数字逻辑与数字系统实验报告-简单时序电路
数字逻辑实验报告实验
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。
3. 熟悉常用数字逻辑门电路的功能和应用。
4. 提高数字电路实验技能,培养动手能力和团队协作精神。
二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。
数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。
1. 与门:当所有输入端都为高电平时,输出端才为高电平。
2. 或门:当至少有一个输入端为高电平时,输出端为高电平。
3. 非门:将输入端的高电平变为低电平,低电平变为高电平。
4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。
三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。
(2)识别与测试与门、或门、非门、异或门。
(3)观察并记录实验现象,分析实验结果。
2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。
(2)根据真值表列出输入输出关系,画出逻辑电路图。
(3)利用逻辑门电路搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。
(2)根据电路功能,列出状态表和状态方程。
(3)利用触发器搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。
(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。
(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。
2. 实验二:(1)根据实验要求,设计组合逻辑电路。
(2)列出真值表,画出逻辑电路图。
(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。
实验五--时序逻辑电路实验报告
实验五时序逻辑电路(计数器和寄存器)-实验报告一、实验目的1.掌握同步计数器设计方法与测试方法。
2.掌握常用中规模集成计数器的逻辑功能和使用方法。
二、实验设备设备:THHD-2型数字电子计数实验箱、示波器、信号源器件:74LS163、74LS00、74LS20等。
三、实验原理和实验电路1.计数器计数器不仅可用来计数,也可用于分频、定时和数字运算。
在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。
2.(1) 四位二进制(十六进制)计数器74LS161(74LS163)74LSl61是同步置数、异步清零的4位二进制加法计数器,其功能表见表5.1。
74LSl63是同步置数、同步清零的4位二进制加法计数器。
除清零为同步外,其他功能与74LSl61相同。
二者的外部引脚图也相同,如图5.1所示。
表5.1 74LSl61(74LS163)的功能表3.集成计数器的应用——实现任意M 进制计数器一般情况任意M 进制计数器的结构分为3类,第一类是由触发器构成的简单计数器。
第二类是由集成二进制计数器构成计数器。
第三类是由移位寄存器构成的移位寄存型计数器。
第一类,可利用时序逻辑电路的设计方法步骤进行设计。
第二类,当计数器的模M 较小时用一片集成计数器即可以实现,当M 较大时,可通过多片计数器级联实现。
两种实现方法:反馈置数法和反馈清零法。
第三类,是由移位寄存器构成的移位寄存型计数器。
4.实验电路: 十进制计数器六进制扭环计数器具有方波输出的六分频电路74LS161(74LS163)12345681514131211109V CCGND716R DCP A B C D EP RCOQ AQ BQ CQ DETLD同步置数法同步清零法图5.1 74LS161(74LS163)外部引脚图四、实验内容及步骤1.集成计数器实验(1)按电路原理图使用中规模集成计数器74LS163和与非门74LS00,连接成一个同步置数或同步清零十进制计数器,并将输出连接至数码管或发光二极管。
数字逻辑与数字系统实验报告
七 实验心得体会
通过一个简单的或非门电路的链接,充分了解了 Proteus 下基本元件的使用,使电路更 加清晰,形象的展现在我们面前
4
xxxx 计算机科学与技术学院
计算机数字逻辑设计
实验报告书
实 验 名 基本门电路与分立元件使用
班 级_______xxx_____________________
姓 名_______xxx_____________________
??
表 2.5 用与非门组成或非门电路实验数据
逻辑功能测试实验原理图
输入 AB
输出 Y
电
逻
压
辑值
-9-
00 H
1
10 L
0
01 L
0
11 L
0
5 实验过程及数据记录
1、与非门逻辑关系接线图如下,观察输出结果并记录
输入
输 出
引脚 1
引脚 2
引脚 3
L
L
1
L
H
1
H
L
1
H
H
0
2、测试 74LS02 逻辑关系接线图及测试结果
表 2.2 74LS02 真值表
图 2.3 测试 74LS86 逻辑关系接线图
表 2.3 74LS86 真值表
注意:这些器件是 DIP14 封装,实际不存在单一门的芯片。以 74LS00 为例,其真实 芯片结构如图 2.4。因此,完整的芯片使用如图 2.5,从芯片名称上可以看到 4 个与非门属 于同一个 U1 芯片。
1
联线,检查无误后接通电源。
② 当输入端 A、B 为表 2.5 的情
111
0000
1
000
00
数字逻辑电路实验报告
数字逻辑电路实验报告数字逻辑电路实验报告引言:数字逻辑电路是现代电子科技中的重要组成部分,它广泛应用于计算机、通信、控制系统等领域。
本实验旨在通过实际操作,加深对数字逻辑电路原理的理解,并通过实验结果验证其正确性和可靠性。
实验一:基本逻辑门的实验在本实验中,我们首先学习了数字逻辑电路的基本组成部分——逻辑门。
逻辑门是数字电路的基本构建单元,它能够根据输入信号的逻辑关系,产生相应的输出信号。
我们通过实验验证了与门、或门、非门、异或门的工作原理和真值表。
以与门为例,当且仅当所有输入信号都为高电平时,与门的输出信号才为高电平。
实验中,我们通过连接开关和LED灯,观察了与门的输出变化。
实验结果与预期相符,验证了与门的正确性。
实验二:多位加法器的设计与实验在本实验中,我们学习了多位加法器的设计和实现。
多位加法器是一种能够对多位二进制数进行加法运算的数字逻辑电路。
我们通过实验设计了一个4位全加器,它能够对两个4位二进制数进行相加,并给出正确的进位和和结果。
实验中,我们使用逻辑门和触发器等元件,按照电路图进行布线和连接。
通过输入不同的二进制数,观察了加法器的输出结果。
实验结果表明,多位加法器能够正确地进行二进制数相加,验证了其可靠性。
实验三:时序电路的实验在本实验中,我们学习了时序电路的设计和实验。
时序电路是一种能够根据输入信号的时间顺序产生相应输出信号的数字逻辑电路。
我们通过实验设计了一个简单的时序电路,它能够产生一个周期性的脉冲信号。
实验中,我们使用计数器和触发器等元件,按照电路图进行布线和连接。
通过改变计数器的计数值,观察了脉冲信号的频率和周期。
实验结果表明,时序电路能够按照设计要求产生周期性的脉冲信号,验证了其正确性。
实验四:存储器的设计与实验在本实验中,我们学习了存储器的设计和实现。
存储器是一种能够存储和读取数据的数字逻辑电路,它在计算机系统中起到重要的作用。
我们通过实验设计了一个简单的存储器,它能够存储和读取一个4位二进制数。
数字逻辑实验报告
数字逻辑实验报告数字逻辑实验报告引言数字逻辑是计算机科学中的重要基础知识,通过对数字信号的处理和转换,实现了计算机的高效运算和各种复杂功能。
本实验旨在通过实际操作,加深对数字逻辑电路的理解和应用。
实验一:二进制加法器设计与实现在这个实验中,我们需要设计一个二进制加法器,实现两个二进制数的加法运算。
通过对二进制数的逐位相加,我们可以得到正确的结果。
首先,我们需要将两个二进制数输入到加法器中,然后通过逻辑门的组合,实现逐位相加的操作。
最后,将得到的结果输出。
实验二:数字比较器的应用在这个实验中,我们将学习数字比较器的应用。
数字比较器可以比较两个数字的大小,并输出比较结果。
通过使用数字比较器,我们可以实现各种判断和选择的功能。
比如,在一个电子秤中,通过将待测物品的重量与设定的标准重量进行比较,可以判断物品是否符合要求。
实验三:多路选择器的设计与实现在这个实验中,我们需要设计一个多路选择器,实现多个输入信号中的一路信号的选择输出。
通过使用多路选择器,我们可以实现多种条件下的信号选择,从而实现复杂的逻辑控制。
比如,在一个多功能遥控器中,通过选择不同的按钮,可以控制不同的家电设备。
实验四:时序电路的设计与实现在这个实验中,我们将学习时序电路的设计与实现。
时序电路是数字逻辑电路中的一种重要类型,通过控制时钟信号的输入和输出,实现对数据的存储和处理。
比如,在计数器中,通过时序电路的设计,可以实现对数字的逐位计数和显示。
实验五:状态机的设计与实现在这个实验中,我们将学习状态机的设计与实现。
状态机是一种特殊的时序电路,通过对输入信号和当前状态的判断,实现对输出信号和下一个状态的控制。
状态机广泛应用于各种自动控制系统中,比如电梯控制系统、交通信号灯控制系统等。
实验六:逻辑门电路的优化与设计在这个实验中,我们将学习逻辑门电路的优化与设计。
通过对逻辑门电路的布局和连接方式进行优化,可以减少电路的复杂性和功耗,提高电路的性能和可靠性。
数字逻辑实验报告
数字逻辑实验报告数字逻辑实验报告引言:数字逻辑是计算机科学中的基础知识,它研究的是数字信号的处理与传输。
在现代科技发展的背景下,数字逻辑的应用越来越广泛,涉及到计算机硬件、通信、电子设备等众多领域。
本实验旨在通过设计和实现数字逻辑电路,加深对数字逻辑的理解,并掌握数字逻辑实验的基本方法和技巧。
实验一:逻辑门电路设计与实现逻辑门是数字电路的基本组成单元,由与门、或门、非门等构成。
在本实验中,我们设计了一个4位全加器电路。
通过逻辑门的组合,实现了对两个4位二进制数的加法运算。
实验过程中,我们了解到逻辑门的工作原理,掌握了逻辑门的真值表和逻辑方程的编写方法。
实验二:多路选择器的设计与实现多路选择器是一种常用的数字逻辑电路,它可以根据控制信号的不同,从多个输入信号中选择一个输出信号。
在本实验中,我们设计了一个4位2选1多路选择器电路。
通过对多路选择器的输入信号和控制信号的设置,实现了对不同输入信号的选择。
实验过程中,我们了解到多路选择器的工作原理,学会了多路选择器的真值表和逻辑方程的编写方法。
实验三:时序逻辑电路的设计与实现时序逻辑电路是一种能够存储和处理时序信息的数字逻辑电路。
在本实验中,我们设计了一个简单的时序逻辑电路——D触发器。
通过对D触发器的输入信号和时钟信号的设置,实现了对输入信号的存储和传输。
实验过程中,我们了解到D触发器的工作原理,掌握了D触发器的真值表和逻辑方程的编写方法。
实验四:计数器电路的设计与实现计数器是一种能够实现计数功能的数字逻辑电路。
在本实验中,我们设计了一个4位二进制计数器电路。
通过对计数器的时钟信号和复位信号的设置,实现了对计数器的控制。
实验过程中,我们了解到计数器的工作原理,学会了计数器的真值表和逻辑方程的编写方法。
结论:通过本次实验,我们深入了解了数字逻辑的基本原理和应用方法。
通过设计和实现逻辑门电路、多路选择器、时序逻辑电路和计数器电路,我们掌握了数字逻辑实验的基本技巧,并加深了对数字逻辑的理解。
实验时序电路实验报告
实验时序电路实验报告摘要:时序电路是数字电路中的一种重要电路,它负责控制系统中各个部件和信号的时序关系。
本实验旨在通过设计和实现一个简单的时序电路,加深对时序电路原理的理解,并掌握时序电路设计的基本方法和步骤。
在实验中,我们采用了JK触发器和计数器等器件,通过逻辑电平的高低和输入信号的输入顺序来实现不同的时序控制功能。
通过实验我们发现,在正确配置和连接时序电路的各个部件后,时序电路可以准确地按照预定的时序顺序进行工作,实现了预期的控制效果。
一、实验目的1. 了解时序电路的基本概念和工作原理;2. 掌握JK触发器和计数器的基本特性和设计方法;3. 设计和实现一个简单的时序电路。
二、实验器材和设备1. 实验台板2. 集成电路(IC):7404、74107、741613. 电源、导线等三、实验原理1. 时序电路简介时序电路又称为序贯电路,是数字电路中按照一定的时序和顺序进行工作的电路。
它根据输入信号和内部时钟信号的时序关系来控制系统的输出,能够实现各种复杂的逻辑控制功能。
时序电路对时钟信号的边沿触发具有较高的要求,通常使用触发器作为时序电路的基本单元。
2. JK触发器JK触发器是一种常用的时序电路元件,具有两个正反馈输入端(J和K)和两个输出端(Q和Q')。
JK触发器的工作原理是当时钟触发信号为上升沿时,J、K输入信号控制Q输出端的电平状态。
3. 计数器计数器是一种常用的时序电路模块,它可以根据时钟信号的输入进行计数,并输出对应的计数结果。
常见的计数器有二进制计数器、十进制计数器等。
四、实验内容和步骤1. 实验电路的设计根据实验要求和所学知识,设计一个简单的时序电路。
本实验中,我们设计一个由两个JK触发器和一个计数器构成的时序电路。
其中,JK触发器用于接收输入信号和时钟信号,并根据输入信号的顺序和时钟信号的边沿触发生成输出信号;计数器用于对输入信号的个数进行计数,并根据计数结果控制输出信号的状态。
数字电路与逻辑设计实验报告
数字电路与逻辑设计实验报告数字电路与逻辑设计实验报告摘要:本实验旨在通过设计和实现数字电路和逻辑门电路,加深对数字电路和逻辑设计的理解。
实验过程中,我们使用了逻辑门电路、多路选择器、触发器等基本数字电路元件,并通过实际搭建电路和仿真验证,验证了电路的正确性和可靠性。
引言:数字电路和逻辑设计是计算机科学与工程领域的重要基础知识。
在现代科技发展中,数字电路的应用范围非常广泛,涉及到计算机、通信、控制等各个领域。
因此,深入理解数字电路和逻辑设计原理,掌握其设计和实现方法,对于我们的专业学习和未来的工作都具有重要意义。
实验一:逻辑门电路的设计与实现逻辑门电路是数字电路中最基本的元件之一,通过逻辑门电路可以实现各种逻辑运算。
在本实验中,我们通过使用与门、或门、非门等逻辑门电路,设计并实现了一个简单的加法器电路。
通过搭建电路和进行仿真验证,我们验证了加法器电路的正确性。
实验二:多路选择器的设计与实现多路选择器是一种常用的数字电路元件,可以根据控制信号的不同,选择不同的输入信号输出。
在本实验中,我们通过使用多路选择器,设计并实现了一个简单的数据选择电路。
通过搭建电路和进行仿真验证,我们验证了数据选择电路的正确性。
实验三:触发器的设计与实现触发器是一种常用的数字电路元件,可以存储和传输信息。
在本实验中,我们通过使用触发器,设计并实现了一个简单的二进制计数器电路。
通过搭建电路和进行仿真验证,我们验证了二进制计数器电路的正确性。
实验四:时序逻辑电路的设计与实现时序逻辑电路是一种特殊的数字电路,其输出不仅与输入信号有关,还与电路的状态有关。
在本实验中,我们通过使用时序逻辑电路,设计并实现了一个简单的时钟电路。
通过搭建电路和进行仿真验证,我们验证了时钟电路的正确性。
实验五:数字电路的优化与综合数字电路的优化与综合是数字电路设计中非常重要的环节。
在本实验中,我们通过使用逻辑代数和Karnaugh图等方法,对已有的数字电路进行了优化和综合。
数字逻辑实验报告(数字时钟设计)
数字逻辑实验报告实验三、综合实验电路一、实验目的:通过一个综合性实验项目的设计与实现,进一步加深理论教学与实验软硬件平台的实践训练,为设计性实验做好充分准备。
二、实验原理:根据要求的简单设计性的电路设计实验,应用基本器件与MSI按照电路设计步骤搭建出初级电路;设计型、综合型的较复杂实验电路三、实验设备与器件:主机与实验箱四、实验内容:(1)实验任务:根据所学习的器件,按照电路开发步骤搭建一个时钟,要求实现的基本功能有计时功能、校对时间功能、整点报时、秒表等功能。
(2)实验任务分析:完成该数字时钟,采用同步时序电路,对于计时的的功能,由于时间的秒分时的进位分别是60、60、24,所以可以应用74LS163计数器分别设计2个模60计数器以及一个模24计数器,那么需要有7个秒输出,7个分输出,6个小时的输出;对于校对时间的功能,由74LS163的特性可知,当该器件处于工作状态时,每来一个CLK脉冲,计数值加1,所以可以手动控制给CLK脉冲,来进行时间的校对;对于整点报时功能,可以采用一个比较电路,当时间的分秒数值全部为零时,那么此时可以接通报时装置,可以在电路中设置报时的的时间;对于秒表功能,有两种方案,可以单独重新设计一个秒表装置,采用模100计数器以及两个模60计数器,可以进行优化,使用原先的两个模60计数器,这样可以简化电路,是电路简洁。
(3)实验设计流程:(4)输入输出表:(5)各个功能模块的实现:A、计时功能模块的实现(电路图及说明)秒表部分及说明说明:该部分是实现功能正常计时中的秒部分的计时工作。
如图所示,图中采用两个74LS163来做一个模60计时器,计数的起止范围是0~59,(第一个74LS163采用模10计数,起止为0~9,第二个74LS163的计数起止范围是0~5),两个器件采用级联方式,用预置位方法实现跳转;该部分有7个秒输出,接到BCD译码显示器。
注解:第一个163器件:LDN端统一接到清零端ABCD端接地ENP端接到VCC高电平ENT接高电平VCC第二个163器件:LDN端统一接到清零端ABCD端接地ENP端接到VCC高电平ENT接高电平第一个163的预置位段分钟部分以及说明:说明:该部分是实现功能正常计时中的分部分的计时工作。
数字逻辑综合实验报告
一、实验目的本次实验旨在通过实际操作,加深对数字逻辑基本原理和设计方法的理解,提高学生在数字电路设计、仿真和调试方面的实践能力。
通过完成以下实验任务,使学生掌握以下技能:1. 理解数字逻辑电路的基本概念和原理。
2. 掌握数字逻辑电路的设计方法和步骤。
3. 学会使用仿真软件进行电路设计和仿真测试。
4. 掌握数字逻辑电路的调试和优化方法。
二、实验内容本次实验主要包含以下三个部分:1. 组合逻辑电路设计:设计一个四位加法器,并使用Logisim软件进行仿真测试。
2. 时序逻辑电路设计:设计一个简单的计数器,并使用Verilog语言进行描述和仿真。
3. 数字逻辑电路综合应用:设计一个简单的数字信号处理器,实现基本的算术运算。
三、实验步骤1. 组合逻辑电路设计(1)分析题目要求,确定设计目标和输入输出关系。
(2)根据输入输出关系,设计四位加法器的逻辑电路。
(3)使用Logisim软件搭建电路,并设置输入信号。
(4)观察仿真结果,验证电路功能是否正确。
2. 时序逻辑电路设计(1)分析题目要求,确定设计目标和状态转移图。
(2)使用Verilog语言描述计数器电路,包括模块定义、输入输出定义、状态定义和状态转移逻辑。
(3)使用仿真软件进行测试,观察电路在不同状态下的输出波形。
3. 数字逻辑电路综合应用(1)分析题目要求,确定设计目标和功能模块。
(2)设计数字信号处理器电路,包括算术运算单元、控制单元和存储单元等。
(3)使用仿真软件进行测试,验证电路能否实现基本算术运算。
四、实验结果与分析1. 组合逻辑电路设计实验结果:通过仿真测试,四位加法器电路功能正常,能够实现两个四位二进制数的加法运算。
分析:在设计过程中,遵循了组合逻辑电路设计的基本原则,确保了电路的正确性。
2. 时序逻辑电路设计实验结果:通过仿真测试,计数器电路功能正常,能够实现从0到9的计数功能。
分析:在设计过程中,正确描述了状态转移图,并使用Verilog语言实现了电路的功能。
数字电路与系统设计实验报告
数字电路与系统设计实验报告学院:班级:姓名:实验一基本逻辑门电路实验一、实验目的1、掌握TTL与非门、与或非门和异或门输入与输出之间的逻辑关系。
2、熟悉TTL中、小规模集成电路的外型、管脚和使用方法。
二、实验设备1、二输入四与非门74LS00 1片2、二输入四或非门74LS02 1片3、二输入四异或门74LS86 1片三、实验内容1、测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。
2、测试二输入四或非门74LS02一个或非门的输入和输出之间的逻辑关系。
3、测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。
四、实验方法1、将器件的引脚7与实验台的“地(GND)”连接,将器件的引脚14与实验台的十5V连接。
2、用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平。
3、将被测器件的输出引脚与实验台上的电平指示灯(LED)连接。
指示灯亮表示输出低电平(逻辑为0),指示灯灭表示输出高电平(逻辑为1)。
五、实验过程1、测试74LS00逻辑关系(1)接线图(图中K1、K2接电平开关输出端,LED0是电平指示灯)(2)真值表2、测试74LS02逻辑关系(1)接线图(2)真值表3、测试74LS86逻辑关系接线图(1)接线图(2)真值表六、实验结论与体会实验是要求实践能力的。
在做实验的整个过程中,我们首先要学会独立思考,出现问题按照老师所给的步骤逐步检查,一般会检查处问题所在。
实在检查不出来,可以请老师和同学帮忙。
实验二逻辑门控制电路实验一、实验目的1、掌握基本逻辑门的功能及验证方法。
2、掌握逻辑门多余输入端的处理方法。
3、学习分析基本的逻辑门电路的工作原理。
二、实验设备1、基于CPLD的数字电路实验系统。
2、计算机。
三、实验内容1、用与非门和异或门安装给定的电路。
2、检验它的真值表,说明其功能。
四、实验方法按电路图在Quartus II上搭建电路,编译,下载到实验板上进行验证。
时序逻辑实验报告
一、实验目的1. 理解时序逻辑电路的基本概念和工作原理。
2. 掌握时序逻辑电路的设计方法和测试方法。
3. 熟悉常用中规模集成计数器和寄存器的逻辑功能和使用方法。
二、实验原理时序逻辑电路是指其输出不仅取决于当前输入信号,还取决于电路的过去状态。
本实验主要涉及计数器和寄存器两种时序逻辑电路。
计数器:计数器是一种能够对输入脉冲进行计数的时序逻辑电路。
常见的计数器有二进制计数器、十进制计数器和可编程计数器等。
寄存器:寄存器是一种用于存储二进制信息的时序逻辑电路。
常见的寄存器有D型寄存器、移位寄存器和计数寄存器等。
三、实验设备1. 数字电子技术实验箱2. 示波器3. 信号源4. 集成芯片:74LS163、74LS00、74LS20等四、实验内容1. 计数器设计(1)设计一个4位二进制加法计数器,实现0-15的循环计数。
(2)设计一个10进制计数器,实现0-9的循环计数。
2. 寄存器设计(1)设计一个D型寄存器,实现数据的存储和读取。
(2)设计一个移位寄存器,实现数据的右移和左移。
3. 时序逻辑电路测试(1)测试计数器的计数功能。
(2)测试寄存器的存储和读取功能。
五、实验步骤1. 计数器设计(1)根据计数器的功能要求,设计电路图。
(2)根据电路图,选择合适的集成芯片。
(3)搭建实验电路。
(4)测试计数器的计数功能。
2. 寄存器设计(1)根据寄存器的功能要求,设计电路图。
(2)根据电路图,选择合适的集成芯片。
(3)搭建实验电路。
(4)测试寄存器的存储和读取功能。
3. 时序逻辑电路测试(1)测试计数器的计数功能。
(2)测试寄存器的存储和读取功能。
六、实验结果与分析1. 计数器设计(1)4位二进制加法计数器能够实现0-15的循环计数。
(2)10进制计数器能够实现0-9的循环计数。
2. 寄存器设计(1)D型寄存器能够实现数据的存储和读取。
(2)移位寄存器能够实现数据的右移和左移。
3. 时序逻辑电路测试(1)计数器的计数功能正常。
数字逻辑与数字系统实验报告-简单时序电路
数字逻辑与数字系统实验报告书6实验名简单时序电路一、实验目的1、掌握常用时序电路分析,设计及测试方法。
2、掌握计数器74LS161的功能。
3、掌握计数器的级联方法。
4、熟悉任意计数器的构成方法。
二、实验所用器件和仪器74LS112(74LS73) 双J-K触发器2片74LS175 四D触发器1片74LS10 三输入端与非门1片74LS00 二输入端四与非门1片4位计数器74LS161 2片三、实验内容1、异步二进制计数器2、自循环移位寄存器-环形计数器3、集成芯片使用4、任意模计数器(计数器级联)四、实验原理、接线图及实验结果1异步二进制计数器:波形图为:2、自循环移位寄存器-环形计数器:环形计数器原理环形计数器波形图利用四D触发器芯片74LS175搭建环形计数器(2)与非门用74LS10三输入端三与非门重述上述实验:自启式环形计数器自启式环形计数器波形图3、集成芯片使用:用一片74LS161和74LS00采用复位法(置位法)构造一个模6计数器。
用单脉冲做计数时钟,观测计数状态。
(1)复位法构成的模6计数器:复位法6进制计数器接线图(3)Q的波形图:2、置位法模6计数器接线图及测试结果(1)置数法模6计数器接线图:(2)置数法模6计数器状态转换表:(3)Q的波形图:5、任意模计数器(计数器级联)用2片74LS161和1片74LS00构成一个模60H计数器:五、实验数据分析与小结1、异步二进制计数器:由cp端输入一个脉冲,Q1~Q4轮流波动,形成脉冲。
2、自循环移位寄存器:该计数器不能自行启动,当外界给予一个作用时,该计数器就开始自动循环工作。
3、集成芯片:集成芯片工作时脉冲会形成毛疵,可以通过改变接线状态或者增加缓冲来解决。
4、任意模计数器:任意模计数器可以运用复位法和置数法进行清零,当数字计数到9时,转0重新计数,并向前进一位,达成计数。
六、实验心得体会通过本次实验,我充分认识了常用时序电路分析,设计及测试方法,掌握了计数器74LS161的功能,计数器的级联方法,熟悉任意计数器的构成方法。
时序电路实验报告
时序电路实验报告时序电路实验报告引言:时序电路是数字电路中的一种重要类型,它能够根据输入信号的时序关系来控制输出信号的变化。
本次实验旨在通过设计和测试不同类型的时序电路,加深对时序电路原理和应用的理解。
一、实验目的本次实验的主要目的有以下几点:1. 理解时序电路的基本原理和工作方式;2. 学会使用逻辑门和触发器等基本元件构建时序电路;3. 掌握时序电路的设计和测试方法。
二、实验器材和元件1. 实验器材:数字逻辑实验箱、示波器、数字信号发生器等;2. 实验元件:逻辑门(与门、或门、非门)、触发器(RS触发器、JK触发器)、电阻、电容等。
三、实验过程及结果1. 实验一:RS触发器的设计与测试RS触发器是最基本的触发器之一,由两个交叉连接的与门和非门组成。
我们首先根据真值表设计RS触发器的逻辑电路,并使用逻辑门和电阻电容等元件进行实际搭建。
通过输入不同的时序信号,观察输出的变化情况,并记录实验结果。
实验结果表明,RS触发器能够稳定地存储和传递输入信号。
2. 实验二:JK触发器的设计与测试JK触发器是一种改进型的RS触发器,它具有更多的功能和应用。
我们在实验中使用与门和非门构建JK触发器,并通过输入不同的时序信号,观察输出的变化情况。
实验结果表明,JK触发器可以实现存储、传递和翻转等多种功能,具有较高的灵活性和可靠性。
3. 实验三:时钟信号的设计与测试时钟信号是时序电路中非常重要的一种输入信号,它能够控制时序电路的运行和同步。
我们在实验中使用数字信号发生器产生不同频率和占空比的时钟信号,并通过示波器观察和分析实际输出的时序波形。
实验结果表明,时钟信号的频率和占空比对时序电路的运行和输出有着重要的影响。
四、实验总结通过本次实验,我们深入了解了时序电路的基本原理和应用,掌握了时序电路的设计和测试方法。
实验结果表明,时序电路能够根据输入信号的时序关系来控制输出信号的变化,具有较高的可靠性和灵活性。
时序电路在数字电路中起着重要的作用,广泛应用于计算机、通信和控制系统等领域。
时序逻辑电路实验报告
实验题目实验题目 时序逻辑电路时序逻辑电路 小组合作小组合作一、实验目的一、实验目的1、掌握由集成触发器构成的二进制计数电路的工作原理。
、掌握由集成触发器构成的二进制计数电路的工作原理。
2、掌握中规模集成计数器的使用方法。
、掌握中规模集成计数器的使用方法。
3、学习运用上述组件设计简单计数器的技能。
、学习运用上述组件设计简单计数器的技能。
4、验证计数器、寄存器的逻辑功能。
、验证计数器、寄存器的逻辑功能。
5、使用74LS248显示计数器。
显示计数器。
二.实验环境二.实验环境1、数字电路试验箱、数字电路试验箱 1 1台2、共阴极数码显示器、共阴极数码显示器 2 2个3、集成电路:、集成电路:双双D 触发器触发器 74LS74 2 74LS74 2片 16进制计数器进制计数器 74LS160 1 74LS160 1片 数码显示管数码显示管数码显示管 74LS248 1 74LS248 1片 三、实验内容与步骤三、实验内容与步骤1、寄存器,利用两片74LS74芯片,组成如图5.1所示具有存储和移位功能的电路,即为寄存器,用于寄存一组二值代码,和移位功能的电路,即为寄存器,用于寄存一组二值代码,N N 位寄存器由N 个触发器组成,可存放一组N 位二值代码。
只要求其中每个触发器可置1,置0。
四位寄存器的电路图如图5.1所示:所示:图5.1 5.1 四位寄存器四位寄存器四位寄存器2 2、用、用K1清零,再试K1为高电平;为高电平;3 3、在串行数据输入中,使、在串行数据输入中,使K2=1K2=1,按动单次脉冲,观察,按动单次脉冲,观察Q0-Q3并记录结果;记录结果;4 4、交替改变、交替改变K2(1011),K2(1011),依次按动单次脉冲,观察并记录实验结依次按动单次脉冲,观察并记录实验结果,绘出波形图。
果,绘出波形图。
5、利用74LS160芯片组成的用于计数、分频、定时、产生节拍脉冲等的电路,脉冲等的电路,按时钟分,按时钟分,同步、同步、异步,按计数过程中数字增减分,异步,按计数过程中数字增减分,加、加、减和可逆,减和可逆,减和可逆,按计数器中的数字编码分,二进制、二按计数器中的数字编码分,二进制、二按计数器中的数字编码分,二进制、二--十进制和循环码…,按计数容量分,十进制,六十进制…同步计数器的原理图如图5.2所示:所示:图5.2 5.2 同步计数器的原理图同步计数器的原理图同步计数器的原理图6、测试74LS160芯片的逻辑功能,测试结果。
数字逻辑实验报告
数字逻辑实验报告实验介绍数字逻辑是计算机科学不可或缺的基础课程,本次实验我们将学习数字逻辑的基本概念,使用Verilog语言实现逻辑电路,并在数字仿真软件中模拟电路的运行过程。
实验目的•理解数字逻辑电路的基本概念和原理;•掌握Verilog语言的基本语法和编程技巧;•学会使用数字仿真软件模拟数字逻辑电路的运行过程。
实验过程实验一:组合逻辑电路的实现本实验中我们将使用Verilog语言实现一个简单的组合逻辑电路。
组合逻辑电路是由一些基本逻辑门连接而成的电路,这些逻辑门输出状态仅受输入状态影响,不受电路的历史状态影响,因此称为组合逻辑电路。
在本实验中,我们将使用Verilog语言实现一个简单的组合逻辑电路,具体如下:module combinational_logic(input a, b, c, output d, e);assign d = ~(a & b);assign e = ~(c | d);endmodule以上Verilog代码实现了一个简单的组合逻辑电路,在电路中有三个输入端口(a、b、c)和两个输出端口(d、e)。
其中d输出端口为(a & b)的反相值,e输出端口为(c | d)的反相值。
实验二:时序逻辑电路的实现时序逻辑电路是一种与历史状态相关的电路,因此称为时序逻辑电路。
与组合逻辑电路的不同之处,在于时序逻辑电路有一种状态元件,在时钟信号的驱动下更改其状态。
在本实验中,我们将使用Verilog语言实现一个简单的时序逻辑电路,具体如下:module sequential_logic(input clock, reset, input data, output reg q);always @(posedge clock or negedge reset) beginif(!reset) beginq <= 1'b0;endelse beginq <= data;endendendmodule以上Verilog代码实现了一个简单的时序逻辑电路,在电路中有两个输入端口(clock、reset)和一个输出端口(q)。
数字系统电路实验报告(3篇)
第1篇一、实验目的1. 理解数字系统电路的基本原理和组成。
2. 掌握数字电路的基本实验方法和步骤。
3. 通过实验加深对数字电路知识的理解和应用。
4. 培养学生的动手能力和团队合作精神。
二、实验原理数字系统电路是由数字逻辑电路构成的,它按照一定的逻辑关系对输入信号进行处理,产生相应的输出信号。
数字系统电路主要包括逻辑门电路、触发器、计数器、寄存器等基本单元电路。
三、实验仪器与设备1. 数字电路实验箱2. 数字万用表3. 示波器4. 逻辑分析仪5. 编程器四、实验内容1. 逻辑门电路实验(1)实验目的:熟悉TTL、CMOS逻辑门电路的逻辑功能和测试方法。
(2)实验步骤:1)搭建TTL与非门电路,测试其逻辑功能;2)搭建CMOS与非门电路,测试其逻辑功能;3)测试TTL与门、或门、非门等基本逻辑门电路的逻辑功能。
2. 触发器实验(1)实验目的:掌握触发器的逻辑功能、工作原理和应用。
(2)实验步骤:1)搭建D触发器电路,测试其逻辑功能;2)搭建JK触发器电路,测试其逻辑功能;3)搭建计数器电路,实现计数功能。
3. 计数器实验(1)实验目的:掌握计数器的逻辑功能、工作原理和应用。
(2)实验步骤:1)搭建同步计数器电路,实现加法计数功能;2)搭建异步计数器电路,实现加法计数功能;3)搭建计数器电路,实现定时功能。
4. 寄存器实验(1)实验目的:掌握寄存器的逻辑功能、工作原理和应用。
(2)实验步骤:1)搭建4位并行加法器电路,实现加法运算功能;2)搭建4位并行乘法器电路,实现乘法运算功能;3)搭建移位寄存器电路,实现数据移位功能。
五、实验结果与分析1. 逻辑门电路实验通过搭建TTL与非门电路和CMOS与非门电路,测试了它们的逻辑功能,验证了实验原理的正确性。
2. 触发器实验通过搭建D触发器和JK触发器电路,测试了它们的逻辑功能,实现了计数器电路,验证了实验原理的正确性。
3. 计数器实验通过搭建同步计数器和异步计数器电路,实现了加法计数和定时功能,验证了实验原理的正确性。
数字逻辑与计算机组成原理实验报告
数字逻辑与计算机组成原理实验指导书实验目录实验一基本逻辑电路测试实验二时序线路分析实验三计算机运算部件设计实验四计算机存储部件设计实验五总线传送技术1实验一基本逻辑电路测试一.实验目的1.掌握TTL与非门,与或非门和异或门输入与输出之间的逻辑关系。
2.熟悉TTL中,小规模集成电路的外型,管脚和使用方法。
3.熟悉TDS―1实验系统的功能和使用方法。
二.实验所用器材1.二输入四与非门74LS00一片2.二输入四或非门74LS02(74LS28)一片3.二输入四异或门74LS86一片4.数字万用表5.示波器三.实验内容1.测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。
2.测试二输入四或非门74LS02一个或非门的输入和输出之间的逻辑关系。
3.测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。
4.用数字万用表测量各输入输出电压值并记录。
5.熟悉THD―1实验系统的功能和使用方法。
6.熟悉示波器的使用,练习测量各种脉冲波形。
四.实验提示1.将被测器件插入实验台上的14芯插座中。
2.将器件的引脚7与实验台的地(GND)连接,将器件的引脚14与实验台的+5V连接。
3.用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平。
4.将被测器件的输出引脚与实验台上的电平指示灯连接,指示灯亮表示输出电平为1,指示灯灭表示输出电平为0。
五.实验接线图及实验结果74LS00中包含4个二与非门,74LS02中包含4个二或非门,74LS86中包含4个异或门,下面各画出测试第一个逻辑门逻辑关系的接线图及测试结果。
测试其他逻辑门时的接线图与之类似。
测试时各器件的引脚7接地,引脚14接+5V,图中的K1,K2是电平开关输出,LED0是电平指示灯。
231.测试74LS00逻辑关系接线图及测试结果74LS00K1K2LED0图1.1测试74LS00逻辑关系接线图表1.174LS00真值表2.测试74LS02逻辑关系接线图及测试结果74LS02K1K2LED0图1.2测试74LS02逻辑关系接线图3.测试74LS86逻辑关系接线图及测试结果74LS86K1K2LED0图1.3测试74LS86逻辑关系接线图六.实验报告要求1.画出实验线路图。
数字电路实验的实验报告(3篇)
第1篇一、实验目的1. 理解和掌握数字电路的基本原理和组成。
2. 熟悉数字电路实验设备和仪器的基本操作。
3. 培养实际动手能力和解决问题的能力。
4. 提高对数字电路设计和调试的实践能力。
二、实验器材1. 数字电路实验箱一台2. 74LS00若干3. 74LS74若干4. 74LS138若干5. 74LS20若干6. 74LS32若干7. 电阻、电容、二极管等元器件若干8. 万用表、示波器等实验仪器三、实验内容1. 基本门电路实验(1)验证与非门、或非门、异或门等基本逻辑门的功能。
(2)设计简单的组合逻辑电路,如全加器、译码器等。
2. 触发器实验(1)验证D触发器、JK触发器、T触发器等基本触发器的功能。
(2)设计简单的时序逻辑电路,如计数器、分频器等。
3. 组合逻辑电路实验(1)设计一个简单的组合逻辑电路,如4位二进制加法器。
(2)分析电路的输入输出关系,验证电路的正确性。
4. 时序逻辑电路实验(1)设计一个简单的时序逻辑电路,如3位二进制计数器。
(2)分析电路的输入输出关系,验证电路的正确性。
5. 数字电路仿真实验(1)利用Multisim等仿真软件,设计并仿真上述实验电路。
(2)对比实际实验结果和仿真结果,分析误差原因。
四、实验步骤1. 实验前准备(1)熟悉实验内容和要求。
(2)了解实验器材的性能和操作方法。
(3)准备好实验报告所需的表格和图纸。
2. 基本门电路实验(1)搭建与非门、或非门、异或门等基本逻辑电路。
(2)使用万用表测试电路的输入输出关系,验证电路的功能。
(3)记录实验数据,分析实验结果。
3. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发电路。
(2)使用示波器观察触发器的输出波形,验证电路的功能。
(3)记录实验数据,分析实验结果。
4. 组合逻辑电路实验(1)设计4位二进制加法器电路。
(2)搭建电路,使用万用表测试电路的输入输出关系,验证电路的正确性。
(3)记录实验数据,分析实验结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字逻辑与数字系统实验报告书6实验名简单时序电路
一、实验目的
1、掌握常用时序电路分析,设计及测试方法。
2、掌握计数器74LS161的功能。
3、掌握计数器的级联方法。
4、熟悉任意计数器的构成方法。
二、实验所用器件和仪器
74LS112(74LS73) 双J-K触发器2片
74LS175 四D触发器1片
74LS10 三输入端与非门1片
74LS00 二输入端四与非门1片
4位计数器74LS161 2片
三、实验内容
1、异步二进制计数器
2、自循环移位寄存器-环形计数器
3、集成芯片使用
4、任意模计数器(计数器级联)
四、实验原理、接线图及实验结果
1异步二进制计数器:
波形图为:
2、自循环移位寄存器-环形计数器:
环形计数器原理
环形计数器波形图
利用四D触发器芯片74LS175搭建环形计数器(2)与非门用74LS10三输入端三与非门重述上述实验:
自启式环形计数器
自启式环形计数器波形图
3、集成芯片使用:用一片74LS161和74LS00采用复位法(置位法)构造一个模6计数器。
用单脉冲做计数时钟,观测计数状态。
(1)复位法构成的模6计数器:
复位法6进制计数器接线图
(3)Q的波形图:
2、置位法模6计数器接线图及测试结果(1)置数法模6计数器接线图:
(2)置数法模6计数器状态转换表:
(3)Q的波形图:
5、任意模计数器(计数器级联)
用2片74LS161和1片74LS00构成一个模60H计数器:
五、实验数据分析与小结
1、异步二进制计数器:由cp端输入一个脉冲,Q1~Q4轮流波动,形成脉冲。
2、自循环移位寄存器:该计数器不能自行启动,当外界给予一个作用时,该计数器就
开始自动循环工作。
3、集成芯片:集成芯片工作时脉冲会形成毛疵,可以通过改变接线状态或者增加缓冲
来解决。
4、任意模计数器:任意模计数器可以运用复位法和置数法进行清零,当数字计数到9
时,转0重新计数,并向前进一位,达成计数。
六、实验心得体会
通过本次实验,我充分认识了常用时序电路分析,设计及测试方法,掌握了计数器74LS161的功能,计数器的级联方法,熟悉任意计数器的构成方法。
,并且学会了如何使用它们搭建出自己所需要的各种电路。
所以说,不能光学,也要学会使用它们,这样才能真正的掌握这些知识!。