第二章理想光学系统详解

合集下载

工程光学第二章

工程光学第二章

高斯公式
1 1 1 l l f
y l yl
牛顿与高斯公式的转换: x l f ......x l f
当系统确定时,f
可根据公式,改变 x(l) 可得到不同β, 或β按要求,可计算出相应的 x(l) .
例:有一理想光组,其焦距为 f f 75mm
其前方150mm处有一物高为20mm的物体,
求像的位置和大小.若要求 0.5x 问物体应位于何处?
解:
1)根据 1 1 1 l l f
Q Q' B y
A
F
H H'
F
A'
l 150mm
-y'
f 75mm
R
R'
-x
-f
f'
B' x'
l 150mm
-l
l 1 l
一个理想光学系统可以用其基点(面)来表示,而 不需考虑其具体结构如何。
O
B O2
O1 A
A'
O' B' O'2
M
图2-3 两对共轭面已知的情况
O
B
A
O3
O1 O2
O'
A'
B'
M
图2-4 一对共轭面及两对共轭点已知的情况
第二节 理想光学系统的基点和基面
一.焦点与焦平面
1.像方焦点与像方焦平面(对应 L=-∞)
l x f 902.605mm
以O1为原点! 以H 为原点!
x f 8.2055mm l x f 90.2605mm
L=-∞ F'

第2章 理想光学系统

第2章 理想光学系统

如果已知共轴光 学系统的一对主 平面和两个焦点 的位置,就能根 据它们找出物空 间任意物点的像!
理想光组可有任意多个折、反射球面或多个光组组成。 寻找理想光组的特征点、面——基点、基面,就可以代 表整个光组的光学特性,用以讨论成像规律。
※ 若 f ’ >0,为正光组(会聚光组) 若 f ’ <0,为负光组(发散光组)
B
F
H
B H

F


节点就是主轴上角 放大率正1(=+1) 的物像共轭点。 通过节点的光线方 向不变。
H
H
P
u
P
A
• •• •M M
K K
A
u

若:光学系统在空气中(光学系统两边介质 相同), 由亥姆霍兹—拉格朗日定理可知 当 =1 时, =1 。
因此:这时两节点分别与两主点重合。
• 总能找到:在像方折射光 线中一定有一条光线与入 P 射光线平行,即u = u 。 • 根据主平面的性质,存在一对共轭点M、M' • 即入射光线PAM与出射光线M'B'F'平行,并且共轭。 (过M点只有一条光线平行于光束。)
A
M
• • M K
u
F
• 节点:这两条光线的延长线与光轴的交点K和 K',分别称为物方节点和像方节点。
B A’ 2F ’ F’ H
H’
F
A 2F
B’
作图题都要写出作图步骤
第三节:理想光学系统的物像关系 3.解析法求像: x—以物方焦点 为原点的物距。 称为焦物距。 以F为起始点, x 方向与光线方向 一致为正。(图 中为-)
11
三、基点、基面的概念

理想光学系统

理想光学系统
y tan L
tan L ★显微镜视角放大率 tan f1 f 2
2-6 透镜
一、透镜的分类
分类: 球面透镜(工艺简单) 非球面透镜(像质更好,工艺复杂)
d > tm 凸透镜 (双凸,平凸,月凸) d < tm 凹透镜 (双凹,平凹,月凹)
d
tm
思考:平行平板对光线没有汇聚或发散作用, 但若整体弯曲后呢?
二、透镜参数计算
透镜是由两个折射球面组成的光组。对于单个折射球面:
n' n n' n 由: l' l r
n
F
Q Q’
n’
F’
n’ r f’ n’ n 得: nr f n’ n
H H’ O
-f
r f’
C
结论:单折射球面在近轴区是理想系统,两主面重合。 提示:透镜在近轴区也是理想系统。透镜的理想系统模型, 是两折射球面理想光组组合的等效系统。
d f1 ' f 2
lF '
lH
xH '
蓝△相似 红△相似
f ' Q' H ' f2 ' H2 ' M 2 '
f1 ' M 1 ' H1 ' F2 N 2
f ' f1 ' f2 '
同理
f1 ' f 2 ' f ' f1 f 2 f
由图可知: F1’和 F’是第二光组的一对共轭点; x F 和 F2 是第一光组的一对共轭点。 x '
★一对主点、一对主平面; (共轭)
★一对焦点、一对焦平面; (非共轭,f和f ’不一定相 等,说焦距一般指f ’) ★一对节点、一对节平面; 理想系统的焦点、主点确 定后,焦距也就随之确定, 该理想系统的模型也就完全 确定了,从而可方便地建立 理想光学系统图解法和解析 法求像理论。

理想光学系统

理想光学系统

第三节 理想光学系统的物像关系
几何光学的基本内容之一是求像,即对于确定的 光学系统,给定物体的位置、大小、方向,求像的位 置、大小、正倒及虚实。常用的用以求取物象位置关 系的方法有二种:一为图解法,一为解析法。 一、图解法求像
图解法求像的定义
已知一个光学系统的主点(主面)和焦点的位置, 利用光线通过这些基点后表现的性质,对物空间给 定的点、线和面,通过画图追踪典型光线的方法求 像。
工程光学
石家庄铁道大学
机械工程学院
总第三讲
第二章 理想光学系统
Perfect Optical System

光学系统的具体结构(r、d、n) 实际光学系统与高斯(近轴)光学系统 研究光学系统成像的目的在于将高斯光学 完善成像的理论推广到任意大的空间,本 章的主要内容即介绍建立在高斯光学之上 的所谓理想光学系统,并研究理想光学系 统的主要光学参数、成像关系、放大率以 及光组组合和透镜。
可选择的典型光线和可利用的性质: ①平行于光轴入射的光线,经系统后过像方焦点; ②过物方焦点的光线,经过系统后平行于光轴; ③倾斜于光轴入射的平行光束经过系统后会交于像 方焦平面上的一点; ④自物方焦平面上一点发出的光束经系统后成倾斜 于光轴的平行光束; ⑤共轭光线在主面上的投射高度相等。 欲在理想光学系统条件下确定像点位置,只需 求出其对应物点发出的两条特定光线在像空间的共 轭光线,其交点即为所求像点。
总第三讲
3、主点与主平面
Q
Q'
h
f
'
h tanU '
F
U
H
H'
U
'
h'
F'
f
h tan U

理想光学系统

理想光学系统
当 2 1 时,

n' 2 n
三、角放大率 定义:
tgu' tgu
nytgu n' y' tgu' 有:
所以
tanu l ny n 1 tanu l n' y ' n'
n 1 1 f x f n f f x
1.在关于光轴的任一子午面内,成像性质不变。 2.位于光轴的物点其共轭像点一定位于光轴上; 子午面内的物点其共轭像点一定位于同一子午 面内; 垂直于光轴的物平面其共轭像平面也一定垂直 于光轴。 3.垂直于光轴的一对共轭平面内,物、像的几何 形状完全相似,即垂轴放大率相等。
理想光学系统具有以下基本特性:
第二章 理想光学系统
基点基面 成像特性
由静止图形构成的动态图片
§2.1
理想光学系统的基本特性 基点和基面
一、理想光学系统
它是一个理想模型,认为光学系统不仅在近 轴条件下可以完善成像,而且对任意宽的光束 (任意大的物体)都可以完善成像。
二、共线成像理论
这个系统对于任何一个物点发出的光线将 出射光线相交于一点形成一个唯一的像点。 对于多个物点集合成的线或面当然也形成 (成像)唯一的点或面,这种成像变换谓之 共线成像。
近轴光时
n
,则两焦距绝对值相
等,符号相反:
ff
4.拉亥不变量
ny tanu ny tanu
此式对任何能成 完善像的光学系 统均成立。
§2.3
理想光学系统的成像放大率
一、垂轴放大率
y' f x' nl y x f ' nl
二、轴向放大率 1.微小位移时的

第二章理想光学系统

第二章理想光学系统

8
一对主平面,加上无限远轴上物点和像方焦点F′,以及 物方焦点F和无限远轴上像点这两对共轭点,就是最常用 的共轭系统的基点,它们构成了光学系统的基本模型, 可以和具体的系统相对应。
理想光 学系统 简化图
9
§2-3 理想光学系统的物像关系
一、图解法求像 指已知一个理想光学系统的主点(主面)和焦点位置,利用 光线通过它们后的性质,对物空间给定的点、线和面,通过 画图追踪典型光线求出像的方法。 典型的光线有: ①平行于光轴入射光线,出射光线经过像方焦点。 ②过物方焦点的光线,出射光线平行于光轴。 ③倾斜于光轴的平行光束入射后会交于像方焦平面上一点。 ④自物方焦平面上一点发出的光束经系统后成倾斜于光轴的 平行光束。 ⑤共轭光线在主面上的投射高度相等。
五、应用(用平行光管测定焦距)
y f tg
23
§2-5 理想光学系统的组合
当两个或两个以上光学系统组合在一起时,求其等效系 统,等效焦距、焦点、主点。 一、两个光组组合分析 已知两光学系统的焦距分别为 f1 , f1, f 2 , f 2 两者之间的相对位置用第一系统的像方焦点到第二系统 的物方焦点的距离Δ (光学间隔,顺光线为正)。
该方法称为正切计算法。
28
例1:远摄型光组。设单个光组由两个薄光组组合而成。
f1 500mm, f 2 40mm, d 300mm .
求组合光组的焦距,像方主面位置,像方焦点位 置。并比较筒长与焦距的大小。
29
例2:反远距型光组。已知
f1 35mm, f 2 25mm, d 15mm .
曲率半径 D为透镜两球面顶点距离。 的倒数 2 1 n 1 n 11 2 d 1 2 f n 主面位置: 相应焦点位置:

第二章 理想光学系统

第二章  理想光学系统


f1' = − f1 = 100mm 一个光学系统由三个光组构成,
f 3' = − f 3 = 50mm d1=10mm f = − f 2 = −50mm
' 2
d2=20mm,一个大小为15mm的实物位于 距第一光组120mm处,求像的位置及大小。

在上一例中,求出等效单光组的基点 和焦距,并用等效单光组求出上例所 给物体的成像位置及大小。
四、理想光学系统两焦距之间的关系
由图可见
( x + f ) tgU = ( x '+ f ' ) tgU '
将式2-4中的 x = − f ( y / y' )和x' = − f ' ( y' / y) 代入上式得: fytgU = − f ' y' tgU ' 在近轴区,可写成 fyu = − f ' y' u' 根据拉氏公式 nyu = n' y ' u '
可供选择的典型光线和可利用的性质 主要有: 4.自物方焦平面上一点发出的光束经 系统后成倾斜于光轴的平行光束; 5.共轭光线在主面上的投射高度相等。
1、轴外点B或垂轴线段AB的图解法 求像
2、轴上点的图解法求像
(三)轴上点经两个光组的图解法求 像 书中图2-17
作图求物体AB经负光组所成的像
' 1
l2 = l − d1,x2 = x − ∆1
' 1 ' 1
∆1 = F F2,焦点间隔或光学间隔
' 1
∆1 = d1 − f + f 2
' 1
推广到一般的过渡公式和两个间隔间的 关系为

2第二章理想光学系统(精通)

2第二章理想光学系统(精通)

h1 r1
经过计算得 l 67.4907, u 0.121869,
焦距为 f h 82.055, tan u
主点位置l f 14.5644在最后折射面
左侧14.5644mm处
2020/6/15
14
3:物像关系
几何光学目的就是求像,(对于确定的光学系 统,给定物体的位置、大小、方向,求像的位 置、大小、正倒及虚实)。
2020/6/15
31
例题2
已知一个透镜把物体放大 -2倍,当透镜向物 体移近20mm时,放大倍数为 -3倍,求一开始 的物距以及透镜的焦距?
1
l l
1
1
f 1
l 2 l 1 (2)
3 (l 20) 1 (3)
l l f
l 180mm, f 2 (180) 120mm, 3
B
A
F
A’ F’
B’
注意:图像法只能求得像的大致位置,至 于具体位置在哪,完全不清楚!因此需要 一种可以定量求得像的位置的方法!!!
2020/6/15
24
解析法(牛顿公式以焦点为基准)
-x
A
FM
-f
H -y
x‘
M’ B’
f'
y’
H’ F’ A’
B
N
N’
-l
ABF MHF
MH
FH
l’
y
f
AB FA y x
二:选择主平面和焦点,在一定程度上决定了 光学系统的成像特性,加上后面的解析公式可 以更加方便的计算。
三:选择主平面的好处:将实际光学系统中多 次折射反射等效于共轭光线的一次偏折代替。
2020/6/15
11

第二章理想光学系统解析

第二章理想光学系统解析
通过Q’点作垂直于光轴的平面交光轴于H’点, ※ 则Q’H’平面称为像方主平面,H’称为像方主点
A
E
Q’ E’
h
U’
F’
H’
f’
※从像方主点H’ 到像方焦点F ’ 之间的距离称为像方焦距,
用 f ’ 表示
f ’也遵从符号规则,它的起始原点是像方主点H’
根据三角关系,有: f ' h tgU '
(三)无限远轴外物点发出的光线
(3)物空间中每一个平面对应于像空间中唯一平面,这两
个面称为共轭面。
(4)如果物空间任意一点D位于直线BC上,那么其在像空 间的像D’也必位于BC的共轭线B’C’上。
※ 把这种点对应点,直线对应直线, 平面对应平面的成像变换称为共线成 像,上述定义称为共线成像理论。
理想光学系统的成像性质
1.位于光轴上的物点对应的共轭像点也必然位于光轴上;位于过 光轴的某一截面内的物点对应的共轭像点必位于该平面的共轭 像面内;同时,过光轴的任意截面成像性质都是相同的;垂直 于光轴的物平面,它的共轭像平面也必然垂直于光轴。
2.垂直于光轴的平面物所成的共轭平面像的几何形状完全与物 相似,也就是说整个物平面上无论哪一部分,物和像的大小比 例等于常数。
3.一个共轴理想光学系统,如果已知两对共轭面的位置和放大 率,或者一对共轭面的位置和放大率,以及轴上的两对共轭点 的位置,则其他的一切物点的像点都可以根据这些已知的共轭 面和共轭点来表示。
光学系统
A
E1 Q Q' E k
B
P1 h h P k
H
H'
F
O1
OK
F'
-f
f’
QH与Q’H’在光轴同侧,且高度都为h,故其横向放大率为: β=+1

光学第2章_理想光学系统

光学第2章_理想光学系统

透镜
(6)
空气中的薄透镜焦距
时为正透镜, 正透镜中心比边缘厚, 又称为凸透镜; f ′= f > 0 时为正透镜 正透镜中心比边缘厚 又称为凸透镜 f ′= f <0 时 为负透镜,负透镜中心比边缘薄 又称为凹透镜. 负透镜中心比边缘薄, 为负透镜 负透镜中心比边缘薄 又称为凹透镜
由( 3) 和(5)式, 得空气中的薄透镜成像公式:
按照这种设想,来自无穷远物点和焦点F的两条光线 将既通过Q点亦通过Q'点.Q,Q'是一对共轭点,两个主 平面是一对共轭面,且 β ≡ +1 总之,对于一个光学系统,找到其主平面(一对)和 两个焦点F,F',其系统的基本结构模型就构成了,它们 完全可以代表光学系统的成像性质.
第二节
理想光学系统的基点和基面
Q Q'
.
F
H
H'
.
f'
F'
-f
第二节
理想光学系统的基点和基面
自物方焦点入射的光线与其出射平行于光轴的光线的延长线的交 点Q的垂点H称为主点,相应的垂直于光轴的平面称为物方主平面. 类似地,H'为像方主点,相应垂直于光轴的平面为像方主平面.
Q Q'
.
F
H
H'
.
f'
F'
-f
注意:图中,Q,Q'点并非实际光线的交点,而是实际光线延 长线的交点.引入主平面的概念后,可大大简化成像过程的计算 .不妨就"认为"Q,Q'是实际光线的交点.
y' f l' β = = y f'l
f '= -f
l' β = l

光学教程(叶玉堂)第2章 理想光学系

光学教程(叶玉堂)第2章 理想光学系

3、焦距公式
f1f 2 1 2 d12 f 2 f1 f f
4、主点位置公式:
f 2 f1 f 2 l f d xH H f1 d f1 f1 f 2 lH f xH f2
由于有: r1<0,r2 =∞,所以:
r1 f n 1 d lH , lH 0 n
弯月形凸透镜
恒有fˊ>0,两个主平面 位于远离曲率中心处,如 右图所示
弯月形凸透镜
弯月形凹透镜
它与双凸透镜相似。其如 右图所示,两半径值差别 较小时,能获得给定正光焦度 弯月形凹透镜
三、薄透镜和薄透镜组 1、薄透镜(透镜厚度为零的透镜称为薄透镜) (1)主平面和球面顶点重合 lH lH 0 (2)焦距: (3)光焦度: 2、薄透镜组 (1)光焦度: (2)主点位置:
三、用平行光管测定焦距的原理
测量公式:
y f tan
无限远物体的理想像高
测量装置右图所示
y f 2 f1 y
焦距测量原理
§2.4 理想光学系统的组合
一、双光组组合 1、组合示意图
双光组组合图
2、焦点位置公式
f lF f 2 1 2 f1 lF f1 1
y f x y x f

f nl x nl
(2)以主点为坐标原点的公式: (3)若fˊ=-f 时:
f x f l x f x l
放大率随物体的位置而异,某一放大率只对应 一个物体位置,不同共轭面上,放大率是不 同的。
2、轴向放大率 (1)定义:

理想光学系统

理想光学系统
这个转面公式的实质就是将前一个系统所成的 像转换成后一个系统的物而进行的坐标变换。
3、入射光为平行光
在利用上式对光路进行计算时,若物体位于物方光轴上无限远 处,这时可认为由物体发出的光束是平行于光轴的平行光束,
即L=-∞,U=0,入射角应按下式计算:
sin I h r
三 、近轴光线的光路计算
结论:
2)垂直于光轴的平面物所成的共轭平面像的几何 形状与物相似;
3)如果已知两对共轭面的位置和放大率,或者已知 一对共轭面的位置和放大率以及光轴上的两对共 轭点的位置,则其它的一切物点的像点都可以根据 这些已知的共轭面和共轭点确定。
2.1 光路计算与近轴光学系统
光路计算的依据:
以理想像成像性质为基础; 沿着任意一条光线的踪迹可以找到其共轭光线。
转面公式:
u2 u`1 l2 l`1d1
作业:
p47: 1
• 问题:u 0的光线是不是近轴光线
常用近轴光学基本公式:
n
U
Aห้องสมุดไป่ตู้
L
IE
n
h
I'
U'
O
C
r
L'
如图中,h满足: l`u` lu h
由近轴光线公式可得: n`u`nu n`n h
r
或者,
n` n n`n l` l r
(2-11) (公式二)
2)当β>0, l′和l同号,表示物和像处于球面的同侧, 物像虚实相反,即:实物成虚像,虚物成实像。
3)当β<0, l′和l异号,表示物和像处于球面的两侧, 物像虚实相同,即:实物成实像,虚物成虚像。
一、基本概念
n
I E
n
h
I'
U
U'

第二章理想光学系统

第二章理想光学系统

h -U A
-L
由三角关系: tgU h
6
L
当 L 即物点向无限远处左移时,由于任何 光学系统口径有限,所以此时 U 0
h
-L
※ 无限远轴上物点发出的光线与光轴平行
7
(二)像方焦点、像方焦平面;像方主点、主平面;
像方焦距
像方
焦平
A
B
Q ’ E’

h
H’
像方主平面
U’
像方 主点
f’
F’
像方 焦点
F
(1)辅助物AB (2)由B作 BQ // 光轴 (3)QQ’
(4)由Q’作直线过F ’ (5)BF (6)N ’M
(7)由B’作直线垂线于光轴交点即是A’
21
求AQ的出射光线:
F’ A
F’
R
R’
Q Q’
A’ H H’
(1)AQ N (2)辅助焦平面
(3)延长AQ到N (4)NR F (5)R’F ’
(3)平行平板,f ’为∞, Φ=0,对光束不起会聚或 发散作用。
14
第三节 理想光学系统的物象关系
一、用作图法求光学系统的理想像 ※ 已知一个理想光学系统的主点和焦点的位 置,利用光线通过它们后的性质,对物空间 给定的点、线、面通过画图追踪典型光线求 像,称为图解法求像。
这可是 重点呦!
15
可供选择的典型光线和可供利用的性质有:
y f x
y
x
f
结论:光组焦距一定时,物在距焦点距离不同时, 垂轴放大率也不同。
33
第二种表达方式:用主物距、主像距与焦距表达
在x ff x 的两边各加f '得
x f ' ff f ' f f x

理想光学系统

理想光学系统
代入牛顿公式整理得 两边同时除以,有 这就是以主点为原点的物像位置公式,称为高斯公式。
谢谢观看
基点和基面
基点和基面
根据理想光学系统的特性,如果在物空间有一条和光学系统光轴平行的光线射入到理想光学系统,则在像空 间必有一条光线与之相共轭。
图2如图2所示,O1和Ok两点分别是理想光学系统第一面和最后一面的顶点,FO1OkF′为光轴。物空间的一 条平行于光轴的直线AE1经光学系统折射后,其折射光线GkF′交光轴于F′点,另一条物方光线FO1与光轴重合, 其折射光线OkF′无折射地仍沿光轴方向射出。由于像方GkF′、OkF′分别与物方AE1、FO1相共轭,因此,交点 F′为AE1和FO1交点(位于物方无穷远的光轴上)的共轭点,所以F′是物方无穷远轴上点的像,所有其它平行于 光轴的入射光线均会聚于点F′,点F′称为光学系统的像方焦点(或称后焦点、第二焦点)。显然,像方焦点是 物方无限远轴上点的共轭点。
基本特性
基本特性
理想光学系统理论是在1841年由高斯提出来的,所以理想光学系统理论又称为“高斯光学”。在各向同性的 均匀介质中,理想光学系统的物像关系应具备以下特性:
图11、点成点像:即对于物空间的每一点,在像空间必有一个点与之相对应,且只有一个点与之对应,这样 的两个对应点称为物像空间的共轭点(如图1中的A点和A′点)。
由相似△BAF和△RHF可得 同样,在△Q′H′F′和△B′A′F′中有 由此可得 这就是以焦点为原点的物像位置公式,称为牛顿公式。
高斯公式
高斯公式的物像位置是相对于理想光学系统的主点来确定的。如图5所示,以表示物点A到物方主点H的距离, 以表示像点A′到像方主点H′的距离。方向规定以主点为原点,如果由H到A或由H′到A′的方向与光线的传播方 向一致,则为正;反之为负。由图5可得

第二章 理想光学系统

第二章 理想光学系统
解:由垂轴放大率公式得:
由已知条件知: 联立三式解得: 即透镜的像方焦距为
三、由多个光组组成的理想光学系统
相应于高斯公式:
l2 l1 d1
………
d1 H1H 2
lk …lk1 d k1 (主面间隔)
相应于牛顿公式:
x2 x1 1
………
1 F1F2
xk … xk 1 k1 (光学间隔)
c. 组合系统的垂轴放大率β
f x
x f
x x1 xF
x1
f1 f1
f1 f2
f1 f1 x1
(x1为物点相对于第一光组物方焦点的距离)
2)高斯公式:以第二光组象方焦点H2′及第一光组物方焦点H1为 坐标原点来计算等效系统的基点位置和焦距 。
一般情况下,光组位于空气中,故有 f1 f1, f2 f2 , f f 由图,有: lF f 2 xF , lF f1 xF
tgU1
tgU 2
h1 f1
h2 h1 d1tgU1
tgU 2
tgU3
tgU 2
h2 f 2
h3 h2 d 2tgU 2
hk hk1 d k 1tgU k1
tgU k
tgU k
hk f k
H’
U3’
lF
hk tgU k
f’ lF’ = ?
f h1 tgU k
焦点位置已确定,焦距为何?
tgU k
tgU k
hk f k
说明:
复合光组的物方基点位置和焦 距大小——
反向光路按类似方法计算,然 后将结果f′和 lF′反号求得 物方焦点位置lF和物方焦距f。
lF
hk tgU k
f h1 tgU k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xx f f
像方焦点右方25mm处成一虚像
x=?
x = -400 f’2 = 10000 f’ = ? f’ = -100
x’=? x’ = 25
y f x
y x f
y’ = -25/(-100)*20=5 mm
例:有一光组将物放大3倍,成像在影屏上,当透镜向 物体方向移动18mm时,物象放大率为4倍。求光组焦距。
F H
F′ H′
F′
H
F
H′
4. 节点
全等
定义:角放大率为+1的一对共轭点。(γ =+1) 性质:通过这对共轭点的光线方向不变 。 若光学系统在同一介质中,则节点与主点重合。
焦距如何计算、测量?
无限远轴上点
A
f h
h F
tgU
f h tgU
E1 Q
G1 -U
O1 H
Q’ Ek
Gk U’
H’ Ok
第二章 理想光学系统
§ 2-1 理想光学系统与共线成象理论
理想光学系统:对任意大的物体,以任意宽的光束成象均 是完善的(或物空间的同心光束经过光学系统后仍为同心 光束;或物空间一点对应象空间一点)。
共线成象理论:对于理想光学系统:
点共轭点
直线共轭直线
直线上的点共轭直线上的共轭点
SM R
R’ S’ M’
Ak’ F’
-f
f’
焦距如何计算、测量?
A
Q Q’
h F
F’ 可得到F’,但 f’ = ?
H H’
轴外平行光
Q
Q’
F W
-u’ H H’
f’
是否所有光学系统对无穷远 物成像时都可用此公式?
f’
y’= - f’tgu’ = - f’tgu y’ 写成:y’= - f’tgW
F’
以135相机为例,底片24×36,则像 y’=1/2(242+362)-1/2
x f x f l nl
β <0, 物象虚实一致。 β >0, 物象虚实相反。
用Matlab绘制 出该曲线
例:空气中有一薄光组,当把一高20mm的物置于物方焦 点左方400mm处时,将会在光组像方焦点右方25mm处 成一虚像。
求:1. 光组的焦距;
2. 像的大小;
3. 物右移200mm,像移动多大距离?
x
x
y f x
y x f
f f f f l nl
x f x f l nl
与l、l’有关。当l一定时,与y的大小无关
光学系统在同一种介质中时,有
则:
l
l
高斯公式:
1 1 l l
1 f
f f
3.垂轴放大率特性曲线:
f f f f l nl
解:由垂轴放大率公式得:
由已知条件知: 联立三式解得: 即透镜的像方焦距为
三、由多个光组组成的理想光学系统
相应于高斯公式:
l2 l1 d1
………
d1 H1H 2
lk …lk1 d k1 (主面间隔)
相应于牛顿公式:
x2 x1 1
………
1 F1F2
面共轭平面 共线成象理论是作图法或解析法求解物象关系的基础。
确定一个光学系统 所有物象点的条件?
P16 (3)……
基准点、基准面
§ 2-2 理想光学系统的基点、基面
1. 焦点、焦平面
像方焦点:对应物点在物方光轴上无限远处 焦点
物方焦点:对应像点在像方光轴上无限远处
AE1ຫໍສະໝຸດ EkAk’h
G1
Gk
F
O1
物方主点H到物方焦点F的距离称为物方焦 距(前焦距或第一焦距)
象方主点H′到象方焦点F′的距离称为象方
焦距(后焦距或第二焦距)
A
E1 Q
h
G1
F
O1 H
Q’ Ek Gk
H’ Ok
Ak’ F’
说明:
-f
f’
1)对于理想光学系统,不管其结构(r,d,n)如何,只 要知道其焦距值和焦点或主点的位置,其光学性质就确 定了。
O1 H
Q’ Ek Gk
H’ Ok
Ak’ F’
-f
f’
定义:物象方β=+1 的共轭平面为物象方主平面。 主平面与光轴的交点为主点H、H′。
说明:
1) H、H′是一对共轭点,主平面上任一线段均以相等 大小及相同方向成在另一主平面上。
2)薄光组:
F
F′
H、H ′
3. 焦距 以主点作为原点来度量,主点到焦点的距离称为焦距。
虚物成实像?
例:通过作图求出物AB的像,注意物像的虚实。
例:负光组( f′<0 )
实物成虚像
虚物成虚像?
说明: 用图解法求像较为简明和直观,但精度不高。
例:通过作图求出物AB的像,注意物像的虚实。
例题:正透镜L1焦距20cm,负透镜L2焦距40cm,L2在L1 右侧40cm,旁轴小物位于L1左30cm,求像的位置、大小 。
l HA,l H A
由图,有: x l f , x l f 代入牛顿公式,得: lf lf ll
回忆单个折射球面公式?
n n n n l l r
f f 1 l l
n n n n l l f f
放大率公式为:
x f f f f f x f
F2 F1
二、解析法 -f
1. 牛顿公式
物和象的位置以焦点F、F′为 原点来确定,以x、x′表示。
f’ x FA, x F A
由图,有: 由此,得:
y f , y x y x y f
xx f f (牛顿公式)
放大率公式为:
y f x
y x f
2. 高斯公式
物和象的位置以主点H、 H′为原点来确定,以 l、l′表示。
可据此算出各种不同 焦距镜头的视场角
焦距测量
§ 2-3 理想光学系统的物象关系
一、图解法 根据基点的性质及共轭成像理论,只需确定由物点发出
的两条特殊的光线及其共轭光线。(过焦点、平行光轴) 例:正光组( f′> 0 )
物在焦面上,成像无限远
轴外点
实物成实像
轴上点?
实物点成实像点
实物成虚像
Ok
F’
焦平面:过焦点的垂轴平面
A
注意:
h
F
E1 G1
O1
Ek Gk
Ok
Ak’
轴上点
F’
1)F、F′不是一对共轭点,物方焦平面和像方焦平面也不 为共轭面。
2)由物方无限远处射来的任何方向的平行光束,汇聚于像 方焦平面上一点。
轴外点
负光组/负透镜/凹透镜?
无限远轴外点
2. 主点、主平面
A
h F
E1 Q G1
2)理想光学系统的二焦距间关系
f n n =n′ f f
fn
h ltgU ltgU
x f tgU x f tgU
x y f , x y f
y
y
yftgU yf tgU
yfu yf u nuy nuy
f n fn
3)正光组 f′> 0; 负光组 f′< 0
相关文档
最新文档