光缆跟光纤计算公式
实用线缆用量计算公式
实用线缆用量计算公式一、综合布线系统1水平子系统,线缆用量计算方法:电缆平均长度=(最远信息点水平距离+最近信息点水平距离)/2+2H(H-楼层高)实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)每箱线缆布线根数=每箱电缆长度/实际电缆平均长度电缆需要箱数=信息点总数/每箱线缆布线根数注:最远、最近信息点水平距离是从楼层配线间(IDF)到信息点的水平实际距离,包含水平实际路由的距离,若是多层设置一个IDF则还应包含相应楼层高度。
上面的“电缆平均长度”计算公式适应一层或三层设置一个楼层配线间(IDF)的情形。
2主干子系统①铜线缆用量计算方法:电缆平均长度=(最远IDF距离+最近IDF距离)/2实际电缆平均长度= 电缆平均长度×1.1+(端接容限,通常取6)每轴线缆布线根数= 每轴电缆长度/实际电缆平均长度电缆需要轴数= IDF的总数/每箱线缆布线根数注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到设备间(MDF)的水平距离。
大对数电缆对数按照1:2(即1个语音点配置2对双绞线)计算,并分别选择25/50对电缆进行合理设计。
100对大对数电缆一般不要选择,因施工较困难。
②光缆用量计算方法:光缆平均长度=(最远IDF距离+最近IDF距离)/2实际光缆平均长度=光缆平均长度×1.1+(端接容限,通常取6)光缆需要总量=IDF的总数×实际光缆平均长度注:最远、最近IDF距离是从楼层配线间(IDF)到网中心主配线架(MDF)的实际距离,主要取决于楼层高度和弱电井到MDF的水平距离。
光纤芯数、单模、多模的选择若招标文件有明确的要求,则按要求设计,通用的选择是6芯多模光缆。
二、安全防范系统1电视监控系统(1)视频电缆计算方法:通常选用SYV75-5规格。
电缆平均长度=(最远摄像机距离+最近摄像机距离)/2实际电缆平均长度=电缆平均长度×1.1+(端接容限,通常取6)电缆需要总数=摄像机总数x实际电缆平均长度(米)注:最远、最近摄像机距离是指从安防监控中心机房到离安防机房最远、最近摄像机的实际距离,(注意楼层高度)。
光缆密度单位
光缆密度单位
(实用版)
目录
1.光缆密度的定义和单位
2.光缆密度的计算方法
3.光缆密度在通信行业中的重要性
4.光缆密度的提高方法
正文
光缆密度是指在单位长度的光缆中,所包含的光纤数量,通常用来衡量光缆的容量和性能。
光缆密度的单位通常为“芯/公里”,表示每公里光缆中所包含的光纤芯数。
光缆密度的计算方法是通过将光缆的总光纤数除以光缆的长度,得到的结果就是光缆密度。
例如,一条长为 100 公里的光缆,其中包含有 1000 根光纤,那么这条光缆的密度就是 10 芯/公里。
在通信行业中,光缆密度是一个非常重要的参数,它能够直接影响到光缆的传输速率和通信质量。
随着互联网的快速发展,人们对于通信的需求也越来越大,提高光缆密度就成为了提高通信能力的有效手段。
提高光缆密度的方法主要有两种,一种是通过提高光纤的制造工艺,使光缆中的光纤更细,这样就可以在同样的空间内放置更多的光纤;另一种是通过优化光缆的结构设计,提高光缆的利用率,从而使光缆的密度得到提高。
总的来说,光缆密度是衡量光缆性能的重要参数,对于通信行业来说具有重要的意义。
第1页共1页。
光缆损耗计算公式
光缆损耗计算公式光缆损耗是在光通信中一个挺重要的概念,要弄清楚它的计算公式,咱们得一步步来。
先来说说啥是光缆损耗。
简单来讲,就是光信号在光缆中传输的时候变弱了。
这就好比你在操场上喊口号,离你越远的人听到的声音越小,光信号在光缆里跑也是这个道理。
那为啥会有损耗呢?原因有好几个。
比如说材料本身的吸收,就像海绵吸水一样,光缆材料会吸掉一部分光的能量。
还有散射,光在光缆里“乱跑”,方向乱了,能量也就散掉啦。
另外,光缆的弯曲、连接不完美等都会导致损耗。
接下来咱们说说光缆损耗的计算公式。
常见的公式是:总损耗(dB)= 每公里损耗(dB/km)×长度(km) + 连接点损耗(dB) + 分光损耗(dB)。
这里面每公里损耗是个很关键的参数,不同类型的光缆这个值不太一样。
比如说单模光缆和多模光缆,每公里损耗就有差别。
给您说个我自己的经历,之前在一个通信项目里,我们要铺设一段很长的光缆。
计算损耗的时候,可把大家忙坏了。
那时候,大家拿着各种数据,对着公式一点点算,生怕出错。
有个同事,因为一个小数点的错误,导致后面的方案都得重新来,被老板狠狠批评了一顿。
从那以后,我们算损耗的时候,那叫一个小心,反复核对好多遍。
连接点损耗呢,就是光缆连接的地方,比如接头啊,熔接不好就会增加损耗。
分光损耗一般在分光器那里产生,分出去的光越多,损耗也就越大。
在实际应用中,要准确测量光缆损耗,得用专业的仪器,像光功率计啥的。
而且测量的时候,环境也得注意,不能有太强的干扰。
总之,光缆损耗的计算虽然有公式,但实际操作中得细心再细心,不然一个小错误可能会带来大麻烦。
希望您通过我的讲解,对光缆损耗计算公式能有更清楚的了解!。
6 光缆预期寿命的计算公式和保证光缆寿命的有关技术措施
光缆预期寿命的计算公式和保证光缆寿命的有关技术措施太平洋光缆有限公司的设计生产的光缆使用寿命达30年以上,在使用寿命期间,光缆及缆内光纤不会出现质量问题。
为延长光缆的使用寿命主要采取了以下措施:1、选用质量优越的光纤。
光纤是光缆内的主要元件,它的寿命取决于随机分布于光纤内的微裂纹的尺寸和数目.因此光纤整个长度上的筛选试验将确保光纤的最小抗张强度 ,下面是估算光纤预期寿命的计算公式:n+1m nδptr =* t*δr注:δp:筛选试验所施加的应力δr:安装固定后的应力Fr:光纤断裂几率 L:试验光纤长度(km)Np:筛选试验中每公里光纤的断裂次数(1/km) n:光纤的断裂生长指数M:光纤的韦伯尔指数 tp:筛选试验中施加应力的时间(sec) tr:光纤的预期寿命(sec)基于以上计算公式,算出光纤寿命达50年以上,从而保证我公司光缆的使用寿命完全符合要求.2、采用我公司所取得的无收缩光缆专利技术(详见下页《专利证书复印件》)进行组织生产;合理设计光缆结构,严格科学的把好工艺制造关;无收缩光缆使用了热涨系数很小的材料,因此具有良好的耐高低温性能,特别适合于气候条件恶劣的地区。
我国幅员辽阔,南北跨度大,造成南北气候差别很大,普通的通信光缆由于存在较高的热胀冷缩现象,在低温-30℃以下时,会有3-5‰的低温收缩,而当高温达到+50℃时,会出现约3‰的老化收缩,由于这种收缩现象,严重影响了光纤的传输性能和机械性能,甚至发生断纤,而无收缩通信光缆正是基于这些考虑来作设计的。
该光缆在温度为-60℃~+80℃范围内光缆纵向无收缩。
该光缆在我国西藏、新疆、大连,国外俄罗斯、新加坡、台湾和巴基斯坦得到良好应用,受到用户的一致好评。
3、正确的指导敷设(消除应力)光缆,来延长光缆的使用寿命。
按照上述公式,100km光纤长度在30年内自身断纤的概率只有0.34×10-1。
我公司为保证产品质量的稳定性,对车间进行了恒温、恒湿、超净的改造,精细的操作技术保证我公司生产的产品符合本工程标准要求。
光功率计算公式
这里举例说明一个一发三收,各路光缆长度分别为10 km、8 km、5 km的1310光链路设计过程(光路损耗
算),来说明以上几项参数含义和数量关系,设计计算过程和结果列入表2:
光链路设计
光发射机功率,要根据(全)光链路的损耗⑧和光接收机的接收光功率两者来确定。
本例算出的光链路损耗是9.21 dB,如果接收光功率是0dBm,那么就需要容许链路损耗为9.21 dBm的光发射机,要求这台光发射机的输出光率为8.34mW;,如果接收光功率是-2dBm,那么就需要容许链路损耗为7.21 dBm的光发射机,要求这台光发射机的输出光率为5.26mW。
路损耗以0.4L计
例算出的光链路损耗是9.21台光发射机的输出光率为,要求这台光发射机的输出。
常用光缆材料的算法
常用光缆材料的算法:1) 光缆挂钩:布放光缆长度(公里)×2060(≤2条缆时用25mm2规格、≥3条缆时用35mm2规格)。
具体计算分两种情况。
新设吊线时=新设吊线长度(米)×2×1.03,利旧吊线时=光缆长度(米)×2×0.32)拉线衬环:三股(用于7/2.2拉线)、五股(用于7/2.6拉线)、七股(用于7/3.0拉线)。
2个/拉线+吊线终端(5个/km——新设吊线)+光缆预留每处1个,具体计算= 7/2.6拉线×2.02+新设架空吊线(米)×8.1/1000+新设墙壁吊线长度(米)×4.04/100+0.5,计算结果取整。
3)拉线抱箍= 7/2.6拉线×1.01+新设架空吊线(米)×4.04/1000)+0.5,计算结果取整。
4)三眼单槽夹板:每条拉线1只+利旧杆路新设拉线的数量。
5)三眼双槽夹板(D7):用于7/2.2和7/2.6拉线,算法:2个/拉线+吊线终端(5个/km——新设吊线)+终端杆一处2块。
D9:用于7/3.0拉线,算法:每条4块+辅吊处数×46)1条单股7/2.2拉线:用3.02kg钢铰线+1套地锚铁柄+1套水泥拉线盘+1套拉线抱箍+2个拉线衬环(3股)+2付三眼双槽夹板+0.22kg4.0铁线+0.30kg3.0铁线+0.02kg1.5铁线。
7)1条单股7/2.6拉线:用3.80kg钢铰线+1套地锚铁柄+1套水泥拉线盘+1套拉线抱箍+2个拉线衬环(5股)+2付三眼双槽夹板+0.22kg4.0铁线+0.55kg3.0铁线+0.04kg1.5铁线。
8)镀锌钢绞线7/2.2重量=新设7/2.2架空吊线(米)×0.23+新设墙壁吊线长度(米)×0.23+0.5,计算结果取整。
9)镀锌钢绞线7/2.6重量=新设7/2.6拉线×4.41+0.5,计算结果取整。
OPGW光缆相关计算公式
5-dc 010*R **t 1*1*ln *γθγθγ++C 5-dc 010*R *1*1*ln*γθγθγ++C O P G W 光缆相关计算公式1、 额定抗拉强度计算(RTS )RTS =α ×A AS ×δAS +A AA δAA (kN ) 其中:α 为强度绞合系数A AA 为铝合金线(AA 线)总的截面积之和(mm 2) δAA 为铝合金线(AA 线)的破断应力(MPa ) A AS 为铝包钢线(AS 线)总的截面积之和(mm 2) δAS 为铝包钢线(AS线)的破断应力(MPa ) 2、 短路电流计算(I )I = (kA )其中:C ——OPGW 的热容量(J/cm.℃)γ——导体温度系数(1/℃)θ——允许上升的温度差(℃)θ0——环境温度与导线初始温度差(℃)t ——允许短路电流时间(秒)R dc 导体直流电阻 3、 允许短路电流容量计算(I 2t )I 2t = (kA 2s ) R dc ——导体直流电阻4、 OPGW光缆弹性模量的计算(E)E =Σ(En*An)/ΣAn (N/mm2)其中:En为每种材料的弹性模量(N/mm2)An为对应的每种材料的截面积(mm2)5、线膨胀系数的计算(β)β=Σ(βn*En*An)/Σ(En*An)(1/℃)其中:En为每种材料的弹性模量(N/mm2)An为对应的每种材料的截面积(mm2)βn为对应的材料线膨胀系数值(1/℃)6、直流电阻的计算R =1/Σn(1/R mn)R mn =ρm/Σi (A mi/F i)其中:R为OPGW的直流电阻(Ω/km)R mn为每种材料的线性直流电阻(Ω/km)ρm为该种材料的电阻率A mi为第i层的给定材料的截面积F I为第I层的绞合系数O P G W 张力与弧垂和比载计算一、计算原则根据架空地线的力学计算原则进行计算。
二、主要计算公式光缆应力与弧垂:δ8gl f 2= (m) 光缆的比载:自重比载:3110S 9.8W g -⨯⨯= (N/m·mm 2) 冰重比载:3210S 9.8b)b(d 2.83g -⨯⨯+⨯= (N/m·mm 2) 自重和冰重比载:213g g g += (N/m·mm 2) 无冰时风压比载:3241016S 9.8Sin aKdV g -⨯⨯=θ (N/m·mm 2) 覆冰时风压比载:3251016S 9.8S i n 2b )V a K (d g -⨯⨯+=θ (N/m·mm 2) 无冰有风时综合比载:24216g g g +=(N ·mm 2) 有冰有风时综合比载:25237g g g += (N/m·mm 2)导线状态方程式: )t E(t 24Eg l 24E g l n 2n 2n 2n 222---=-αδδδδ。
光纤光缆(实验报告)
光纤光缆技术实验报告书指导教师:刘孟华、魏访报告人:吴宁峰组员:吴思童李金活姜峰曹健保王鹏实验时间:2014.06.08光缆的接续一、实验目的:通过接续盒将光缆接续。
二、实验仪器:准备工具、材料(接续盒、环割刀、光缆、工具、以表齐全,摆放整齐)。
三、操作步骤:1、光缆开剥:在开剥前检查光缆是否损坏,清洁光缆的端头,在光缆端头约1m处用割刀环切光缆外护套,割断外护套之后将外护套抽离(注意切伤光纤),剥去内护套露出加强芯、光纤束管。
依次用棉纱、酒精加强芯、光纤束管擦拭干净。
2、光缆端头及加强芯的固定安装将光缆端头正确放到接续盒固定处,固定。
3、光纤束管开剥理顺光纤束管,确定光纤束管的拨开位置。
用专用束管刀或钳使束管外部受伤,切勿伤及光纤。
去掉束管时,顺着束管方向用力,剥除后用脱脂棉将光纤上的油膏轻轻擦拭干净,放在干净的作业台上。
4、光纤预留盘:把束管放入收容盘内,收容盘两端用尼龙扎带将束管固定在收容盘内,注意扎带不要太紧使光纤变形增加损耗。
5、用相同的方法使另一个光缆接头同样处理。
6、光纤熔接保持作业台和熔接机的清洁,并打开熔接机设定好参数、预热。
光纤接续要按顺序一一对应接续,不得交叉错接。
7、光纤的盘纤每接一管光纤要将接好的光纤编号收入收容盘内,收容时可从一端或两端向光纤保护管方向收容,将光纤保护管安全牢固的固定在光纤保护管的固定槽内。
确认无误后盖上盘盖并测试。
8、光纤接头盒的封装:在进行光缆与接头盒的密封时,要先进行密封处的光缆护套的打磨工作,用纱布在外护套上垂直光缆轴向打磨,以使光缆和密封胶带结合得更紧密,密封得更好。
接头盒上下盖板之间的密封,主要是注意密封胶带要均匀地防止在接头盒的密封槽内,将螺丝拧紧,不留缝隙四:实验感想通过这次实验我们初步了解到了光纤光缆的内部结构及各部分结构的作用,初步了解到了光缆的连续。
光纤的熔接一、实验目的:通过熔接的方法使光纤无缝的接续在一起。
二、实验仪器:光纤熔接机、剥纤钳、光纤切割刀、清洁棉等。
光缆设计计算公式集
dD D 2 2 * arcsin n 2 d D
(3-2)
试验证明 一般控制在 0~0.5mm 之间较为合适。 4 拉伸窗口 拉伸窗口就是在光缆在受到外界拉伸力的作用下伸长,而光纤未受力或光纤的应变为 零,此时光缆的伸长率就是光缆的拉伸窗口。 拉伸窗口是如何形成的呢?
i
i
S 为材料截面积;
光缆在光纤允许应变 1 下承受的拉力 F1 1 E总 S 总 光缆最大能承受拉力为 F F F1 光缆常用材料的模量 材料 PBT PE FRP 芳纶 钢丝 玻纤纱 6 光纤的弯曲半径 在光纤的拉丝、着色、复绕和光缆的制造、施工应用等过程中,光纤不 可避免的会受到应力应变的影响而产生一定的弯曲。 弯曲半径越小, 会引起
d D 1 sin 1 n
(3-1)
图 3-1
图 3-2
然而,套管和加强件并不是直线排列,套管在加强件上呈螺旋状,所以光缆的横截面应 该为图 3-2,套管的横截面为椭圆形,所以实际加强件尺寸应该比理论大,到底大多少比较 合适呢?这里引入绞和间隙的概念。 绞合间隙
p
弹性模量 GPa 2.20 1.10 50 120 190 50
线热膨胀系数 10 122.800 170.000 6.000 -2.000
6
K 1
密度 g / cm 1.310 0.950 2.200 1.410 7.8 2.2
3
12.2~13.5 6
光纤损耗明显甚至急剧的增大,对于一般的单模光纤来说,在 1310rim、 1550rim、 1625nm 测试波长下大于 60mm 的直径松绕 100 圈带来的附加损耗 都可以小于 0.1 dB。 所以在光缆的设计和生产过程中要严格控制光纤的弯曲半径。 由螺旋线的几何关系可得到曲率半径 R 对于光缆的光纤螺旋线 R 由 5-1 和 5-2 可得 光缆中光纤的弯曲半径
光缆中光纤余长的控制
光缆中光纤余长的控制光纤余长是影响光缆性能的重要因素之一,如何在成品光缆中实现希望的光纤余长是光缆生产者十分关心的问题。
1 光缆中光纤的余长光缆中光纤余长有两种含义a.是光纤相对松套管的长度差与松套管长度的百分比率,这是一般习惯所说的余长。
其计算公式为:ε=(L f-L t)/L t×100%式中,ε—光纤余长;L—光纤长度;fL—松套管长度。
tb.在松套层绞式光缆中,光纤占松套管中心位置时的长度与占松套管最内侧位置时的长度之差与占松套管中心位置时长度的百分比率,这常称为无应力窗口余长。
其计算公式为:ε= 2π2DR0(1-R0/D)/(π2D2+P2)式中,ε—光纤余长;D —光缆缆芯直径;—松套管等效内半径,其值为:RR= R-1.16n1/2d/2其中,R —松套管内半径;n —松套管内光纤数目;d —光纤直径。
P —成缆节距。
通常说的光纤余长是指第一种余长含义。
本文所述余长也是指第一种余长含义。
1.1松套层绞式光缆的光纤余长当光缆受到拉力或环境温度变化时,光缆长度会产生伸长或压缩的形变。
当光缆伸长时,光缆中各元件均会拉伸变长。
由于光纤是按螺旋状绞合在光缆加强芯外面,当光缆伸长时光纤的绞合节距会变大,绞合半径会变小,光纤向光缆加强芯靠近,从而提供适应光缆伸长的长度,使光纤不遭受拉力。
当光缆伸长过大时,光纤紧贴在松套管内壁上,这时光纤受到拉力,同时受到松套管内壁对其产生的侧压力而产生微弯曲。
当温度变化光缆收缩时,光纤绞合节距会变小,绞合半径会变大,光纤离开光缆加强芯,不会受力。
当光缆收缩过大时,光纤也会紧贴松套管内壁,受到松套管内壁侧压力而产生微弯曲。
众所周知,光纤长期遭受拉力或弯曲应力会使光纤的使用寿命缩短,微弯曲会使光纤的衰减增大。
一般情况下,光缆设计者将20℃定为标准温度,并将此温度下的光纤设定在绞合式光缆松套管中心,即光纤与松套管等长。
光纤余长计算方法举例:设光缆中心加强元件为不锈钢丝,其外径为D中= 2.5mm;松套管为PBT管,其外径为D管外= 1.5mm,内径为D管内= 1.0mm;光纤的外径为D纤= 0.25mm;20℃时松套管的绞合节距设为L节= 0.25mm。
光纤和光缆基础知识
125±2 ≤3 ≤6 ≤2
245±10 250±15
125±3 ≤3 ≤6 ≤2
245±10 250±15
125±3 ≤6 ≤6 ≤2
245±10 250±15
140±4 ≤6 ≤6 ≤4
250±25 —
② 种类 A. 梯度型多模光纤 梯度型多模光纤包括 Ala、Alb、Alc 和 Ald 类型。它们可用多组分玻璃或掺杂石英玻璃制得。为降低光纤 衰减,梯度型多模光纤的制备选用的材料纯度比大多数阶跃型多模光纤材料纯度高得多。正是由于折射率呈梯度 分布和更低的衰减,所以梯度型多模光纤的性能比阶跃型多模光纤性能要好得多。一般在直径(包括缓冲护套) 相同的情况下,梯度型多模光纤的芯径大大小于阶跃型多模光纤,这就赋予梯度型多模光纤更好的抗弯曲性能。 四种梯度型多模光纤的传输性能及应用场合,如表 2 所列。
光纤和光缆基础知识
一、光纤 1. 光纤结构 光纤(Optical Fiber)是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。纤芯的折射率比包层稍高,损
耗比包层更低,光能量主要在纤芯内传输。包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。图 1 示出光纤的外形。设纤芯和包层的折射率分别为 n1 和 n2,光能量在光纤中传输的必要条件是 n1>n2。纤芯和包层 的相对折射率差△=( n1-n2)/n1 的典型值,一般单模光纤为 0.3%~0.6%,多模光纤为 1%~2%。△越大,把光 能量束缚在纤芯的能力越强,但信息传输容量却越小。
245±10 250±15
包层/涂覆层同心度误差(μm)
≤12.5
② 分类 单模光纤以其衰减小、频带宽、容量大、成本低和易于扩容等优点,作为一种理想的光通信传输媒介,在 全世界得到极为广泛的应用。目前,随着信息社会的到来,人们研究出了光纤放大器、时分复用、波分复用和频 分复用技术,从而使单模光纤的传输距离、通信容量和传输速率进一步提高。 值得指出的是,光纤放大器延伸了传输距离,复用技术在带来的高速率、大容量信号传输的同时,使色散、 非线性效应对系统的传输质量的影响增大。因此,人们专门研究开发了几种光纤:色散位移光纤、非零色散位移
综合布线设计中的常用计算公式
综合布线设计中的常用计算公式在综合布线设计中,常用的计算公式包括:路径长度计算、链路损耗计算、带宽需求计算、电缆选择计算等。
以下是这些公式的详细解释:1.路径长度计算:路径长度计算是为了确定需要多少电缆来连接两个设备之间的距离。
计算公式为:路径长度=√(x²+y²+z²),其中,x、y、z分别表示两个设备之间在X、Y、Z轴上的距离。
2.链路损耗计算:链路损耗计算是为了确定信号在传输过程中的损耗情况,以保证信号质量。
计算公式为:链路损耗(dB) = 10log10(P_2 / P_1),其中,P_2表示输出信号功率,P_1表示输入信号功率。
3.带宽需求计算:带宽需求计算是为了确定所需的传输带宽,以满足系统的数据传输需求。
计算公式为:带宽需求=数据速率/系统效率,其中,数据速率表示单位时间内的数据传输量,系统效率表示数据传输过程中的开销。
4.电缆选择计算:电缆选择计算是为了选择适当的电缆,以满足系统的传输要求。
计算公式为:电缆容量=(x1+x0)/2×L×f×c,其中,x1表示最大信号幅度,x0表示最小信号幅度,L表示电缆长度,f表示频率,c表示传输速度。
除了以上常见的计算公式外,综合布线设计还需要考虑其他因素,如传输延迟、信号衰减、信号干扰等。
这些因素的计算公式相对较为复杂,需要根据具体情况进行详细的计算和分析。
在综合布线设计中,计算公式的使用可以帮助工程师准确地确定系统的需求和基本参数,以便选择合适的设备和电缆,保证系统的稳定性和可靠性。
然而,设计过程中还需考虑实际环境因素和技术标准的要求,并结合经验进行合理的调整和综合判断,以满足实际的工程需求。
因此,在综合布线设计中,公式的使用只是设计过程的一部分,综合考虑各个方面的因素才能得到最佳的设计方案。
光衰计算
擅长:暂未定制
按默认排序|按时间排序
其他5条回答
检举|2012-01-01 23:32wcctf05|二级
线路总衰减26dB光纤链路衰减≤0.36dB/Km;熔接衰减≤0.1dB/个活动接头衰减≤0.5dB/个评论|赞同0 检举|2012-05-21 00:55时间发黑1|一级
光纤链路衰减指标计算ODN光链路衰减= A+B+C+D+G (dB) ODN光链路衰减<系统允许的衰减式中:A:为光通道全程n段光纤衰减总和; B:为m个光活动连接器插入衰减总和; C:为f个光纤熔接接头衰减总和; D:为h个光分路器插入衰减总和; G:光纤富余度。相关参数取定:1)光纤衰减取定:1310 nm波长时 取0.36dB/km 1490 nm波长时 取0.22dB/km 2)光活动连接器插入衰减取定: 0.5dB/个3)光纤熔接接头衰减取定: 分立式光缆光纤接头衰减取双向平均值为:0.08dB/每接头 带状光缆光纤接头衰减取双向平均值为:0.2dB/每个接头 冷接子双向平均值0.15dB/每个接头4)光分路器插入衰减参数取定:光分器类型 1:2 1:4 1:8 1:16 1:32 1:64FBT或PLC ≤3.6dB ≤7.3dB ≤10.7dB ≤14.0dB ≤17.7dB ≤20.1dB 5)光纤富余度A.当光缆传输距离<5公里时,光纤富余度不少于1dB;B.当光缆传输距离<10公里时,光纤富余度不少于2dB; C.当光缆传输距离<20公里时,光纤富余度不少于3dB; 光通道全程衰减当采用GPON 系统(ClassB+)时取定28dB。
PON口是+3至+5,1:8分光器光衰-10左右,1:16分光器-14左右,三项相加才-20,-25以内都能开通的
光纤光缆21条基础知识
光纤光缆基础知识1. 光纤的结构是怎么样的?光纤裸纤一般分为三层:纤芯、包层和涂覆层。
光纤的结构:光纤纤芯和包层是由不同折射率的玻璃组成,中心为高折射率玻璃纤芯(掺锗二氧化硅),中间为低折射率硅玻璃包层(纯二氧化硅)。
光以一特定的入射角度射入光纤,在光纤和包层间发生全发射(由于包层的折射率稍低于纤芯),从而可以在光纤中传播。
涂覆层的主要作用是保护光纤不受外界的损伤,同时又增加光纤的柔韧性。
正如前面所述,纤芯和包层都是玻璃材质,不能弯曲易碎,涂覆层的使用则起到保护并延长光纤寿命的作用。
2.光缆的组成光纤由纯石英以特别的工艺拉丝成比头发还细中间有几介质的玻璃管,它的质地脆易断,因此需要外加一层保护层。
光纤外层加上塑料保护套管及塑料外皮就成了光缆。
光缆包含光纤,光纤就是光缆内的玻璃纤维,广泛上来说光纤是光缆,都是一种传输介质。
但严格意义上讲,两者是不相同的产品,光纤和光缆的区别:光纤是一种传输光束的细而柔软的媒质。
多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆。
所以光纤是光缆的核心部分,光纤经过一些构件极其附属保护层的保护就构成了光缆。
3.光纤的工作波长?光是由它的波长来定义,在光纤通信中,使用的光是在红外区域中的光,此处光的波长大于可见光。
在光纤通信中,典型的波长是800到1600nm,其中最常用的波长是850nm、1310nm和1550nm。
在选择传输波长时,主要综合考虑光纤损耗和散射。
目的是通过向最远的距离、以最小的光纤损耗来传输最多的数据。
在传输中信号强度的损耗就是衰减。
衰减度与波形的长度有关,波形越长,衰减越小。
光纤中使用的光在850、1310、1550nm处的波长较长,故此光纤的衰减较小,这也导致较少的光纤损耗。
并且这三个波长几乎具有零吸收,最为适合作为可用光源在光纤中传输。
4.最小色散波长和最小损耗波长在目前商用光纤中,什么波长的光具有最小色散?什么波长的光具有具有最小损耗?1310nm波长的光具有最小色散,1550nm波长的光具有最小损耗。
光缆的节距计算
成缆绞合有两种方式:往复(SZ)绞合和螺旋绞合。
一、往复(SZ)绞合工艺往复(SZ)绞合中,绞合方向在预定的回转圈数之后要换向。
因此绞合元件沿光缆轴首先描绘出S方向,然后换向描绘出Z方向。
在换向点上,绞合元件与光缆轴平行。
由于绞合元件有一定硬度,为保持绞合元件换向时处在适合的绞合位置,在往复(SZ)绞合中必须在绞合元件上绕上扎线。
往复(SZ)绞的优点是生产线速度比较快,效率高;其缺点是绞合节距不易控制,近来设备厂家也在不断改进,尽可能保证节距的稳定性。
当某一点绕一条轴线作圆周运动,同时沿其轴线方向作直线运动,当其圆周运动经过360°时,其轴向直线运动经过的最短距离称为节距。
在光缆中绞合节距是至关重要的,它对于产生二次余长、提高光缆的温度特性和柔软性有着重要的作用。
节距过大,拉伸(或收缩)余长达不到要求;过小,则不能满足光纤的弯曲,则由下图可以求得绞合性能要求。
如果光缆轴心线与绞合元件之间的距离为R元件长度L和绞合角α,计算公式如下:L=[h2+(2πR)2]1/2) Lα=arctg(h/2πRhα2πR由于绞合,使绞合元件长度L比光缆轴心线长度h长。
由绞合产生的余长以百分比表示为:ε=[(L-h)/h]×100%={[1+(2πR0/h)2]1/2-1}×100%=(1/sinα-1) ×100%常称ε为光缆的绞合率。
但必须注意的是:光缆的绞合率ε并不等于光缆中有用的光纤余长。
光缆中光纤余长表示当光缆受拉伸(或收缩)时,光纤从松套管中心位置向内侧(或外侧)移动所能发生的长度变化,它是一个相对的概念。
光缆中光纤余长应根据具体的情况进行设计,它与施工时的施工张力和环境条件有关。
由于SZ绞合时是往复绞合过程,存在一个换向的问题,所以在考虑其节距时应比计算值小些,(即考虑其平均节距),其弯曲半径纵向沿缆芯是变化的,在换向点处达到最大值,在两换向点中间为最小值。
缆芯尺寸的计算也是非常重要的。
光接口传输距离计算方法
光接口传输距离计算方法再生段距离确定及系统富裕度计算:再生段距离由光接口参数,光传输损耗,光纤色散,接续水平等因素决定。
按照光传输衰耗、色散,光系统分为衰耗受限系统和色散受限系统。
再生段距离计算采用ITU-T建议G.957的最坏值法,即所有参数都按最坏值考虑。
该法较为保守,计算的中继距离短,实际系统的余度较大,但可以实现设备的横向兼容,还可以在系统寿命终了(所有系统和光缆余量均已用尽)前,并处于允许的最恶劣环境条件下,仍保证系统指标要求。
再生段距离计算公式:1)衰耗受限的再生段距离计算:L1=(Pt-Pr-Pp-Mc-∑Ac)/(Af+As)式中:L1—衰减受限再生段长度(km);Pt— S点寿命终了时光发送功率(dBm);Pr— R点寿命终了时光接收灵敏度(dBm);Pp—光通道功率代价(dB);Mc—光缆线路光功率余量(dB);∑Ac—S,R点间其它连接器衰减之和(dB);Af—光纤衰减常数(dB/km);As—光缆固定接头平均衰减(dB/km)。
2)色散受限的再生段距离计算:L2=Dmax/Dm式中:Dmax —S、R间通道允许的最大总色散值(ps/nm);Dm —光纤工作波长范围内的最大色散系数(ps/(nm.km));L2 —色散受限的再生段长度(km)。
根据以上两公式计算结果,取较小值即为再生段中继距离。
155M光接口(1)S1.1,=[-15-(-28)-1-1]/(0.36+0.03+0.04)=25.5km(2)L1.1,=[-5-(-34)-1-1]/(0.36+0.03+0.04)=62.7km(3)L1.2,=[-5-(-34)-1-1]/(0.22+0.03+0.04)=93.1km622M光接口⌝(1)S4.1,=[-15-(-28)-1-1]/(0.36+0.03+0.04)=25.5km(2)L4.1,=[-3-(-28)-1-1]/(0.36+0.03+0.04)=53.4km(3)L4.2,=[-3-(-28)-1-1]/(0.22+0.03+0.04)=79.3km⌝ 2.5G光接口(1)S16.1=[-5-(-18)-1-1]/(0.36+0.03+0.04)=25.5km(2)S16.2=[-5-(-18)-1-1]/(0.22+0.03+0.04)=37.9km(3)L16.2=[-2-(-28)-2-1]/(0.22+0.03+0.04)=79.3km光传输中继距离2009-03-01 00:06一、概述为了规范合理地组建光传输网,光传输中继距离是前提。
光缆与光纤长度比例
光缆与光纤长度比例
光缆和光纤长度没有什么比例。
通俗讲1公里光缆,和讲1公里光纤是一样的。
光纤线是一类传送散射的细而柔软的媒质。
在实际情况的光纤传输线路中,归因于保障光纤线能在各样敷设情况下和各样分氛围中长期利用的原由,就须要将光纤线形成光缆,归因于光纤线在利用前须要由几道确保结构设计包覆,包覆后的缆线即被视为光缆。
因此光纤线是光缆的关键一部分,光纤线历经许多结构件颇为附设防护层的确保就形成了光缆。
光纤线表层的确保结构设计能够避免周围氛围对光纤线的损害。
光缆包含光纤线、缓冲层及披覆。
光纤线和同轴线类似,仅仅沒有网状结构保护层。
核心是光传播的玻璃芯。
光缆一般被绑成束,外边有壳子确保。
纤芯一般是由石英玻璃管做成的横截面积不大的两层同心圆柱,它材质脆、易断裂,因而必须另加一层防护层。
因此他们的区別就取决于此。
光缆作为光纤传输的关键传输方式,有关光纤光缆的品质,也是大家平常在工程项目中很看好品质的产品,我们在挑选光缆时,应綜合考虑到其它要素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光缆跟光纤计算公式
《光缆跟光纤计算公式》
光缆和光纤是光纤网络的两个重要组成部分,它们之间有着密切的联系。
光缆是光纤的外壳,用于保护光纤,提供绝缘和支撑,以及维护光纤的安全性和可靠性。
光纤用来传输信号,它的特性决定了光纤网络的性能。
光缆和光纤的计算公式是用来确定光纤网络的性能的重要参数。
其中,光缆的计算公式是用来计算光缆的布线长度,它的计算公式为:布线长度=(线缆直径-光纤直径)/2。
另外,光纤的计算公式是用来计算光纤的传输距离,它的计算公式为:传输距离=光纤长度×损耗系数/10。
损耗系数是光纤传输过程中损失的能量,它取决于光纤的类型和材料。
因此,光缆和光纤的计算公式是用来确定光纤网络的性能的重要参数,它们的计算公式分别是:布线长度=(线缆直径-光纤直径)/2,传输距离=光纤长度×损耗系数/10。
只有正确计算出这些参数,才能确保光纤网络的性能良好。