应中的电路与电荷量问题 1.内电路和外电路(1) 切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2) 该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路.2.电磁感应中电路知识关系图3.解决电磁感应中的电路问题三步骤4.电磁感应中电荷量的两个计算公式(1) q =I t (该公式适用于电流恒定的情况,若电流变化应用电流的平均值).(2) q =I t =n ΔΦR +r. (2024·金陵中学)如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 铰链连接的长度为2a 、电阻为R 2的导体棒AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v .此时AB 两端的电压大小为( D )A .Ba vB .Ba v 6C .2Ba v 3D .Ba v 3解析:导体棒AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,感应电动势大小为E =B ·2a ·v +02=Ba v ,分析电路特点知,外电路相当于是R 2的两个电阻并联,则R 并=R22=R 4,故此时AB 两端的电压大小为U =R4R 2+R 4·E =Ba v 3,故选D.类题固法11.如图所示,有一个磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里,一半径为r 、电阻为2R 的金属圆环放置在磁场中,金属圆环所在的平面与磁场垂直.金属杆Oa 一端可绕环的圆心O 旋转,另一端a 搁在环上,电阻值为R ;另一金属杆Ob 一端固定在O 点,另一端b 固定在环上,电阻值也是R .已知Oa 杆以角速度ω匀速旋转,所有接触点接触良好,Ob 不影响Oa 的转动,则下列说法中错误的是( C )A .流过Oa 的电流可能为B ωr 25RB .流过Oa 的电流可能为 6B ωr 225RC .Oa 旋转时产生的感应电动势的大小为B ωr 2D .Oa 旋转时产生的感应电动势的大小为 12B ωr 2解析:Oa 旋转时产生的感应电动势的大小为E =12B ωr 2,D 正确,C 错误;当Oa 旋转到与Ob 共线但不重合时,等效电路如图甲所示,此时有I min =E 2.5R =B ωr 25R ,当Oa 与Ob 重合时,环的电阻为0,等效电路如图乙所示,此时有I max=E 2R =B ωr 24R ,所以B ωr 25R ≤I ≤B ωr 24R ,A 、B 正确.2.如图所示,由某种粗细均匀的总电阻为3R 的金属条制成的矩形线框abcd ,固定在水平面内且处于方向竖直向下的匀强磁场中.一接入电路电阻为R 的导体棒PQ ,在水平拉力作用下沿ab 、dc 以速度v 匀速滑动,滑动过程PQ 始终与ab 垂直,且与线框接触良好,不计摩擦.在PQ 从靠近ad 处向bc 滑动的过程中( C )A .PQ 中电流先增大,后减小B .PQ 两端电压先减小,后增大C .PQ 上拉力的功率先减小,后增大D .线框消耗的电功率先减小,后增大解析:设PQ 左侧金属线框的电阻为r ,则右侧电阻为3R -r ,PQ 相当于电源,其电阻为R ,则电路的外电阻为R 外=r (3R -r )r +(3R -r )=-⎝ ⎛⎭⎪⎫r -3R 22+⎝ ⎛⎭⎪⎫3R 223R ,当r =3R 2时,R 外max =34R ,此时,PQ 处于矩形线框的中心位置,即PQ 从靠近ad 处向bc 滑动的过程中外电阻先增大,后减小,PQ 中的电流为干路电流I =E R 外+R 内,可知干路电流先减小,后增大,A 错误;PQ 两端的电压为路端电压U =E -U 内,因E =Bl v 不变,U 内=IR 先减小,后增大,所以路端电压先增大,后减小,B 错误;拉力的功率大小等于安培力的功率大小,P =F 安v =BIl v ,可知因干路电流先减小,后增大,PQ 上拉力的功率也先减小,后增大,C 正确;线框消耗的电功率即为外电阻消耗的功率,因外电阻最大值为34R ,小于内阻R ,根据电源的输出功率与外电阻大小的变化关系,外电阻越接近内阻时,输出功率越大,可知线框消耗的电功率先增大,后减小,D错误.电磁感应中的图像问题1.图像问题图像类型(1) 磁感应强度B,磁通量Φ,感应电动势E和感应电流I随时间t变化的图像,即B-t图像、Φ-t图像、E-t图像和I-t图像(2) 对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E和感应电流I随导体位移x变化的图像,即E-x图像和I-x图像问题类型(1) 由给定的电磁感应过程选出或画出正确的图像(2) 由给定的有关图像分析电磁感应过程,求解相应的物理量应用知识右手定则、安培定则、楞次定律、法拉第电磁感应定律、欧姆定律、牛顿运动定律和相关数学知识等2.分析方法3.电磁感应中图像类选择题的两种常见解法(1) 排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项.(2) 函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图像作出分析和判断,这未必是最简捷的方法,但却是最有效的方法.(2023·如皋期末)如图所示,等边三角形金属框的一个边与有界磁场边界平行,金属框在外力F作用下以垂直于边界的速度匀速进入磁场,则线框进入磁场的过程中,线框中的感应电流i、外力大小F、线框中电功率的瞬时值P、通过导体某横截面的电荷量q与时间t的关系可能正确的是(C)A B C D解析:设线框边长为L 0,则切割磁感线的有效长度为L =L 0-2v t tan 60°=L 0-23v t 3,感应电流为I =B ⎝ ⎛⎭⎪⎫L 0-23v t 3v R=BL 0v R -23B v 2t 3R ,可知感应电流随时间均匀减小,A 错误;金属框匀速运动,外力与安培力平衡,外力大小为F =BIL=B 2⎝ ⎛⎭⎪⎫L 0-23v t 32v R可知,外力随时间的图像为抛物线,B 错误;电功率为P =I 2R =B 2⎝ ⎛⎭⎪⎫L 0-23v t 32v 2R 可知,电功率随时间的图像为开口向上的抛物线,C 正确;根据E =ΔΦΔt,I =E R ,q =I t ,得q =ΔΦR =B ΔS R ,磁场通过线框的有效面积随时间变化关系为ΔS =12(L +L 0)v t =L 0v t -3v 2t 23,得q =B R ⎝⎛⎭⎪⎫L 0v t -3v 2t 23,可知通过导体某横截面的电荷量随时间的图像为开口向下的抛物线,D 错误.类题固法21.如图所示,边长为2L 的等边三角形区域abc 内部的匀强磁场垂直纸面向里,b 点处于x 轴的坐标原点O ;一与三角形区域abc 等高的直角闭合金属线框ABC ,∠ABC =60°,BC 边处在x 轴上.现让线框ABC 沿x 轴正方向以恒定的速度穿过磁场,在t =0时,线框B 点恰好位于原点O 的位置.规定逆时针方向为线框中感应电流的正方向,下列能正确表示线框中感应电流i 随位移x 变化关系的是( D )A B C D解析:线框从0~L 过程,产生逆时针方向的电流,有效长度从0增大到32L ,故电流逐渐变大;从L ~2L 过程,产生逆时针方向的电流,有效长度从32L 逐渐减小到0,故电流逐渐变小;从2L ~3L 过程,产生顺时针方向的电流,有效长度从3L 逐渐减小到0,故电流逐渐变小;故D 正确.2.如图所示,竖直放置的U 形光滑导轨与一电容器串联,导轨平面有垂直于纸面的匀强磁场,金属棒ab 与导轨接触良好,由静止释放后沿导轨下滑.电容C 足够大,原来不带电,不计一切电阻.设金属棒的速度为v 、动能为E k 、两端的电压为U ab 、电容器上的电荷量为q ,它们与时间t 、位移x 的关系图像正确的是( B )A B C D解析:设导轨间距为L ,释放后电容器充电,电路中充电电流i ,棒受到向上的安培力,设瞬时加速度为a ,根据牛顿第二定律得mg -BiL =ma ,i =ΔQ Δt=C ·ΔU Δt =C ·BL Δv Δt =CBLa ,由此得mg -BLCBLa =ma ,解得a =mg m +B 2L 2C ,可见加速度不变,做匀加速直线运动,即v =at ,U ab =BL v =BLat ,故A 、C 错误;根据E k =12m v 2=12m ·2ax ,故B 正确;根据q =CU ab =BCLat ,与时间成正比,即与位移不是正比关系,故D 错误.配套精练一、 选择题1.如图所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面的正方形导体框abcd ,现将导体框分别朝两个方向以v 、3v 速度匀速拉出磁场,则导体框从两个方向移出磁场的两个过程中( C )A .导体框中产生的感应电流方向相反B .导体框ad 边两端电势差之比为1∶3C .导体框中产生的焦耳热之比为1∶3D .通过导体框截面的电荷量之比为1∶3解析:将线圈拉出磁场的过程中,穿过线圈的磁通量都减小,由楞次定律判断出感应电流的方向都沿逆时针方向,A 错误;设正方形的边长为L ,线圈以v运动时,dc 边产生的感应电动势为E 1=BL v ,ad 边两端电势差为U 1=14E 1=14BL v ;线圈以3v 运动时,ad 边产生感应电动势为E 2=3BL v ,ad 边两端电势差为U 2=34E 2=94BL v ,电势差之比为U 1∶U 2=1∶9,B 错误;线圈以v 运动时,产生的焦耳热为Q 1=⎝ ⎛⎭⎪⎫E 1R 2·R ·L v =B 2L 3v R ,线圈以3v 运动时,产生的焦耳热为Q 2=⎝ ⎛⎭⎪⎫E 2R 2·R ·L 3v =3B 2L 3v R ,焦耳热之比为Q 1∶Q 2=1∶3,C 正确;将线圈拉出磁场的过程中,穿过线圈的磁通量的变化量相同,根据q =ΔΦR 可知,通过导体框截面的电荷量相同,D 错误.2.(2023·金陵中学)如图所示,宽为2L 的两条平行虚线间存在垂直纸面向里的匀强磁场.金属线圈位于磁场左侧,线圈平面与磁场方向垂直,af 、de 、bc 边与磁场边界平行,ab 、bc 、cd 、de 边长为L ,ef 、fa 边长为2L .线圈向右匀速通过磁场区域,以de 边刚进入磁场时为计时零点,则线圈中感应电流随时间变化的图线可能正确的是(感应电流的方向顺时针为正)(A)A B C D解析:第一阶段:从de边进入磁场到bc边将进入磁场这段时间内,de边切割磁感线产生感应电动势大小为E1=BL v,感应电流方向为逆时针即负方向,设此阶段的电流大小为I1;第二阶段:从bc边进入磁场到af边将进入磁场这段时间内,de、bc边一起切割磁感线产生总的感应电动势大小为E2=2BL v,感应电流大小I2=2I1,方向仍为逆时针即负方向;第三阶段:从de边离开磁场到bc边将离开磁场这段时间内,bc、af边一起切割磁感线产生总的感应电动势大小为E3=BL v,感应电流大小I3=I1,方向为顺时针即正方向;第四阶段:从bc边离开磁场到af边将离开磁场这段时间内,af边切割磁感线产生的感应电动势大小为E4=2BL v,感应电流大小I4=2I1,方向仍为顺时针即正方向.综上,感应电流随时间变化的图线如选项A图所示,故选A.3.(2023·宿迁期末)如图所示,倾斜放置的光滑平行足够长的金属导轨MN、PQ间静置一根质量为m的导体棒,阻值为R的电阻接在M、P间,其他电阻忽略不计,磁感应强度为B的匀强磁场垂直导轨平面向下.t=0时对导体棒施加一个沿导轨平面向上的力F,使得导体棒能够从静止开始向上做匀加速直线运动,则在导体棒向上运动的过程中,施加的力F、力F的功率P、产生的感应电流I、电阻R上产生的热量Q随时间变化的图像正确的是(A)A B C D解析:导体棒向上做匀加速运动,则F -B 2L 2at R =ma ,即F =B 2L 2a R t +ma ,故A 正确;力F 的功率P =F v =⎝ ⎛⎭⎪⎫B 2L 2a R t +ma at =B 2L 2a 2R t 2+ma 2t ,则P -t 图像为开口向上的抛物线,故B 错误;产生的感应电流I =BLat R ,则I -t 图像是过原点的直线,故C 错误;电阻R 上产生的热量Q =I 2Rt =B 2L 2a 2t 3R ,则 Q -t 图像一定不是过原点的直线,故D 错误.4.(2023·金陵中学)如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F .下列说法中错误的是( A )A .电阻R 1的电功率为 F v 3B .电阻R 2的电功率为 F v 6C .整个装置因摩擦而产生的热功率为μmg v cos θD .整个装置消耗的机械功率为 (F +μmg cos θ)v解析:设ab 长度为L ,磁感应强度为B ,电阻均为R ,电路中感应电动势为E =BL v ,R 1、R 2并联电阻大小为R ′=R ·R R +R =R 2,ab 中感应电流为I =E R +R ′,解得ab 所受安培力为F =2B 2L 2v 3R ,电阻R 1消耗的热功率为P 1=⎝ ⎛⎭⎪⎫I 22R =B 2L 2v 29R =16F v ,电阻R 2消耗的功率与R 1消耗的功率相等,故A 错误,B 正确;整个装置因摩擦而消耗的热功率为P 2=μmg cos θ·v =μmg v cos θ,故C 正确;整个装置消耗的机械功率为P 3=F v +P 2=(F +μmg cos θ)v ,故D 正确.5.(2023·南通适应性考试)如图所示,竖直向下的匀强磁场中水平放置两足够长的光滑平行金属导轨,导轨的左侧接有电容器,金属棒静止在导轨上,棒与导轨垂直,t =0时,棒受到水平向右的恒力F 作用,t =t 0时,撤去F ,则棒的速度v 、电容器所带的电荷量q 、棒中安培力的冲量I 、棒克服安培力做的功W 与时间t 的关系图像正确的是( D )A B C D解析:设某一时刻t ,根据牛顿第二定律有F -F 安=ma ,设该时刻电流大小为i ,则F 安=BiL ,F -BiL =ma ,在很短时间间隔内ΔQ =i ·Δt ,ΔQ =C ·ΔU ,ΔU =BL ·Δv ,联立可得i =BLC Δv Δt=BLCa ,结合前式可得F -B 2L 2Ca =ma ,可得a =F m +B 2L 2C ,v =at =F ·t m +B 2L 2C,可知t 0之前金属棒做匀加速运动,即v -t 图像为一倾斜直线.撤去力F 后感应电动势等于电容器两端电压,电容器不再充电,电流为零,开始做匀速运动,A 错误;由上面分析可知ΔQ Δt=i =BLCa ,t 0之前q -t 图像为倾斜直线,t 0之后电容器不充放电,电荷量不变,B 错误;安培力的冲量I =BiL ·t =B 2L 2Ca ·t ,加速度a 定值,可知I -t 图线为一倾斜直线,C 错误;棒克服安培力做的功W =F 安v ·t =B 2L 2Ca 2t 2,D 正确.6.(2023·扬州中学考前模拟)空间中存在如图所示的磁场,Ⅰ、Ⅱ区域的宽度均为2R ,磁感应强度均为B (Ⅰ区域垂直纸面向里,Ⅱ区域垂直纸面向外),半径为R 的圆形导线圈在外力作用下以速度v 匀速通过磁场区域,设任意时刻导线圈中电流为I (逆时针为正),导线圈所受安培力为F (向左为正),从导线圈刚进入Ⅰ区域开始将向右运动的位移记为x ,则下列图像正确的是( D )A B C D解析:当圆环在磁场Ⅰ区域向右运动过程中,设圆环切割磁感线的有效长度为l ,则有(R -x )2+⎝ ⎛⎭⎪⎫l 22=R 2 整理得l =2-(x -R )2+R 2,则圆环产生的感应电动势为E =Bl v ,感应电流为I =E R 阻=2B v -(x -R )2+R 2R 阻,可知电流与位移不成线性相关,B 错误;当圆环圆心运动到Ⅰ、Ⅱ区域的边界时,此时产生的感应电流大小为I ′=2E R 阻=4B v -(x -R )2+R 2R 阻,即x =3R 的电流大小为x =R 的电流的两倍,方向沿着顺时针方向,A 错误;通过分析可知,除了x =2R 、x =4R 、x =6R 三个特殊位置,电流为0,受力为0,在0<x <6R 区域内,圆环受力方向水平向左,若圆环在x =R 位置受力为F 0,则圆环在x =3R 处,由于电流变为2倍,圆环左右半圆均受力,因此圆环受力为4F 0,C 错误,D 正确.二、 非选择题7.(2023·盐城期末)如图所示,电阻不计的矩形导线圈abcd ,在ab 间接电阻为R 的均匀电阻丝甲,线圈放在方向垂直于线圈平面、磁感应强度为B 的匀强磁场中.现有电阻为12R 的金属棒PQ 刚好架在导线圈上,PQ 长度为L ,并以恒定速度v 从ad 边滑向bc 边.PQ 在滑动过程中与导线圈的接触良好.求:(1) PQ 产生的感应电动势E .答案:BL v解析:PQ 产生的感应电动势为E =BL v(2) 甲消耗电功率的最大值P max .答案:4B 2L 2v 29R解析:当金属棒滑上甲后,令甲左端电阻为R x ,则甲右端电阻为R -R x ,左右两端并联,则并联电阻为R 并=R x (R -R x )R x +R -R x=R x (R -R x )R 由于0≤R x ≤R ,可知0≤R 并≤R 4甲消耗电功率为P =⎝ ⎛⎭⎪⎪⎫E 12R +R 并2R 并=E 2R 24R 并+R 并+R 可知,当R 并=R 4时,甲消耗功率最大,则有P max =⎝ ⎛⎭⎪⎪⎫E 12R +14R 2·14R 结合上述解得P max =4B 2L 2v 29R(3) PQ 所受安培力的最小值F min .答案:4B 2L 2v 3R解析:根据上述可知,通过金属棒的电流 I =E12R +R 并金属棒所受安培力F =BIL解得F =B 2L 2v 12R +R 并可知,当R 并=R 4时,金属棒所受安培力最小F min =B 2L 2v 12R +14R=4B 2L 2v 3R8.(2023·海安中学模拟)如图甲所示,两根足够长的平行光滑金属导轨MN 、PQ 被固定在水平面上,导轨间距l =0.6 m ,两导轨的左端用导线连接电阻R 1及理想电压表V ,电阻为r =2 Ω的金属棒垂直于导轨静止在AB 处;右端用导线连接电阻R 2,已知 R 1=2 Ω,R 2=1 Ω,导轨及导线电阻均不计.在矩形区域CDFE 内有竖直向上的磁场,CE =0.2 m ,磁感应强度随时间的变化规律如图乙所示.开始时电压表有示数,当电压表示数变为零后,对金属棒施加一水平向右的恒力F,使金属棒刚进入磁场区域时电压表的示数又变为原来的值,金属棒在磁场区域内运动的过程中电压表的示数始终保持不变.求:甲乙(1) t=0.1 s时电压表的示数.答案:0.3V解析:设磁场宽度为d=CE,在0~0.2 s的时间内,有E=ΔΦΔt=ΔBΔtld=0.6 V此时,R1与金属棒并联后再与R2串联R=R并+R2=1 Ω+1 Ω=2 ΩU=ER R并=0.3 V(2) 恒力F的大小.答案:0.27 N解析:金属棒进入磁场后,R1与R2并联后再与r串联,有I′=UR1+UR2=0.45 AF A=BI′l=1×0.45×0.6 N=0.27 N由于金属棒进入磁场后电压表的示数始终不变,所以金属棒做匀速运动,有F=F A=0.27 N(3) 从t=0时刻到金属棒运动出磁场的过程中整个电路产生的热量.答案:0.09 J解析:在0~0.2 s的时间内有Q=E2R t=0.036 J金属棒进入磁场后,有R′=R1R2R1+R2+r=83ΩE′=I′R′=1.2 V E′=Bl v,得v=2 m/st′=dv=0.22s=0.1 sQ′=E′I′t′=0.054 JQ总=Q+Q′=0.036 J+0.054 J=0.09 J补不足、提能力,老师可增加训练:《抓分题·基础天天练》《一年好卷》。

高中物理精品课件: 专题 电磁感应中的电路、电荷量问题

高中物理精品课件: 专题 电磁感应中的电路、电荷量问题
3、离开磁场时? 4、若线框变速进入磁场? F C B
5、若n匝线框变速进入磁场?a
E aD
学生活动一:
如图,边长为L 的n匝正方形金属金属线圈abcd置 于垂直线圈平面的匀强磁场中,线圈总电阻为R, 用导线e、f连接一阻值也为R的电阻。磁场强度B 随时间的变化关系如图所示,正方向为垂直线圈 平面向外。
1、在2t1-3t1时间内,e、f哪端电势高? 2、在0-t1时间内,通过电阻R的电荷量?
应用:
如图,边长为L 的n匝正方形金属金属线圈abcd置 于垂直线圈平面的匀强磁场中,线圈总电阻为R, 用导线e、f连接一阻值也为R的电阻。磁场强度B 随时间的变化关系如图所示,正方向为垂直线圈 平面向外。
3、在0-2t1时间内,通过电阻R的电荷量? 4、在t1-3t0
Br 2
2
Br 2
E n n
t
2
3nBr 2
6
(2)通过导线横截面的电荷量是多少?
Q
It
E
t
n
t
t
n
n
Br 2
R
R
R
2R
2、线框进入磁场时通过横截面的电荷时q.
3、离开磁场时?
F CB
a E aD
思考:
❖ 一正方形线框边长为L,以速度v匀速穿过如图 匀强磁场,正方形的边长小于磁场宽度,每条 边电阻都为R。
1、当CD边刚进入磁场,整个线框进入磁场,CD边 刚离开时,试分析CD两点间的电压U。
2、线框进入磁场时通过横截面的电荷时q.
浙江高考(2022年1月): 学生活动二:
浙江高考(2022年1月):
浙江高考(2021年1月):
某登月飞船正在月表 着陆,模型简化如图: 飞船内的装置金属船 舱、金属导轨、永磁 体固定在一起,向下 运动,已知船舱电阻 为3r。静止在地上的 “∧”型线框其7条边 的边长均为L,电阻均 为r。 试画出等效电路。

电磁感应题中电荷量计算式

电磁感应题中电荷量计算式

电磁感应题中电荷量计算式物理知识点问答【问:电磁感应题中电荷量计算式?】答:电荷量的计算公式是Q=△Φ/R总;注意,这个公式不能直接用,需要做简单的推导。

推导过程:Q=I△t=E*△t/R总=(△Φ/△t)*△t/R总=△Φ/R总;可见,电荷量的转移量,只与磁通量的变化量和电路总电阻有关系。

【问:磁和电之间有何关联?】答:电能生磁,磁也一定能够生电,磁生电的过程,是有条件的,只有变化的磁场(磁通量)或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。

磁生电的定量计算,依赖于电磁感应定律。

【问:简谐振动的图像一定是正弦(余弦)图像吗?】答:满足回复力F=-kx的振动模式才是简谐振动。

由F=-kx,借助于牛顿第二定律可得a=-kx/m,从数学的微积分与导数知识来分析,加速度a是位移x的二次导数,不难看出,只有满足x-t为正(余)弦函数时,满足求导的关系和a=-kx/m两个方程才能成立。

具体推导过程我们物理栏目编辑不带着大家去做证明,这已经完全超出了中学数学的研究范围。

【问:打点计时器的纸带有哪些误差?】答:可以利用打点计时器来求某点的速度或物体运动的加速度,这个过程是有误差,引起误差的可能因素是限位孔有摩擦,打点过程有摩擦(针头与纸带间接触时的摩擦),而且,纸带上打的点自身不是无穷小,有一定的长度,等等。

【问:哪些数学知识可能出现在物理题中?】答:耐心寻找规律、选取相应的数学方法,是提高物理分数的一个关键要素。

解物理题中可能用到的数学方法有:不等式法、函数最大值法、微元分析法、比例法、数列法、图像法和几何法等,物理题计算总出错,一定要强化,在众多数学方法的运用上,同学们要重视起来。

特别是综合物理题,往往分值都很高,计算结果错了或只会分析不会求解,扣分很严重。

数学知识求解是一个基本功,数学、物理、化学这三科都会用到,同学们要引起足够的重视。

法拉第电磁感应定律动力学、能量、电荷量的求法(最新整理)

法拉第电磁感应定律动力学、能量、电荷量的求法(最新整理)

一步减小,当感应电动势 E ' 与电池电动势 E 相等时,电路中电流为零,ab 所受安培力、加速度也为零,这
时 ab 的速度达到最大值,随后则以最大速度继续向右做匀速运动.
设最终达到的最大速度为
υm,根据上述分析可知: E
Bl m
0
所以m
E Bl
1.5 0.8 0.5
m/s=3.75m/s.
(2)如果 ab 以恒定速度 7.5 m/s 向右沿导轨运动,则 ab 中感应电动势
Q=I2Rt

设棒 ab 匀速运动的速度大小为 v,其产生的感应电动势
E=Blv

由闭合电路欧姆定律知
I E

2R
由运动学公式知在时间 t 内,棒 ab 沿导轨的位移
x=vt

力 F 做的功
W=Fx
○11
综合上述各式,代入数据解得
W=0.4J
○12
【答案】(1)1A 由 d 至 c (2)0.2N (3)0.4J
量 是指穿过某一面积末时刻的磁通量 2 与穿过这一面积初时刻的磁通量 1 之差,即 2 1
。在计算 时,通常只取其绝对值,如果 2 与 1 反向,那么 2 与 1 的符号相反。
线圈在匀强磁场中转动,产生交变电流,在一个周期内穿过线圈的磁通量的变化量 =0,故通过线
圈的电量 q=0。 穿过闭合电路磁通量变化的形式一般有下列几种情况:

由①②式,代入数据得
I=1A

根据楞次定律可知,棒 cd 中的电流方向由 d 至 c
(2)棒 ab 与棒 cd 受到的安培力大小相等
Fab=Fcd

对棒 ab,由共点力平衡知
F mg sin 30 IlB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CD EF是水平放置的电阻可忽略的光滑水平金属导轨,两导轨距离水平地面高度为H,导轨
间距为L,在水平导轨区域存在磁感应强度大小为B,方向垂直导轨平面向上的矩形有界匀
强磁场(磁场区域为CPQE,如图所示,导轨左端与一弯曲的光滑轨道平滑连接,弯曲的光滑轨道的上端接有一电阻R将一阻值也为R的导体棒从弯曲轨道上距离水平金属导轨高度h处由静止释放,导体棒最终通过磁场区域落在水平地面上距离水平导轨最右端x处.
已知导体棒与导轨始终接触良好,重力加速度为g,求
(1)电阻R中的最大电流的大小与方向;
(2)整个过程中,导体棒中产生的焦耳热;
(3)若磁场区域的长度为d,求全程流过导体棒的电量
(1)曲置常町知』导蔣悻刚进入瞬旳瞩闫建度屋大>产生的熾冋电动卿摄天,魁应龟说摄x >由机犠能寺1醍霍有用即"I呦"髒潯叫=
曲法4潇电珀駆淀崔潯必=昨
/=_£
曰闵合电將欧囲走律粤-2尺
L BL^h
联瓷解-凍”才向由碩H J
(2J曲平側运动规律'■「匚円~25'解得
H能量寺直走律可知登'-电跖屮产生的焦耳熬討
叭阴产押頼助—扣今g 警
(3 >设邑燼隹倉粧磁场区威时整个回賂的平均电貶为7 >用时乂
J11B1过弓体毎苗电昼扌=7山其中•山
_ BLd q ■ 综上2R
如图所示,在倾角a = 30°的光滑固定斜面上,相距为d的两平行虚线MN PQ间分布有大小为B 方向垂直斜面向下的匀强磁场.在PQ上方有一质量m边长L (L<d)的正方形单
匝线圈abed,线圈的电阻值为R cd边与PQ边平行且相距x.现将该线圈自此位置由静止释放,使其沿斜面下滑穿过磁场,在ab边将离开磁场时,线圈已做匀速运动.重力加速度
为g.求:
(1)线圈ed边刚进入磁场时的速率vi;
(2)线圈进入磁场的过程中,通过ab边的电量q;
(3)线圈通过磁场的过程中所产生的焦耳热Q
—wrw
(1 )銭圈沿斜面向下运动mgx5in3CI J 2
(1)缄圈逬入瞇场的过惶中,腫应电动势
< 3)线圈离开險场吋,匀連运动有:乙二心"30"
-MJVj
由能量守恒;Q=盹(小絆qsin30B- 2
1/纠
擀褊:Q- 2①如X+ 凉芒D
如图所示,以MN为下边界的匀强磁场,磁感应强度大小为B,方向垂直于纸面向外,MN 上方有一单匝矩形导线框abcd,其质量为m电阻为R, ab边长为11, bc边长为12, cd边
离MN 的高度为h •现将线框由静止释放,线框下落过程中
ab 边始终保持水平,且 ab 边离 开磁场前已做匀速直线运动,求线框从静止释放到完全离开磁场的过程中
⑴ab 边离开磁场时的速度 v ;⑵通过导线横截面的电荷量 q :⑶导线框中产生的热量 Q
C2>导绞椎寻过蘇埃的讨程卩
⑶导线粧參过昭场的过程中,別用■筑守恒走律.
mg(h +4) = — nn? +Q
0二临竹+G —三矿
£n f]
如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为 =30°.匀强磁场的磁感应强度大小为 B=5T ,方向与导轨平面垂直.质量为 m=0.2kg 的导体 棒从导轨的顶端由静止释放, 在粗糙的下半段一直做匀速运动, 导体棒始终与导轨垂直,

?=

L=0.2m ,长为 2d , d=0.5m .
上半段d 导轨光滑,下半段 d 导轨的动摩擦因素为卩 V3
=",导轨平面与水平面的夹角为B
在两导轨间的电阻为R=3Q,导体棒的电阻为r=1 Q,其他部分的电阻均不计,重力加速度取
g=10m/s2,求:
(1 )导体棒到达轨道底端时的速度大小;
(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;
(3 )整个运动过程中,电阻R产生的焦耳热Q.
解:(13导萍撞在齟糙轨道上責力呼衛;
曲mgsin Ehymacos 0+0IL
得:1=0.5A
^0Lv=K R+r)
代入数据得:口唤
厶中&LJ
(进入粗糙导钛前,号体権中的平均电动勢丸:=At. At
导体樓中的平均电流为:工冠二△戈
所以-適过导悻棒的电量対:cpit=R^0.125C
(3)由龍蜃守恒疋律穆:2nngdGin B二Q电*tiingdcos 8+mv2
得回路中产生的隹耳熱为;(i^=0.35J
R
所乩电阻R上产生的焦耳鎭为:O=R*m电二0朮右J
连接体问题在物理中很重要,下面分析一个情景:如右图所示,两根金属杆AB和CD的长度
均为L,电阻均为R,质量分别为3m和m (质量均匀分布),用两根等长的、质量和电阻均不计的、不可伸长的柔软导线将它们连成闭合回路,悬跨在绝缘的、光滑的水平圆棒两侧,
AB和CD处于水平。

在金属杆AB的下方有高度为H的水平匀强磁场,磁感强度的大小为B,方向与回路平面垂直,此时CD处于磁场中。

现从静止开始释放金属杆AB经过一段时间(AB CD始终水平),在AB即将进入磁场的上边界时,其加速度为零,此时金属杆CD还处于磁场中,在此过程中金属杆AB上产生的焦耳热为Q.重力加速度为g,试求:
(1)金属杆AB即将进入磁场上边界时的速度v1.
(2)在此过程中金属杆CD移动的距离h和通过导线截面的电量q.
(3)设金属杆AB在磁场中运动的速度为v2,通过计算说明v2大小的可能范围
CSS1 t 1 > ( 2> 2阳廖左(2) B2L-< V2< .
【考点】导萍碼锻禧綁的懋底母燃
【制斬】擁! c 1 >山曲达對hfi疑边贾河X切1*度为矣》期处于■'IMtrtt瀋*
对ZFM4: inng=2Ti
对匚「秆:7T=m(j*RH
B伽钿曲
丈FWIL-站無導:叩_ EH K 2> M艰CM缶嶷的務在此过稈中,楫馆龍的轻化与守喳有: 1
(3m-rm ) gn-20= 2sdmn J
錚得超FFCM玻l!te^h= 嗨 T ・
M SLh 1伽乜喘p甲忧
迪过写爼讎静电虽:卜也怙2Jt~ 2R 2
(2〉ABfE与UDff郡在IE览中运动」巨到总51匀空」此时¥.绘员亍平舶艺言.
对QEiFf : 3mg=i_4tiiL,
刘CT杆:n^inu+BIL
又FNIL二展,蔚得;V2=0D ,
媲尺4吨血
所囚护乎< vic f 3Z3.:
X1
Q。

相关文档
最新文档