专题07 全国II卷论述题(解析版)
专题07 平面向量 解析版(2016-2020)高考数学(理)真题分项详解
专题07 平面向量【2020年】1.(2020·新课标Ⅲ)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( ) A. 3135-B. 1935-C.1735D.1935【答案】D 【解析】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()22222526367a b a ba ab b +=+=+⋅+=-⨯+=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 2.(2020·山东卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A. ()2,6- B. (6,2)- C. (2,4)- D. (4,6)-【答案】A 【解析】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,3.(2020·北京卷)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 (1).5 (2). 1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-, 因此,()22215PD =-+=,()021(1)1PB PD ⋅=⨯-+⨯-=-.4.(2020·天津卷)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】 (1). 16 (2). 132【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭,解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭,∵又∵16AD BC =,则533,22D ⎛⎫ ⎪ ⎪⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,2DM x ⎛=- ⎝⎭,333,2DN x ⎛=- ⎝⎭,()222533321134222222DM DN x x x x x ⎛⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪ ⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 5.(2020·浙江卷)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______. 【答案】2829【解析】12|2|2e e -≤,124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 6.(2020·江苏卷)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185【解析】∵,,A D P 三点共线, ∴可设()0PA PD λλ=>, ∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+, 若0m ≠且32m ≠,则,,B D C 三点共线, ∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=, ∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒, ∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185.当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去.7.(2020·新课标Ⅱ)已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】2【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.8.(2020·新课标Ⅰ)设,a b 为单位向量,且||1+=a b ,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=【2019年】1.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B .2.【2019年高考全国II 卷理数】已知AB →=(2,3),AC →=(3,t ),BC →=1,则AB →·BC →= A .−3 B .−2 C .2D .3【答案】C【解析】由BC →=AC →—AB →=(1,t-3),211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .3.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,即22||||AB AC AC AB +>-,因为AC AB BC -=,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C .4.【2019年高考全国III 卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________. 【答案】23【解析】因为2=c a ,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c 22133⋅==⨯⋅a c a c .5.【2019年高考天津卷理数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________.【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,23,5,AB AD ==则(23,0)B ,535(,)22D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒, 所以直线BE 的斜率为33,其方程为3(23)3y x =-, 直线AE 的斜率为33-,其方程为33y x =-. 由3(23),333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得3x =,1y =-, 所以(3,1)E -.所以35(,)(3,1)122BD AE =-=-.6.【2019年高考江苏卷】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【答案】3.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭, 得2213,22AB AC =即3,AB AC =故3ABAC=【2018年】1.【2018·全国I 卷 】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC -B .1344AB AC - C .3144AB AC +D .1344AB AC +【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+,所以3144EB AB AC =-. 故选A.2.【2018·全国II 卷 】已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .0【答案】B【解析】因为()()22222||1213⋅-=-⋅=--=+=a a b a a b a 所以选B.3.(2018·浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A .3−1 B .3+1 C .2 D .2−3【答案】A【解析】设,则由得,由b 2−4e ·b +3=0得因此|a −b |的最小值为圆心到直线的距离23=32减去半径1,为选A.4.【2018·天津卷 】如图,在平面四边形ABCD 中,,,120,AB BC AD CD BAD ⊥⊥∠=1,AB AD ==若点E 为边CD 上的动点,则AE BE ⋅的最小值为A .2116 B .32C .2516D .3【答案】A【解析】连接AD ,取AD 中点为O ,可知ABD △为等腰三角形,而,AB BC AD CD ⊥⊥,所以BCD △为等边三角形,3BD =. 设()01DE tDC t =≤≤AE BE ⋅ ()()()2232AD DE BD DE AD BD DE AD BD DE BD DE DE =+⋅+=⋅+⋅++=+⋅+ =233322t t -+ ()01t ≤≤ 所以当14t =时,上式取最大值2116,故选A.5.【2018·北京卷 】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】222222699+63333-=+-=⇔⇔-++⋅=⋅+a a b a b a b a b a b b a a b b ,因为a ,b 均为单位向量,所以2222699+6=0-⋅+=⋅+⇔⋅⇔a a b b a a b b a b a ⊥b ,即“33-=+a b a b ”是“a ⊥b ”的充分必要条件.故选C.6.【2018·全国III 卷 】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=___________. 【答案】12【解析】由题可得()24,2+=a b ,()2∥c a +b ,()=1,λc ,420λ∴-=,即12λ=,故答案为12.7.【2018·上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为___________. 【答案】-3【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a =b +2,或b =a +2; 且()()1,2,AE a BF b ==-,; ∴2AE BF ab ⋅=-+;当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-; ∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b =a +2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.8.【2018·江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为___________. 【答案】3【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =【2017年】1.【2017·全国III 卷 】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为 A .3B .22C .5D .2【答案】A【解析】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆的半径5r =C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤21514z -≤+,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A .2.【2017·全国II 卷 】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是 A .2-B .32-C .43-D .1-【答案】B【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则3)A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以(3)PA x y =-,(1,)PB x y =---,(1,)PC x y =--,所以(2,2)PB PC x y +=--,22()22(3)22(PA PB PC x y y x y ⋅+=-=+-2333)22-≥-,当3P 时,所求的最小值为32-,故选B .3.【2017·北京卷 】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒,那么cos180⋅=︒=m n m n0-<m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件,故选A.4.【2017·全国I 卷 】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【答案】23【解析】方法一:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=a b a a b b , 所以|2|1223+==a b 方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为235.【2017·江苏卷】如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,2,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+(,)m n ∈R ,则m n +=___________.【答案】3【解析】由tan 7α=可得72sin α=2cos α= 易得cos 45cos 2sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩2222720210n m ⎧=⎪⎪-=⎪⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=.6.【2017·天津卷】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,AE AC λ=-()AB λ∈R ,且4AD AE ⋅=-,则λ的值为___________.【答案】311【解析】由题可得1232cos 603,33AB AC AD AB AC ⋅=⨯⨯︒==+, 则12()33AD AE AB AC ⋅=+2123()34934333311AC AB λλλλ-=⨯+⨯-⨯-⨯=-⇒=. 7.【2017·山东卷 】已知12,e e 123-e e 与12λ+e e 的夹角为60︒,则实数λ的值是___________.【解析】∵221212112122)()λλλλ-⋅+=⋅-⋅-e e e e e e e ,12|2-==e ,12||λ+===e e ,cos60λ=︒=λ=. 8.【2017·浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【答案】4,【解析】设向量,a b 的夹角为θ,则-==a b+==a b则++-=a b a b令y =[]21016,20y =+,据此可得:()()maxmin 4++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是 【2016年】1.【2016高考山东理数】已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–94【答案】B【解析】由43=m n ,可设3,4(0)k k k ==>m n ,又()t ⊥+n m n , 所以22221()cos ,34(4)41603t t n n t t k k k tk k ⋅+=⋅+⋅=⋅+=⨯⨯⨯+=+=n m n n m m n m n n , 所以4t =-,故选B.2.【2016高考新课标2理数】已知向量(1,)(3,2)a m a =-,=,且()a b b ⊥+,则m =( ) (A )-8 (B )-6 (C )6 (D )8 【答案】D【解析】向量a b (4,m 2)+=-,由(a b)b +⊥得43(m 2)(2)0⨯+-⨯-=,解得m 8=,故选D.3.【2016高考新课标3理数】已知向量1(2BA = ,31()2BC = ,则ABC ∠=( ) (A)30︒ (B)45︒ (C)60︒ (D)120︒【答案】A【解析】由题意,得112222cos 11||||BA BC ABC BA BC ⋅∠===⨯,所以30ABC ∠=︒,故选A . 4.【2016年高考北京理数】设a ,b 是向量,则“||||a b =”是“||||a b a b +=-”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】D【解析】由22||||()()0a b a b a b a b a b a b +=-⇔+=-⇔⋅=⇔⊥,故是既不充分也不必要条件,故选D.5.【2016高考天津理数】已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为( ) (A )85-(B )81 (C )41 (D )811【答案】B【解析】设BA a =,BC b =,∴11()22DE AC b a ==-,33()24DF DE b a ==-, 1353()2444AF AD DF a b a a b =+=-+-=-+,∴25353144848AF BC a b b ⋅=-⋅+=-+=,故选 B.6.【2016年高考四川理数】在平面内,定点A ,B ,C ,D 满足DA=DB =DC ,DA ⋅DB =DB ⋅DC =DC ⋅DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是( ) (A )434 (B )494 (C )37634+ (D )372334+ 【答案】B【解析】甴已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒.以D 为原点,直线DA 为x 轴建立平面直角坐标系,如图所示,则()()()2,0,1,3,1,3.A B C ---设(),,P x y 由已知1AP =,得()2221x y -+=,又13133,,,,,2222x y x y PM MC M BM ⎛⎫⎛⎫-+++=∴∴= ⎪ ⎪⎝⎭⎝⎭()()222+1334x y BM ++∴=,它表示圆()2221x y -+=上的点()x y ,与点()1,33--的距离的平方的14,()()2222max149333144BM⎛⎫∴=++= ⎪⎝⎭,故选B.7.【2016高考新课标1卷】设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 【答案】-2【解析】由222||||||+=+a b a b ,得⊥a b ,所以1120m ⨯+⨯=,解得2m =-.8.【2016高考江苏卷】如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .【答案】78【解析】因为222211436=42244AD BC FD BC BA CA BC AD BC AD --⋅=-⋅--==()(), 2211114123234FD BCBF CF BC AD BC AD -⋅=-⋅--==-()(),因此22513,82FD BC ==,2222114167.22448ED BC FD BC BE CE BC ED BC ED --⋅=-⋅--===()() 9.【2016高考浙江理数】已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有 |a ·e |+|b ·e |≤,则a ·b 的最大值是 . 【答案】12【解析】221|(a b)||a ||b |6|a b |6|a ||b |2a b 6a b 2e e e +⋅≤⋅+⋅≤⇒+≤⇒++⋅≤⇒⋅≤,即最大值为12。
专题07 文学类文本阅读之赏析作品艺术手法-2023年高考语文真题题源解密(全国通用)(解析版)
专题七文学类文本阅读之赏析作品艺术手法目录:2023年真题展现真题考查解读近年真题对比命题规律解密名校模拟探源高考必备知识(2023·新高考Ⅱ卷)阅读下面的文字,完成下面小题。
社戏(节选)沈从文萝卜溪邀约的浦市戏班子,赶到了吕家坪,是九月二十二。
一行十四个人,八个笨大衣箱,坐了只辰溪县装石灰的空船,到地时,便把船靠泊在码头边。
掌班依照老规矩,带了个八寸大的朱红拜帖,来拜会本村首事滕长顺,商量看是在什么地方搭台,哪一天起始开锣。
半月来省里向上调兵开拔的事,已传遍了吕家坪。
不过商会会长却拿定了主意:照原来计划装了五船货物向下游放去。
长顺因为儿子三黑子的船已到地卸货,听会长亲家出主意,也预备装一船橘子下常德府。
空船停泊在河边,随时有人把黄澄澄的橘子挑上船,倒进舱里去。
戏班子乘坐那只大空船,就停靠在橘子园边不多远。
两个做丑角的浦市人,扳着船篷和三黑子说笑话,以为古来仙人坐在斗大橘子中下棋,如今仙人坐在碗口大橘子堆上吸烟,世界既变了,什么都得变。
可是三黑子却想起保安队队长向家中讹诈事情,因此只向那个做丑角的戏子苦笑。
长顺约集本村人在伏波宫开会,商量看这戏演不演出。
时局既不大好,集众唱戏是不是影响治安?末了依照多数主张,班子既然接来了,酬神戏还是在伏波宫前空坪中举行。
凡事依照往年成例,出公份子演戏六天,定二十五开锣。
并由本村出名,具全红帖子请了吕家坪的商会会长,和其他庄口上的有名人物,并保安队队长、排长、师爷、税局主任、督察等,到时前来看戏。
还每天特别备办两桌四盘四碗酒席,款待这些人物。
到开锣那天,本村和附近村子里的人,都换了浆洗过的新衣服,荷包中装满零用钱,赶到萝卜溪伏波宫看大戏。
因为一有戏,照习惯吕家坪镇上卖大面的、卖豆糕米粉的、油炸饼和其他干湿甜酸熟食冷食的,无不挑了锅罐来搭棚子,竞争招揽买卖。
妇女们且多戴上满头新洗过的首饰,或镀金首饰,发蓝点翠首饰,扛一条高脚长板凳,成群结伴跑来看戏,必到把入晚最后一幕杂戏看完,把荷包中零用钱花完,方又扛起那条凳子回家。
2007年普通高等学校招生全国统一考试全国卷II
2007年普通高等学校招生全国统一考试(全国卷II)文综试卷参考答案第Ⅰ卷(共35 小题,每小题 4 分,共140 分。
)1.D 2.B 3.C 4.A 5.C6.B 7.D 8.B 9.C 10.B11.B 12.A 13.C 14.D 15.D16.B 17.A 18.C 19.D 20.C21.D 22.B 23.D 24.D 25.C26.D 27.A 28.C 29.A 30.D31.C 32.D 33.C 34.A 35.A第Ⅱ卷(共 5 大题,共160 分。
)36.(15 分)答案要点:(1)①B ②在居住区的河流下游和盛行风向的下风向(2)③E ④在城区河流的上游(3)⑤A ⑥在城区污染源的下游(4)⑦D ⑧靠近高等院校(5)⑨C ⑩在污染型企业与居住区之间37.(21 分)答案要点:(1)印度②以平原为主(大部分为大河下游冲积平原和三角洲)地势低平,北高南低(2)③热带季风④全年气温高,降水量大;分雨(湿)季和干(旱)季(3)⑤水稻种植业(季风水田农业)(4)雨季降水集中(暴雨),地面低平排水不畅,形成洪涝灾害;(热带季风气候降水变率大,在水稻生长需水量大时)如果雨季来得迟、去得早(或降水偏少)。
形成旱灾。
38.(32 分)答案要点:(1)被压迫民族和压迫民族。
(2)民族主义与世界主义相互联系;民族主义是实现世界主义的前提条件。
民族主义就没有世界主义。
(3)被压迫民族需要民族主义以求得独立,但国际和国内出现忽视和否定民族主义的倾向。
(4)强调自求解放,并联合世界上平等待我之民族;列宁领导下的苏俄倡导和支持被压迫民族反对国际帝国主义,因此中国应该联合苏俄。
(5)第二次世界大战后,亚非拉国家相继独立,殖民主义体系瓦解,经济全球化成为当今世界发展的潮流,应该提倡全球意识,积极参与经济全球化;但由于存在着不合理的世界政治经济秩序和强权政治,因此要维护民族国家的独立和各民族的平等。
39.(32 分)答案要点:(1)它可以减轻农民看病负担,提高农民福利;可以改善部分农民因病致贫的状况,缩小贫富差距;有利于保障农村劳动力的身体健康,提高农村劳动生产率;有利于引导农民树立互助共济和风险共担的意识。
2007年全国卷二试卷超详细解析版
14.对一定量的气体,下列说法正确的是()A.在体积缓慢地不断增大的过程中,气体一定对外界做功B.在压强不断增大的过程中,外界对气体一定做功C.在体积不断被压缩的过程中,内能一定增加D.在与外界没有发生热量交换的过程中,内能一定不变答案:A解析:气体体积增大,气体对窗口壁的压力与位移方向相同,做正功,所以A正确。
在气体压强增大过程中,气体的体积可能增大,B错误。
在气体体积减小的过程中,一定有外界对气体做功,但气体可以放热,所以内能不一定增加。
C错误。
与外界没有发生热交换的过程是绝热过程。
在这过程中,压缩气体,可以使气体的内能增加。
D错误。
15.一列横波在x轴上传播,在x=0与x=1cm的两点的振动图线分别如图中实线与虚线所示。
由此可以得出()A.波长一定是4cmB.波的周期一定是4sC.波的振幅一定是2cmD.波的传播速度一定是1cm/s答案:BC解析:根据振动图象两个最大值的横坐标之差为振动周期,故T=4s,B选项正确;从图象可看出振幅A=2cm,C选项正确;根据题中所给的振动图象无法得到波长(或波速) ,也就无法算出波速(或波长),故A,D选项错误。
16.如图所示,PQS是固定于竖直平面内的光滑的1/4圆周轨道,圆心O在S的正上方,在S 和P两点各有一质量为m的小物块a和b,从同一时刻开始,a自由下落,b沿圆弧下滑。
以下说法正确的是()A.a比b先到达S,它们在S点的动量不相等B.a 与b 同时到达S ,它们在S 点的动量不相等C.a 比b 先到达S ,它们在S 点的动量相等D.b 比a 先到达S ,它们在S 点的动量不相等答案:A解析:解法一:利用分运动的独立性和分运动与合运动的同时性。
即分运动的运动时间和合运动的运动时间是相同的而分运动互不影响,所以分析a 和b 的竖直运动就可以判断两者谁先到达S :a 竖直方向为自由落体,加速度为g,而b 在竖直方向除了受到重力外,还有圆弧支持力的一个向上的分力,其加速的加速度小于g ,且先做加速度减小的加速再做加速度增大的减速,最大速度将小于a 到S 时的速度 ,故平均速度较小,所以b 将后到S 。
2007年国家司法考试试卷二真题解析
2007年国家司法考试试卷二真题解析提示:本试卷为选择题,由计算机阅读。
请将所选答案填涂在答题卡上,勿在卷面上直接作答。
一、单项选择题,每题所给的选项中只有一个正确答案。
本部分1-50题,每题1分,共50分。
1.关于刑法上因果关系的判断,下列哪一选项是正确的?A.甲为抢劫而殴打章某,章某逃跑,甲随后追赶。
章某在逃跑时钱包不慎从身上掉下,甲拾得钱包后离开。
甲的暴力行为和取得财物之间存在因果关系B.乙基于杀害的意思用刀砍程某,见程某受伤后十分痛苦,便将其送到医院,但医生的治疗存在重大失误,导致程某死亡。
乙的行为和程某的死亡之间没有因果关系C.丙经过铁路道口时,遇见正在值班的熟人项某,便与其聊天,导致项某未及时放下栏杆,火车通过时将黄某轧死。
丙的行为与黄某的死亡之间存在因果关系D.丁为杀害李某而打其头部,使其受致命伤,2小时之后必死无疑。
在李某哀求下,丁开车送其去医院。
20分钟后,高某驾驶卡车超速行驶,撞向丁的汽车致李某当场死亡。
丁的行为和李某的死亡之间存在因果关系【答案】B【逐项解析】本题考察相当因果关系。
其基本观点是根据一般的社会生活经验,在通常情况下,某种行为产生某种结果被认为是相当的场合,行为与结果之间就具有因果关系。
相当,指该行为产生该结果在日常生活中是一般的、正常的,而不是特殊的、异常的。
甲的暴力行为与取得财物之间不存在因果关系,章某是在逃跑时钱包不慎从身上掉下,并非由于暴力行为直接所致,故甲的暴力行为和取得财物之间不存在因果关系。
换言之,甲并不是“强取”财物,而是“拾得”财物,不能因为甲实施了暴力,又获取了财物,就认定两者之间有因果关系。
故选项A错误。
选项C的错误之处在于没有明确因果关系是“实行行为”与“犯罪结果”之间的因果关系。
所谓“实行行为”是指对法益具有紧迫性、具体的危险性的行为。
丙与项某聊天的行为并不是刑法意义上的“实行行为”,丙也不具有在适当的时间放下栏杆的义务,丙某的行为不构成“不作为”,因此也谈不上与犯罪结果的因果关系问题。
专题07分式方程-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】
备战2023年中考数学必刷真题考点分类专练(全国通用)专题07分式方程一.选择题(共7小题)1.(2022•德阳)如果关于x 的方程2x+m x−1=1的解是正数,那么m 的取值范围是( )A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围. 【解析】两边同时乘(x ﹣1)得, 2x +m =x ﹣1, 解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1, ∴{x >0x ≠1,即{−1−m >0−1−m ≠1, 解得:{m <−1m ≠−2,∴m 的取值范围为:m <﹣1且m ≠﹣2. 故答案为:D .【点评】本题主要考查了分式方程的解,一元一次不等式,正确求得分式方程的解并考虑产生增根的情形是解题的关键.2.(2022•遂宁)若关于x 的方程2x =m 2x+1无解,则m 的值为( )A .0B .4或6C .6D .0或4【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或x =−12=−24−m ,求出m 的值即可. 【解析】2x =m 2x+1,2(2x +1)=mx , 4x +2=mx , (4﹣m )x =﹣2, ∵方程无解,∴4﹣m =0或x =−12=−24−m ,∴m =4或m =0, 故选:D .【点评】本题考查分式方程的解法,熟练掌握分式方程的解法,分式方程无解的条件是解题的关键. 3.(2022•广元)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N 95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N 95口罩花费9600元.已知一次性医用外科口罩的单价比N 95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x 元,则列方程正确的是( ) A .9600x−10=1600x B .9600x+10=1600xC .9600x=1600x−10D .9600x=1600x+10【分析】设该药店购进的一次性医用外科口罩的单价是x 元,则购进N 95口罩的单价是(x +10)元,利用数量=总价÷单价,结合购进两种口罩的只数相同,即可得出关于x 的分式方程.【解析】设该药店购进的一次性医用外科口罩的单价是x 元,则购进N 95口罩的单价是(x +10)元, 依题意得:9600x+10=1600x,故选:B .【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 4.(2022•云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( ) A .400x−50=300x B .300x−50=400xC .400x+50=300xD .300x+50=400x【分析】根据实际植树400棵所需时间与原计划植树300棵所需时间相同,可以列出相应的分式方程,本题得以解决. 【解析】由题意可得,400x=300x−50,故选:B .【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出等量关系,列出相应的方程.5.(2022•丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50002x=4000x−30,则方程中x 表示( )A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量【分析】设篮球的数量为x 个,足球的数量是2x 个,列出分式方程解答即可. 【解析】设篮球的数量为x 个,足球的数量是2x 个. 根据题意可得:50002x=4000x−30,故选:D .【点评】此题主要考查了由实际问题抽象出分式方程,得到相应的关系式是解决本题的关键.6.(2022•重庆)关于x 的分式方程3x−ax−3+x+13−x =1的解为正数,且关于y 的不等式组{y +9≤2(y +2)2y−a 3>1的解集为y ≥5,则所有满足条件的整数a 的值之和是( ) A .13B .15C .18D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出{y ≥5y >a+32,结合题意得出a ≤7,进而得出2<a ≤7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案. 【解析】解分式方程得:x =a ﹣2, ∵x >0且x ≠3, ∴a ﹣2>0且a ﹣2≠3, ∴a >2且a ≠5,解不等式组得:{y ≥5y >a+32,∵不等式组的解集为y ≥5, ∴a+32<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13, 故选:A .【点评】本题考查了分式方程的解,解一元一次不等式组,解一元一次不等式,一元一次不等式的整数解,正确求解分式方程,一元一次不等式组,一元一次不等式是解决问题的关键.7.(2022•重庆)若关于x 的一元一次不等式组{x −1≥4x−13,5x −1<a的解集为x ≤﹣2,且关于y 的分式方程y−1y+1=a y+1−2的解是负整数,则所有满足条件的整数a 的值之和是( )A .﹣26B .﹣24C .﹣15D .﹣13【分析】解不等式组得出{x ≤−2x <a+15,结合题意得出a >﹣11,解分式方程得出y =a−13,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解析】解不等式组{x −1≥4x−135x −1<a 得:{x ≤−2x <a+15,∵不等式组{x −1≥4x−135x −1<a 的解集为x ≤﹣2,∴a+15>−2,∴a >﹣11, 解分式方程y−1y+1=ay+1−2得:y =a−13, ∵y 是负整数且y ≠﹣1, ∴a−13是负整数且a−13≠−1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13, 故选:D .【点评】本题考查了分式方程的解,解一元一次不等式组,正确求解分式方程和一元一次不等式组是解决问题的关键.二.填空题(共6小题)8.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =1a +1b .若(x +1)⊗x =2x+1x,则x 的值为 −12 .【分析】根据新定义列出分式方程,解方程即可得出答案. 【解析】根据题意得:1x+1+1x=2x+1x,化为整式方程得:x +x +1=(2x +1)(x +1), 解得:x =−12,检验:当x =−12时,x (x +1)≠0, ∴原方程的解为:x =−12. 故答案为:−12.【点评】本题考查了解分式方程,新定义,根据新定义列出分式方程是解题的关键.9.(2022•江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为160x =140x−10.【分析】由实际问题找到合适的等量关系即可抽象出分式方程.【解析】设甲每小时采样x 人,则乙每小时采样(x ﹣10)人,根据题意得:160x=140x−10.故答案为:160x=140x−10.【点评】本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.10.(2022•金华)若分式2x−3的值为2,则x 的值是 4 .【分析】依据题意列出分式方程,解分式方程即可求得结论. 【解析】由题意得:2x−3=2,去分母得:2=2(x ﹣3), 去括号得:2x ﹣6=2, 移项,合并同类项得:2x =8, ∴x =4.经检验,x =4是原方程的根, ∴x =4. 故答案为:4.【点评】本题主要考查了解分式方程,解分式方程需要验根,这是容易丢掉的步骤.11.(2022•泸州)若方程x−3x−2+1=32−x 的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是 a <﹣1 .【分析】先解分式方程,再将x 代入不等式中即可求解. 【解析】x−3x−2+1=32−x ,x−3x−2+x−2x−2=−3x−2,2x−2x−2=0,解得:x =1, ∵x ﹣2≠0,2﹣x ≠0, ∴x =1是分式方程的解,将x =1代入不等式(2﹣a )x ﹣3>0,得: 2﹣a ﹣3>0, 解得:a <﹣1,∴实数a 的取值范围是a <﹣1, 故答案为:a <﹣1.【点评】本题考查分式方程的解,不等式的解集,解题的关键是正确求出分式方程的解,要注意分母不能为0.12.(2022•成都)分式方程3−x x−4+14−x=1的解为 x =3 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【解析】去分母得:3﹣x ﹣1=x ﹣4, 解得:x =3,经检验x =3是分式方程的解, 故答案为:x =3【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 13.(2022•邵阳)分式方程5x−2−3x=0的解是 x =﹣3 .【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论. 【解析】去分母,得:5x ﹣3(x ﹣2)=0, 整理,得:2x +6=0,解得:x=﹣3,经检验:x=﹣3是原分式方程的解,故答案为:x=﹣3.【点评】本题主要考查解分式方程能力,熟练掌握解分式方程的步骤是关键.三.解答题(共10小题)14.(2022•苏州)解方程:xx+1+3x=1.【分析】先两边同乘以x(x+1)化为整式方程:x2+3(x+1)=x(x+1),解整式方程得x=−32,再检验即可得答案.【解析】方程两边同乘以x(x+1)得:x2+3(x+1)=x(x+1),解整式方程得:x=−3 2,经检验,x=−32是原方程的解,∴原方程的解为x=−3 2.【点评】本题考查解分式方程,解题的关键是掌握解分式方程的一般步骤,特别注意解分式方程必须检验.15.(2022•眉山)解方程:1x−1=32x+1.【分析】按照解分式方程的步骤,进行计算即可解答.【解析】1x−1=32x+1,方程两边同乘(x﹣1)(2x+1)得:2x+1=3(x﹣1),解这个整式方程得:x=4,检验:当x=4时,(x﹣1)(2x+1)≠0,∴x=4是原方程的解.【点评】本题考查了解分式方程,熟记解分式方程的步骤是解题的关键,需要特别注意解分式方程需要检验.16.(2022•嘉兴)(1)计算:(1−√83)0−√4.(2)解方程:x−32x−1=1.【分析】(1)分别利用0指数幂、算术平方根的定义化简,然后加减求解; (2)首先去分母化分式方程为整式方程,然后解整式方程,最后验根. 【解析】(1)原式=1﹣2=﹣1; (2)去分母得x ﹣3=2x ﹣1, ∴﹣x =3﹣1, ∴x =﹣2,经检验x =﹣2是分式方程的解, ∴原方程的解为:x =﹣2.【点评】本题分别考查了实数的运算和解分式方程,实数的运算主要利用0指数幂及算术平方根的定义,解分式方程的基本方法时去分母. 17.(2022•宿迁)解方程:2x x−2=1+1x−2.【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可. 【解析】2x x−2=1+1x−2, 2x =x ﹣2+1, x =﹣1,经检验x =﹣1是原方程的解, 则原方程的解是x =﹣1.【点评】此题考查了解分式方程,用到的知识点是解分式方程的步骤:去分母化整式方程,解整式方程,最后要把整式方程的解代入最简公分母进行检验.18.(2022•常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时.某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【分析】设平常的速度是x 千米/小时,根据“到达奶奶家时共用了5小时”列分式方程,求解即可. 【解析】设平常的速度是x 千米/小时, 根据题意,得(1−12)⋅4x x−20+2=5,解得x =60,经检验,x =60是原方程的根, 4×60=240(千米),答:小强家到他奶奶家的距离是240千米.【点评】本题考查了分式方程的应用,理解题意并根据题意建立等量关系是解题的关键.19.(2022•乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办.为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆.已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【分析】设摩托车的速度为x 千米/小时,则抢修车的速度为1.5x 千米/小时,根据时间=路程÷速度结合骑摩托车的维修工人比乘抢修车的工人多用10分钟到达,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解析】设摩托车的速度为x 千米/小时,则抢修车的速度为1.5x 千米/小时, 依题意,得:20x−201.5x=1060,解得:x =10,经检验,x =10是原方程的解,且符合题意. 答:摩托车的速度为10千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(2022•扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名? 【分析】设每个小组有学生x 名,由题意得:3603x−3604x=3,解分式方程并检验后即可得出答案.【解析】设每个小组有学生x 名, 由题意得:3603x−3604x=3,解得:x =10, 当x =10时,12x ≠0, ∴x =10是分式方程的根, 答:每个小组有学生10名.【点评】本题考查了分式方程的应用,根据题意列出分式方程是解决问题的关键.21.(2022•达州)某商场进货员预测一种应季T 恤衫能畅销市场,就用4000元购进一批这种T 恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T 恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T 恤衫每件的进价分别是多少元?(2)如果两批T 恤衫按相同的标价销售,最后缺码的40件T 恤衫按七折优惠售出,要使两批T 恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T 恤衫的标价至少是多少元?【分析】(1)设该商场购进第一批、第二批T 恤衫每件的进价分别是x 元和(x +4)元,根据所购数量是第一批购进量的2倍列出方程解答即可;(2)设每件T 恤衫的标价至少是y 元,根据题意列出不等式解答即可.【解答】(1)解:设该商场购进第一批、第二批T 恤衫每件的进价分别是x 元和(x +4)元,根据题意可得: 2×4000x=8800x+4, 解得:x =40,经检验x =40是方程的解, x +4=40+4=44,答:该商场购进第一批、第二批T 恤衫每件的进价分别是40元和44元; (2)解:400040+880044=300(件),设每件T 恤衫的标价至少是y 元,根据题意可得:(300﹣40)y +40×0.7y ≥(4000+8800)×(1+80%), 解得:y ≥80,答:每件T 恤衫的标价至少是80元.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 22.(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【分析】(1)根据题意可知:甲原来工作5天的工作量+后来2天的工作量=600,可以列出相应的方程,然后求解即可;(2)根据题意可知:甲、乙施工的长度都是900米,再根据题意可知,两个工程队施工天数相同,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,则原计划每天施工(x ﹣20)米, 由题意可得:5(x ﹣20)+2x =600,解得x =100,答:甲施工队增加人员后每天修建灌溉水渠100米;(2)设乙施工队原来每天修建灌溉水渠m 米,则技术更新后每天修建水渠m (1+20%)=1.2m 米, 由题意可得:360m +900−3601.2m =900100,解得m =90,经检验,m =90是原分式方程的解,答:乙施工队原来每天修建灌溉水渠90米.【点评】本题考查一元一次方程的应用、分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程和一元一次方程.23.(2022•自贡)学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【分析】根据题意可知:张老师骑车用的时间﹣汽车用的时间=2,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解析】设张老师骑车的速度为x 千米/小时,则汽车的速度为3x 千米/小时,由题意可得:45x −2=453x, 解得x =15,经检验,x =15是原分式方程的解,答:张老师骑车的速度是15千米/小时.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程.。
高考语文全国新课标卷卷二详解版
2017年普通高等学校招生全国统一考试(语文)二卷试卷解析一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
青花瓷发展的黄金时代是明朝永乐、宣德时期,与郑和下西洋在时间上重合,这不能不使我们思考:航海与瓷器同时达到鼎盛,仅仅是历史的偶然吗?从历史事实来看,(1A)(3A)郑和下西洋为青花瓷的迅速崛起提供了历史契机。
近三十年的航海历程推动了作为商品的青花瓷大量生产与外销,不仅促进技术创新,使青花瓷达到瓷器新工艺的顶峰,而且改变了中国瓷器发展的走向,带来了人们审美观念的更新。
这也就意味着,(2A)如果没有郑和远航带来活跃的对外贸易,青花瓷也许会像在元代一样,只是中国瓷器的诸多品种之一,而不会成为主流,更不会成为中国瓷器的代表。
由此可见,青花瓷崛起是郑和航海时代技术创新与文化交融的硕果,中外交往的繁盛在推动文明大交融的同时,也推动了生产技术与文化艺术的创新发展。
(1B)(3B)作为中外文明交融的结晶,青花瓷真正成为中国瓷器的主流,(2B)则是因为成化年间原料本土化带来了民窑青花瓷的崛起。
民窑遍地开花,进入商业化模式之后,几乎形成了青花瓷一统天下的局面。
一种海外流行的时尚由此成为中国本土的时尚,中国传统的人物、花鸟、山水,与外来的伊斯兰风格融为一体,青花瓷成为中国瓷器的代表,进而走向世界,最终万里同风,成为世界时尚。
(由此可见,文章围绕民窑崛起,商业化和风格变化等方面论述的)(3B)一般来说,一个时代有一个时代的文化,而时尚兴盛则是社会快速变化的标志。
因此,瓷器的演变之所以引人注目,还在于它与中国传统社会从单一向多元社会的转型同步。
瓷器的演变与社会变迁有着千丝万缕的联系,这使我们对明代有了新的思考和认识。
(1C)如果说以往人们所了解的明初是一个复兴传统的时代,其文化特征是回归传统,明初往往被认为是保守的,那么青花瓷的例子,则可以使人们对明初文化的兼容性有一个新的认识。
专题07 有丝分裂和减数分裂(解析版)
专题07 有丝分裂和减数分裂1.(2022·辽宁高考)8. 二甲基亚砜(DMSO)易与水分子结合,常用作细胞冻存的渗透性保护剂。
干细胞冻存复苏后指标检测结果见下表。
下列叙述错误的是()A. 冻存复苏后的干细胞可以用于治疗人类某些疾病B. G期细胞数百分比上升,导致更多干细胞直接进入分裂期1期,增加干细胞复苏后的活细胞数百分比C. 血清中的天然成分影响G1D. DMSO的作用是使干细胞中自由水转化为结合水【答案】B【解析】【分析】细细胞冻存及复苏的基本原则是慢冻快融,实验证明这样可以最大限度的保存细胞活力。
目前细胞冻存多采用甘油或二甲基亚矾作保护剂,这两种物质能提高细胞膜对水的通透性,加上缓慢冷冻可使细胞内的水分渗出细胞外,减少细胞内冰晶的形成,从而减少由于冰晶形成造成的细胞损伤。
复苏细胞应采用快速融化的方法,这样可以保证细胞外结晶在很短的时间内即融化,避免由于缓慢融化使水分渗入细胞内形成胞内再结晶对细胞造成损伤。
【详解】A、冻存复苏后的干细胞可以经诱导分裂分化形成多种组织器官,用于治疗人类某些疾病,A正确;期细胞数百分比上升,说明细胞进入分裂间期,但不会导致干细胞直接进入分裂期,B、G1期,B错误;还需经过S和G2期(该期细胞数百分比增大),能增加干细胞C、分析表格可知,血清中的天然成分影响G1复苏后的活细胞数百分比,C正确;D、二甲基亚砜(DMSO)易与水分子结合,可以使干细胞中自由水转化为结合水,D正确。
故选B。
2.(2021·重庆高考)7.有研究表明,人体相胞中DNA发生损伤时,P53蛋白能使细胞停止在细胞周期的间期并激活DNA的修复,修复后的细胞能够继续完成细胞周期的其余过程。
据此分析,下列叙述错误的是A.P53基因失活,细胞癌变的风险提高B.P53蛋白参与修复的细胞,与同种正常细胞相比,细胞周期时间变长C.DNA损伤修复后的细胞,与正常细胞相比,染色体数目发生改变D .若组织内处于修复中的细胞增多,则分裂期的细胞比例降低【答案】C【解析】【分析】基因突变是指DNA 分子中碱基对的增添、缺失或替换而引起的基因结构的改变,其发生时间在DNA 分子复制时,细胞周期的间期。
2007年高考试题——文综全国卷2.(试题及答案详解)pdf
2007年普通高等学校招生全国统一考试试题卷文科综合能力测试(全国卷II)注意事项:1.本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共11页,总分300分,考试时间150分钟。
2.答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在试题卷指定的位置上。
3.选择题的每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。
4.非选择题必须使用0.5毫米的黑以字迹的签字笔在答题卡上书写,字体工整,笔迹清楚。
5.非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答。
超出答题区域在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效。
6.考试结束,将本试题卷和答题卡一并交回。
第Ⅰ卷本卷共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
芯片是计算机的核心部件。
某跨国公司的芯片生产厂以往均设在发达国家。
但2007年3月,该跨国公司决定在中国大连投资25亿美元建芯片生产厂。
回答1~2题。
1.通常,计算机芯片生产厂的区位选择属于A.原料指向型B.市场指向型C.廉价劳动力指向型D.技术指向型2.该公司在中国投资兴建芯片生产厂,主要因为中国拥有A.丰富的原料B.庞大的市场C.廉价的劳动力D.先进的技术图1所示区域属于湿润的亚热带季风气候。
回答3~5题。
3.R、Q两点的相对高度可能为A.800米B.900米C.1000米D.1100米4.M、N、P、Q四地中,海拔可能相等的两地是A.M、N B.M、P C.M、Q D.P、Q5.若在Q地建一小型度假村,应特别注意防治的自然灾害是A.风沙B.洪涝C.滑坡D.寒冻读图2,回答6~7题。
图1 6.为了加强水土保持,甲、乙、丙、丁四地段中,最应退耕还林(草)的是A.甲B.乙C.丙D.丁7.甲、乙、丙、丁四地段中,灌溉条件最好的地段是A.甲B.乙C.丙D.丁读图,回答8—9题。
专题07全国II卷论述题(解析版)
专题07全国II卷论述题(解析版)2020高考历史全国卷主观题专项精练全国Ⅱ卷论述题【高考真题】1.(2019·全国Ⅱ卷·42)阅读材料,完成下列要求。
(12分)材料图6——据(美)菲利普·费尔南德兹-阿迈斯托《世界:一部历史》(注:“自然进程”是指人与自然的互动;“人文进程”是指文明与文明、人群与人群的相互作用和影响。
)有史以来,人们试图以各种方式认识历史。
材料反映了一位学者对19和20世纪世界历史的认识,对此认识提出你自己的见解(赞成、质疑、修改皆可),并说明理由。
(要求:见解明确,持论有据,表述清晰。
)【答案】示例一:见解:自然进程和人文进程的发展并不总是同步的。
理由:1905年爱因斯坦创立相对论,20世纪30年代,量子力学建立,它与相对论一起构成了现代物理学的基础,推动了物理学自身的进步,并且开阔了人们的视野,改变了人们认识世界的角度和方式。
这是自然进程的快速发展。
但在自然进程快速发展的同时,人文进程上却爆发了两次世界大战,第二次世界大战中使用的原子弹等新式武器,正是以自然进程的发展为前提。
新式武器的运用使战争规模扩大升级,死伤惨重,经济严重衰退,还给世界人民带来不可愈合的心灵伤口。
从人文进程的角度来看,这是一种退步。
由此可见,科技是一把双刃剑,自然进程和文明进程的发展并不同步,但我们应该努力使两者协调发展。
示例二:见解:在人文进程中应添加1917年十月革命。
理由:十月革命是人类历史上第一次取得胜利的社会主义革命,它由无产阶级领导,以建立体现社会公正和平等的社会制度为目的。
十月革命成功地在资本主义世界体系上打开了一个缺口,沉重打击了帝国主义的统治,鼓舞了国际无产阶级和殖民地半殖民地的解放斗争。
十月革命将社会主义理论变为现实,开创了国际社会主义运动的新局面,也为俄国的社会发展开辟了一条新的道路。
社会主义苏联迅速的实现了工业化,为世界反法西斯的胜利奠定了物质基础。
2022年中考数学真题-专题07 一元二次方程(1)(全国通用解析版)
专题07 一元二次方程一.选择题1. 关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,则这两根之积为( ) A. 13 B. 23 C. 1 D. 13- 【答案】D【解析】【分析】根据一元二次方程根与系数的关系即可求解. 【详解】解:关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,设另一根为2x ,则223x x +=, 213x ∴=-, 213xx ∴=-, 故选:D【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.2. 方程2430x x ++=的两个根为( )A. 121,3x x ==B. 121,3x x =-=C. 121,3x x ==-D. 121,3x x =-=-【答案】D【解析】【分析】将243x x ++进行因式分解,243=(1)(3)x x x x ++++,计算出答案.【详解】∵243=(1)(3)x x x x ++++∴(1)(3)=0x x ++∴1213x x =-=-,故选:D .【点睛】本题考查解一元二次方程,解题的关键是熟练掌握因式分解法解一元二次方程.3. 下列一元二次方程有实数解的是( )A. 2x 2﹣x +1=0B. x 2﹣2x +2=0C. x 2+3x ﹣2=0D. x 2+2=0 【答案】C【解析】【分析】判断一元二次方程实数根的情况用根的判别式进行判断.【详解】A 选项中,224(1)42170b ac =-=--⋅⋅=-<△,故方程无实数根; B 选项中,2(2)41240=--⋅⋅=-<△,故方程无实数根;C 选项中,2341(2)170=-⋅⋅-=>△,故方程有两个不相等的实数根;D 选项中,80=-<△,故方程无实数根;故选C .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程实数根情况的判定方法是解题的关键.4. 用配方法解方程x 2-2x =2时,配方后正确的是( )A. ()213x +=B. ()216x +=C. ()213x -=D. ()216x -= 【答案】C【解析】【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.【详解】解:x 2-2x =2,x 2-2x +1=2+1,即(x -1)2=3.故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.5. 若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是( )A. 36B. 36-C. 9D. 9- 【答案】C【解析】【分析】根据判别式的意义得到2640c ∆=-=,然后解关于c 的一次方程即可.【详解】解:∵方程260x x c ++=有两个相等的实数根∵26410c ∆=-⨯⨯=解得9c =故选:C .【点睛】本题考查了根的判别式:一元二次方程20(a 0)++=≠ax bx c 的跟与24b ac ∆=-的关系,关键是分清楚以下三种情况:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根. 6. 已知m 为方程2320220x x +-=的根,那么32220252022m m m +-+的值为( )A. 2022-B. 0C. 2022D. 4044 【答案】B【解析】【分析】根据题意有2320220m m +-=,即有32320220m m m +-=,据此即可作答.【详解】∵m 为2320220x x +-=的根据,∴2320220m m +-=,且m ≠0,∴32320220m m m +-=,则有原式=322(32022)(32022)000m m m m m +--+-=-=,故选:B .【点睛】本题考查了利用未知数是一元二次方程的根求解代数式的值,由m 为2320220x x +-=得到2320220m m +-=是解答本题的关键.7. 已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( )A. 0,4B. 1,5C. 1,-5D. -1,5【答案】D【解析】【分析】根据抛物线2y x mx =+的对称轴为直线2x =可求出m 的值,然后解方程即可. 【详解】抛物线2y x mx =+的对称轴为直线2x =,221m ∴-=⨯, 解得4m =-,∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-,故选:D .【点睛】本题考查了二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.8. 学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A. 2625(1)400x -=B. 2400(1)625x +=C. 2625400x =D. 2400625x =【答案】B【解析】【分析】第一年共植树400棵,第二年植树400(1+x )棵,第三年植树400(1+x )²棵,再根据题意列出方程即可.【详解】第一年植树为400棵,第二年植树为400(1+x )棵,第三年400(1+x )²棵,根据题意列出方程:2400(1)625x +=.故选:B .【点睛】本题考查了一元二次方程的应用,属于增长率的常规应用题,解决此类题目要多理解、练习增长率相关问题.9. 一元二次方程22560x x -+=的根的情况为( )A. 无实数根B. 有两个不等的实数根C. 有两个相等的实数根D. 不能判定【答案】A【解析】【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:∵Δ=(−5)2−4×2×6=-23<0,∴方程无实数根.故选:A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.10. 已知关于x 的方程()22210x m x m --+=的两实数根为1x ,2x ,若()()12113++=x x ,则m 的值为( )A. 3-B. 1-C. 3-或3D. 1-或3【答案】A【解析】【分析】利用根与系数的关系以及()22=2140∆--≥m m 求解即可. 【详解】解:由题意可知:1221221x x m x x m+=-⎧⎨⋅=⎩,且()22=2140∆--≥m m ∵()()121212111=3++=⋅+++x x x x x x ,∴()22113+-+=m m ,解得:3m =-或1m =,∵()22=2140∆--≥m m ,即14m ≤, ∴3m =-,故选:A 【点睛】本题考查根与系数的关系以及根据方程根的情况确定参数范围,解题的关键是求出14m ≤,再利用根与系数的关系求出3m =-或1m =(舍去). 11. 小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是( )A. ()22001242x +=B. ()22001242x -= C.()20012242x += D. ()20012242x -=【答案】A【解析】【分析】平均增长率为x ,关系式为:第三天揽件量=第一天揽件量×(1+平均增长率)2,把相关数值代入即可.【详解】解:由题意得:第一天揽件200件,第三天揽件242件,∴可列方程为:()22001242x +=,故选:A .【点睛】此题考查一元二次方程的应用,得到三天的揽件量关系式是解决本题的突破点,难度一般.12. 关于x 的一元二次方程240x x k -+=无实数解,则k 的取值范围是( )A. 4k >B. 4k <C. 4k <-D. 1k > 【答案】A【解析】【分析】根据一元二次方程根的判别式小于0即可求解.【详解】解:∵关于x 的一元二次方程240x x k -+=无实数解,∴1640k ∆=-<解得:4k >故选:A∵【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.13. 临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x ,则根据题意,可列方程为( )A. 8(12)11.52x +=B. 28(1)11.52x ⨯+=C. 28(1)11.52x +=D. ()28111.52x += 【答案】C【解析】 【分析】设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,即可得.【详解】解:设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,∴28(1+)=11.52x故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是能够求出第二个月的销售额和第三个月的销售额.14. 若关于x 的一元二次方程20x x k +-=有两个实数根,则k 的取值范围是( ) A. 14k >- B. 14k ≥- C. 14k <- D. 14k ≤- 【答案】B【解析】 【分析】根据关于x 的一元二次方程x 2+x -k =0有两个实数根,得出Δ=b 2-4ac ≥0,即1+4k ≥0,从而求出k 的取值范围.【详解】解:∵x 2+x -k =0有两个实数根,∴Δ=b 2-4ac ≥0,即1+4k ≥0,解得:k ≥-14, 故选:B .【点睛】本题考查一元二次方程根的判别式,掌握Δ>0⇔方程有两个不相等的实数根;Δ=0⇔方程有两个相等的实数根;Δ<0⇔方程没有实数根是本题的关键. 15. 我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A. ()316210x x -=B. ()316210x -=C. ()316210x x -=D. 36210x = 【答案】A【解析】【分析】设这批椽的数量为x 株,则一株椽的价钱为3(x −1)文,利用总价=单价×数量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这批椽的数量为x 株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x −1)文,依题意得:3(x −1)x =6210,故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16. 一元二次方程210x x +-=的根的情况是( )A. 有两个不相等的实数根B. 没有实数根C. 有两个相等的实数根D. 只有一个实数根【答案】A【解析】【分析】计算一元二次方程根的判别式进而即可求解.【详解】解:241450b ac ∆=-=+=>∴一元二次方程210x x +-=的根的情况是有两个不相等的实数根, 故选:A.【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.17. 已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( )A. 0B. -10C. 3D. 10【答案】A【解析】【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=的两个根,∴mn =-5,m 2+2m -5=0,∴m 2+2m =5,∴22m mn m ++=5-5=10,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键. 18. 若关于x 的一元二次方程2210ax x 有两个不相等的实数根,则a 的取值范围是( )A. 0a ≠B. 1a >-且0a ≠C. 1a ≥-且0a ≠D. 1a >- 【答案】B【解析】【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根, ∴a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.19. 关于x 的方程2320x kx --=实数根的情况,下列判断正确的是( )A. 有两个相等实数根B. 有两个不相等实数根C. 没有实数根D. 有一个实数根 【答案】B【解析】【分析】根据根的判别式直接判断即可得出答案.【详解】解:对于关于x 的方程2320x kx --=,∵()22341(2)980k k ∆=--⨯⨯-=+>,∴此方程有两个不相等的实数根.故选B .【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20. 中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A. 2B. 32C. 12 【答案】A【解析】【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a ,则较长的直角边为a +1,再接着利用勾股定理得到关于a 的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tan α的值即可.【详解】∵小正方形与每个直角三角形面积均为1, ∴大正方形的面积为5,∴小正方形的边长为1设直角三角形短的直角边为a ,则较长的直角边为a +1,其中a >0, ∴a 2+(a +1)2=5,其中a >0,解得:a 1=1,a 2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .【点睛】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键.二、填空题21. 请填写一个常数,使得关于x 的方程22+-x x ____________0=有两个不相等的实数根.【答案】0(答案不唯一) 【解析】【分析】设这个常数为a ,利用一元二次方程根的判别式求出a 的取值范围即可得到答案.【详解】解:设这个常数为a , ∵要使原方程有两个不同的实数根, ∴()2=240a ∆-->, ∴1a <,∴满足题意的常数可以为0, 故答案为:0(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,熟知一元二次方程根的判别式是解题的关键.22. 方程2x 2+1=3x 的解为________. 【答案】1211,2x x == 【解析】【分析】先移项,再利用因式分解法解答,即可求解. 【详解】解:移项得:22310x x -+=, ∵()()2110x x --=, ∵210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.23. 若一元二次方程2240x x m -+=有两个相等的实数根,则m =________. 【答案】2 【解析】【分析】由方程有两个相等的实数根可知,利用根的判别式等于0即可求m 的值,【详解】解:由题意可知:2a =,4b =-,c m =240b ac =-=, ∴16420m -⨯⨯=, 解得:2m =. 故答案为:2.【点睛】本题考查了利用一元二次方程根的判别式24b ac =-△求参数:方程有两个不相等的实数根时,0>;方程有两个相等的实数根时,0=;方程无实数根时,△<0等知识.会运用根的判别式和准确的计算是解决本题的关键. 24. 若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是_________.【答案】【解析】【分析】由题意解一元二次方程2640x x -+=得到3x =+3x =-据勾股定理得到直角三角形斜边的长是【详解】解:一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,∴由公式法解一元二次方程2640x x -+=可得66322x ±===±∴==,故答案为:【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.25. 已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______. 【答案】1 【解析】【分析】由一元二次方程根的判别式列方程可得答案. 【详解】解:一元二次方程有两个相等的实数根, 可得判别式0=, ∴440k -=, 解得:1k =. 故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.26. 一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______. 【答案】1 【解析】【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解. 【详解】解:2430x x -+=243101x x -++=+2441x x -+=()221x -=∴1k = 故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键.27. 已知一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,则x 1•x 2=_____. 【答案】3 【解析】【分析】直接根据一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系求解即可. 【详解】解:∵一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,∴x 1•x 2=31=3.故答案为3.【点睛】此题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握若方程的两根分别为x 1,x 2,则x 1+x 2=-12•c x x baa=,.28. 若关于x 的一元二次方程220x x k -+=有实数根,则实数k 的取值范围是_____. 【答案】1k ≤ 【解析】【分析】由关于x 的一元二次方程220x x k -+=有实数根,可得440,k 再解不等式可得答案.【详解】解: 关于x 的一元二次方程220x x k -+=有实数根, ∴()22410k ∆=--⨯⨯≥, 即440,k解得:1k ≤ . 故答案为:1k ≤.【点睛】本题考查的是一元二次方程根的判别式的应用,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根. 29. 已知实数12,x x 是方程210x x +-=的两根,则12x x =______. 【答案】1- 【解析】【分析】由一元二次方程根与系数的关系直接可得答案. 【详解】解: 实数12,x x 是方程210x x +-=的两根,1211,1x x故答案为:1-【点睛】本题考查的是一元二次方程根与系数的关系,掌握“12cx x a=”是解本题的关键.30. 某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x (0x >),则x =_________(用百分数表示). 【答案】30% 【解析】【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x 的一元二次方程,解方程即可.【详解】解:设新注册用户数的年平均增长率为x (0x >),则2020年新注册用户数为100(1+x )万,2021年的新注册用户数为100(1+x )2万户, 依题意得100(1+x )2=169,解得:x 1=0.3,x 2=-2.3(不合题意舍去), ∴x =0.3=30%,故答案为:30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.31. 设1x ,2x 是方程2230x x +-=的两个实数根,则2212x x +的值为________.【答案】10 【解析】【分析】由根与系数的关系,得到122x x +=-,123x x =-,然后根据完全平方公式变形求值,即可得到答案. 【详解】解:根据题意,∵1x ,2x 是方程2230x x +-=的两个实数根, ∴122x x +=-,123x x =-,∴2212122212()2(2)2(3)10x x x x x x =+-=--⨯-=+;故答案为:10.【点睛】本题考查了一元二次方程根与系数的关系,完全平方公式变形求值,解题的关键是掌握得到122x x +=-,123x x =-.32. 如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为______cm (玻璃瓶厚度忽略不计).【答案】7.5 【解析】【分析】如详解中图所示,将题中主视图做出来,用垂径定理、勾股定理计算即可.【详解】如下图所示,设球的半径为r cm ,则OG =EG -r =EF -GF -r =EF -AB -r =32-20-r =(12-r )cm , ∵EG 过圆心,且垂直于AD , ∵G 为AD 的中点, 则AG =0.5AD =0.5×12=6cm , 在Rt OAG 中,由勾股定理可得,222OA OG AG =+, 即222(12)6r r =-+, 解方程得r =7.5, 则球的半径为7.5cm .【点睛】本题考查了主视图、垂径定理和勾股定理的运用,准确做出立体图形的主视图是解题的关键.33. 已知关于x 的一元二次方程220x x m ++=有两个不相等的实数根,则实数m 的取值范围是______. 【答案】1m < 【解析】【分析】根据判别式的意义得到22410m ∆=-⨯⨯>,然后解不等式求出m 的取值即可.【详解】解:根据题意得22410m ∆=-⨯⨯>, 解得1m <,所以实数m 的取值范围是1m <. 故答案为:1m <.【点睛】本题考查了根的判别式:一元二次方程()200++=≠ax bx c a 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.34. 我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.【答案】289 【解析】【分析】设直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,由切线长定理可得,直角三角形的内切圆的半径等于2a b c+-,即6a b c +-=,根据小正方的面积为49,可得()249a b -=,进而计算2c 即22a b +即可求解.【详解】解:设四个全等的直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,直角三角形的内切圆半径为3,小正方形的面积为49,∴()23492a b c a b +-=-=,, ∴6a b c +-=①,7a b -=②,131,22c c a b +-∴==, 222a b c +=③,22213122c c c +-⎛⎫⎛⎫∴+= ⎪ ⎪⎝⎭⎝⎭, 解得=17c 或5c =-(舍去), 大正方形的面积为2217289c ==, 故答案为:289.【点睛】本题考查了切线长定理,勾股定理,解一元二次方程,二元一次方程组,掌握直角三角形的内切圆的半径等于2a b c +-是解题的关键.35. 已知实数a 、b 满足a -b 2=4,则代数式a 2-3b 2+a -14的最小值是________. 【答案】6 【解析】【分析】根据a -b 2=4得出24b a =-,代入代数式a 2-3b 2+a -14中,通过计算即可得到答案. 【详解】∵a -b 2=4 ∴24b a =-将24b a =-代入a 2-3b 2+a -14中得:()2222341423142a a a b a a a a =--+-=---+-()2222221313a a a a a --=-+-=--∵240b a =-≥ ∴4a ≥当a=4时,()213a --取得最小值为6 ∴222a a --的最小值为6 ∵22231422a a a b a --=-+- ∴22314a b a -+-的最小值6 故答案为:6.【点睛】本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.三、解答题36. 解方程:x 2-2x -3=0 【答案】121,3x x =-= 【解析】【分析】利用因式分解法解一元二次方程即可得. 【详解】解:2230x x --=,(1)(3)0x x +-=,10x +=或30x -=, 1x =-或3x =,故方程的解为121,3x x =-=.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(配方法、因式分解法、公式法、换元法等)是解题关键. 37. 已知关于x 的一元二次方程2320x x k ++-=有实数根. (1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值. 【答案】(1)k 174≤; (2)k =3 【解析】【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可; (2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值. 【小问1详解】解:∵一元二次方程2320x x k ++-=有实数根. ∴∆≥0,即32-4(k -2)≥0, 解得k 174≤∵方程的两个实数根分别为12,x x ,∴12123,2x x x x k -+==-,∵()()12111x x ++=-,∴121211x x x x +++=-,∴2311k --+=-,解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.38. 建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【答案】(1)20% (2)18个【解析】【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为x ,根据2019年投入资金2(1)x ⨯+=2021年投入的总资金,列出方程求解即可;(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.【小问1详解】解:设该市改造老旧小区投入资金的年平均增长率为x ,根据题意得:21000(1)1440x +=,解这个方程得,10.2x =,2 2.2x =-,经检验,0.220%x ==符合本题要求.答:该市改造老旧小区投入资金的年平均增长率为20%.设该市在2022年可以改造y 个老旧小区,由题意得:80(115%)1440(120%)y ⨯+≤⨯+, 解得181823y ≤. ∵y 为正整数,∴最多可以改造18个小区.答:该市在2022年最多可以改造18个老旧小区.【点睛】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式.39. 阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=b a -,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= .(2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n m m n +的值.(3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值. 【答案】(1)32;12- (2)132-(3或【解析】【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n m m n +进行变形求解即可;(3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s -t 的值,然后将11s t-进行变形求解即可. 【小问1详解】解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2, ∴123322b x x a -+=-=-=,1212c x x a ⋅==-. 故答案为:32;12-. 【小问2详解】∵一元二次方程2x 2-3x -1=0的两根分别为m 、n , ∴3322b m n a -+=-=-=,12c mn a ==-, ∴22n m m n m n mn++= ()22m n mn mn +-= 23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=- 132=- 【小问3详解】∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根, ∴3322b s t a -+=-=-=,12c st a ==-, ∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 924=+ 174=∴2t s -=或2t s -=-,当2t s -=时,11212t s s t st --===-当t s -=时,11212t s s t st --===- 综上分析可知,11s t-或. 【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出2t s -=或2t s -=-,是解答本题的关键. 40. 某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【答案】(1)4月份再生纸的产量为500吨(2)m 的值20(3)6月份每吨再生纸的利润是1500元【解析】【分析】(1)设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可; (2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;【小问1详解】解:设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨, 由题意得:()2100800x x +-=,解得:300x =,∴2100500x -=,答:4月份再生纸的产量为500吨;【小问2详解】 解:由题意得:500(1%)10001%6600002m m ⎛⎫+⋅+= ⎪⎝⎭, 解得:%20%m =或% 3.2m =-(不合题意,舍去)∴20m =,∴m 的值20;【小问3详解】解:设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,21200(1)(1)(125%)1200(1)y a y y a +⋅+=+⨯+⋅∴()2120011500y +=答:6月份每吨再生纸的利润是1500元.【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.41. 已知关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根1x ,2x .(1)求k 的取值范围;(2)若125x x =,求k 的值.【答案】(1)34k >(2)2【解析】【分析】(1)利用一元二次方程根的判别式大于0建立不等式,解不等式即可得;(2)先利用一元二次方程的根与系数的关系可得21215x x k =+=,再结合(1)的结论即可得.【小问1详解】 解:关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根,∴此方程根的判别式()()2221410k k ∆=+-+>, 解得34k >. 【小问2详解】解:由题意得:21215x x k =+=,解得2k =-或2k =,由(1)已得:34k >, 则k 的值为2.【点睛】本题考查了一元二次方程根的判别式、以及根与系数的关系,熟练掌握一元二次方程的相关知识是解题关键.42. 已知关于x 的一元二次方程22230x x m --=.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.【答案】(1)见解析 (2)1m =±【解析】【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值.【小问1详解】()22224241(3)412b ac m m ∆=-=--⨯⋅-=+,∵2120m ≥,∴241240m +≥>,∴该方程总有两个不相等的实数根; 【小问2详解】方程的两个实数根α,β,由根与系数关系可知,2αβ+=,23m αβ⋅=-,∵25αβ+=,∴52αβ=-,∴522ββ-+=,解得:3β=,1α=-,∴23133m -=-⨯=-,即1m =±.【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是掌握根的判别式以及根与系数的关系.43. 阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务。
专题07 电化学-2022年高考化学2年模拟题精选分项汇编(全国卷)(解析版)
专题七电化学1.(2022·云南·昆明一中模拟预测)研究发现,在酸性乙醇燃料电池中加入硝酸,可使电池持续大电流放电,其工作原理如图所示。
下列说法错误的是(已知F=96500C·mol-1)A.X为质子交换膜B.加入HNO3可降低正极反应的活化能NO-+12e-+16H+=4NO↑+8H2O、4NO +3O2 + 2H2O=4HNO3C.正极区反应为43D.若该电池以电流强度IA持续放电20 min,则理论上消耗C2H5OH约0. 002 mol【答案】D【解析】【分析】从图中可以看出,乙醇中碳元素化合价升高,则Pt电极上失电子发生氧化反应,为负极;C 电极上发生还原反应,为正极。
【详解】A.负极区,电极反应为C2H5OH-12e-+3H2O=2CO2↑+12H+,生成的H+将迁移到正极区参与反应,所以X为质子交换膜,A正确;B.在酸性乙醇燃料电池中加入硝酸,可使电池持续大电流放电,且由图可知硝酸在正极循环反应,起到催化作用,所以加入HNO3可降低正极反应的活化能,B正确;C.从图中可以看出,在正极,HNO3得电子生成NO和H2O,生成的NO再与O2、H2O反NO-+12e-+16H+=4NO↑+8H2O、应生成HNO3,从而得出正极区反应为434NO+3O2+2H2O=4HNO3,C正确;D.根据C2H5OH~12e−,Q=It,可得1 A×20min×60 s=1200 C=n(C2H5OH)×12 mol×96500 C·mol−1,解得n(C2H5OH)≈0.001 mol,D错误;故选D。
2.(2022·重庆·一模)苯酚()是生产某些树脂、杀菌剂、防腐剂以及药物(如阿司匹林)的重要原料,但苯酚也有较强的毒性。
如图是处理废水中苯酚的装置。
下列有关说法正确的是A.a电极电势低,电极附近pH增大B.H 由B区移向A区,B区溶液的pH增大WO+xH+xe=H WOC.b电极反应式为+-3x3D.若有2mol电子通过导线,A、B两区域中溶液质量改变量的和为2g【答案】D【解析】【分析】由图可知,a电极为原电池的正极,酸性条件下,苯酚在正极得到电子发生还原反应生成苯,电极反应式为C6H5OH+2e-+2H+=C6H6+H2O,b电极为负极,H x WO3在负极失去电子发生氧化反应生成WO3和氢离子,电极反应式为H x WO3-x e-=WO3+x H+,电池工作时,氢离子由B区移向A区。
专题07 中考初中物理学史问题(解析版)
专题07 中考初中物理学史问题初中阶段,学过的力热电光磁知识体系中涉及的物理学史很多。
知道历史上物理学家的国籍、发现的规律对于深入学习意义重大。
这些知识内容是培养学生科学态度和责任担当不可或缺的养料。
是培养学生核心素养十分难得的素材。
下面列出科学家及其主要贡献。
1.沈括:中国北宋时期科学家,论述了固体传声规律。
2.牛顿:英国物理学家,用三棱镜将白色太阳光分解成七种不同光,发现了光的色散,证明了白光由七色光组成。
发现建立了牛顿第一定律、牛顿第二定律、牛顿第三定律,创立经典力学理论体系并发现万有引力定律。
3.墨翟:中国人,首先进行了小孔成象的研究。
4.爱因斯坦:提出真空中的光速是物体运动的极限速度。
5.布朗:1827年,布朗(苏格兰)发现布朗运动。
6.摄尔修斯:瑞典科学家,制定了摄氏温标。
7.亚里士多德:古希腊科学家,提出了力是维持物体运动的原因(错误观点)8.笛卡尔:法国科学家,提出了物体不受其他力的作用,它就不会改变运动方向.9.伽利略:意大利科学家,论证“重物体不会比轻物体下落得快”;提出“物体的运动并不需要力来维持”。
10.胡克:提出了胡克定律,在一定的条件下,弹簧的弹力与弹簧的形变量成正比11.帕斯卡:裂桶实验;帕斯卡定律;压强单位用帕斯卡命名。
12.马德堡:半球实验,证明了大气压强的存在。
13.托里拆利:1643年,依据大气压与液体压强相平衡的原理,首先测出大气压强的数值。
14.阿基米德:发现阿基米德原理;杠杆平衡条件。
15.库仑:法国物理学家,发现电荷间相互作用力的规律;建立静电学中的库仑定律,电量单位用库仑的名字命名。
16.伏特:意大利物理学家,发明电压表,电压单位用伏特命名。
17.欧姆:德国物理学家,发现欧姆定律,后人把电阻的单位用欧姆命名。
18.瓦特:英国物理学家,发明蒸汽机;电功率单位用瓦特命名。
19.焦耳:英国物理学家,发现焦耳定律(电流的热效应);是能量守恒定律发现者之一,功和能量的单位用焦耳命名。
新高考英语真题分项汇编专题:名词性从句和定语从句(解析版)
专题07 名词性从句和定语从句1.(2023年新高考II卷)This is ________ they need an English trainer.【答案】why【详解】考查表语从句。
句意:这就是他们需要英语培训师的原因。
分析句子结构可知,空处引导表语从句,从句中结构完整,应该用连接副词连接,前文提到需要培训师的原因,此处是表达“这就是他们需要英语培训师的原因”之意,应用why引导表语从句。
故填why。
1.(2022年全国高考新高考II卷语法填空) Cobb, for her party, started to ask conference organizers who invited her to speak ___42___ she could do so remotely; about three-quarters of the time, they agreed.【答案】whether或if【解析】考查宾语从句。
句意:对于她的出席,Cobb开始询问邀请她的组织者是否可以远程进行。
显然ask 后面出现了一个宾语从句,宾语从句句意不完整,whether/if“是否”符合语境,故填whether或if。
2.(2022年全国高考新高考II卷语法填空) He saved my ___44___ (son) life," said Mrs. Brown. "I don't know___45___ to thank him. ”"I just didn't want the boy to be hurt," said Henry.44. 【答案】son’s【解析】考查名词所有格。
句意:他拯救了我儿子的生命。
根据句意,life与提示词son之间是所属关系,故应该使用名词所有格。
故填son’s。
45. 【答案】how【解析】考查特殊疑问词。
句意:我不知道如何去感谢他。
专题07 平面向量-2019年高考理数母题题源系列(全国Ⅰ专版)(解析版)
专题07 平面向量【母题来源一】【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3 C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3, 故选B .【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.【母题来源二】【2018年高考全国I 卷理数】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +【答案】A【解析】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-.故选A.【名师点睛】该题考查的是有关平面向量的基本问题,涉及的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.【母题来源三】【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【答案】3【解析】方法一:222|2|||44||4421cos 60412+=+⋅+=+⨯⨯⨯+=a b a a b b , 所以|2|1223+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为3【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【命题意图】高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用. 【命题规律】1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换. 【方法总结】(一)平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系; ④化简结果.(二)用平面向量基本定理解决问题的一般思路:(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.(三)平面向量数量积的类型及求法:(1)平面向量数量积有两种计算公式:一是夹角公式⋅=a b ||||cos θa b ;二是坐标公式⋅=a b1212x x y y +.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. (3)两个应用:①求夹角的大小:若a ,b 为非零向量,则由平面向量的数量积公式得cos θ=||||⋅a ba b (夹角公式),所以平面向量的数量积可以用来解决有关角度的问题.②确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角. (四)平面向量的模及其应用的类型与解题策略:(1)求向量的模.解决此类问题应注意模的计算公式2||==⋅a a a a ,或坐标公式22||x y =+a 的应用,另外也可以运用向量数量积的运算公式列方程求解. (2)求模的最值或取值范围.解决此类问题通常有以下两种方法:①几何法:利用向量加减法的平行四边形法则或三角形法则,结合模的几何意义求模的最值或取值范围;②代数法:利用向量的数量积及运算法则转化为不等式或函数求模的最值或取值范围. (3)由向量的模求夹角.对于此类问题的求解,其实质是求向量模方法的逆运用. (五)向量与平面几何综合问题的解法:(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.1.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校际联合考试数学试题】已知1=a ,2=b ,且()⊥-a a b ,则向量a 在b 方向上的投影的数量为 A .1B 2C .12D .2【答案】D【解析】由()⊥-a a b 得()0⋅-=a a b ,所以1⋅=⋅=a b a a , 所以向量a 在b 方向上的投影的数量为2cos ,22⋅===a b a a b b , 故选D.【名师点睛】本题主要考查向量的投影,熟记向量数量积的几何意义即可,属于常考题型.求解时,先由()⊥-a a b 求出⋅a b ,再由cos ,a a b 即可求出结果.2.【河北省保定市2019年高三第二次模拟考试数学试题】把点()3,2A 按向量()1,4=a 移到点B ,若2OB BC =-(O 为坐标原点),则C 点坐标为A .()1,1-B .1,12⎛⎫⎪⎝⎭ C .()2,3D .11,2⎛⎫- ⎪⎝⎭【答案】C【解析】因为点()3,2A 按向量()1,4=a 移动后得到点()4,6, 所以()4,6B ,设(),C x y ,则()4,6OB =,()4,6BC x y =--,又2OB BC =-,所以()()424626x y ⎧=--⎪⎨=--⎪⎩,解得:23x y =⎧⎨=⎩,所以()2,3C . 故选C.【名师点睛】本题主要考查了平移知识,还考查了向量数乘的坐标运算,考查计算能力及方程思想,属于较易题.求解时,点()3,2A 按向量()1,4=a 移动后得到点()4,6,设(),C x y ,求得OB ,BC ,再利用2OB BC =-列方程组可得:()()424626x y ⎧=--⎪⎨=--⎪⎩,解方程组即可.3.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)数学试题】已知非零向量,m n 满足4=n m ,且()2⊥+m m n ,则,m n 的夹角为A .π6B .π3 C .π2D .2π3【答案】D【解析】∵4=n m ,且()2⊥+m m n ,∴()22222||cos ,0⋅+=+⋅=+=m m n m m n m m n m n ,且0,0≠≠m n , ∴2||cos ,0+=m n m n ,∴21cos ,2=-=-mm n n , 又0,π≤…m n ,∴2π,3=m n .故选D .【名师点睛】本题考查向量垂直的充要条件,向量数量积的运算及计算公式,以及向量夹角的范围,属于基础题.求解时,根据()2⊥+m m n ,得()20⋅+=m m n ,再根据4=n m 进行数量积的运算即可求出cos ,m n 的值,根据向量夹角的范围即可求出夹角.4.【湖南师范大学附属中学2019届高三数学试题】如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF =A .3144AB AD + B .1344AB AD + C .12AB AD +D .3142AB AD +【答案】D【解析】连接AC ,根据题意得:1()2AF AC AE =+,又AC AB AD =+,12AE AB =, 所以1131()2242AF AB AD AB AB AD =++=+.故选D.【名师点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础试题.解答本题时,根据题意得:1()2AF AC AE =+,结合向量加法的四边形法则及平面向量的基本定理可求.5.【山西名师联盟2019届高三5月内部特供卷数学试题】已知向量,a b 满足2(1,2),(1,)m m +==a b b ,且a 在b 25,则实数m = A .2± B .2 C .5±D 5【答案】A【解析】因为向量,a b 满足2(1,2),(1,)m m +==a b b ,22(0,)m =+-=a a b b ,所以20,,22m m ⎛⎫=⋅= ⎪⎝⎭a ab ,设向量,a b 的夹角为θ,则2225||(||cos )12mm =+=⋅=θb a a b , 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选A.【名师点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是cos ⋅=θa b a b ,二是1212x x y y ⋅=+a b ,主要应用以下几个方面: (1)求向量的夹角,cos ⋅=⋅θa ba b(此时⋅a b 往往用坐标形式求解); (2)求投影,a 在b 上的投影是⋅a bb; (3)若向量,a b 垂直,则0⋅=a b ;(4)求向量m n +a b 的模(平方后需求⋅a b ).6.【福建省宁德市2019届高三毕业班第二次(5月)质量检查考试数学试题】若已知向量()1,2=-a ,()1,m =-b ,若//a b ,则⋅a b 的值为A .5B .4C .4-D .5-【答案】D【解析】∵向量()1,2=-a ,()1,m =-b ,且//a b , ∴20m -=,即()1,2=-b , ∴145⋅=--=-a b , 故选D.【名师点睛】本题考查平面向量的坐标运算,涉及向量平行的充要条件,数量积坐标运算,考查计算能力,属于基础题.求解时,利用向量平行的充要条件得到m ,进而利用数量积的坐标运算得到结果. 7.【广东省2019届高三适应性考试数学试题】已知ABC △中,点M 是边BC 的中点,若点O 满足23OA OB OC ++=0,则A .0OM BC ⋅=B .0OM AB ⋅=C .OM BC ∥D .OM AB ∥【答案】D【解析】由点M 是边BC 的中点,可得2OM OB OC =+, 由23OA OB OC ++=0,可得OA OC ++2(OB OC +)23OA OBOA +=-+4OM =0, 即2(OA OB -)+12OM =0, 可得AB =6OM ,即OM ∥AB , 故选D .【名师点睛】本题考查向量的中点表示,以及向量的加减运算和向量共线定理的运用,考查化简运算能力,属于基础题.解答时,由向量的中点表示和加减运算、以及向量的共线定理,即可得到结论. 8.【安徽省江淮十校2019届高三年级5月考前最后一卷数学试题】已知向量(1,2)=a ,(2,3)=-b ,(4,5)=c ,若()+⊥λa b c ,则实数=λA .12-B .12C .2-D .2【答案】C【解析】因为(1,2)=a ,(2,3)=-b ,所以()12,23-+λλλa +b =,又()+⊥λa b c ,所以()0+⋅=λa b c ,即()()412+523=0-+λλ,解得= 2-λ. 故选C.【名师点睛】本题主要考查向量数量积的坐标运算,熟记运算法则即可,属于常考题型.求解时,由,a b 的坐标,表示出λa +b ,再由()+⊥λa b c ,得到()()412+523=0-+λλ,进而可求出结果. 9.【安徽省合肥市2019届高三第三次教学质量检测数学试题】若向量,a b 的夹角为120︒,1=a ,27-=a b ,则=bA .12B 7C .1D .2【答案】C【解析】因为222244cos ,-=+-a b a b a b a b , 又,120=︒a b ,1=a ,27-a b , 所以27=142++b b ,解得32=-b (舍去)或1=b . 故选C.【名师点睛】本题考查求平面向量的模,常用方法是用数量积或22=a a 求解.求解时,先对27-=a b 两边同时平方,代入已知条件,即可解得b .10.【湖南省师范大学附属中学2019届高三下学期模拟(三)数学试题】已知向量a ,b 满足2=a ,且()40+=>λλa b a ,则当λ变化时,⋅a b 的取值范围是A .(,0)-∞B .(,1)-∞-C .(0,)+∞D .(1,)-+∞【答案】D【解析】由已知,(1)4-=λa b ,得2(1)4-=⋅λa a b ,因为||2,0=>λa ,所以11⋅=->-λa b , 故选D.【名师点睛】本题考查向量数量积,向量的线性运算,是基础题.求解时,由向量数量积得1⋅=-λa b 即可求解.11.【福建省泉州市2019届高三第二次(5月)质检数学试题】已知向量,a b 满足1=a ,(),2t t =-b ,-a b与a 垂直,则-a b 的最小值为A .22B .1C 2D .2【答案】B【解析】由题意知-a b 与a 垂直,则()0-⋅=a b a ,可得21⋅==a b a . 又由222+-=-⋅a b a a b b ()22=12+[2]t t -+-()2=211t -+ 所以当1t =时,-a b 取得最小值1. 故选B .【名师点睛】本题主要考查了向量的数量积的运算及其应用,以及向量的垂直条件和向量的模的计算,其中解答中熟记向量的模、数量积和向量的坐标运算,合理准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.求解时,根据向量的模与数量积的运算,求得()2211t -=-+a b 根据二次函数的性质,即可求解.12.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)数学试题】如图,已知等腰梯形ABCD 中,24,5,AB DC AD BC E ====是DC 的中点,P 是线段BC 上的动点,则EP BP ⋅的最小值是A .95- B .0 C .45-D .1【答案】A【解析】由等腰梯形的知识可知cos B =, 设BP x =,则5CP x =, ∴2565()1()(5)(1)EP BP EC CP BP EC BP CP BP x x x x ⋅=+⋅=⋅+⋅=⋅⋅+⋅⋅-=-, 05x 剟,∴当355x =时,EP BP ⋅取得最小值95-. 故选A .【名师点睛】本题考查了平面向量的数量积运算,属于中档题.求解时,计算cos B ,设BP x =,把EP EC CP =+代入得出关于x 的函数,根据x 的范围得出最小值.13.【江西省临川一中2019届高三年级考前模拟考试数学试题】已知向量()3,4=a ,()1,k =-b ,且⊥a b ,则4+a b 与a 的夹角为________.【答案】4π 【解析】因为⊥a b ,故0⋅=a b ,所以340k -+=,故34k =,故()41,7+=-a b , 设4+a b 与a 的夹角为θ, 则2cos 5025525θ===⨯⨯, 因为[]0,π∈θ,故π4=θ, 故填4π. 【名师点睛】解答时,先计算出k ,再求出4+a b 与a 的坐标,计算出它们的夹角的余弦后可求夹角的大小.向量的数量积有两个应用:(1)计算长度或模长,通过用=⋅a a a ;(2)计算角,cos ,⋅=a b a b a b.特别地,两个非零向量,a b 垂直的等价条件是0⋅=a b . 14.【河南省八市重点高中联盟“领军考试”2019届高三压轴数学试题】已知向量()cos ,sin =θθa ,向量(1,=-b ,则3-a b 的最大值是______.【答案】6【解析】由题意,向量()cos ,sin =θθa ,则()33cos ,3sin =θθa ,所以向量3a 的终点在以原点为圆心,3为半径的圆上,又由||3=b ,则其终点也在此圆上,当3a 与b 反向时,3-a b 最大,最大值为6.【名师点睛】本题主要考查了向量的坐标运算,以及向量的坐标表示的应用,其中解答中熟练应用向量的几何意义和向量的坐标表示是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.求解时,由向量()cos ,sin =θθa ,得到向量3a 的终点在以原点为圆心,3为半径的圆上,又由||3=b ,则其终点也在此圆上,当3a 与b 反向时,即可求解,得到答案.15.【湖南省郴州市2019届高三第三次质量检测数学试题】在ABC △中,D 为BC 的中点,且33BC AD ==,则AB AC ⋅=_______. 【答案】54- 【解析】()()22AD DB A AB A D DC C AD BD =++=-⋅⋅95144=-=-. 【名师点睛】本题主要考查向量的基向量表示及向量运算,选择已知信息较多的向量作为基底,是求解这类问题的重要策略.求解时,用AD 表示出所求向量,利用数量积相乘可得结果.。
(2020-2022)三年新高考英语真题分类汇编 专题07 七选五(含解析)
专题07 七选五(2022年新高考全国Ⅰ卷)Fitness Magazine recently ran an article titled “Five Reasons to Thank Your Workout Partner.” One reason was: “You’ll actually show up if you know someone is waiting for you at the gym, ” while another read: “___36___” With a workout partner, you will increase your training effort as there is a subtle (微妙) competition.So, how do you find a workout partner?First of all, decide what you want from that person. ___37___ Or do you just want to be physically fit, able to move with strength and flexibility? Think about the exercises you would like to do with your workout partner.You might think about posting what you are looking for on social media, but it probably won’t result in a useful response. ___38___ If you plan on working out in a gym, that person must belong to the same gym.My partner posted her request on the notice board of a local park. Her notice included what kind of training she wanted to do, how many days a week and how many hours she wanted to spend on each session, and her age. It also listed her favorite sports and activities, and provided her phone number. ___39___You and your partner will probably have different skills. ___40___ Over time, both of you will benefit — your partner will be able to lift more weights and you will become more physically fit. The core (核心) of your relationship is that you will always be there to help each other.A. Your first meeting may be a little awkward.B. A workout partner usually needs to live close by.C. You’ll work harder if you train with someone else.D. Do you want to be a better athlete in your favorite sport?E. How can you write a good “seeking training partner” notice?F. Just accept your differences and learn to work with each other.G. Any notice for a training partner should include such information.【答案】36. C 37. D 38. B 39. G 40. F本文是一篇说明文。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考历史全国卷主观题专项精练全国Ⅱ卷论述题【高考真题】1.(2019·全国Ⅱ卷·42)阅读材料,完成下列要求。
(12分)材料图6——据(美)菲利普·费尔南德兹-阿迈斯托《世界:一部历史》(注:“自然进程”是指人与自然的互动;“人文进程”是指文明与文明、人群与人群的相互作用和影响。
)有史以来,人们试图以各种方式认识历史。
材料反映了一位学者对19和20世纪世界历史的认识,对此认识提出你自己的见解(赞成、质疑、修改皆可),并说明理由。
(要求:见解明确,持论有据,表述清晰。
)【答案】示例一:见解:自然进程和人文进程的发展并不总是同步的。
理由:1905年爱因斯坦创立相对论,20世纪30年代,量子力学建立,它与相对论一起构成了现代物理学的基础,推动了物理学自身的进步,并且开阔了人们的视野,改变了人们认识世界的角度和方式。
这是自然进程的快速发展。
但在自然进程快速发展的同时,人文进程上却爆发了两次世界大战,第二次世界大战中使用的原子弹等新式武器,正是以自然进程的发展为前提。
新式武器的运用使战争规模扩大升级,死伤惨重,经济严重衰退,还给世界人民带来不可愈合的心灵伤口。
从人文进程的角度来看,这是一种退步。
由此可见,科技是一把双刃剑,自然进程和文明进程的发展并不同步,但我们应该努力使两者协调发展。
示例二:见解:在人文进程中应添加1917年十月革命。
理由:十月革命是人类历史上第一次取得胜利的社会主义革命,它由无产阶级领导,以建立体现社会公正和平等的社会制度为目的。
十月革命成功地在资本主义世界体系上打开了一个缺口,沉重打击了帝国主义的统治,鼓舞了国际无产阶级和殖民地半殖民地的解放斗争。
十月革命将社会主义理论变为现实,开创了国际社会主义运动的新局面,也为俄国的社会发展开辟了一条新的道路。
社会主义苏联迅速的实现了工业化,为世界反法西斯的胜利奠定了物质基础。
二战之后,社会主义运动不断发展,苏联实力不断增强,成为美国称霸世界的最大障碍,两极格局形成,对战后世界的政治,经济,国际关系发展产生深远影响。
所以在人文进程中应加上1917年俄国的十月革命。
【解析】首先,分析材料信息,明确自己的见解,赞成或者质疑,需要修改等,如“同意从自然进程或者人文进程的角度认识人类历史的发展”、“在自然进程中增加构建人类命运共同体”、“在人文进程中增加1949年新中国的成立”等;其次,从材料中提取互相关联的历史信息并结合史实论证自己的观点,如“在经济全球化,科技进步发展的进程中谋求促进各国共同发展”、“1949年新中国的成立对战后世界格局和国际力量变化起重要作用”;最后,总结观点,表述成文。
2.(2018·全国Ⅱ卷·42)阅读材料,完成下列要求。
(12分)材料 1889年,两广总督张之洞从英国预购炼铁机炉,有人提醒先要确定煤、铁质地才能配置合适的机炉,张之洞认为不必“先觅煤、铁而后购机炉”。
张之洞调任湖广总督,购得大冶铁矿,开始筹建汉阳铁厂,由于找不到合适的煤,耗费六年时间和巨资,仍未能炼出合格的钢铁。
盛宣怀接手后,招商股银200万两,并开办萍乡煤矿,但由于原来定购的机炉不适用,依然未能炼出好钢,只得贷款改装设备,才获得成功。
通过克服种种困难,汉阳铁厂成为中国第一家大型的近代化钢铁企业。
1949年后收归国有。
——据编自陈真等编《中国近代工业史资料》等材料提供了一个中国近代企业发展的案例,蕴含了现代化的诸多启示。
从材料中提炼一个启示,并结合所学的中国近现代史知识予以说明。
(要求:观点明确,史论结合,言之成理。
)【答案】示例启示:引进外来科技与设备会大大推动现代化的发展。
说明:19世纪六七十年代地主阶级掀起了洋务运动,洋务派学习西方科技,引进西方先进设备,建立了中国第一批近代化企业,也开启了中国的近代化。
在随后出现的建立企业的高潮中,民族资产阶级也学习了西方的先进经验。
民国时期,国民政府从美国等西方国家引进先进科技,推动了中国近代经济的发展。
在社会主义建设新时期,中央政府实行对外开放政策,大力引进西方先进的技术、设备和管理经验,这都大大推动了我国现代化发展的进程。
由此可见,引进外来的科技、设备和资金等可以大力推动我国经济的现代化进程。
【解析】首先,分析材料信息,提炼观点,如近代企业发展需要科学管理模式等;其次,根据论题从材料中提取互相关联的历史信息,如“找不到合适的煤,耗费六年时间和巨资,仍未能炼出合格的钢铁”、“由于原来定购的机炉不适用,依然未能炼出好钢,只得贷款改装设备,才获得成功”结合近现代企业发展的史实得出近现代企业发展离不开科学管理模式;最后,根据提取的相互关联的历史信息,结合史实予以阐述,表述成文。
3.(2017·全国Ⅱ卷·42)阅读材料,完成下列要求。
(12分)表1 钟表的演变——据(英)约翰·哈萨德《时间社会学》等从材料中提取两条或两条以上信息,拟定一个论题,并就所拟论题进行简要阐述。
(要求:明确写出所拟论题,阐述须有史实依据。
)【答案】示例:论题:科技的发展推动钟表功能的多样化钟表最早的功能就是计时,随着科技的发展,钟表的功能逐渐多样化。
从伽利略时代力学物理学取得的成就,到原子物理学和信息技术的发展均推动了钟表功能的多样。
从简单的计时到成为装饰品,一直到具有计时、信息处理、导航、监测等多种功能,反映了在科技影响下钟表功能的变化。
【解析】依据材料,提炼相关信息得出相关主题,如“科技发展与钟表的演变”“钟表的演变与社会的发展”“工业革命与钟表的演变”等,然后结合所学史实,就所拟论题进行简要阐述阐述时,注意观点明确,史实准确,分析全面。
【最新模拟】1.(2020陕西二模42)(12分)阅读材料,回答问题。
材料个体意识作为一种思想意识,在发展变迁中会受到社会正统思想的影响。
古代中国,儒家思想占据正统地位长达两千年,对于中国古代的个体意识变迁的影响不言而喻,儒家思想经历了孔孟、荀子、董仲舒、朱熹、王守仁等学派的流变,每种流变都对个体意识的发展有着不尽相同的影响。
时而促进,时而抑制,时而保守,时而反弹。
从孔子的承认个体意识的存在,到孟荀时的有所发展,再到童仲舒和朱熹时代的限制和压制,后经明后期的短暂觉醒,最后重归理学的禁锢。
毫无疑问,中国古代个体意识是不断变迁的,这种变迁也是深受中国古代正统思想地深刻影响的。
——摘编自李浩《儒家思想流变对中国古代个体意识变迁的影响》依据材料并结合中国古代史相关知识,提炼材料观点并加以论证。
(要求:至少论证两个时期,观点明确,史论结合,持论有据,论证充分,表述清晰)(12分)【答案】观点:儒家思想对个体意识在不同的时代有不同的影响。
(2分)论证:①春秋时期孔子“克己复礼”秩序观对个体意识的抑制。
孔子又强调“道德”的重要性,提出“仁”的观点,反映出孔子要求君子要尽量的克制个体意识在合理的范围内。
②春秋时期孔子“克己复礼”秩序观对个体意识的承认。
孔子提出“克己复礼”,即是承认“己”的存在,个体的存在,个体自我意识的存在。
③战国时期孟子、荀子的思想促进了个体意识的发展。
孟子提出“民贵君轻”,荀子提出“制天命而用之”都强调个体意识的作用,促进了个体意识的觉醒。
原因:春秋战国时期,诸侯割据混战,社会动荡,礼崩乐坏,社会需要个体意识,思想上“百家争鸣”经济上井田制瓦解,土地私有出现,都为个体意识的发展创造了条件,但另一方面,社会动荡,也需要国家统一,强大的中央集权制,所以会出现压抑个体意识,强调国家意识的思想。
④汉朝时期对个体意识的规范和僵化。
汉武帝时期,董仲舒提出“天人感应”“三纲五常”“天谴论”等思想,不强调发挥自己的主观能动性,强调服从,阻碍了个体意识的发展。
原因:汉武帝采纳董仲舒的建议,“罢黜百家,独尊儒术”;汉武帝加强专制主义中央集权的需要;汉朝初期“七国之乱”,不利于中央集权,小农经济的发展需要。
⑤程朱理学对于个体意识的压抑。
程朱理学提出“存天理、灭人欲”,强调社会个体对纲常伦理的绝对遵守,压抑个体意识。
原因:魏晋以来社会动荡,中央集权衰落,需要强化中央集权;儒学出现危机,三教并流,社会信仰多元,小农经济进一步发展,宋朝加强中央集权的需要。
⑥心学促成个体意识在传统社会的反弹。
王守仁提出“良知即是心,心就是理”,将个体意识与天理合一,肯定了个体自我的利益与价值,对于人的发现和人的“个体意识”的发展有促进作用。
原因:程朱理学禁锢人们的思想,商品经济发展,资本主义萌芽出现,政治腐败、社会动荡、学术颓败,社会矛盾尖锐,儒家学者进行反思。
⑦明清之际出现的所谓“异端”思想促进个体意识的发展。
明清时期黄宗羲提出“天下为主、君为客”、顾炎武提出“天下兴亡、匹夫有责”等反传统思想,肯定了个体意识,促进个体意识的发展。
原因:商品经济进一步发展,市民阶层的发展,王阳明心学的影响,统治阶级的腐败,社会变革。
⑧清朝时期,理学僵化对个体意识的压制。
原因:清朝入主中原,为了维护统治,加强中央集权;小农经济的发展;明清时期反专制思想的出现。
(任选两个时期进行论证,一个时期思想3分,原因2分,两个时期,共10分)【解析】据材料“个体意识作为一种思想意识,在发展变迁中会受到社会正统思想的影响”等信息可知,材料论述的是儒家思想对个体意识的影响,且这种影响“时而促进,时而抑制,时而保守,时而反弹”,体现了因时而变的特点,并且材料就这一特点分阶段进行了阐述,因此提炼材料观点为:儒家思想对个体意识在不同的时代有不同的影响,再结合材料中的阐述以及中国古代史的其他阶段分期进行论证即可,论证时注意题干的要求——至少论证两个时期,并且观点明确,史论结合,持论有据,论证充分,表述清晰。
2.(2020陕西咸阳模拟42)(12分)阅读材料,完成下列要求。
盘尼西林又称青霉素,是一种广谱抗菌药。
20世纪40年代以前,人类一直未能掌握一种能高效治疗细菌性感染且副作用小的药物,一般的肺炎、肺结核,就能致人死亡,直到盘尼西林的出现。
阅读上述材料,从中提出两个观点,结合所学历史知识,加以论述。
(要求:观点明确,持论有据,表述清晰。
)【答案】观点一:经济危机中的医疗技术难以应用(2分)论述:1929—1933年资本主义世界经济危机爆发,时间长、范围广、破坏性大,各国忙于应付危机。
在医疗卫生上的重视度和投入力度远远不够,英国科学家弗莱明的发明为引起政府足够的重视。
直到十多年后的1943年青霉素才得以真正问世并造福人类。
(3分)所以,社会环境影响并制约着新技术的应用。
(1分)观点二:战争催发了盘尼西林的应用(2分)论述:第二次世界大战是世界人民反法西斯战争,给交战各国带来了沉重的灾难。
战争中大量的伤员由于医疗技术的落后无法救治而死亡,美国率先进行了盘尼西林的临床应用,大批的感染的伤员得到医治,挽救数以万计的生命,是人类抗击病菌史上里程碑事件。