高考数学压轴题系列训(共六套)(含答案及解析详解)

合集下载

高考数学压轴专题专题备战高考《不等式》真题汇编含答案解析

高考数学压轴专题专题备战高考《不等式》真题汇编含答案解析

《不等式》考试知识点一、选择题1.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( ) A .125B .125-C .32D .32-【答案】B 【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.2.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤2n ; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3 C .4 D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得22m n m n+-=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.3.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A .[3,3]-;B .(,3]-∞-C .[3,)+∞D .(,3][3,)-∞-⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,11111133323222222a a a d a a a ⎛⎫=--=-+≤-⋅=- ⎪⎝⎭,当且仅当13a =时等号成立; 当10a <时,111133232222a a d a a ⎛⎫⎛⎫=--≥-⋅-= ⎪ ⎪⎝⎭⎝⎭,当且仅当13a =-时等号成立;∴实数d 的取值范围为(,3][3,)-∞-⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.4.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.5.若实数,,a b c ,满足222a b a b ++=,2222a b c a b c ++++=,,则c 的最大值是( ) A .43B .2log 3C .25D .24log 3【答案】D 【解析】 【分析】利用基本不等式求出2a b+的最小值后可得221a ba b ++-的最大值,从而可得2c 的最大值,故可得c 的最大值. 【详解】因为222a b a b ++=,故222222a b a b a b a b +++=≥⨯= 整理得到24a b +≥,当且仅当1a b ==时等号成立. 又因为2222abca b c++++=,故2114211212133a b ca b a b +++==+≤+=--,当且仅当1a b ==时等号成立,故max 24log 3c =. 故选:D. 【点睛】本题考查基本不等式的应用以及指数不等式的解,应用基本不等式求最值时,需遵循“一正二定三相等”,如果多变量等式中有和式和积式的关系,则可利用基本不等式构造关于和式或积式的不等式,通过解不等式来求最值,求最值时要关注取等条件的验证.6.已知集合{}0lg 2lg3P x x =<<,212Q x x ⎧⎫=>⎨⎬-⎩⎭,则P Q I 为( )A .()0,2B .()1,9C .()1,4D .()1,2【答案】D 【解析】 【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分. 【详解】解:{}19P x x =<<,{}02Q x x =<<;()1,2P Q ∴⋂=.故选:D. 【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”. 简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.7.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.8.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8【答案】C 【解析】 【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C 时,z 取得最大值.【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图表示:当目标函数经过点()2,3C 时,z 取得最大值,最大值为7.故选:C. 【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.9.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( ) A .[1,)-+∞ B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A 【解析】 【分析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可. 【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.10.已知,x y 满足约束条件24030220x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩则目标函数22x y z -=的最大值为( ).A .128B .64C .164D .1128【答案】B 【解析】 【分析】画出可行域,再求解2x y -的最大值即可. 【详解】不等式组表示的平面区域如下图阴影部分所示.设2x y μ=-,因为函数2xy =是增函数,所以μ取最大值时,z 取最大值.易知2x y μ=-在A 点处取得最大值.联立220,30x y x y +-=⎧⎨+-=⎩解得4,1.x y =⎧⎨=-⎩即(4,1)A -.所以max 42(1)6μ=-⨯-=,所以6max 264z ==.故选:B 【点睛】本题考查线性规划,考查化归与转化思想以及数形结合思想.11.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1),∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.12.已知ABC V 外接圆的半径2R =,且2sin 2AA =.则ABC V 周长的取值范围为( )A .B .(4,C .4+D .(4+【答案】C 【解析】 【分析】由2sin 2A A =及倍角公式可得23A π=,2sin a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】由题意,22cos 1123A A -=-,即cos 13A A -=-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 32A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=,即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C 【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.13.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥Q 且224x y+≤ ,422x y ∴≤≤⇒+≤ , 等号成立的条件是x y =,又x y +≥Q ,0,0x y >>21xy ∴≤⇒≤ , 等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.14.若实数x ,y ,对任意实数m ,满足()()222122211x y m x y m x y m ⎧-≤-⎪⎪+≥+⎨⎪-+-≤⎪⎩,则由不等式组确定的可行域的面积是( ) A .14π B .12πC .πD .32π 【答案】A 【解析】 【分析】画出约束条件的可行域,然后求解可行域的面积.【详解】实数x ,y ,对任意实数m ,满足2221222(1)()1x y m x y m x y m --⎧⎪++⎨⎪-+-⎩„…„的可行域如图: 可行域是扇形,14个圆,面积为:211144ππ⨯⨯=. 故选:A . 【点睛】本题考查线性规划的应用,考查数形结合以及计算能力,意在考查学生对这些知识的理解掌握水平.15.在区间[]0,1内随机取两个数m 、n ,则关于x 的方程20x nx m +=有实数根的概率为( )A .18B .17C .16D .15【答案】A【解析】【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果.【详解】若方程20x nx m +=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118S P S ⨯⨯===⨯阴影正方形. 故选:A .【点睛】 本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.16.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ). A 5B .3C .23 D .22【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---2()22a b a b ≥-⨯=- 当且仅当2a b a b-=-,即2a b -=时等号成立 所以22a b a b+-的最下值为2故答案选D考点:基本不等式.17.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.18.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是A .3B .4C .92D .112 【答案】B【解析】【详解】 解析:考察均值不等式2228(2)82x y x y x y +⎛⎫+=-⋅≥- ⎪⎝⎭,整理得2(2)4(2)320x y x y +++-≥即(24)(28)0x y x y +-++≥,又x+2 y>0,24x y ∴+≥19.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92 B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m m n +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.20.已知0a >,0b >,且()122y a b x =+为幂函数,则ab 的最大值为( ) A .18 B .14 C .12 D .34【答案】A【解析】【分析】根据()122y a b x =+为幂函数,得到21a b +=,再将ab 变形为ab 122a b =⋅利用基本不等式求解.【详解】因为()122y a b x =+为幂函数,所以21a b +=,又因为0a >,0b >,所以ab 2112122228a b a b +⎛⎫=⋅≤= ⎪⎝⎭, 当且仅当21a b +=,2a b =即11,24a b ==取等号. 所以ab 的最大值为 18.故选:A【点睛】本题主要考查幂函数的定义和基本不等式的应用,还考查运算求解的能力,属于中档题.。

2024年杭州市高考数学压轴题答案详解

2024年杭州市高考数学压轴题答案详解

2024年杭州市高考数学压轴题答案详解高考,对于每一位学子来说,都是一场重要的战役。

而数学压轴题,更是这场战役中的关键一役。

接下来,让我们一同深入剖析 2024 年杭州市高考数学压轴题。

题目:已知函数$f(x) = x^3 3x^2 + ax + b$在$x =-1$处取得极值,且曲线$y = f(x)$在点$(1,f(1))$处的切线与直线$2x + y 3 =0$平行。

(1)求实数$a$,$b$的值;(2)求函数$f(x)$在区间$-2,2$上的最大值与最小值。

解:(1)首先,对函数$f(x) = x^3 3x^2 + ax + b$求导,可得$f'(x) = 3x^2 6x + a$。

因为函数$f(x)$在$x =-1$处取得极值,所以$f'(-1) = 0$,即:\\begin{align}3\times(-1)^2 6\times(-1) + a &= 0\\3 + 6 + a &= 0\\9 + a &= 0\\a &=-9\end{align}\又因为曲线$y = f(x)$在点$(1,f(1))$处的切线与直线$2x + y 3 = 0$平行,直线$2x + y 3 = 0$的斜率为$-2$。

所以$f'(1) =-2$,即:\\begin{align}3\times1^2 6\times1 9 &=-2\\3 6 9 &=-2\\-3 9 &=-2\\-12 &=-2(矛盾)\end{align}\这里发现计算有误,重新计算:\\begin{align}f'(1) &= 3\times1^2 6\times1 + a\\&= 3 6 + a\\&=-3 + a\end{align}\因为$f'(1) =-2$,所以$-3 + a =-2$,解得$a = 1$。

将$x =-1$,$a = 1$代入$f'(x) = 3x^2 6x + 1$,可得$f'(-1) = 3\times(-1)^2 6\times(-1) + 1 = 3 + 6 + 1 = 10 \neq 0$,说明我们前面求得的$a = 1$是正确的。

考数学压轴题系列训练含答案及解析详解

考数学压轴题系列训练含答案及解析详解

高考数学压轴题系列训练含答案及解析详解一1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =+=+(222222211321a ab ac ∴=+∴=+=+∴=-=+∴+= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴='∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴=+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k值;若不存在,说明理由;(Ⅲ)对任意正整数n,不等式1120111111n nn a b b b +-≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围. 解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴== 当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案一、2019年高考数学上海卷:(本题满分18分)已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ; (2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.二、2019年高考数学浙江卷:(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。

(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.已知函数l (n )f x x =.(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-; (Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018年高考数学江苏卷:(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).七、2017年高考数学上海卷:(本小题满分18分)设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 是周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.八、2017年高考数学浙江卷:(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈. 证明:当*N n ∈时, (I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤; (III )1-21122n n n x -≤≤.高考压轴题答案一、2019年上海卷: 解:(1)等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.当120,3a d π==,集合22S ⎧⎪=⎨⎪⎪⎩⎭. (2)12a π=,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴= 当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin ,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.∴④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,S =⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件. 当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件. 当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意. 综上,3,4,5,6T =.二、2019年浙江卷:解:(1)当34a =-时,()3ln 4f x x =-()0,∞+,且:()3'4f x x =-==, 因此函数()f x 的单调递增区间是12ω=,单调递减区间是()0,3.(2)由1(1)2f a ≤,得04a <当0a <()f x 2ln 0x -≥,令1t a=,则t ≥设()22ln g t t x =,t ≥则2()2ln g t t x=-,(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭则()(22)2ln g x g x =,记1()ln ,7p x x x =≥,则1()p x x '===∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥,令211()(1),,7q x x x x e ⎡⎤=++∈⎢⎥⎣⎦,则()10q x'=+>,故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增,1()7q x q ⎛⎫∴≤ ⎪⎝⎭,由(i )得11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭,()0,()0q x g t g ∴<∴≥=>,由(i )(ii )知对任意21,,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x ≤综上所述,所求的a 的取值范围是⎛ ⎝⎦.三、2019年江苏卷:解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=+02233445555555C C C C C C =++++a =+因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.四、2018年上海卷:解:(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列,可得112n n a -=,11112n n nb a +=+=+, 则011111111222n n n n b a ---=+-=-<,*n N ∈, 可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列, 可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =, 可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,, M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(), ①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈,可得11101n n b b n n +-=->+, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意; ④若2d-,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+,11111n n n a b a +++-+, 可得()111120n n n n b b a a d ++-+--=+,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意.综上可得,d 的范围是(2,)-+∞.五、2018年浙江卷:解:(Ⅰ)函数()f x的导函数1()f x x'=-, 由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+=.= 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x ++=.设()ln g x x =,则1()4)4g x x'=,所以()g x 在[256,)+∞上单调递增, 故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令()e a k m -+=,211a n k ⎛+⎫=+ ⎪⎝⎭,则 ()?0f m km a a k k a -->+-≥,(0)f n kn a a n k n ⎫----<⎪⎭<, 所以,存在0(,)x m n ∈)使00()f x kx a =+,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点. 由()f x kx a =+得k =.设()h x =,则22ln 1()12()x a g x a h x x x +--+'==,其中()ln g x x =-. 由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤,故–11613420g x a g a ln a -+-+=-++()≤()-≤,所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018江苏卷:解:(Ⅰ)由题意得||1n n a b -≤对任意1,2,3,4n =均成立 故当10a =,121q b ==时可得|01|1|2|1|24|1|38|1d d d -⎧⎪-⎪⎨-⎪⎪-⎩≤≤≤≤即1335227532d d d ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤≤≤所以7532d ≤≤(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+≤…,) 化简后可得11111112(22)(222)0(2,3,1)111n n n m b q b b b q n n n m n n n ----=-+=-+=+---≤…, 因为q ∈,所以122n m -≤,22(2,3,1)n n m -=+≤…,而110(2,3,,11nb q n m n->=+-…) 所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立 当1m =时,112)b d ≤当2m ≥时,设111n n b q c n -=-,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m nn n n --+---=-==--… 设()(1)f n q n q =--,因为10q ->,所以()f n 单调递增,又因为q ∈所以11()(1)(1)2(1)2111m m m f m q m q m m m m ⎛⎫ ⎪⎛⎫=----=-- ⎪ ⎪-⎝⎭ ⎪-⎝⎭≤ 设111,0,2x x x m m ⎛⎤==∈ ⎥⎝⎦,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =-- 因为2ln 22ln 2x ≤,214(1)x -≥所以'21(x)2ln 20(1)x g x =-<-在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,即()f x 单调递增。

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

2023年新高考数学选填压轴题汇编(六)(解析版)

2023年新高考数学选填压轴题汇编(六)(解析版)

2023年新高考数学选填压轴题汇编(六)一、单选题1.(2022·福建省福州华侨中学高三阶段练习)函数f x =A sin ωx +π4ω>0 的图象与x 轴的两个相邻交点间的距离为π3,要得到函数g x =A cos ωx 的图象,只需将f x 的图象( )A.向左平移π12个单位 B.向右平移π4个单位C.向左平移π4个单位D.向右平移3π4个单位【答案】A【解析】由题意,函数f x =A sin ωx +π4 ω>0 的图象与x 轴的两个相邻交点间的距离为π3∴ 周期T =2π3,由周期公式:T =2πω∴T =2π3=2πω解得: ω=3∴f x =A sin 3x +π4 =A sin3x +π12要得到g x =A cos3x ,即g x =A cos3x =A sin 3x +π2=A sin3x +π6 由题意,可得f x 向左平移π12个单位可得g x .故选:A .2.(2022·福建省福州屏东中学高三开学考试)若函数f x =e x -a -1 x +1在(0,1)上不单调,则a 的取值范围是( )A.2,e +1B.2,e +1C.-∞,2 ∪e +1,+∞D.-∞,2 ∪e +1,+∞【答案】A【解析】∵f (x )=e x -(a -1)x +1,∴f (x )=e x -a +1,若f (x )在(0,1)上不单调,则f (x )在(0,1)上有变号零点,又∵f (x )单调递增,∴f 0 ∙f 1 <0,即(1-a +1)(e -a +1)<0,解得2<a <e +1.∴a 的取值范围是(2,e +1).故选:A .3.(2022·福建省福州第二中学高三阶段练习)已知圆C :x 2+y 2-10y +21=0与双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线相切,则该双曲线的离心率是A.2B.53C.52D.5【答案】C【解析】由双曲线x 2a 2-y 2b2=1(a >0,b >0),可得其一条渐近线的方程为y =b a x ,即bx -ay =0,又由圆C :x 2+y 2-10y +21=0,可得圆心为C (0,5),半径r =2,则圆心到直线的距离为d =-5a b 2+(-a )2=5a c ,则5a c =2,可得e =c a =52,故选C .4.(2022·福建省福州第一中学高三开学考试)过圆x 2+y 2=64上的动点作圆C :x 2+y 2=16的两条切线,两个切点之间的线段称为切点弦,则圆C 不在任何切点弦上的点形成的区域的面积为( )A.4πB.6πC.8πD.12π【答案】A 【解析】设圆x 2+y 2=64的动点为P m ,n ,过P 作圆C 的切线,切点分别为A ,B ,则过P ,A ,B 的圆是以PO 直径的圆,该圆的方程为:x x -m +y y -n =0.由x 2+y 2=16x x -m +y y -n =0 可得AB 的直线方程为:mx +ny =16.原点到直线mx +ny =16的距离为16 m 2+n 2=1664=2,故圆C 不在任何切点弦上的点形成的区域的面积为4π,故选:A .5.(2022·福建省福州第一中学高三开学考试)某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是A.16π9B.8π9C.16π27D.8π27【答案】A【解析】设圆柱的半径为r ,高为x ,体积为V ,则由题意可得r 2=3-x3,∴x =3-32r ,∴圆柱的体积为V (r )=πr 23-32r (0<r <2),则V (r )=169π∙34r ∙34r ∙3-32r ≤16π9∙34r +34r +3-32r 33=16π9.当且仅当34r =3-32r ,即r =43时等号成立.∴圆柱的最大体积为16π9,故选:A .6.(2022·福建省福州延安中学高三开学考试)已知2sin 2x +cos 2y =1,则sin 2x +cos 2y 的取值范围是( )A.0,12B.12,1C.22,1D.12,22【答案】B【解析】∵2sin 2x +cos 2y =1,∴cos 2y =1-2sin 2x ,∴0≤1-2sin 2x ≤1,∴0≤sin 2x ≤12,又sin 2x +cos 2y =sin 2x +1-2sin 2x =1-sin 2x ∈12,1,∴sin 2x +cos 2y 的取值范围是12,1.故选:B7.(2022·福建·福州十八中高三开学考试)设函数f (x )的定义域为R ,f (x +1)为偶函数,f (x +2)为奇函数,当x ∈[1,2]时,f (x )=ax +b .若f (0)+f (3)=4,则f 92=( )A.-2B.32C.-72D.72【答案】A【解析】因为f (x +1)为偶函数,则f (x +1)的图像关于y 轴对称,所以f (x )关于x =1对称,则f (0)=f (2),试卷第2页,共40页因为f (x +2)为奇函数,则f (x +2)的图像关于原点对称,且f (2)=0,所以f (x )关于(2,0)对称,则f (3)=-f (1),因为当x ∈[1,2]时,f (x )=ax +b ,所以f (1)=a +b ,f (2)=2a +b =0,因为f (0)+f (3)=4,所以f (2)-f (1)=a =4,故f (2)=2a +b =8+b =0⇒b =-8,从而当x ∈[1,2]时,f (x )=4x -8,故f 92 =-f -12 =-f 52 =f 32 =4×32-8=-2.故选:A .8.(2022·福建·闽江学院附中高三开学考试)设函数f x 是奇函数f x x ≠0 的导函数,f -1 =-2.当x >0时,f x >2,则使得f x >2x 成立的x 的取值范围是( )A.-∞,-1 ∪0,1 B.-1,0 ∪1,+∞ C.-∞,-1 ∪1,+∞ D.-1,0 ∪0,1【答案】B【解析】因为当x >0时,f x >2,所以f 'x -2>0,故令g x =f x -2x ,则g 'x =f 'x -2>0,故g x 在0,+∞ 上单调递增.因为f -1 =-2,所以g -1 =f -1 +2=0,又因为f x 为奇函数,所以g x =f x -2x 为奇函数,所以g 1 =0,且在区间-∞,0 上,g x 单调递增.所以使得f x >2x ,即g x >0成立的x 的取值范围是-1,0 ∪1,+∞ .故选:B9.(2022·江苏·常州市平陵高级中学高三开学考试)若函数f x =x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m 的值A.与a 有关,且与b 有关 B.与a 有关,但与b 无关C.与a 无关,且与b 无关 D.与a 无关,但与b 有关【答案】B【解析】因为最值在f (0)=b ,f (1)=1+a +b ,f -a 2 =b -a 24中取,所以最值之差一定与b 无关,选B .10.(2022·江苏·常州市平陵高级中学高三开学考试)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=a ⋅2x +b .若f (0)+f (3)=6,则f log 296 的值是( )A.-12 B.-2 C.2 D.12【答案】B【解析】f (x +1)为奇函数,即其图象关于(0,0)点对称,所以f (x )的图象关于(1,0)点对称,f (x +2)为偶函数,即其图象关于y 轴对称,因此f (x )的图象关于直线x =2对称,所以f (1)=0,f (0)=-f (2),f (3)=f (1),所以f (1)=2a +b =0,f (0)+f (3)=-f (2)=-(4a +b )=6,由此解得a =-3,b =6,所以x ∈[1,2]时,f (x )=-3⋅2x +6,由对称性得f (x +2)=f (2-x )=-f (1-(1-x ))=-f (x ),所以f (x +4)=-f (x +2)=f (x ),f (x )是周期函数,周期为4,6<log 296<7,f (log 296)=f (log 296-4)=f (4-log 296+4)=f log 225696 =f log 283 =-3×83+6=-2,故选:B .11.(2022·江苏·盐城市伍佑中学高三开学考试)已知函数f x =x 2+4a -3 x +3a ,x <0log ax +1 +1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程f x =2-x 恰好有两个不相等的实数解,则a 的取值范围是( )A.12,23 ∪34B.23,34 C.13,23 ∪34D.13,34【答案】C【解析】函数f x 在R 上单调递减,则3-4a 2≥00<a <102+4a -3 ⋅0+3a ≥log a 0+1 +1,解得13≤a ≤34,在同一直角坐标系中,画出函数y =f x 和函数y =2-x 的图象,如图:由图象可知,在0,+∞ 上,f x =2-x 有且仅有一个解,故在-∞,0 上,f x =2-x 有且仅有一个解,当3a >2即a >23时,由x 2+4a -3 x +3a =2-x ,即x 2+4a -2 x +3a -2=0,x <0,则Δ=(4a -2)2-43a -2 =0,解得a =34或1(舍去),当a =34时,方程可化为x +12 2=0,x =-12符合题意;当1≤3a ≤2,即13≤a ≤23时,由图象可知,符合条件,综上:a 的取值范围为13,23 ∪34.故选:C .12.(2022·江苏·盐城市伍佑中学高三开学考试)已知正实数a ,b 满足abe a +ln b +1=0,则( )A.b >1eB.a <1C.ab =1D.e a <1b【答案】D【解析】因为abe a +ln b +1=0,所以ae a =-ln b -1b>0,故ln b +1<0,即0<b <1e,故选项A 错误;若a =1,则eb +ln b +1=0,作出函数y =ln x 与y =-ex -1的图象如图所示:显然有交点,则方程eb +ln b +1=0有解,故选项B 错误;若ab =1,则e a -ln a +1=0,即e a =ln a -1,作出函数y =e x 与y =ln x -1的图象如图所示:显然无交点,则方程e a -ln a +1=0无解,故选项C 错误;因为abe a +ln b +1=0,则ae a +1b =-ln bb=-ln b ⋅e -ln b >ae a ,且-ln b >0,令f x =xe x (x >0),则fx =x +1 e x >0,所以f x在区间,+∞ 上单调递增,所以f -ln b >f a ,即-ln b >a ,因此e a <1b,故选项D 正确.故选:D13.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)已知函数f x =ln x x 2,若f x <m -1x2在(0,+∞)上恒成立,e =2.71828⋅⋅⋅为自然对数的底数,则实数m 的取值范围是( )试卷第2页,共40页A.m >eB.m >e2C.m >1D.m >e【答案】B【解析】若f x <m -1x 2在(0,+∞)上恒成立,即f x +1x2<m 在(0,+∞)上恒成立,令g (x )=f (x )+1x 2=ln x +1x 2,故只需g (x )max <m 即可,g (x )=1x ⋅x 2-(ln x +1)⋅2xx 4=-2ln x -1x 3,令g(x )=0,得x =e -12,当0<x <e-12时,g(x )>0;当x >e-12时,g (x )<0,所以g (x )在0,e-12上是单调递增,在e -12,+∞ 上是单调递减,所以当g (x )max =g e -12 =e2,所以实数m 的取值范围是m >e2.故选:B .14.(2022·河北省唐县第一中学高三开学考试)定义运算a *b ,a *b ={a b a ≤ba >b,例如1*2=1,则函数y =1*2x 的值域为A.0,1 B.-∞,1 C.1,+∞ D.0,1【答案】D【解析】当1≤2x 时,即x ≥0时,函数y =1*2x =1当1>2x 时,即x <0时,函数y =1*2x =2x ∴f (x )=1,x ≥02x ,x <0由图知,函数y =1*2x 的值域为:(0,1].故选D .15.(2022·重庆·临江中学高三开学考试)已知函数f x =log 3x ,x >03x,x ≤0,若函数g x =f x 2-m +2 f x +2m恰好有5个不同的零点,则实数m 的取值范围是( )A.0,1B.0,1C.1,+∞D.1,+∞【答案】A【解析】画出函数的大致图象,如下图所示:∵函数g x =f x 2-m +2 f x +2m 恰好有5个不同的零点,∴方程f x2-m +2 f x +2m =0有5个根,设t =f (x ),则方程化为t 2-m +2 t +2m =0,易知此方程有两个不等的实根t 1,t 2,结合f (x )的图象可知,t 1∈0,1 ,t 2∈1,+∞ ,令h (t )=t 2-m +2 t +2m ,则由二次函数的根的分布情况得:Δ=(m +2)2-8m >0h (0)>0h (1)≤0,解得:0<m ≤1.故选:A16.(2022·重庆·临江中学高三开学考试)已知定义在(-3,3)上的函数f (x )满足f (x )+e 4x f (-x )=0,f (1)=e 2,f (x )为f (x )的导函数,当x ∈[0,3)时,f (x )>2f (x ),则不等式e 2x f (2-x )<e 4的解集为( )A.(-2,1)B.(1,5)C.(1,+∞)D.(0,1)【答案】B 【解析】令g x =f xe2x ,所以f x =e 2x g x ,因为f x +e 4x f -x =0,所以e 2x ⋅g x +e 4x ⋅e -2x g -x =0,化简得g x +g -x =0,所以g x 是-3,3 上的奇函数;gx =f x e 2x -2e 2x f x e 4x =f x -2f x e 2x,因为当0≤x <3时,f x >2f x ,所以当x ∈0,3 时,g x >0,从而g x 在0,3 上单调递增,又g x 是-3,3 上的奇函数,所以g x 在-3,3 上单调递增;考虑到g 1 =f 1 e 2=e 2e2=1,由e 2x f 2-x <e 4,得e 2x e 22-x g 2-x <e 4,即g 2-x <1=g 1 ,由g x 在-3,3 上单调递增,得-3<2-x <3,2-x <1,解得1<x <5,所以不等式e 2x f 2-x <e 4的解集为1,5 ,故选:B .17.(2022·重庆南开中学高三阶段练习)公元656年,唐代李淳风注《九章》时提到祖暅的开立圆术.祖暅在求球体积时,使用一个原理:“幂势既同,则积不容异”,意思是两个同高的立体,如在等高处的截面积恒相等,则体积相等.上述原理在中国被称为祖暅原理,我们可以应用此原理将一些复杂几何体转化为常见几何体的组合体来计算体积.如图,将双曲线C :y 2-x 2=5与直线x =±2所围成的平面图形绕双曲线的实轴所在直线旋转一周得到几何体Γ,下列平面图形绕其对称轴(虚线所示)旋转一周所得几何体与Γ的体积相同的是( )A.图①,长为6、宽为4的矩形的两端去掉两个弦长为4、半径为3的弓形B.图②,长为25、宽为4的矩形的两端补上两个弦长为4、半径为3的弓形C.图③,长为6、宽为4的矩形的两端去掉两个底边长为4、腰长为3的等腰三角形D.图④,长为25、宽为4的矩形的两端补上两个底边长为4、腰长为3的等腰三角形【答案】B【解析】由y 2-x 2=5x =2得:y =±3,则当y =t 5<t <3 与C 相交于两点时,内圆半径r =t 2-5,则在该位置旋转一周所得圆环面积为4π-t2-5 π=9-t 2 π;将所有图形均以矩形的中心为原点,以对称轴为y 轴建立平面直角坐标系,试卷第2页,共40页对于③,双曲线实轴长为25,③中y 轴的最短距离为6-232-22=6-25,不合题意,③错误;对于④,几何体Γ母线长为6,④中y 轴的最长距离为25+232-22=45,不合题意,④错误;对于①,在y 轴的最短距离为6-2×3-32-22 =25,母线长为6,与几何体Γ吻合;当y =t 5<t <3 与①中图形相交时,两交点之间距离为232-3+5-t 2,此时圆环面积为4π-32+3+5-t 2 π=-t 2+23+5 t -14-25 π,不合题意,①错误对于②,在y 轴的最长距离为25+2×3-32-22 =6,矩形高为25,与几何体Γ吻合;当y =t 5<t <3 与②中图形相交时,两交点之间距离为232-t 2=29-t 2,此时圆面积为9-t 2 π,与圆环面积相同,满足题意,②正确.故选:B .18.(2022·辽宁·高三开学考试)已知函数f x 满足:f 1 =14,4f x f y =f x +y +f x -y x ,y ∈R ,则2022k =0f (k )= ( )A.12B.14C.-14D.-12【答案】A【解析】4f x f y =f x +y +f x -y x ,y ∈R ,令x =1,y =0得:4f 1 f 0 =2f 1 ,因为f 1 =14,所以f 0 =12,令x =n ,y =1得:4f n f 1 =f n +1 +f n -1 ,即f n =f n +1 +f n -1 ,则f n +1 =f n +2 +f n ,上面两式子联立得:f n +2 =-f n -1 ,所以f n -1 =-f n -4 ,故f n +2 =f n -4 ,故f x 是以6为周期的函数,且f 0 +f 1 +f 2 +f 3 +f 4 +f 5 =f 0 +f 1 +f 2 -f 0 -f 1 -f 2 =0,所以2022k =0f (k )= 3375k =0f (k )+f 2022 =0+ f 2022 =f 0 =12故选:A19.(2022·辽宁·沈阳市第四中学高三阶段练习)已知△ABC ,I 是其内心,内角A ,B ,C 所对的边分别a ,b ,c ,则( )A.AI =13(AB +AC )B.AI =cAB a +bACaC.AI =bAB a +b +c +cAC a +b +cD.AI =cAB a +b +bACa +c 【答案】C【解析】延长AI ,BI ,CI ,分别交BC ,AC ,AB 于D ,E ,F .内心是三角形三个内角的角平分线的交点.在三角形ABD 和三角形ACD 中,由正弦定理得:BD sin 12∠BAC =c sin ∠ADB ,CD sin 12∠BAC =bsin ∠ADC ,由于sin ∠ADB =sin ∠ADC ,所以BD c =CD b ,BD CD =c b ,BD BD +CD =c b +c ,BD a =c b +c ,BD =acb +c,同理可得c BD =AI DI ,c BD +c =AI DI +AI =AIAD ,AI =c ⋅AD BD +c =c ac b +c+c ⋅AD =b +c a +b +c ⋅AD .所以AD =AB +BD =AB +c b +c BC =AB +c b +c AC -AB=b b +c AB +c b +c AC,则AI =b +c a +b +c ⋅AD =b +c a +b +c ⋅b b +c AB +c b +c AC =b a +b +c AB +ca +b +c AC .故选:C 20.(2022·辽宁·东北育才学校高三阶段练习)已知不等式x ln x +(x +1)k <2x ln2的解集中仅有2个整数,则实数k 的取值范围是( )A.0,34ln 43 B.34ln 43,23ln2C.23ln2,+∞D.34ln 43,23ln2【答案】D【解析】由x ln x +x (k -ln4)+k <0可得:k (x +1)<x ln4-x ln x ,设f (x )=k (x +1),g (x )=x ln4-x ln x ,g (x )=ln4-ln x -1,x ∈0,4e时,g (x )>0,g (x )单调递增,x ∈4e ,+∞ 时,g (x )<0,g (x )单调递减,则当x =4e时函数g x 取得最大值,如示意图:由图可知,当k ≤0时,整数解超过了2个,不满足题意;当k >0时,需满足f 2 <g 2 f 3 ≥g 3 得:34ln 43≤k <23ln2.故选择:D .21.(2022·辽宁·东北育才学校高三阶段练习)若α,β∈0,π2,且(1+cos2α)(1+sin β)=sin2αcos β,则下列结论正确的是( )A.α+β=π2B.α+β2=π2C.2α-β=π2D.α-β=π2【答案】C【解析】∵α,β∈0,π2,∴cos α≠0.由(1+cos2α)(1+sin β)=sin2αcos β,可得2cos 2α(1+sin β)=2sin αcos αcos β,即cos α(1+sin β)=sin αcos β.∴cos α=sin αcos β-cos αsin β=sin α-β ,∴sin α-β =sin π2-α.∵α,β∈0,π2 ,∴-π2<α-β<π2,且0<π2-α<π2.由于函数y =sin x 在x ∈-π2,π2 上单调递增,∴α-β=π2-α,即2α-β=π2.故选:C .二、多选题22.(2022·福建省福州华侨中学高三阶段练习)海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后,在落潮时返回海洋.一艘货船的吃水深度(船底到水面的距离)为4m .安全条例规定至少要有2.25m 的安全间隙(船底到海底的距离),下表给出了某港口在某试卷第2页,共40页季节每天几个时刻的水深.时刻水深/m 时刻水深/m 时刻水深/m 0:00 5.09:00 2.518:00 5.03:007.512:00 5.021:00 2.56:005.015:007.524:005.0若选用一个三角函数f x 来近似描述这个港口的水深与时间的函数关系,则下列说法中正确的有( )A.f x =2.5cos π6x+5 B.f x =2.5sin π6x+5C.该货船在2:00至4:00期间可以进港 D.该货船在13:00至17:00期间可以进港【答案】BCD【解析】依据表格中数据知,可设函数为f x =A sin ωx +k ,由已知数据求得A =2.5,k =5,周期T =12,所以ω=2πT =π6﹐所以有f x =2.5sin π6x +5,选项A 错误;选项B 正确;由于船进港水深至少要6.25,所以2.5sin π6x +5≥6.25,得sin π6x ≥12,又0≤x ≤24⇒0≤π6x ≤4π,则有π6≤π6x ≤5π6或13π6≤π6x ≤17π6,从而有1≤x ≤5或13≤x ≤17,选项C ,D 都正确.故选:BCD23.(2022·福建省福州屏东中学高三开学考试)已知函数f x =3sin 2x +φ -π2<φ<π2 的图像关于直线x =π3对称,则( )A.函数f x +π12 为奇函数B.函数f x 在π3,π2上单调递增C.函数f x 的图像向右平移a a >0 个单位长度得到的函数图像关于x =π6对称,则a 的最小值是π3D.若方程f x =a 在π6,2π3 上有2个不同实根x 1,x 2,则x 1-x 2 的最大值为π2【答案】AC【解析】因为函数f x =3sin 2x +φ -π2<φ<π2 的图像关于直线x =π3对称,所以,2×π3+φ=π2+k π,k ∈Z ,解得φ=-π6+k π,k ∈Z ,因为-π2<φ<π2,所以φ=-π6,即f x =3sin 2x -π6,所以,对于A 选项,函数f x +π12 =3sin2x ,是奇函数,故正确;对于B 选项,当x ∈π3,π2 时,2x -π6∈π2,5π6,由于函数y =sin x 在π2,5π6 上单调递减,所以函数f x 在π3,π2 上单调递减,故错误;对于C 选项,函数f x 的图像向右平移a a >0 个单位长度得到的函数图像对应的解析式为g x =3sin 2x -2a -π6,若g x 图像关于x =π6对称,则2×π6-2a -π6=π2+k π,k ∈Z ,解得a =-π6+k π2,k ∈Z ,由于a >0,故a 的最小值是π3,故正确;对于D 选项,当x ∈π6,2π3时,2x -π6∈π6,7π6,故结合正弦函数的性质可知,若方程f x =a 在π6,2π3上有2个不同实根x 1,x 2,不妨设x 1<x 2,则x 1-x 2 取得最大值时满足2x 1-π6=π6且2x 2-π6=5π6,所以,x 1-x 2 的最大值为π3,故错误.故选:AC 24.(2022·福建省福州屏东中学高三开学考试)已知定义在R 上的奇函数f x 图象连续不断,且满足f x +2 =f x ,则以下结论成立的是( )A.函数f x 的周期T =2B.f 2019 =f 2020 =0C.点1,0 是函数y =f x 图象的一个对称中心D.f x 在-2,2 上有4个零点【答案】ABC【解析】定义在R 上的奇函数f (x )图象连续不断,且满足f (x +2)=f (x ),所以函数的周期为2,所以A 正确;f (-1+2)=f (-1),即f (1)=f (-1)=-f (1),所以f (1)=f (-1)=0,所以f (2019)=f (1)=0,f (2020)=f (0)=0,所以B 正确;f x +2 =f x =-f -x ⇒f x +2 +f -x =0⇒f x 图象关于1,0 对称,所以C 正确;f (x )在[-2,2]上有f (-2)=f (-1)=f (0)=f (1)=f (2)=0,有5个零点,所以D 不正确;故选:ABC .25.(2022·福建省福州第二中学高三阶段练习)已知函数f (x )=-x 2-2x ,x <0f (x -2),x ≥0,以下结论正确的是( )A.f (-3)+f (2019)=-3B.f x 在区间4,5 上是增函数C.若方程f (x )=kx +1恰有3个实根,则k ∈-12,-14D.若函数y =f (x )-b 在(-∞,4)上有6个零点x i (i =1,2,3,4,5,6),则6i =1x i f x i 的取值范围是0,6【答案】BCD【解析】函数f (x )的图象如图所示:对A ,f (-3)=-9+6=-3,f (2019)=f (1)=f (-1)=1,所以f (-3)+f (2019)=-2,故A 错误;对B ,由图象可知f x 在区间4,5 上是增函数,故B 正确;对C ,由图象可知k ∈-12,-14,直线f (x )=kx +1与函数图象恰有3个交点,故C 正确;对D ,由图象可得,当函数y =f (x )-b 在(-∞,4)上有6个零点x i (i =1,2,3,4,5,6),则0<b <1,所以当b →0时,6i =1x i f x i →0;当b →1时,6i =1x i f x i →6,所以6i =1x i f x i 的取值范围是0,6 ,故D 正确.故选:BCD .26.(2022·福建省福州第二中学高三阶段练习)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A.0<x 0<1eB.x 0>1eC.f (x 0)+2x 0<0D.f (x 0)+2x 0>0【答案】AD试卷第2页,共40页【解析】函数f (x )=x ln x +x 2,(x >0),∴f (x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f x 0 =0,即∴ln x 0+1+2x 0=0,∴f 1e =2e >0,当x >1e时,f x >0∵x →0,f (x )→-∞,∴0<x 0<1e,即A 选项正确,B 选项不正确;f x 0 +2x 0=x 0ln x 0+x 20+2x 0=x 0ln x 0+x 0+2 =x 01-x 0 >0,即D 正确,C 不正确.故答案为:AD .27.(2022·福建省福州第一中学高三开学考试)设函数f x =sinπxx 2-x +54,则下列结论正确的是( )A.f x 的最大值为1B.f x ≤4xC.曲线y =f x 存在对称轴D.曲线y =f x 存在对称中心【答案】ABC【解析】A :因为x 2-x +54=x -12 2+1≥1,sinπx ≤1,所以sinπx ≤x 2-x +54⇒sinπx x 2-x +54≤1⇒f (x )≤1,当且仅当x =12时,f x =1故A 正确;B :f x ≤4x 等价于sinπx ≤4x 3-x 2+54x ,设g x =x -sin x ,x ∈0,+∞ ,g (x )=1-cos x ≥0,所以函数g (x )=x -sin x 在x ∈[0,+∞)时单调递增,因此有g (x )≥g (0)=0-sin0=0,即x ≥sin x ,x ∈0,+∞ ,而设函数h (x )=x -sin x ,h (-x )=-x -sin (-x ) =x -sin x =h (x ),所以h (x )=x -sin x 是实数集上的偶函数,因此有x ≥sin x ,即πx ≥sinπx ,4x x 2-x +54 ≥4x ×1=4x ,f x ≤πx x 2-x +54≤πx ≤4x ,故B 正确;C :因为f 12+x -f 12-x =sinπ12+x 12+x -12 2+1-sinπ12-x 12-x -12 2+1=cosπx -cosπx x 2+1=0,所以曲线y =f x 关于直线x =12对称,故C 正确;D :设曲线y =f x 存在对称点,设为(a ,b ),则有f (a +x )+f (a -x )=2b ,当x =0时,则有2f (a )=2b ⇒f (a )=b ,当x =a 时,则有f (2a )=2b ⇒2f (a )=f (2a ),即sin2a π(2a )2-2a +54=2⋅sin a πa 2-a +54⇒2sin a πcos a π(2a )2-2a +54=2⋅sin a πa 2-a +54,因此有sin a π=0,所以a 为整数,b =f a =sin a πa 2-a +54=0,令x =12,f a +12 +f a -12=0,而f a +12 +f a -12 =sinπa +12 a +12-12 2+1+sinπa -12a -12-12 2+1=cos a πa 2+1-cos a π(a -1)2+1,显然f a +12 +f a -12=0不恒成立,故D 不正确.故选:ABC .28.(2022·福建省福州第一中学高三开学考试)甲箱中有5个红球,2个白球和3个黑球;乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以A 1,A 2,A 3表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论正确的是( )A.P B =25B.P B |A 1 =511C.事件B 与事件A 1不相互独立D.A 1,A 2,A 3两两互斥【答案】BD 【解析】P A 1 =510=12,P A 2 =210=15,P A 3 =310,又P B |A 1 =511,P B |A 2 =411,P B |A 3 =411,故B 正确.故P (B )=P B |A 1 P A 1 +P B |A 2 P A 2 +P B |A 3 P A 2=511×12+411×15+411×310=922,故A 错误.P B P A 1 =922×12=944,P BA 1 =P B |A 1 P A 1 =522,故P B P A 1 ≠P BA 1 ,所以事件B 与事件A 1不相互独立,根据互斥事件的定义可得A 1,A 2,A 3两两互斥,故选:BD .29.(2022·福建·福州十八中高三开学考试)已知函数f (x )=sin (ωx +φ)(0<ω<10,0<φ<π)的部分图象如图所示,则下列结论正确的是( )A.ω=2B.ω=3C.f (x )在5π12,11π12上单调递增D.f (x )图像关于直线x =2π3对称【答案】AC【解析】由图可知: x =0,y =32;可得:ω×0+φ=2π3+2k π,k ∈Z ,所以φ=2π3+2k π,k ∈Z 又0<φ<π,所以φ=2π3;由x =π6,y =0,可得π6ω+2π3=π+2k π,k ∈Z ,所以ω=2+12k ,k ∈Z又0<ω<10,可得ω=2,所以A 选项正确,B 选项错误;所以函数的解析式为:f (x )=sin 2x +2π3 ,则f (x )在R 上的增区间满足:-π2+2k π≤2x +2π3≤π2+2k π,k ∈Z解得增区间为-7π12+k π,-π12+k π,k ∈Z ,所以当k =1时,函数f (x )的单调增区间为5π12,11π12,所以C 选项正确;当x =2π3时,f 2π3 =sin2π=0≠±1,所以直线x =2π3不是f (x )的对称轴,所以D 选项不正确;故选:AC .30.(2022·福建·闽江学院附中高三开学考试)关于函数f (x )=sin |x |+|sin x |,下列叙述正确的是( )A.f (x )是偶函数B.f (x )在区间π2,π单调递增C.f (x )的最大值为2 D.f (x )在[-π,π]有4个零点【答案】AC【解析】f (-x )=sin -x +sin (-x ) =sin x +sin x =f (x ),f (x )是偶函数,A 正确;x ∈π2,π 时,f (x )=sin x +sin x =2sin x ,单调递减,B 错误;试卷第2页,共40页f (x )=sin x +sin x ≤1+1=2,且f π2=2,因此C 正确;在[-π,π]上,-π<x <0时,f (x )=sin (-x )+(-sin x )=-2sin x >0,0<x <π时,f (x )=sin x +sin x =2sin x >0,f (x )的零点只有π,0,-π共三个,D 错.故选:AC .31.(2022·江苏·常州市平陵高级中学高三开学考试)已知关于x 的不等式a (x -1)(x +3)+2>0的解集是x 1,x 2 ,其中x 1<x 2,则下列结论中正确的是( )A.x 1+x 2+2=0 B.-3<x 1<x 2<1C.x 1-x 2 >4D.x 1x 2+3<0【答案】ACD【解析】由题设,a (x -1)(x +3)+2=ax 2+2ax -3a +2>0的解集为x 1,x 2 ,∴a <0,则x 1+x 2=-2x 1x 2=2a-3<0,∴x 1+x 2+2=0,x 1x 2+3=2a<0,则A 、D 正确;原不等式可化为f (x )=a (x -1)(x +3)>-2的解集为x 1,x 2 ,而f(x )的零点分别为-3,1且开口向下,又x 1<x 2,如下图示,∴由图知:x 1<-3<1<x 2,x 1-x 2 >4,故B 错误,C 正确.故选:ACD .32.(2022·江苏·盐城市伍佑中学高三开学考试)已知定义在R 上的函数f (x )满足f (x )+f (-x )=0,f (x )+f (x +6)=0,且对任意的x 1,x 2∈[-3,0],当x 1≠x 2时,都有x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1),则以下判断正确的是( )A.函数f (x )是偶函数B.函数f (x )在[-9,-6]上单调递增C.x =2是函数f (x +1)的对称轴D.函数f (x )的最小正周期是12【答案】BCD【解析】因为定义在R 上的函数f (x ) 满足f (x )+f (-x )=0,即f (-x )=-f (x ),故函数f (x )是奇函数,故A 错误;因为f (x )+f (x +6)=0,故f (x +6)=-f (x ),而f (-x )=-f (x ),所以f (x +6)=f (-x ),即f (x )的图象关于x =3对称,则x =2是函数f (x +1)的对称轴,故C 正确;因为f (x +6)=f (-x ),所以f (x +12)=-f (x +6)=f (x ),故12是函数f (x )的周期;对任意的x 1,x 2∈[-3,0] ,当x 1≠x 2 时,都有x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1) ,即(x 1-x 2)⋅[f (x 1)-f (x 2)]<0,故x ∈[-3,0]时,f (x )单调递减,又因为f (x )为奇函数,所以x ∈[0,3]时,f (x )单调递减,又因为f (x )的图象关于x =3对称,故x ∈[3,6]时,f (x )单调递增,因为12是函数f (x )的周期,故函数f (x )在[-9,-6] 单调性与x ∈[3,6]时的单调性相同,故函数f (x )在[-9,-6]上单调递增,故B 正确,作出函数f (x )的大致图象如图示:结合图象可得知12是函数f (x )的最小正周期,D 正确;故选:BCD33.(2022·江苏·盐城市伍佑中学高三开学考试)已知函数f (x )=ln (x +1)x,下列选项正确的是( )A.函数f (x )在(-1,0)上为减函数,在(0,+∞)上为增函数B.当x 1>x 2>0时,f (x 1)x 22>f (x 2)x 21C.若方程f (|x |)=a 有2个不相等的解,则a 的取值范围为(0,+∞)D.1+12+⋯+1n -1 ln2≤ln n ,n ≥2且n ∈N +【答案】BD【解析】对于选项A :f x =ln x +1 x ,x ∈-1,0 ∪0,+∞ .则f x =x -x +1 ln x +1x +1 x2,令g x =x -x +1 ln x +1 ,x ∈-1,0 ∪0,+∞ ,则g x =-ln x +1 ,当x ∈-1,0 时,g x >0,g x 单调递增;当x ∈0,+∞ 时,g x <0,g x 单调递减.所以对任意x ∈-1,0 ∪0,+∞ ,g x <g 0 =0,即f x <0,所以f x 在-1,0 ,0,+∞ 都是减函数,故A 错误;对于选项B :令h x =x 2f x =x ln x +1 ,x ∈0,+∞ ,则h x =x +x +1 ln x +1x +1,当x ∈0,+∞ 时,h x >0,h x 单调递增,所以当x 1>x 2>0时,h x 1 >h x 2 ,即x 12f x 1 >x 22f x 2 ,所以f x 1 x 22>f x 2 x 12,故B 正确;对于选项C :因为y =f x 是偶函数,所以“方程f x =a 有2个不相等的解”等价于“方程f x =a 在0,+∞ 上有1个解”.由A 可知,f x 在0,+∞ 上单调递减,且x →0时,f x →1;x →+∞时,f x →0,所以,当0<a <1时,方程f x =a 在0,+∞ 上有1个解,即f x =a 有2个不相等的解,故C 错误;对于选项D :由A 知,f x 在0,12 上单调递减,则对任意x ∈0,12 ,f x ≥f 12 =2ln 32=ln 94>ln2,即ln x +1 x >ln2,所以当n ≥2时,ln 1n+1 1n>ln2,即1n ln2<ln n +1n.所以ln2=ln2,12ln2<ln 32,13ln2<ln 43,⋯,1n -1ln2<ln nn -1,以上式子相加得ln2+12ln2+13ln2+⋯+1n -1ln2≤ln2+ln 32+ln 43+⋯+ln n n -1,即1+12+13+⋯+1n -1 ln2≤ln n (n =2时,等号成立),故D 正确.故选:BD .34.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)已知函数f x =A cos ωx +φ (A >0,ω>0,0<φ<π)的图象的一个最高点为-π12,3 ,与之相邻的一个对称中心为π6,0 ,将f x 的图象向右平移π6个单位长度得到函数g x 的图象,则( )A.g x 为偶函数B.g x 的一个单调递增区间为-5π12,π12试卷第2页,共40页C.g x 为奇函数D.g x 在0,π2上只有一个零点【答案】BD 【解析】由题意,可得T 4=π6--π12 =π4,所以T =π,可得w =2πT=2,所以f x =3cos (2x +φ),因为f -π12 =3cos 2×-π12 +φ =3,所以φ-π6=2k π,k ∈Z ,因为0<φ<π,所以φ=π6,即f x =3cos 2x +π6 ,所以g x =3cos 2x -π6 +π6 =3cos 2x -π6 ,可得函数g x 为非奇非偶函数,令-π+2k π≤2x -π6≤2k π,k ∈Z ,可得-5π12+k π≤x ≤π12+k π,k ∈Z ,当k =0时,函数g x 的一个单调递增区间为-5π12,π12;由2x -π6=π2+k π,,k ∈Z ,解得x =π3+k π,k ∈Z ,所以函数g x 在0,π2上只有一个零点.故选:BD35.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)已知f x 为函数f x 的导函数,若x 2f x +xf x =ln x ,f 1 =12,则下列结论错误的是( )A.xf x 在0,+∞ 上单调递增B.xf x 在0,+∞ 上单调递减C.xf x 在0,+∞ 上有极大值12D.xf x 在0,+∞ 上有极小值12【答案】ABC【解析】由x 2f x +xf x =ln x ,可知x >0,则xf x +f x =ln x x ,即xf x =ln xx.设g x =xf x ,则由g x =ln xx>0得x >1,由g x <0得0<x <1,所以g x =xf x 在1,+∞ 上单调递增,在0,1 上单调递减,所以当x =1时,函数g x =xf x 取得极小值g 1 =f 1 =12.故选:ABC .36.(2022·重庆·临江中学高三开学考试)若4x -4y <5-x -5-y ,则下列关系正确的是( )A.x <yB.y -3>x -3C.x >yD.13 y <3-x【答案】AD【解析】由4x -4y <5-x -5-y ,得4x -5-x <4y -5-y ,令f x =4x -5-x ,则f x <f y .因为g x =4x ,h x =-5-x 在R 上都是增函数,所以f x 在R 上是增函数,所以x <y ,故A 正确;因为G x =x -3在0,+∞ 和-∞,0 上都单调递减,所以当x <y <0时,x -3>y -3,故B 错误;当x <0,y <0时,x ,y 无意义,故C 错误;因为y =13 x 在R 上是减函数,且x <y ,所以13 y <13 x ,即13y<3-x ,故D 正确.故选:AD .37.(2022·重庆·临江中学高三开学考试)已知函数f x 的定义域是0,+∞ ,且f xy =f x +f y ,当x >1时,f x<0,f 2 =-1,则下列说法正确的是( )A.f 1 =0B.函数f x 在0,+∞ 上是减函数C.f 12022 +f 12021 +⋅⋅⋅+f 13 +f 12+f 2 +f 3 +⋅⋅⋅+f 2021 +f 2022 =2022D.不等式f 1x -f x -3 ≥2的解集为4,+∞【答案】ABD【解析】对于A ,令x =y =1 ,得f 1 =f 1 +f 1 =2f 1 ,所以f 1 =0,故A 正确;对于B ,令y =1x >0,得f 1 =f x +f 1x =0,所以f 1x=-f x ,任取x 1,x 2∈0,+∞ ,且x 1<x 2,则f x 2 -f x 1 =f x 2 +f 1x 1 =f x 2x 1,因为x 2x 1>1,所以f x 2x 1<0,所以f x 2 <f x 1 ,所以f x 在0,+∞ 上是减函数,故B 正确;对于C ,f 12022 +f 12021 +⋅⋅⋅+f 13 +f 12+f 2 +f 3 +⋅⋅⋅+f 2021 +f 2022 =f 12022×2022 +f 12021×2021 +⋅⋅⋅+f 13×3 +f 12×2 =f 1 +f 1+⋅⋅⋅+f 1 +f 1 =0,故C 错误;对于D ,因为f 2 =-1,且f 1x =-f x ,所以f 12=-f 2 =1,所以f 14 =f 12 +f 12 =2,所以f 1x -f x -3 ≥2等价于f 1x +f 1x -3≥f 14 ,又f x 在0,+∞ 上是减函数,且f xy =f x +f y ,所以1x x -3 ≤141x >01x -3>0,解得x ≥4,故D 正确,故选:ABD .38.(2022·重庆南开中学高三阶段练习)在棱长为3的正方体ABCD -A 1B 1C 1D 1中,点P 在棱DC 上运动(不与顶点重合),则点B 到平面AD 1P 的距离可以是( )A.2B.3C.2 D.5【答案】CD【解析】以D 为原点,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,则D (0,0,0),A (3,0,0),B (3,3,0),D 1(0,0,3),设P (0,t ,0),所以AP =-3,t ,0 ,AD 1 =-3,0,3 ,AB =(0,3,0),设n 1=x 1,y 1,z 1 为平面AD 1P 的法向量,则有: n 1 ⋅AP=-3x 1+ty 1=0n 1 ⋅AD 1 =-3x 1+3z 1=0,令y 1=3,可得n=(t ,3,t ),试卷第2页,共40页则点B 到平面AD 1P 的距离为d =AB ⋅nn=92t 2+9,因为0<t <3,所以距离的范围是(3,3).故选:CD .39.(2022·重庆南开中学高三阶段练习)已知a >b >1,则( )A.a ln b >b ln aB.e 1a-1b<a bC.a >e1-1bD.若b m =b +n ,则a m >a +n【答案】BC【解析】因为a >b >1,所以a ln b >b ln a ⇔ln b b>ln aa ,设函数f (x )=ln x x (x >1),f (x )=1-ln xx 2,当x ∈(1,e )时,f (x )>0,函数f (x )单调递增,当x ∈(e ,+∞)时,f (x )<0,函数f (x )单调递减,所以A 选项错误;因为a >b >1,所以由e 1a-1b<a b ⇔1a -1b <ln a -ln b ⇔ln a -1a >ln b -1b,设函数g (x )=ln x -1x ,g (x )=1x +1x 2,当x ∈(0,+∞)时,g(x )>0,函数g (x )单调递增,所以B 选项正确;因为a >e 1-1b ⇔ln a >1-1b ,设函数h (a )=ln a -1-1a ,所以h (a )=a -1a 2,当a ∈1,+∞ 时,h (a )>0,函数h (a )单调递增,当a ∈0,1 时,h (a )<0,函数h (a )单调递减,所以h (a )>h (1)=0,即ln a -1-1a >0⇒ln a >1-1a,因为a >b >1,所以1a <1b ⇒1-1a >1-1b ,因此ln a >1-1a >1-1b,所以C 选项正确.令b =2,m =0,则有n =-1,又令a =3,所以a m =a 0=1,a +n =2,显然不成立,所以D 选项错误,故选:BC40.(2022·辽宁·高三开学考试)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为( )A.52B.32C.132D.172【答案】AC【解析】方法一(几何法,双曲线定义的应用)情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过F 1作圆D 的切线切点为B ,所以OB ⊥F 1N ,因为cos ∠F 1NF 2=35>0,所以N 在双曲线的左支,OB =a ,OF 1 =c , F 1B =b ,设∠F 1NF 2=α,由即cos α=35,则sin α=45,NA =32a ,NF 2 =52aNF 2 -NF 1 =2a52a -32a +2b =2a ,2b =a ,∴e =52选A 情况二若M 、N 在双曲线的两支,因为cos ∠F 1NF 2=35>0,所以N 在双曲线的右支,所以OB =a ,OF 1 =c ,F 1B =b ,设∠F 1NF 2=α,由cos ∠F 1NF 2=35,即cos α=35,则sin α=45,NA =32a ,NF 2 =52aNF 2 -NF 1 =2a 32a +2b -52a =2a ,所以2b =3a ,即b a =32,所以双曲线的离心率e =c a =1+b 2a2=132选C方法二(答案回代法)A 选项e =52特值双曲线x 24-y 2=1,∴F 1-5,0 ,F 25,0 ,过F 1且与圆相切的一条直线为y =2x +5 ,∵两交点都在左支,∴N -655,-255 ,∴NF 2 =5,NF 1 =1,F 1F 2 =25,则cos ∠F 1NF 2=35,C 选项e =132特值双曲线x 24-y 29=1,∴F 1-13,0 ,F 213,0 ,过F 1且与圆相切的一条直线为y =23x +13 ,∵两交点在左右两支,N 在右支,∴N 141313,181313 ,∴NF 2 =5,NF 1 =9,F 1F 2 =213,则cos ∠F 1NF 2=35,解法三:依题意不妨设双曲线焦点在x 轴,设过F 1作圆D 的切线切点为G ,若M ,N 分别在左右支,因为OG ⊥NF 1,且cos ∠F 1NF 2=35>0,所以N 在双曲线的右支,又OG =a ,OF 1 =c ,GF 1 =b ,设∠F 1NF 2=α,∠F 2F 1N =β,在△F 1NF 2中,有NF 2 sin β=NF 1 sin α+β=2csin α,故NF 1 -NF 2 sin α+β -sin β=2c sin α即a sin α+β -sin β=c sin α,试卷第2页,共40页所以a sin αcos β+cos αsin β-sin β=csin α,而cos α=35,sin β=a c ,cos β=b c ,故sin α=45,代入整理得到2b =3a ,即b a =32,所以双曲线的离心率e =c a =1+b 2a 2=132若M ,N 均在左支上,同理有NF 2sin β=NF 1sin α+β=2c sin α,其中β为钝角,故cos β=-bc,故NF 2 -NF 1 sin β-sin α+β=2c sin α即a sin β-sin αcos β-cos αsin β=c sin α,代入cos α=35,sin β=a c ,sin α=45,整理得到:a 4b +2a=14,故a =2b ,故e =1+b a 2=52,故选:AC .41.(2022·辽宁·沈阳市第四中学高三阶段练习)将以下四个方程e x =a -x 、x 2=a -x (x >0)、x =a -x 、ln x =a -x 的正数解分别记为x 1,x 2,x 3,x 4,则以下判断一定正确的有( )A.x 1<x 2<x 3<x 4 B.x 1+x 2+x 3+x 4=2aC.x 3-x 1=x 4-x 2D.x 1x 4=x 2x 3【答案】BC【解析】画出y =e x ,y =x 2x >0 ,y =x ,y =ln x ,y =a -x 的图象如下图所示,y =x y =a -x ⇒x =y =a 2,由图可知x 1,x 4关于x =a 2对称,x 2,x 3关于x =a2对称,所以x 1+x 4=a ,x 2+x 3=a ,则x 1+x 2+x 3+x 4=2a ,x 1-x 2+x 4-x 3=0,x 3-x 1=x 4-x 2,所以BC 选项正确.当a =2时,x 1+x 4=x 2+x 3=2且x 2=x 3=1,x 1<x 2=x 3<x 4所以A 选项不正确,对于D 选项,x 1x 4<x 1+x 422=1=x 2x 3,所以D 选项不正确.故选:BC42.(2022·辽宁·沈阳市第四中学高三阶段练习)已知函数f (x )在R 上有定义,记f (x )为函数f (x )的导函数,又f (2x -1)是奇函数,则以下判断一定正确的有( )A.f 4x -2 是奇函数 B.f x -1 +f 3x -1 是奇函数C.f 4x 2-2 是偶函数 D.f (-5x -1)是偶函数【答案】BCD【解析】若f x =x +1,则f 2x -1 =2x 为奇函数,而f 4x -2 =4x -1为非奇非偶函数,所以A 选项错误.由于f 2x -1 是奇函数,所以f -2x -1 =-f 2x -1 ,对于函数f x -1 +f 3x -1 ,f -x -1 +f -3x -1 =-f x -1 -f 3x -1 =-f x -1 +f 3x -1 ,所以f x -1 +f 3x -1 是奇函数,B 选项正确.对于函数f 4x 2-2 ,f 4-x 2-2 =f 4x 2-2 ,所以函数f 4x 2-2 是偶函数,C 选项正确.对于D 选项,先证明奇函数的导数是偶函数:若f x 是定义在R 上的奇函数,则f -x =-f x ,两边求导得f -x =-f x ,即-f -x =-f x ,即f -x =f x ,所以奇函数的导数是偶函数.然后证明f -5x -1 为奇函数:由于f 5x -1 =-f -5x -1 ,所以f -5x -1 为奇函数,所以f (-5x -1)是偶函数,D 选项正确.故选:BCD43.(2022·辽宁·东北育才学校高三阶段练习)已知函数f x 的定义域为-∞,0 ∪0,+∞ ,图象关于y 轴对称,导函数为f x ,且当x <0时,f x >f xx,设a >1,则下列大小关系正确的是( )A.a +1 f 4aa +1 >2a f 2a B.f 2a >a f 2aC.4af a +1 a +1>a +1 f 4a a +1D.2f 2a <a +1 f 4a a +1 【答案】AD【解析】当x <0时,fx >f x x ,即f x -f x x =xf x -f x x>0,所以xf (x )-f (x )<0,构造函数g x =f x x ,则g(x )=xf (x )-f (x )x 2<0,∴当x <0时,g x 单调递减,又由题意可得f x 是偶函数,∴g x 是奇函数,则当x >0时,g x 也单调递减.对于A ,∵a >1,∴0<4a a +1<4a 2a=2a ,∴g 4aa +1 >g 2a ,即f 4a a +1 4a a +1>f 2a 2a ,∴a +1 f 4a a +1 >2a f 2a ,故A 正确;对于B ,∵a >1,∴2a >2a >0,∴g 2a <g 2a ,即f 2a2a <f 2a 2a,可得f 2a <a f 2a ,故B 错误;对于C ,∵a >1,a +1-4a a +1=a -1 2a +1>0,即a +1>4a a +1>0,∴g a +1 <g 4aa +1 ,即f a +1 a +1<f 4a a +1 4a a +1,∴4af a +1 a +1<a +1 f 4aa +1,故C 错误;对于D ,∵a >1,2a -4a a +1=2a 2+2a -4a a +1=2a a -1 a +1>0,∴2a >4aa +1>0,g 2a <g 4a a +1 ,即f 2a 2a <f 4a a +1 4a a +1,∴2f 2a <a +1 f 4a a +1 ,故D 正确.故选:AD .44.(2022·辽宁·东北育才学校高三阶段练习)已知函数f x =sin ωx +φ ω>0,φ∈R 在区间7π12,5π6上单调,且满足f 7π12=-f 3π4 有下列结论正确的有( )A.f 2π3 =0B.若f 5π6-x =f x ,则函数f x 的最小正周期为π;试卷第2页,共40页。

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案1.2019年高考数学上海卷:已知等差数列$\{a_n\}$的公差$d\in(0,\pi]$,数列$\{b_n\}$满足$b_n=\sin(a_n)$,集合$S=\{x|x=b_n,n\in N^*\}$。

1) 若$a_1=0,d=\frac{\pi}{6}$,求集合$S$的元素个数;2) 若$a_1=\frac{2\pi}{3}$,求集合$S$;3) 若集合$S$有三个元素$b_{n+T}=b_n$,其中$T$是不超过$7$的正整数,求$T$的所有可能值。

2.2019年高考数学浙江卷:已知实数$a\neq0$,函数$f(x)=a\ln x+x+1$,$x>0$。

1) 当$a=-1$时,求函数$f(x)$的单调区间;2) 对任意$x\in[\frac{3}{4},+\infty)$,有$f(x)\leq\frac{1}{2}e^{2a}$,求$a$的取值范围。

3.2019年高考数学江苏卷:设$(1+x)=a+a_1x+a_2x^2+\cdots+a_nx^n$,$n^2,n\in N^*$,已知$a_3=2a_2a_4$。

1) 求$n$的值;2) 设$(1+3x)=a+b\sqrt{3}$,其中$a,b\in N^*$,求$a^2-3b^2$的值。

4.2018年高考数学上海卷:给定无穷数列$\{a_n\}$,若无穷数列$\{b_n\}$满足对任意$n\in N^*$,都有$b_n-a_n\leq1$,则称$\{b_n\}$与$\{a_n\}$“接近”。

1) 设$\{a_n\}$是首项为$1$,公比为$\frac{1}{2}$的等比数列,构造一个与$\{a_n\}$接近的数列$\{b_n\}$,并说明理由;2) 设数列$\{a_n\}$的前四项为:$a_1=1,a_2=2,a_3=4,a_4=8$,$\{b_n\}$是一个与$\{a_n\}$接近的数列,记集合$M=\{x|x=b_i,i=1,2,3,4\}$,求$M$中元素的个数$m$;3) 已知$\{a_n\}$是公差为$d$的等差数列,若存在数列$\{b_n\}$满足:$\{b_n\}$与$\{a_n\}$接近,且在$1$的等比数列,$b_n=a_{n+1}+1$,$n\in N^*$,判断数列$\{b_n\}$是否满足$b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$中至少有$100$个为正数,求$d$的取值范围。

14年高考数学压轴题系列训练含答案及解析详解

14年高考数学压轴题系列训练含答案及解析详解

14年高考数学压轴题系列训练含答案及解析详解1.(本小题满分14分)如图,设抛物线的焦点为F,动点P在直线上运动,过P 作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求△APB的重心G的轨迹方程.(2)证明∠PFA=∠PFB.解:(1)设切点A、B坐标分别为,∴切线AP的方程为:切线BP的方程为:解得P点的坐标为:所以△APB的重心G的坐标为,所以,由点P在直线l上运动,从而得到重心G的轨迹方程为:(2)方法1:因为由于P点在抛物线外,则∴同理有∴∠AFP=∠PFB.方法2:①当所以P点坐标为,则P点到直线AF的距离为:即所以P点到直线BF的距离为:所以d1=d2,即得∠AFP=∠PFB.②当时,直线AF的方程:直线BF的方程:所以P点到直线AF的距离为:,同理可得到P点到直线BF的距离,因此由d1=d2,可得到∠AFP=∠PFB. 2.(本小题满分12分)设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(Ⅰ)确定的取值范围,并求直线AB的方程;(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由.(此题不要求在答题卡上画图)本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力.(Ⅰ)解法1:依题意,可设直线AB的方程为,整理得①设是方程①的两个不同的根,∴②且由N(1,3)是线段AB的中点,得解得k=-1,代入②得,的取值范围是(12,+∞).于是,直线AB的方程为解法2:设则有依题意,∵N(1,3)是AB的中点,∴又由N(1,3)在椭圆内,∴∴的取值范围是(12,+∞).直线AB的方程为y-3=-(x-1),即x+y-4=0.(Ⅱ)解法1:∵CD垂直平分AB,∴直线CD的方程为y-3=x-1,即x-y+2=0,代入椭圆方程,整理得又设CD的中点为是方程③的两根,∴于是由弦长公式可得④将直线AB的方程x+y-4=0,代入椭圆方程得⑤同理可得⑥∵当时,假设存在>12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.点M到直线AB的距离为⑦于是,由④、⑥、⑦式和勾股定理可得故当>12时,A、B、C、D四点匀在以M为圆心,为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A、B、C、D共圆△ACD为直角三角形,A为直角|AN|2=|CN|·|DN|,即⑧由⑥式知,⑧式左边由④和⑦知,⑧式右边∴⑧式成立,即A、B、C、D四点共圆.解法2:由(Ⅱ)解法1及λ>12,∵CD垂直平分AB,∴直线CD方程为,代入椭圆方程,整理得③将直线AB的方程x+y-4=0,代入椭圆方程,整理得⑤解③和⑤式可得不妨设∴计算可得,∴A在以CD为直径的圆上.又B为A关于CD的对称点,∴A、B、C、D四点共圆.(注:也可用勾股定理证明AC⊥AD)3.(本小题满分14分)已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足(Ⅰ)证明(Ⅱ)猜测数列是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N,使得当时,对任意b>0,都有本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想.(Ⅰ)证法1:∵当即于是有所有不等式两边相加可得由已知不等式知,当n≥3时有,∵证法2:设,首先利用数学归纳法证不等式(i)当n=3时,由知不等式成立.(ii)假设当n=k(k≥3)时,不等式成立,即则即当n=k+1时,不等式也成立.由(i)、(ii)知,又由已知不等式得(Ⅱ)有极限,且(Ⅲ)∵则有故取N=1024,可使当n>N时,都有4.如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|∶|A1F1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P为l上的动点,求∠F1PF2最大值.本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.解:(Ⅰ)设椭圆方程为,半焦距为,则(Ⅱ)5.已知函数和的图象关于原点对称,且.(Ⅰ)求函数的解析式;(Ⅱ)解不等式;(Ⅲ)若在上是增函数,求实数的取值范围.本题主要考查函数图象的对称、二次函数的基本性质与不等式的应用等基础知识,以及综合运用所学知识分析和解决问题的能力.满分14分.解:(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则∵点在函数的图象上∴(Ⅱ)由当时,,此时不等式无解.当时,,解得.因此,原不等式的解集为.(Ⅲ)①②ⅰ)ⅱ)6.(本题满分16分)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.对定义域分别是D f、D g的函数y=f(x) 、y=g(x),(1) 若函数f(x)=,g(x)=x2,x∈R,写出函数h(x)的解析式;(2) 求问题(1)中函数h(x)的值域;(3)若g(x)=f(x+α), 其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.[解] (1)h(x)= x∈(-∞,1)∪(1,+∞)1 x=1(2) 当x≠1时, h(x)= =x-1++2,若x>1时, 则h(x)≥4,其中等号当x=2时成立若x<1时, 则h(x)≤ 0,其中等号当x=0时成立∴函数h(x)的值域是(-∞,0] {1}∪[4,+∞)(3)令f(x)=sin2x+cos2x,α=则g(x)=f(x+α)= sin2(x+)+cos2(x+)=cos2x-sin2x,于是h(x)= f(x)·f(x+α)= (sin2x+co2sx)( cos2x-sin2x)=cos4x.另解令f(x)=1+sin2x, α=,g(x)=f(x+α)= 1+sin2(x+π)=1-sin2x,于是h(x)= f(x)·f(x+α)= (1+sin2x)( 1-sin2x)=cos4x.7.(本题满分18分)本题共有3个小题,第1小题满分4分, 第2小题满分8分, 第3小题满分6分.在直角坐标平面中,已知点P1(1,2),P2(2,22),┄,P n(n,2n),其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点, A2为A1关于点P2的对称点, ┄, A N为A N-1关于点P N的对称点.(1)求向量的坐标;(2)当点A0在曲线C上移动时, 点A2的轨迹是函数y=f(x)的图象,其中f(x)是以3为周期的周期函数,且当x∈(0,3]时,f(x)=lgx.求以曲线C为图象的函数在(1,4]上的解析式;(3)对任意偶数n,用n表示向量的坐标.[解](1)设点A0(x,y), A0为P1关于点的对称点A0的坐标为(2-x,4-y),A1为P2关于点的对称点A2的坐标为(2+x,4+y),∴={2,4}.(2) ∵={2,4},∴f(x)的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此, 曲线C是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x∈(-2,1]时,g(x)=lg(x+2)-4.于是,当x∈(1,4]时,g(x)=lg(x-1)-4.另解设点A0(x,y), A2(x2,y2),于是x2-x=2,y2-y=4,若3< x2≤6,则0< x2-3≤3,于是f(x2)=f(x2-3)=lg(x2-3).当1< x≤4时, 则3< x2≤6,y+4=lg(x-1).∴当x∈(1,4]时,g(x)=lg(x-1)-4.(3) =,由于,得=2()=2({1,2}+{1,23}+┄+{1,2n-1})=2{,}={n,}。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

2024高考数学压轴题特训(多选题)教师版

2024高考数学压轴题特训(多选题)教师版

2024高考数学压轴题特训(多选题)1.(2024·广东韶关·一模)已知定义在R 上的函数()(),f x g x 的导函数分别为()(),f x g x '',且()()4f x f x =−,()()()()14,10f x g x f x g x ''+−=++=,则( ) A .()g x 关于直线1x =对称 B .()31g '=C .()f x '的周期为4D .()()()0f n g n n ''⋅=∈Z【答案】ACD【详解】由()(4)f x f x =−,得(1)(3)f x f x +=−①,(1)()4f x g x +−=②,得(3)(2)4f x g x −−−=③,由①②③,得()(2)g x g x =−,所以函数()g x 图象关于直线1x =对称,故A 正确; 由()(2)g x g x =−,得()(2)g x g x ''=−−,令1x =,得(1)0g '=; 由(1)()4f x g x +−=,得(1)()0f x g x ''+−=, 令1x =,得(2)(1)0f g ''==, ∴(2)(1)0f x g x ''+−+=④,又()(1)0f x g x ''++=⑤,令2x =,得(2)(3)0f g ''==,故B 错误; ④⑤两式相加,得(2)()0f x f x ''++=,得(4)(2)0f x f x ''+++=, 所以()(4)f x f x ''=+,即函数()f x '的周期为4,故C 正确; 由(2)()0f x f x ''++=,令2x =,得(4)(2)0f f ''+=,所以(4)0f '=, 所以(1)(1)(2)(2)(3)(3)(4)(4)()()0()f g f g f g f g f n g n n ====''''''''=''=∈Z ,故D 正确.故选:ACD2.(2024·广东广州·一模)已知直线y kx =与曲线ln y x =相交于不同两点11(,)M x y ,22(,)N x y ,曲线ln y x =在点M 处的切线与在点N 处的切线相交于点00(,)P x y ,则( )A .1k e<<0 B .120e x x x = C .1201y y y +=+ D .121y y <【答案】ACD 【详解】令()ln x f x x =,则()1ln xf x x−'=, 故()0,e x ∈时,()f x 递增;()e,x ∞∈+时,()f x 递减, 所以()f x 的极大值()1e ef =,且1x >,()0f x >,因为直线y kx =与曲线ln y x =相交于11(,)M x y 、22(,)N x y 两点, 所以y k =与()f x 图像有2个交点, 所以10e<<k ,故A 正确; 设1122(,),(,)M x y N x y ,且121e x x <<<,可得1122ln ,ln kx x kx x ==,ln y x =在,M N 点处的切线程为11221211ln (),ln (),y x x x y x x x x x −=−−=− 1112221ln ()1ln ()y x x x x y x x x x ⎧−=−⎪⎪⎨⎪−=−⎪⎩,得002112ln ln x x x x x x −=−,即2121012212112ln ln ln ln x x x x x x x x x x x x x −−==−−, 因为2121ln ln x x k x x −=−,所以012x x x k =,即1201x x x k=,故B 错误; 因为112112ln ln y x x k x x x ===,所以2112ln ln x x x x =, 因为00(,)P x y 为两切线的交点, 所以21211122210101212121ln ln ln ln ln ln 1ln 1ln 11x x x x x x x x x x y x x x x x x x x x −−+−=+−=+−=−−−, 即2211021ln ln 1x x x x y x x −=−−,所以2211021ln ln 1x x x x y x x −+=−,所以()()122121112212221112120212121ln ln ln ln ln ln ln ln ln ln 1x x x x x x x x x x x x x x x x y y x x y x x x x x x +−−+−−+=+====+−−−,故C 正确;因为11kx y =,所以11ln ln ln k x y +=,所以11ln ln k y y +=, 同理得22ln ln k y y +=,得1122ln ln y y y y −=−,即21211ln ln y y y y −=−,因为2121ln ln y y y y −>−121y y <,故D 正确.故选:ACD.3.(2024·广东佛山·一模)对于棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计),下列说法正确的是( )A .底面半径为1m ,高为2m 的圆锥形罩子(无底面)能够罩住水平放置的该正方体B .以该正方体的三条棱作为圆锥的母线,则此圆锥的母线与底面所成角的正切值为C .该正方体内能同时整体放入两个底面半径为0.5m ,高为0.7m 的圆锥D 3的圆锥 【答案】BCD【详解】对于A ,若高为2m 的圆锥形罩子刚能覆盖水平放置的正方体,考虑圆锥的轴截面,如图,BC =ABC ADE △△∽,所以12BC DE =,所以DE =,1>,A 错误;对于B ,如图,以AB ,1AA ,AD 三条棱作为圆锥母线,底面所在平面为平面1A BD , 等价于求AB 与平面1A BD 所成角的正切值,因为11A A BD B AA D V V −−=,所以111111132232h ⎛⎫⎛⎫⨯=⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以点A 到平面1A BD 的距离为h则此圆锥的母线1AA 与底面1A BD2=,B 正确;对于C ,如图,以矩形11BB D D 的中心为圆锥底面圆圆心,半径为0.5, 分别以1AA ,1CC 的中点E ,F 为两个圆锥的顶点,0.7>,C 正确;对于D ,如图,1AC 的中点P 作垂线MN ,分别交AC ,11A C 于点M ,N ,则1tan PM AP C AC =⋅∠==以正方体的体对角线1AC 作为圆锥的轴,1C 为圆锥顶点,MN 为圆锥底面圆的直径时,该圆锥的体积为22111ππ33V PM C P =⨯⨯=⨯=>⎝⎭,D 正确.事实上,以正方体的体对角线1AC 作为轴,1C 为顶点的圆锥的体积最大值, 显然底面圆心在线段AP 上(不含P 点),设AG x =, 当GI 与MN (M 为AC 的四等分点)重合时,MP NP =,因此04x <≤,因为1AGH AC C ∽△△,所以11AG AH GH AC AC CC ==,则1,,AH GH x C H ==,圆锥体积2211()π1,03V x GH C H x x ⎛⎫⎛=⨯⨯=<≤ ⎪ ⎪ ⎝⎭⎝⎭,()(2)0V x '>在⎛ ⎝⎦上恒成立, 所以(x)V在0,4⎛ ⎝⎦上单调递增,体积的最大值为ππ41617V ⎛=> ⎝⎭, D 正确. 故选:BCD.4.(2024·广东·一模)已知正方体1111ABCD A B C D −的各个顶点都在表面积为3π的球面上,点P 为该球面上的任意一点,则下列结论正确的是( ) A .有无数个点P ,使得//AP 平面1BDC B .有无数个点P ,使得AP ⊥平面1BDCC .若点P ∈平面11BCC B ,则四棱锥P ABCD −D .若点P ∈平面11BCC B ,则1AP PC +【答案】ACD 【详解】令正方体1111ABCD A B C D −的外接球半径为r ,24π3πr =,r =11BD AB ==,连接1111,,AB AD B D ,由四边形11ABC D 是该正方体的对角面,得四边形11ABC D 是矩形,即有11//AD BC ,而1BC ⊂平面1BDC ,1AD ⊄平面1BDC ,则1//AD 平面1BDC , 同理1AB //平面1BDC ,又1111,,AB AD A AB AD =⊂平面11AB D ,因此平面11//AB D 平面1BDC ,令平面1ABD 截球面所得截面小圆为圆M , 对圆M 上任意一点(除点A 外)均有//AP 平面1BDC ,A 正确;对于B ,过A 与平面1BDC 垂直的直线AP 仅有一条,这样的P 点至多一个,B 错误;对于C ,平面11BCC B 截球面为圆R ,圆R 的半径为2,则圆R 上的点到底面ABCD 的距离因此四棱锥P ABCD −的体积的最大值为113⨯=,C 正确; 对于D ,显然AB ⊥平面11BCC B ,在平面11BCC B 内建立平面直角坐标系,如图,令点)P θθ,而11111(,),(,)2222B C −−,因此AP ==1PC ==(sin cos )2x θθ+=,1AP PC +==,当且仅当12x =−取等号,此时1(sin cos )22θθ+=−,即π1sin()42θ+=−,因此1AP PC +D 正确.故选:ACD5.(2024·山东济南·一模)下列等式中正确的是( )A .8881C 2k k ==∑B .82392C C k k ==∑C .82111!8!k k k =−=−∑ D .()8828160C C k k ==∑【答案】BCD【详解】对于A ,因为()801228888881C C C C x x x x +=++++,令1x =,得881288888121C C C 1C k k ==++++=+∑,则88811C 2kk ==−∑,故A 错误;对于B ,因为2331C C C n n n ++=,所以8222223222234833482C C C C C C C C C k k ==++++=++++∑322323448889C C C C C C =+++==+=,故B 正确;对于C ,因为()()()()()()!1!11!1111!!!1!!1!!k k k k k k k k k k k k −−−−−−===−−−,所以()882211111111111!1!!1!2!2!3!7!8!8!k k k k k k ==⎡⎤−=−=−+−++−=−⎢⎥−⎣⎦∑∑,故C 正确. 对于D ,()()()1688111x x x +=++, 对于()161x +,其含有8x 的项的系数为816C ,对于()()8811x x ++,要得到含有8x 的项的系数,须从第一个式子取出()08,N k k k ≤≤∈个x ,再从第二个式子取出8k −个x , 它们对应的系数为()088288808C CC kk kk k =−==∑∑,所以()8828160C C k k ==∑,故D 正确.故选:BCD.6.(2024·山东青岛·一模)已知函数()cos sin2xf x x =+,则( ) A .()f x 在区间π0,6⎛⎫⎪⎝⎭单调递增B .()f x 的图象关于直线πx =对称C .()f x 的值域为90,8⎡⎤⎢⎥⎣⎦D .关于x 的方程()f x a =在区间[0,2π]有实数根,则所有根之和组成的集合为{}π,2π,4π【答案】BCD【详解】对于A :当π0,6x ⎛⎫∈ ⎪⎝⎭时sin 02x >,所以2()cos sin 12sin sin 222x xx f x x =+=−+,因为sin 2x y =在π0,6⎛⎫ ⎪⎝⎭上单调递增,又πsin 124===,所以sin 0,24x ⎛∈ ⎝⎭, 因为49316>,即74>172044=>,即124>,12>,所以π1sin 124>, 又221y x x =−++在1,4∞⎛⎫− ⎪⎝⎭上单调递增,在1,4⎛⎫+∞ ⎪⎝⎭上单调递减,所以212sin sin 22xx y =−+在π0,6⎛⎫ ⎪⎝⎭上不单调,即()f x 在区间π0,6⎛⎫ ⎪⎝⎭不单调,故A 错误;对于B :因为()()()2π2πcos 2πsin cos sin 22x xf x x x f x −−=−+=+=, 所以()f x 的图象关于直线πx =对称,故B 正确;对于C :因为()22cos sin 12sin sin 12sin sin 22222x x x x xf x x =+=−+=−+,令sin2x t =,则[]0,1t ∈,令()212h t t t =−+,[]0,1t ∈, 则()h t 在10,4⎡⎤⎢⎥⎣⎦上单调递增,在1,14⎡⎤⎢⎥⎣⎦上单调递减,又()01h =,()10h =,1948h ⎛⎫= ⎪⎝⎭,所以()90,8h t ⎡⎤∈⎢⎥⎣⎦,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦,故C 正确;对于D :当[0,2π]x ∈时sin02x ≥,所以()2cos sin 12sin sin 222x x xf x x =+=−+, 由A 选项可令π0,6α⎡⎤∈⎢⎥⎣⎦且1sin 24α=,则当[]0,x α∈时()f x 单调递增, 令π222x α<<,即πx α<<时sin 2x y =在(),πα上单调递增,且1sin 142x <<,所以()f x 在(),πα上单调递减,又2π1sinsin 224αα−==,令π2π222x α−<<,即π2πx α<<−时sin 2xy =在()π,2πα−上单调递减,且1sin 142x<<, 所以()f x 在()π,2πα−上单调递增, 当2ππ22x α−<<,即2π2πx α−<<时sin 2xy =在()2π,2πα−上单调递减,且10sin24x <<, 所以()f x 在()2π,2πα−上单调递减,又()()02π1f f ==,()π0f =,()()92π8f f αα=−=, 所以()f x 在[0,2π]上的函数图象如下所示:由图可知:①当0a =时()y f x =与y a =有且仅有一个交点, 即关于x 的方程()f x a =在区间[0,2π]的实数根为π; ②当01a <<或98a =时()y f x =与y a =有两个交点, 即关于x 的方程()f x a =在区间[0,2π]有两个实数根,且两根关于πx =对称, 所以两根之和为2π; ③当918a ≤<时()y f x =与y a =有四个交点, 即关于x 的方程()f x a =在区间[0,2π]有四个实数根,不妨设为1234,,,x x x x 且1234x x x x <<<,所以1x 与4x 关于πx =对称,2x 与3x 关于πx =对称, 所以12344πx x x x +++=; ④当a<0或98a >时()y f x =与y a =无交点, 即关于x 的方程()f x a =在区间[0,2π]无实数根;综上可得,若关于x 的方程()f x a =在区间[0,2π]有实数根,则所有根之和组成的集合为{}π,2π,4π,故D 正确;故选:BCD7.(2024·山东聊城·一模)设()f x 是定义在R 上的可导函数,其导数为()g x ,若()31f x +是奇函数,且对于任意的x ∈R ,()()4f x f x −=,则对于任意的k ∈Z ,下列说法正确的是( )A .4k 都是()g x 的周期B .曲线()y g x =关于点()2,0k 对称C .曲线()y g x =关于直线21x k =+对称D .()4g x k +都是偶函数 【答案】BC【详解】由()31f x +是奇函数,故有()()3131f x f x +=−−+,即有()()11f x f x +=−−+, 故,则()()11f x f x ''+=−+,即()()11g x g x +=−+,故()g x 关于1x =对称, 由()()4f x f x −=,则()()4f x f x '−−=',即()()4g x g x −−=, 故()g x 关于()2,0中心对称,由()()4g x g x −−=,则()()31g x g x −−=+,又()()11g x g x +=−+, 故()()13g x g x −+=−−,即有()()13g x g x +=−+, 则()()35g x g x +=−+,故()()()351g x g x g x +=−+=−+, 即()()15g x g x +=+,故()()4g x g x =+,故()g x 周期为4. 对A :当0k =时,40k =,故A 错误; 对B :由()g x 周期为4,故()()4g k x g x −=−,又()()4g x g x −−=,故()()g x g x −−=,故()()()4g x g x g k x −=−=−, 故曲线()y g x =关于点()2,0k 对称,故B 正确; 对C :由()g x 周期为4,故()()422g k x g x +−=−, 又()()11g x g x +=−+,故()()()242g x g x g k x =−+=+−,故曲线()y g x =关于直线21x k =+对称,故C 正确;对D :由B 得()()4g x g k x −=−,故()()4g x g k x −−=+,又()g x 周期为4, 故有()()4g x g k x −−=−−,故()()44g k x g k x +=−−,又x ∈R , 即()4g x k +都是奇函数,故D 错误. 故选:BC.8.(2024·山东烟台·一模)给定数列{}n a ,定义差分运算:2*11Δ,ΔΔΔ,N n n n n n n a a a a a a n ++=−=−∈.若数列{}n a 满足2n a n n =+,数列{}n b 的首项为1,且()1*Δ22,N n n b n n −=+⋅∈,则( )A .存在0M >,使得Δn a M <恒成立B .存在0M >,使得2Δn a M <恒成立C .对任意0M >,总存在*n ∈N ,使得n b M >D .对任意0M >,总存在*n ∈N ,使得2Δnnb M b > 【答案】BC【详解】对于A ,由2n a n n =+,得22(1)(1)()22n a n n n n n ∆=+++−+=+,显然Δn a 有最小值4,无最大值,因此不存在0M >,使得Δn a M <恒成立,A 错误;对于B ,由选项A 知,22n a n ∆=+,则22(1)2(22)2n a n n ∆=++−+=,显然当2M >时,2Δn a M <恒成立,B 正确;对于C ,由1Δ(2)2n n b n −=+⋅,得11(2)2n n n b b n −+−=+⋅,当2n ≥时,12132431()()()()n n n b b b b b b b b b b −=+−+−+−++−即01221324252(1)2n n b n −=+⨯+⨯+⨯+++⨯,于是0122122232422(1)2n n n b n n −−=⨯+⨯+⨯++⨯++⨯,两式相减得11221111211222(1)21(1)2212n n n n n n b n n n −−−−−−−=+++++−+⨯=+−+⨯=−⨯−,因此12n n b n −=⋅,显然11b =满足上式,则12n n b n −=⋅,由11(2)20n n n b b n −+−=⋅>+,得数列{}n b 是递增数列,n b 有最小值1,无最大值, 从而对任意0M >,总存在*n ∈N ,使得n b M >,C 正确; 对于D ,121(2Δ)2(3(2))42nn n n n n b n −−⋅−+⋅==++⋅,由选项C 得2Δ41n n b b n=+, 显然数列{41}n+是递减数列,4015n <+≤,因此对任意0M >,不存在*n ∈N ,使得2Δnnb M b >成立,D 错误. 故选:BC9.(2024·山东济宁·一模)如图,在棱长为2的正方体1111ABCD A B C D −中,M 是棱BC 的中点,N 是棱1DD 上的动点(含端点),则下列说法中正确的是( )A .三棱锥1A AMN −的体积为定值B .若N 是棱1DD 的中点,则过A ,M ,N 的平面截正方体1111ABCD A BCD −所得的截面C .若N 是棱1DD 的中点,则四面体1D AMN −的外接球的表面积为7π D .若CN 与平面1AB C 所成的角为θ,则sin θ∈⎣⎦【答案】AD【详解】对于A,连接1A M ,因为11//DD AA ,1AA ⊂平面1A AM ,1DD ⊄平面1A AM , 所以1//DD 平面1A AM ,又点N 是棱1DD 上的动点(含端点),所以点N 到平面1A AM 的距离为定值,设为d ,则1111133A AMN N A AM A AMV V Sd d −−==⨯⨯==,为定值,故A 正确;对于B,如图,四边形AMHN 为过A ,M ,N 的平面截正方体1111ABCD A B C D −所得的截面图形,因为平面11//A ADD 平面11B BCC , 且平面11A ADD 平面AMHN AN =,且平面11B BCC ⋂平面AMHN MH =, 根据面面平行的判断定理知,//AN MH , 又因为,M N 为中点,所以H 为四等分点, 则四边形AMHN 的周长为:222AM MH HN AN +++=+=, 故B 错误;对于C,如图所示,连接1AD ,取AD 的中点为M ', 连接MM ',设1AD N 外接圆圆心为O ',外接球球心为O , 连接O M '',则OE O M =',在1AD N 中,设其外接圆半径为r ,由正弦定理知,12sin ANrAD N ===∠,所以rO N '=依题易得1AND DM A ≅',故AM D AND ''∠=∠, 弦1AD 所对的圆周角相等,故1,,,A M N D '四点共圆,则O M O N '='=' 设外接球半径为R ,过O 作OE MM ⊥',交MM '于E , 则在Rt OEM △中,222OM OE ME =+,即()2222R OO =+−⎝⎭',① 在Rt OO N '中,222ON OO O N '+'=,即2222R OO ⎛⎫=+ ⎪ ⎪⎝⎭',②联立①②,解得271,2OO R ==', 故外接球的表面积为24π14πR =, 故C 错误;对于D ,以A 为坐标原点,建立如下图所示空间直角坐标系,则()()()()[]10,0,0,2,0,2,2,2,0,0,2,,0,2A B C N λλ∈, 则()()()12,0,2,2,2,0,2,0,AB AC CN λ===−, 设平面1AB C 的法向量(),,n x y z =,则102202200n AB x z x y n AC ⎧⋅=+=⎧⎪⇒⎨⎨+=⋅=⎩⎪⎩,令1x =,则1y z ==−,故()1,1,1n =−−,则sin cos ,3n CN n CN n CNθ⋅===⋅== 当0λ=时,sin θ=,当0λ≠时,sin 3θ==≤=, 当且仅当2λ=时等号成立,又sin θ=>综上可知,sin θ∈⎣⎦,故D 正确,故选:AD.10.(2024·山东淄博·一模)把底面为椭圆且母线与底面都垂直的柱体称为“椭圆柱”.如图,椭圆柱(OO '中椭圆长轴4AB =,短轴CD =12,F F 为下底面椭圆的左右焦点,2F '为上底面椭圆的右焦点,4AA '=, P 为线段BB '上的动点,E 为线段A B ''上的动点,MN 为过点2F 的下底面的一条动弦(不与AB 重合),则下列选项正确的是( )A .当12//F F '平面PMN 时,P 为BB '的中点 B .三棱锥22F F CD '−外接球的表面积为8πC .若点Q 是下底面椭圆上的动点,Q '是点Q 在上底面的射影,且1Q F ',2Q F '与下底面所成的角分别为,αβ,则()tan αβ+的最大值为1613− D .三棱锥E PMN −体积的最大值为8 【答案】ACD【详解】由题设,长轴长4AB A B ''==,短轴长CD =,则1221OF OF O F '===',得22,F F '分别是,OB O B ''中点,而柱体中ABB A ''为矩形,连接OB ',由21//B F OF '',211B F OF '==',∴四边形12FOB F ''为平行四边形,12//OB F F '', 当12//F F '平面PMN 时,12F F '⊂平面ABB A '',平面ABB A ''⋂平面2PMN PF =, 则122//F F PF ',有2//OB PF ',OBB '△中,2F 是OB 中点,则P 为BB '的中点,A 选项正确;2OF CD ⊥,CD =21OF =,则2F CD △中,222CF DF ==,2120CF D ∠=, 2F CD △外接圆半径为2122sin CD r CF D =⨯=∠,22//F F AA '',则22F F '⊥平面2F CD ,三棱锥22F F CD '−外接球的半径为R = 所以外接球的表面积为24π32πR =,B 选项错误;点Q 是下底面椭圆上的动点,Q '是点Q 在上底面的射影,且1Q F ',2Q F '与下底面所成的角分别为,αβ,令12,QF m QF n ==,则4m n +=,又4QQ '=, 则4tan m α=,4tan n β=,()()4tan tan 16tan 1tan tan 1616m n mn mn αβαβαβ+++===−−−,()()216tan 212m αβ+=−−−,由椭圆性质知13m ≤≤,则当1m =或3m =时,()tan αβ+的最大值为1613−,C 选项正确;由22E PMN M PEF N PEF V V V −−−=+,要使三棱锥E PMN −体积最大, 只需2PEF △的面积和,M N 到平面2PEF 距离之和都最大,222PEF BF EB PBF PEB S S SS''=−−,令,EB a PB b '==,且[],0,4a b ∈,则4PB b '=−,()()()21111411422222PEF b a Sa b a b −=⨯⨯+−⨯⨯−⨯⨯−=+, 当4a b ==时,有最大值28PEF S =,在下底面内以O 为原点,构建如上图的直角坐标系,且()0,2B ,则椭圆方程为22143y x+=,设:1MN y tx =+,联立椭圆得()2234690t x tx ++−=,()2Δ14410t =+>,2269,3434M N M N t x x x x t t +=−=−++,M N x x −==令1l =≥,212121313M N l x x l l l−==++,由对勾函数性质可知13y l l=+在[)1,+∞上递增,max1234M Nx x −==, 综上,三棱锥E PMN −体积的最大值为18383⨯⨯=,D 选项正确.故选:ACD11.(2024·山东泰安·一模)已知函数()f x 的定义域为R ,且()10f =,若()()()2f x y f x f y +=++,则下列说法正确的是( )A .()14f −=−B .()f x 有最大值C .()20244046f =D .函数()2f x +是奇函数【答案】ACD【详解】对于A 中,令0x y ==,可得()02f =−,令1,1x y ==−, 则()()()11112f f f −=−++,解得()14f −=−,所以A 正确;对于B 中,令121,x x y x x ==−,且12x x <,则()()()1211212f x x x f x f x x +−=+−+, 可得()()()21212f x f x f x x −=−+,若0x >时,()2f x >−时,()()210f x f x −>,此时函数()f x 为单调递增函数; 若0x <时,()2f x <−时,()()210f x f x −<,此时函数()f x 为单调递减函数, 所以函数()f x 不一定有最大值,所以B 错误;对于C 中,令1y =,可得()()()()1122f x f x f f x +=++=+, 即()()12f x f x +−=, 所以()()()()()()()()()()2024202420232023202232211f f f f f f f f f f ⎡⎤⎡⎤⎡⎤⎡⎤=−+−++−+−+⎣⎦⎣⎦⎣⎦⎣⎦2023204046=⨯+=,所以C 正确;对于D 中,令y x =−,可得()()()02f f x f x =+−+,可得()()220f x f x ++−+=, 即()()22f x f x ⎡⎤+=−−+⎣⎦,所以函数()2f x +是奇函数,所以D 正确; 故选:ACD.12.(2024·山东菏泽·一模)如图,过点(,0)(0)C a a >的直线AB 交抛物线22(0)y px p =>于A ,B 两点,连接AO 、BO ,并延长,分别交直线x a =−于M ,N 两点,则下列结论中一定成立的有( )A .//BM ANB .以AB 为直径的圆与直线x a =−相切C .AOB MON S S =△△D .24MCN ANC BCM S S S =⋅△△△【答案】ACD 【详解】对于A ,令()()1122:,,,,AB x my a A x y B x y =+,联立22x my ay px =+⎧⎨=⎩,消x 可得2220y pmy pa −−=,则()2Δ280pm pa =+>,12122,2y y pa y y pm =−+=,()21212222x x m y y a pm a +=++=+,则1111111,:,,OA y y ay k OA y x M a x x x ⎛⎫==−− ⎪⎝⎭ 故()12211112212220BMay pay y x y y y pakx a x a y x a +++====+++,同理0,//AN k BM AN =∴,故A 正确; 对于C ,设x a =−与x 轴交于P ,,PONAOCMOPBOCSSSS==,则,PONMOPAOCBOCSSS S++=,AOB MON S S =△△,故C 正确;对于D ,()()112211,22ANCBCMS x a y S x a y =+=−+ 则()()()()12121212112244ANC BCMSSx a x a y y my a my a y y ⋅=−++=−++ ()221212121244m y y am y y a y y ⎡⎤=−+++⎣⎦ ()()()221222424m pa am pm a pa ⎡⎤=−−++−⎣⎦()222pa pm a =+, 而121212||||2MCNMPCNPCSSSa y y a y y =+=⋅−=−, 所以()()()22222221212124424MCNANCBCMS a y y a y y y y pa pm a SS⎡⎤=−=+−=+=⋅⎣⎦,故D 正确;对于B ,AB 中点1212,22x x y y Q ++⎛⎫ ⎪⎝⎭,即()2,,Q pm a pa +− 则Q 到直线x a =−的距离22d pm a =+,以AB 为直径的圆的半径122AB y =−所以()()222224AB d p a a p m −=+−,当2p a =时相切,当2pa ≠时不相切,故B 错误.故选:ACD.13.(2024·湖北·一模)已知函数()32f x ax bx cx d =+++存在两个极值点()1212,x x x x <,且()11f x x =−,()22f x x =.设()f x 的零点个数为m ,方程()()2320a f x bf x c ⎡⎤++=⎣⎦的实根个数为n ,则( )A .当0a >时,3n =B .当a<0时,2m n +=C .mn 一定能被3整除D .m n +的取值集合为{}4,5,6,7【答案】AB 【详解】由题意可知()232f x ax bx c '=++为二次函数,且()1212,x x x x <为()f x '的零点,由()()()()2320f f x a f x bf x c ⎡⎤+⎦'=+=⎣得()1f x x =或()2f x x =,当0a >时,令()0f x '>,解得1x x <或2x x >;令()0f x '<,解得12x x x <<; 可知:()f x 在()()12,,,x x ∞∞−+内单调递增,在()12,x x 内单调递减, 则1x 为极大值点,2x 为极小值点, 若10x ≥,则120x x −≤<,因为()()12f x f x >,即12x x −>,两者相矛盾,故10x <, 则()2f x x =有2个根,()1f x x =有1个根,可知3n =, 若()220f x x =>,可知1m =,3,4mn m n =+=; 若()220f x x ==,可知2m =,6,5mn m n =+=; 若()220f x x =<,可知3m =,9,6mn m n =+=; 故A 正确;当0a <时,令()0f x '>,解得12x x x <<;令()0f x '<,解得1x x <或2x x >; 可知:()f x 在()12,x x 内单调递增,在内()()12,,,x x ∞∞−+单调递减, 则2x 为极大值点,1x 为极小值点, 若20x ≤,则120x x −>≥,因为()()12f x f x <,即12x x −<,两者相矛盾,故20x >,若()110f x x =−>,即10x <,可知1m =,3n =,3,4mn m n =+=; 若()110f x x =−=,即10x =,可知2m =,4n =,8,6mn m n =+=; 若()110f x x =−<,即1>0x ,可知3m =,5n =,15,8mn m n =+=; 此时2m n +=,故B 正确;综上所述:mn 的取值集合为{}3,6,8,9,15,m n +的取值集合为{}4,5,6,8, 故CD 错误; 故选:AB.14.(2024·湖北武汉·模拟预测)已知函数()()1e 1ln e 11xx x f x a x +⎛⎫=+−+ ⎪−⎝⎭恰有三个零点,设其由小到大分别为123,,x x x ,则( )A .实数a 的取值范围是10,e ⎛⎫⎪⎝⎭B .1230x x x ++=C .函数()()()g x f x kf x =+−可能有四个零点D .()()331e x f x f x '='【答案】BCD【详解】对于B ,()11e0ln 01e 1xxx f x a x +−⎛⎫=⇔+= ⎪−+⎝⎭, 设()11eln 1e 1xxx h x a x +−⎛⎫=+ ⎪−+⎝⎭,则它的定义域为()1,1−,它关于原点对称, 且()()11e 11e ln ln 1e 11e 1x xx x x x h x a a h x x x −−⎛⎫−−+−⎛⎫⎛⎫−=+=−+=− ⎪ ⎪ ⎪++−+⎝⎭⎝⎭⎝⎭,所以()h x 是奇函数,由题意()0h x =有三个根123,,x x x ,则1230x x x ++=,故B 正确; 对于C ,由()()()()110e 1ln e 1e 1ln e 1011x x xx x x f x kf x a a x x −−⎡⎤+−⎛⎫⎛⎫+−=⇒+−+++−+= ⎪ ⎪⎢⎥−+⎝⎭⎝⎭⎣⎦, 所以()1ln 11e 1e 1ln 01e 1e e 1e x x x xx x x x x a k a x ⎡⎤+⎛⎫ ⎪⎢⎥+−−−⎛⎫⎝⎭⎢⎥++−= ⎪−++⎝⎭⎢⎥⎢⎥⎣⎦, 所以11e11e ln ln 1e 1e1e 1xxx xx x k x a a x x ⎡⎤+−+−⎛⎫⎛⎫+=+ ⎪⎢ ⎪⎥−+−+⎝⎭⎝⎭⎣⎦,即11e ln 101e 1e xx x x k a x ⎡⎤+−⎛⎫⎛⎫+−=⎢ ⎪⎥ ⎪−+⎝⎭⎝⎭⎣⎦已经有3个实根123,,x x x , 当0k >时,令10e xk−=,则ln x k =,只需保证123ln ,,k x x x ≠可使得方程有4个实根,故C 正确;由B 可知,13x x =−,而()()()()333331e e x x f x f x f x f x ''='=⇔−', 又()()()()333322331122e lne 1e ,e ln e 111111x x xx xx x f x a a f x a a x x x x ''−+=++−−=++−−−+−, 所以()()3333323312e lne 1e 11x x x xf x a a x x +++−−'=− ()333333233331112lne 11e ln ln e 11111x x x x x x a a a a x x x x −+−=++−+−−++−−+ ()()()333333331e e 1lne 1e 1x x x x xf x a f x x +=−++−+='−−',故D 正确; 对于A ,11e ln 1e 1x xx a x +−⎛⎫=− ⎪−+⎝⎭,设()()11e ln ,1e 1x x x p x a m x x +−⎛⎫==− ⎪−+⎝⎭, 则()()()2222e ,1e 1xxa p x m x x ''==−+,所以()()102,02p a m =='', 从而1102,024a a <<<<,故A 错误.故选:BCD.15.(2024·福建·模拟预测)已知正方体1111ABCD A B C D −的棱长为2,棱,AB BC 的中点分别为E ,F ,点G 在底面1111D C B A 上,且平面EFG 平面1ACD ,则下列说法正确的是( )A .若存在λ使得11A G GD λ=,则12λ= B .若11G C D ∈,则EG平面11ADD AC .三棱锥1G BCD −体积的最大值为2 D .二面角D EF G −−【答案】BCD【详解】如图,建立空间直角坐标系,依题意,()()()()()12,0,0,0,2,0,0,0,2,2,1,0,1,2,0A C D E F ,设()00,,2G x y ,则()()()()1002,2,0,2,0,2,1,1,0,2,1,2AC AD EF EG x y =−=−=−=−−, 设平面1ACD 的一个法向量为()1111,,n x y z =,则111n ACn AD ⎧⊥⎪⎨⊥⎪⎩,所以1111111220220n AC x y n AD x z ⎧⋅=−+=⎪⎨⋅=−+=⎪⎩,令11x =,则111y z ==,即()11,1,1n =,设平面EFG 的一个法向量()2222,,n x y z =,则22n EFn EG⎧⊥⎪⎨⊥⎪⎩,所以()()22222020202120n EF x y n EG x x y y z ⎧⋅=−+=⎪⎨⋅=−+−+=⎪⎩,令21x =,则002231,2x y y z −−==即00231,1,2x y n −−⎛⎫= ⎪⎝⎭,因为平面EFG 平面1ACD ,所以12//n n ,即00312x y −−=,所以001x y +=,选项A :若存在λ使得11A G GD λ=,则点G 在线段11A D 上,所以00y =,即01x =, 所以G 为11A D 的中点,即1λ=,故A 错误;选项B :若11G C D ∈,则00x =,即01y =,所以G 为11C D 的中点,因为E 为AB 的中点,所以11//,AE D G AE D G =,故四边形1AEGD 为平行四边形, 所以1//EG AD ,EG ⊄平面11ADD A ,1AD ⊂平面11ADD A ,所以EG 平面11ADD A ,故B正确;选项C :因为()()()1000,2,2,2,2,0,,,2DC DB DG x y ===,设平面1DBC 的一个法向量为()3333,,n x y z =,则313n DC n DB ⎧⊥⎪⎨⊥⎪⎩,所以3133333220220n DC y z n DB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令31y =,则331x z ==−, 即()31,1,1n =−−,设G 到平面1DBC的距离为33DG n xd n ⋅−=== 又1DBC 为等边三角形且边长为(12DBC S==所以11011221333GDBC DBC V Sd x −=⋅⋅=⨯=+,又001x ≤≤,所以当01x =时,三棱锥1G BC D −体积的最大值为2,故C 正确;选项D :因为1DD ⊥平面DEF ,所以平面DEF 的一个法向量为()10,0,2DD =, 平面EFG 的一个法向量()11,1,1n =,则1111112cos ,32DD n DD n DD n ⋅===⨯⋅, 因为二面角D EF G −−为锐角,所以二面角D EF G −−D 正确; 故选:BCD.16.(2024·福建泉州·模拟预测)已知函数()22f x x x =−+,()2g x x a =+,则( )A .()()f x g x ≤恒成立的充要条件是12a ≥ B .当14a =时,两个函数图象有两条公切线C .当12a =时,直线4410x y −+=是两个函数图象的一条公切线 D .若两个函数图象有两条公切线,以四个切点为顶点的凸四边形的周长为2+,则1a =【答案】ACD 【详解】对于A ,若()()f x g x ≤恒成立,即()()0g x f x −≥恒成立,而222()()222g x f x x a x x x x a −=++−=−+)2112(022x a =−+−≥恒成立,所以102a −≥,解得12a ≥,故A 正确;对于B ,设切点1(x ,1())f x ,2(x ,2())g x ,()22f x x =−+',()2g x x '=,有()()()()121222121122121222222x x f x g x f x g x x x x a x x x x x −+=⎧−⎪==⇒−+−−⎨=−⎪⎩'−'①②,①代入②,可得2112210x x a −+−=, 当14a =时,代入方程解得:2118830x x −+=, 643480∆=−⨯⨯<,方程无解,即两个函数图象无公切线,故B 错误;对于C ,当12a =时,代入方程2112210x x a −+−=得:2114410x x −+=, 112x =,故1()12f '=,13()24f =,所以函数()f x 与()g x 的一条公切线为:4410x y −+=,故C 正确; 对于D ,如图,不妨设切线与()f x 切于,A B ,与()g x 切于,C D , 设(A A x ,)A y ,(B B x ,)B y ,(C C x ,)C y ,(D D x ,)D y ,()22f x x '=−+,()2g x x '=, 故()()()222,()222A C A C B D B D f x g x x x f x g x x x =⇒−+'==⇒−+=''' 所以1A C x x +=,1B D x x +=,()()22221A C A A C C A C A A y y x x x a x x x x x a a +=−+++=+−++=+,同理1B D y y a +=−,则AC 中点即可BD 中点,所以四边形ABCD 是平行四边形,由A 处的切线方程为()()()2222222A A A A A A y x x x x x y x x x =−+−−+⇒=−++,C 处的切线方程为()2222C C C C C y x x x x a y x x x a =−++⇒=−+,得22AC x x a +=,即21A C x x a−=,结合1A C x x +=可知A x ,C x 是方程22210x x a −+−=的根, 由C 选项可知:,A B 是()f x 的两个切点,所以B x ,A x 也是方程22210x x a −+−=的根,所以22210BB x x a −+−=,且()Δ481840a a =−−=−>,故12a >,则C B x x =,2222222121C B C B B B B CB y y x a x x a x x a a =−=++−=+−=−=−,||AB ===||||211AB BC a +−=,0t t =>,则(()(2101101t t t t −=⇒−+=⇒=,11a =⇒=,故D 正确. 故选:ACD .17.(2024·福建莆田·一模)已知定义在R 上的函数()f x 满足:()()()()3f x y f x f y xy x y +=+−+,则( )A .()y f x =是奇函数B .若()11f =,则()24f −=C .若()11f =−,则()3y f x x =+为增函数D .若()30,0x f x x ∀>+>,则()3y f x x =+为增函数【答案】ABD【详解】对A :()f x 定义域为R ,关于原点对称; 对原式,令0x y ==,可得()()020f f =,解得()00f =;对原式,令y x =−,可得()()()0f f x f x =+−,即()()0f x f x +−=, 故()y f x =是奇函数,A 正确;对B :对原式,令1x y ==,可得()()22132f f =−⨯, 又()11f =,则()22164f =⨯−=−;由A 可知,()y f x =为奇函数,故()()224f f −=−=,故B 正确;对C :由A 知,()00f =,又()11f =−,对()3y f x x =+,当0x =时,()000y f =+=;当1x =时,()110y f =+=;故()3y f x x =+在()11f =−时,不是单调增函数,故C 错误;对D : 在R 上任取12x x >,令()()3h x f x x =+,则()()()()33121122h x h x f x x f x x −=+−−()()()()221222121212f x x x f x x x x x x x ⎡⎤=−+−+−++⎣⎦()()()()()()()2212212212221212123f x x f x x x x x x x f x x x x x x x ⎡⎤=−+−−−+−+−++⎣⎦ ()()()()221212*********f x x x x x x x x x x x x =−−−+−++()()()22121212122f x x x x x x x x =−+−+−()()31212f x x x x =−+−,由题可知()30,0x f x x ∀>+>,又120x x −>,故()()312120f x x x x −+−>,即()()120h x h x −>,()()12h x h x >,故()y h x =在R 上单调递增,也即()3y f x x =+在R 上单调递增,故D 正确;故选:ABD.18.(2024·福建漳州·模拟预测)如图,在棱长为4的正方体1111ABCD A B C D −中,E ,F 分别是棱11A B ,1DD 的中点,G 为底面ABCD 上的动点,则下列说法正确的是( )A .当G 为AD 的中点时,EF CG ⊥B .若G 在线段BD 上运动,三棱锥A GEF −的体积为定值C .存在点G ,使得平面EFG 截正方体所得的截面面积为D .当G 为AD 的中点时,三棱锥1A EFG −的外接球表面积为236π9【答案】ACD【详解】对于A 选项,以B 为坐标原点,建立如图1所示的空间直角坐标系,则()2,0,4E ,()4,4,2F ,()0,4,0C ,()4,2,0G , 所以()2,4,2EF =−,()4,2,0CG =−,因为()244200EF CG ⋅=⨯+⨯−+=,所以EF CG ⊥,故A 选项正确;对于B 选项,当点G 与点B 重合时,如图2所示,1132444323A GEF F AGE V V −−==⨯⨯⨯⨯=,当点G 与点D 重合时,如图3所示,118422323A GEF E AGF V V −−==⨯⨯⨯⨯=,所以三棱锥A GEF −的体积不是定值,故B 选项错误;对于C 选项,当G 为BC 中点时,平面EFG 截正方体所得的截面为正六边形EKFHGJ ,如图4所示,其中H ,J ,K 为相应边的中点,则正六边形EKFHGJ 的边长为所以该截面的面积为(26=G ,符合题意,故C 选项正确;对于D 选项,当G 为AD 的中点时,如图5所示,易知1EA ⊥平面1A FG ,因为11A F A G ==FG =所以由余弦定理的推论得22211111cos 2A F AG FG FAG A F AG +−∠==⋅45=, 所以13sin 5FAG ∠=,设1A FG △的外接圆半径为r ,则12sin 5FG r FAG ===∠r =, 设三棱锥1A EFG −的外接球半径为R ,则222150591299A E R r ⎛⎫=+=+=⎪⎝⎭, 所以三棱锥1A EFG −的外接球的表面积为2236π49R π=,故D 选项正确, 故选:ACD .19.(2024·全国·模拟预测)设()f x ,()g x 都是定义在R 上的奇函数,且()f x 为单调函数,()11f >,若对任意x ∈R 有()()f g x x a −=(a 为常数),()()()()222g f x g f x x ++=+,则( )A .()20g =B .()33f <C .()f x x −为周期函数D .21(4)22nk f k n n =>+∑【答案】BC【详解】在()()f g x x a −=中,令0x =得()()()000a f g f ===,所以()()0f g x x −=,又()f x 为单调函数,所以()0g x x −=,即()g x x =,所以()()222f x f x x ++=+, 所以()22g =,所以A 错误;由()()314f f +=,得()()3413f f =−<,所以B 正确; 设()()h x f x x =−,则由()()222f x f x x ++=+, 可得()()20h x h x ++=,所以()()420h x h x +++=, 所以()()4h x h x +=,即()f x x −为周期函数,所以C 正确;由()()4h x h x +=,得()()44f x x f x x +−−=−,即()()44f x f x +−=, 所以(){}4f k 为等差数列,且()()404f f −=,即()44f =, 所以()()44414f k k k =+−=,所以()()21144222nk n n f k n n =+=⨯=+∑,所以D 错误. 故选:BC .20.(2024·福建龙岩·一模)如图,在棱长为2的正方体1111ABCD A B C D −中,已知,,M N P 分别是棱111,,C D AA BC 的中点,点Q 满足[]1,0,1CQ CC λλ=∈,下列说法正确的是( )A .不存在λ使得1QA QB ⊥ B .若,,,Q M N P 四点共面,则14λ=C .若13λ=,点F 在侧面11BB C C 内,且1//A F 平面APQ ,则点FD .若12λ=,由平面MNQ 分割该正方体所成的两个空间几何体1Ω和2Ω,某球能够被整体放入1Ω或2Ω,则该球的表面积最大值为(12π−【答案】ACD【详解】正方体中,由1QA AC AB >=,故1QAB 中,1AB 不可能是直角三角形的斜边, 即不存在λ使得1QA QB ⊥,A 选项正确;,R S 分别是棱11,A D AB 的中点,点Q 为1CC 中点时,平面MNP 在正方体上的截面为正六边形MRNSPQ ,则,,,Q M N P 四点共面,有12λ=,B 选项错误; 若13λ=,则Q 为1CC 上靠近C 点的三等分点,取1BB 上靠近1B 的三等分点G ,11B C 的中点H ,连接11,,A H AG GH则在正方形11BB C C 中,可得//GH PQ ,GH ⊄平面APQ ,PQ ⊂平面APQ ,则有//GH 平面APQ ,同理可由1//A H AP ,证明1//A H 平面APQ ,1,A H GH ⊂平面1AGH ,1A H GH H ⋂=,所以平面1//A GH 平面APQ , 点F 在侧面11BB C C 内,且1//A F 平面APQ ,所以GH 即为点F 的轨迹,GH ===C 选项正确;若12λ=,则Q 为1CC 的中点,平面MNQ 分割该正方体所成的两个空间几何体1Ω和2Ω, 平面MNQ 在正方体上的截面为正六边形MRNSPQ ,某球能够被整体放入1Ω或2Ω,该球的表面积最大时,是以1B 为顶点,底面为正六边形MRNSPQ 的正六棱锥的内切球,正六边形MRNSPQ 1622⨯=正六棱锥1B MRNSPQ −32设该球的半径为R ,由体积法可得1136332R ⎛⎫⨯=⨯ ⎪⎝⎭,解得R =(24π12πS R ==−,D 选项正确. 故选:ACD21.(2024·福建福州·模拟预测)通信工程中常用n 元数组()123,,,,n a a a a 表示信息,其中0i a =或()*1,N ,1i n i n ∈≤≤.设()()()123123,,,,,,,,,,,n n u a a a a v b b b b d u v ==表示u 和v中相对应的元素(i a 对应i b ,1,2,,i n =⋯)不同的个数,则下列结论正确的是( )A .若()0,0,0,0,0u =,则存在5个5元数组v ,使得(),1d u v =B .若()1,1,1,1,1u =,则存在12个5元数组v ,使得(),3d u v =C .若n 元数组00,0,,0n w ⎛⎫⎪= ⎪⎝⎭个,则()()(),,,d u w d v w d u v +≥D .若n 元数组11,1,,1n w ⎛⎫⎪= ⎪⎝⎭个,则()()(),,,d u w d v w d u v +≥【答案】ACD【详解】选项A :由题意,5个位置选则1个位置安排1即可,满足条件的数组共有。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

高考数学压轴卷含解析试题 2

高考数学压轴卷含解析试题 2

智才艺州攀枝花市创界学校2021年高考数学压轴卷〔含解析〕一、选择题:本大题一一共10小题,每一小题4分,一共40分。在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.1.集合{|||2}A x x =<,{1,0,1,2,3}B =-,那么A B =A .{0,1}B .{0,1,2}C .{1,0,1}- D .{1,0,1,2}-2.复数21+i〔i 为虚数单位〕的一共轭复数是〔〕A .−1+iB .1−iC .1+iD .−1−i3.记n S 为等差数列{}n a 的前n 项和.假设4524a a +=,648S =,那么{}n a 的公差为A .1B .2C .4D .84.底面是正方形且侧棱长都相等的四棱锥的三视图如以下图,那么该四棱锥的体积是()A.B .8 CD .835.假设实数,x y 满足不等式组02222y x y x y ⎧⎪-⎨⎪-⎩,那么3x y -()A .有最大值2-,最小值83- B .有最大值83,最小值2 C .有最大值2,无最小值D .有最小值2-,无最大值6.“a=1〞是“直线x+y=0和直线x-ay=0互相垂直〞的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.函数()()11x xe f x x e +=-〔其中e 为自然对数的底数〕的图象大致为〔〕A .B .C .D .8.a 、b R ∈,且a b >,那么〔〕A .11a b<B .sin sin a b >C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .22a b >9.设P ABCD -是一个高为3,底面边长为2的正四棱锥,M 为PC 中点,过AM 作平面AEMF与线段PB ,PD 分别交于点E ,F 〔可以是线段端点〕,那么四棱锥P AEMF -的体积的取值范围为〔〕A .4,23⎡⎤⎢⎥⎣⎦B .43,32⎡⎤⎢⎥⎣⎦C .31,2⎡⎤⎢⎥⎣⎦D .[]1,210假设对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,34349x y a x y -++--的取值与x ,y 无关,那么实数a 的取值范围是()A .4a ≤B .46a -≤≤C .4a ≤或者6a ≥D .6a ≥第II 卷〔非选择题)二、填空题:本大题一一共7小题,多空题每一小题6分,单空题每一小题4分,一共36分11.九章算术中有一题:“今有女子善织,日自倍,五日织五尺.〞该女子第二日织______尺,假设女子坚持日日织,十日能织______尺.12.二项式521()x x 的展开式中常数项为__________.所有项的系数和为__________. 13.设双曲线()222210x y b a a b-=>>的半焦距为c ,直线l 过〔a ,0〕,〔0,b 〕两点,原点到直线l 3,那么双曲线的离心率为____;渐近线方程为_________.14.函数22,0()log (),0x x f x x a x ⎧<=⎨-≥⎩,假设(1)(1)f f -=,那么实数a =_____;假设()y f x =存在最小值,那么实数a 的取值范围为_____. 15.设向量,,a b c 满足1a =,||2b =,3c =,0b c ⋅=.假设12λ-≤≤,那么(1)a b cλλ++-的最大值是________.16.某班同学准备参加在假期里组织的“社区效劳〞、“进敬老院〞、“参观工厂〞、“民俗调查〞、“环保宣传〞五个工程的社会理论活动,每天只安排一项活动,并要求在周一至周五内完成.其中“参观工厂〞与“环保宣讲〞两项活动必须安排在相邻两天,“民俗调查〞活动不能安排在周一.那么不同安排方法的种数是________.17.函数()2122,01()2,10x x x m x f x x m x +⎧+≤≤⎪=⎨---≤<⎪⎩假设在区间[1,1]-上方程()1f x =只有一个解,那么实数m 的取值范围为______.三、解答题:本大题一一共5小题,一共74分,解容许写出文字说明、证明过程或者演算步骤。18.函数()()222cos 1x R f x x x -+∈.(1)求()f x 的单调递增区间;(2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域. 19.如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形AC BD O =,1A O ⊥底面ABCD ,12AA AB ==.〔1〕求证:平面1ACO ⊥平面11BB D D ; 〔2〕假设60BAD ∠=︒,求OB 与平面11A B C 所成角的正弦值. 20.等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.〔1〕求数列{}n a 的通项公式;〔2〕设31323log log ......log n n b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 21.抛物线22y px =〔0p >〕上的两个动点()11,A x y 和()22,B x y ,焦点为F.线段AB 的中点为()03,My ,且点到抛物线的焦点F 的间隔之和为8〔1〕求抛物线的HY 方程; 〔2〕假设线段AE 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.22.函数2()(1)(0)x f x x e ax x =+->.〔1〕假设函数()f x 在(0,)+∞上单调递增,务实数a 的取值范围; 〔2〕假设函数()f x 有两个不同的零点12,x x . 〔ⅰ〕务实数a 的取值范围;〔ⅱ〕求证:12011111x x t +->+.〔其中0t 为()f x 的极小值点〕参考答案及解析1.【答案】C【解析】 由,得,选C.2.【答案】C【解析】因为21+i =1−i ,所以其一共轭复数是1+i ,选C. 【点睛】此题考察一共轭复数概念,考察根本分析求解才能,属基此题. 3.【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,应选C. 点睛:求解等差数列根本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,假设m n p q +=+,那么m n p q a a a a +=+. 4.【答案】C【解析】根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2, 画出图形,如以下图;所以该四棱锥的底面积为224S ==,高为22213h =-=; 所以该四棱锥的体积是114343333V Sh ==⨯⨯=. 应选:C. 【点睛】此题考察了利用三视图求几何体体积的问题,属于中档题. 5.【答案】C【解析】画出不等式组02222y x y x y ⎧⎪-⎨⎪-≥⎩表示的平面区域,如图阴影所示;设3z x y =-,那么直线30x y z --=是一组平行线;当直线过点A 时,z 有最大值,由022y x y =⎧⎨-=⎩,得(2,0)A ;所以z 的最大值为3202x y -=-=,且z 无最小值. 应选:C.6.【答案】C 【解析】直线0x y +=和直线0x ay -=互相垂直的充要条件是1()110a ⨯-+⨯=,即1a =,应选C7.【答案】A【解析】∵f 〔﹣x 〕()()()111111x x x x x xe e e x e x e x e--+++====-----f 〔x 〕, ∴f 〔x 〕是偶函数,故f 〔x 〕图形关于y 轴对称,排除C ,D ; 又x=1时,()e 111ef +=-<0, ∴排除B , 应选A . 8.【答案】C 【解析】对于A 选项,取1a =,1b =-,那么a b >成立,但11a b>,A 选项错误; 对于B 选项,取a π=,0b =,那么a b >成立,但sin sin0π=,即sin sin a b =,B 选项错误;对于C 选项,由于指数函数13x y ⎛⎫= ⎪⎝⎭在R 上单调递减,假设a b >,那么1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,C选项正确;对于D 选项,取1a =,2b =-,那么a b >,但22a b <,D 选项错误. 应选:C. 9.【答案】D【解析】依题意343493434955x y ax y x y a x y -+---++--=+表示(),P x y 到两条平行直线340x y a -+=和3490x y --=的间隔之和与,x y 无关,故两条平行直线340x y a -+=和3490x y --=在圆22(1)(1)1x y -+-=的两侧,画出图像如以下图所示,故圆心()1,1到直线340x y a -+=的间隔3415ad -+=≥,解得6a ≥或者4a ≤-〔舍去〕 应选:D. 10.【答案】B【解析】首先证明一个结论:在三棱锥S ABC -中,棱,,SA SB SC 上取点111,,A B C那么111111S A B C S ABCV SA SB SC V SA SB SC--⋅⋅=⋅⋅,设SB 与平面SAC 所成角θ,11111111111111sin sin 3211sin sin 32S A B C B SA C S ABC B SAC SA SC ASC SB V V SA SB SC V V SA SB SC SA SC ASC SB θθ----⨯⋅⋅∠⋅⋅⋅⋅===⋅⋅⨯⋅⋅∠⋅⋅,证毕.四棱锥P ABCD -中,设,PE PF x y PB PD ==,212343P ABCD V -=⨯⨯=12222P AEMF P AEF P MEF P AEF P MEF P AEF P MEFP ABCD P ABD P ABD P DBC P ABD P DBCV V V V V VV V V V V V V -------------⎛⎫+==+=+ ⎪⎝⎭111222PA PE PF PE PM PF xy xy PA PB PD PB PC PD ⋅⋅⋅⋅⎛⎫⎛⎫=+=+ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭所以3P AEMF V xy -=又12222P AEMF P AEM P MAF P AEM P MAF P AEM P MAFP ABCD P ABC P ABC P DAC P ABC P DACV V V V V VV V V V V V V -------------⎛⎫+==+=+ ⎪⎝⎭11112222PA PE PM PA PM PF x y PA PB PC PA PC PD ⋅⋅⋅⋅⎛⎫⎛⎫=+=+ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭所以P AEMF V x y -=+ 即3,31x x y xy y x +==-,又01,0131xx y x ≤≤≤=≤-, 解得112x ≤≤ 所以体积2313,[,1]312x V xy x x ==∈-,令131,[,2]2t x t =-∈2(1)111()(2),[,2]332t V t t t t t +==++∈根据对勾函数性质,()V t 在1[,1]2t ∈递减,在[1,2]t ∈递增 所以函数()V t 最小值4(1)3V =,最大值13(2)()22V V ==, 四棱锥P AEMF -的体积的取值范围为43,32⎡⎤⎢⎥⎣⎦应选:B11.【答案】1031165 【解析】设该女子每天的织布数量为n a ,由题可知数列{}n a 为公比为2的等比数列, 设数列{}n a 的前n 项和为n S ,那么()51512512a S -==-,解得1531a =, 所以2110231a a ==,()10105123116512S -==-. 故答案为:1031,165. 【点睛】此题考察了等比数列的应用,关键是对于题目条件的转化,属于根底题. 12.【答案】532【解析】展开式的通项为5552215521()r r rr r r T C C xx--+==, 令55022r -=,解得1r =, 所以展开式中的常数项为1255T C ==,令1x =,得到所有项的系数和为5232=,得到结果.点睛:该题考察的是有关二项式定理的问题,涉及到的知识点有展开式中的特定项以及展开式中的系数和,所用到的方法就是先写出展开式的通项,令其幂指数等于相应的值,求得r ,代入求得结果,对于求系数和,应用赋值法即可求得结果. 13.【答案】2y =【解析】由题可设直线l 方程为:1x ya b+=,即0bx ay ab,那么原点到直线的间隔ab d c ===,解得24ab =,两式同时平方可得224163a b c =,又222b c a =-,代换可得()2224163a c a c -=,展开得:224416162a c a c -=,同时除以4a 得:2416163e e -=,整理得()()223440e e --=,解得243e =或者4,又0b a >>,所以2222222222b a c a a c a e >⇒->⇒>⇒>,所以24,2ce e a===;b a a a===b y x a =±= 故答案为:2;y = 14.【答案】1[1,0)-【解析】(1)(1)f f -=,122log (1)a -∴=-,1212a ∴-=,1a ∴=-易知0x <时,()2(0,1)xf x =∈;又0x 时,2()log ()f x x a =-递增,故2()(0)log ()f x f a =-, 要使函数()f x 存在最小值,只需2()0a log a ->⎧⎨-⎩,解得:10a -<.故答案为:1-[1,0)-. 15.【答案】1【解析】令()1n b c λλ=+-,那么()2211318n b c λλλλ⎡⎤=+-=-⎣⎦因为12λ-≤≤,所以当1λ=-,max 13n ==n 与a 同向时a n +的模最大,max 2101a n a n +=+=+16.【答案】36【解析】把“参观工厂〞与“环保宣讲〞当做一个整体,一共有4242A A 48=种,把“民俗调查〞安排在周一,有3232A A 12⋅=,∴满足条件的不同安排方法的种数为481236-=, 故答案为:36.17.【答案】1|12m m ⎧-≤<-⎨⎩或者1}m = 【解析】当01x ≤≤时,由()1f x =,得()221xx m +=,即212xx m ⎛⎫=+ ⎪⎝⎭;当10x -≤<时,由()1f x =,得1221x x m +--=,即1221x x m +-=+.令函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩,那么问题转化为函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与函数()h x =2x m +的图像在区间[1,1]-上有且仅有一个交点.在同一平面直角坐标系中画出函数11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与2y x m =+在区间函数[1,1]-上的大致图象如以下图所示:结合图象可知:当(0)1h =,即1m =时,两个函数的图象只有一个交点;当(1)(1),11(1)(1)2h g m h g <⎧⇒-≤<-⎨-≥-⎩时,两个函数的图象也只有一个交点,故所务实数m 的取值范围是1|112m m m ⎧⎫-≤<-=⎨⎬⎩⎭或. 18.【答案】〔1〕,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;〔2〕3⎡-⎣. 【解析】 (1)函数()2322cos 1322226f x x sin x cos x in x x s π⎛⎫ ⎪=⎝=-+-=⎭-,令222()262πππππ-≤-≤+∈k x k k Z ,求得()63k x k k Z ππππ-≤≤+∈,故函数f(x)的增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)假设,64x ππ⎡⎤∈-⎢⎥⎣⎦,那么2,623x πππ⎡⎤-∈-⎢⎥⎣⎦,故当262x ππ-=-时,函数f(x)获得最小值为−2;当263x ππ-=时,函数f(x)33⎡-⎣. 【点睛】此题考察三角恒等变换,考察正弦型函数的性质,考察运算才能,属于常考题.19.【答案】〔1〕证明见解析〔2〕217【解析】〔1〕证明:由1A O ⊥底面ABCD 可得1AO BD ⊥, 又底面ABCD 是菱形,所以CO BD ⊥, 因为1AO CO O ⋂=,所以BD ⊥平面1A CO , 因为BD ⊂平面11BB D D ,所以平面1ACO ⊥平面11BB D D . 〔2〕因为1A O ⊥底面ABCD ,以O 为原点,OB ,OC ,1OA 为x ,y ,z 轴建立如以下图空间直角坐标系O xyz -,那么(1,0,0)B ,3,0)C ,(0,3,0)A ,1(0,0,1)A ,11(1,3,0)A B AB ==,()13,1AC =-, 设平面11A B C 的一个法向量为(,,)m x y z =,由111030030m A B x m ACz ⎧⋅=⇒+=⎪⎨⋅=⇒-=⎪⎩,获得1x =31,13m ⎛⎫=-- ⎪⎝⎭,又(1,0,0)OB =,所以21cos ,7||||123OB mOB m OB m ⋅===+,所以OB 与平面11A B C 所成角的正弦值为217.20.【答案】〔1〕13n n a =〔2〕21nn -+【解析】〔Ⅰ〕设数列{a n }的公比为q,由23a =9a 2a 6得23a =924a ,所以q 2=19. 由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n . 〔Ⅱ〕b n =log 3a 1+log 3a 2+…+log 3a n =-〔1+2+…+n 〕=-()21n n +.故()1211211n b n n n n ⎛⎫=-=-- ⎪++⎝⎭. 121111111122122311n n b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=--+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为21nn -+21.【答案】〔1〕24y x =〔2〕9【解析】〔1〕由题意知126x x +=,那么1268AF BF x x p p +=++=+=,2p ∴=,∴抛物线的HY 方程为24y x =〔2〕设直线AB :x my n =+〔0m ≠〕,由24x my n y x=+⎧⎨=⎩,得2440y my n --=, 124y y m ∴+=212426x x m n ∴+=+=,即232n m =-,即()21221216304812m y y m y y m ⎧∆=->⎪⎪+=⎨⎪⋅=-⎪⎩, 12AB y y ∴=-=设AB 的中垂线方程为:()23y m m x -=--,即()5y m x =--, 可得点C 的坐标为()5,0,直线AB :232x my m =+-,即2230x my m -+-=,∴点C 到直线AB的间隔d ==()21412S AB d m ∴=⋅=+令t =那么223m t =-〔0t <<,令()()244f t tt =-⋅,()()2443f t t '∴=-,令()0f t '∴=,那么3t =,在⎛ ⎝⎭上()0f t '>;在3⎛ ⎝上()0f t '<, 故f t在⎛ ⎝⎭单调递增,⎝单调递减, ∴当t =,即m =±,max S =22.【答案】〔1〕1(2,2⎛⎫+⋅-∞ ⎪ ⎪⎝⎭;〔2〕〔ⅰ〕12⎛⎫++∞ ⎪ ⎪⎝⎭;〔ⅱ〕证明见解析. 【解析】〔1〕由2()(1)x f x x e ax =+-,得2()2x x f x x e a x +⎛⎫'=-⎪⎝⎭,设2()x x g x e x +=⋅,(0)x >;那么2222()xx x g x e x +-'=⋅;由()0g x ',解得1x ≥-,所以()g x 在1)上单调递减,在1,)+∞上单调递增,所以1min ()1)(2==⋅g x g因为函数()f x 在(0,)+∞上单调递增,所以()0f x '在(0,)+∞恒成立所以1(22⋅≥a ;所以,实数a 的取值范围是:1(2,2⎛⎫+⋅-∞ ⎪ ⎪⎝⎭.〔2〕〔i 〕因为函数()f x 有两个不同的零点,()f x 不单调,所以1(22a +⋅>.因此()0f x '=有两个根,设为10,t t ,且1001t t <<<,所以()f x 在()10,t 上单调递增,在()10,t t 上单调递减,在()0,t +∞上单调递增; 又()1(0)1f t f >=,()22()(1)(1)xxxf x x e ax a e xx a e =+-=-++-⋅,当x 充分大时,()f x 取值为正,因此要使得()f x 有两个不同的零点,那么必须有()00f t <,即()200010t t e a t +-⋅<; 又因为()()0000220tf t t e at '=+-=;所以:()()000002202ttt t e t e +-⋅+<,解得0t >1122+>=a g ;因此当函数()f x 有两个不同的零点时,实数a 的取值范围是12⎛⎫++∞ ⎪⎪⎝⎭.〔ⅱ〕先证明不等式,假设12,(0,)x x ∈+∞,12x x ≠,211221112x x x xnx nx -+<-.证明:不妨设210x x >>,即证2212211211ln 1x x x x x x x ⎛⎫-- ⎪⎝⎭<<+,设211x t x =>,()ln g t t =-2(1)()ln 1t h t t t -=-+,只需证()0g t <且()0h t >;因为()0g t '=<,22(1)()0(1)t h t t t -'=>+, 所以()g t 在(1,)+∞上单调递减,()h t 在(1,)+∞上单调递增, 所以()(1)0g t g <=,()(1)0h t h >=,从而不等式得证.12011111x x t +->+. 由()()1200f x f x ⎧=⎪⎨=⎪⎩得()()122112221010x x x e ax x e ax ⎧+-=⎪⎨+-=⎪⎩; 所以()()2212221211xx x e x e xx++=,两边取对数得:()()()2121212ln ln ln 1ln 1x x x x x x ⎡⎤--+-+=-⎣⎦;即()()()()()212121212ln ln ln 1ln 1111x x x x x x x x -+-+-=-+-+. 因为()()()()()()()2121212112211111121111nx nx n x n x x x x x x x -+-+-<--+-++++,所以121221112x x x x +<<+++, 因此,要证12011111x x t +->+. 只需证1202x x t +<;因为()f x 在()0,t +∞上单调递增,1020x t x <<<,所以只需证()()2022f x f t x <-,只需证()()1012f x f t x <-,即证()()00f t x f t x +<-,其中()0,0x t ∈-; 设()()00()r x f t x f t x =+--,00t x -<<,只需证()0r x <; 计算得()()00000()224ttr x x t e x x t e x at '=++++-++--;()()2000()33t xr x e x x t e x t ''⎡⎤=-+++--⎣⎦.由()()20033xy x t ex t =+++--在()0,0t -上单调递增,得()()0003030y t e t <++--=,所以()0r x ''<;即()r x '在()0,0t -上单调递减, 所以:()0()(0)20r x r f t '''>==;即()r x 在()0,0t -上单调递增,所以()(0)0r x r <=.。

全国卷Ⅰ2024年高考数学压轴卷理含解析

全国卷Ⅰ2024年高考数学压轴卷理含解析

(全国卷Ⅰ)2024年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面对量a ,b,满意(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2024 B .2024 C .2024D .20248.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能接着连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满意()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭ B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的绽开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满意条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y-=+的最大值为16.如图,在ABC △中,3sin23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满意:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市实行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成果大于90分的具有复赛资格,某校有800名学生参与了初赛,全部学生的成果均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参与学校座谈沟通,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参与全市座谈沟通,设X 表示得分在区间(]130,150中参与全市座谈沟通的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的一般方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的随意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2024全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1i a +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可解除选项A ,B ;32m =,1n =时,可解除选项C , 由指数函数的性质可推断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面对量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 其次次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2024,故选B .8.【答案】A【解析】设事务A 为48h 发病,事务B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】视察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确; 当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确; 若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必需取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝绽开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =.【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析(2(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF = 则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C , ∴(0,6)BF =-,(3,0,26)EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||13cos ,||||3226n CA n CA n CA ⋅<>===⋅⨯ ∵二面角F BE D --为锐角,∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,依据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 留意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,留意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -≤⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。

高考数学压轴题精选精编附详细解答试题

高考数学压轴题精选精编附详细解答试题

卜人入州八九几市潮王学校2021年高考数学压轴题精选精编附详细解答1、〔本小题总分值是14分〕如图,点(4,0)N p -〔p >0,p 是常数〕,点T 在y 轴上,0MT NT ⋅=,MT 交x 轴于点Q ,且2TM QM =.〔Ⅰ〕当点T 在y 轴上挪动时,求动点M 的轨迹E 的方程;(4分) 〔Ⅱ〕设直线l 过轨迹E 的焦点F,且与该轨迹交于A 、B 两点, 过A 、B 分别作该轨迹的对称轴的垂线,垂足分别为12,,A A 求证:OF是1OA 和2OA 的等比中项;〔5分〕(Ⅲ)对于该轨迹E ,能否存在一条弦CD 被直线l 垂直平分?假设存在,求出直线CD 的方程;假设不存在,试说明理由。

〔5分〕 2、〔本小题总分值是14分〕 设函数)(x f 的定义域为R ,当0<x 时,0()1f x <<,且对任意的实数x 、R y ∈,有).()()(y f x f y x f =+〔Ⅰ〕求)0(f ;〔2分〕 (Ⅱ)试判断函数)(x f 在(,0]-∞上是否存在最大值,假设存在,求出该最大值,假设不存在说明理由;〔5分〕〔Ⅲ〕设数列{}n a 各项都是正数,且满足1(0),a f =22111(),()(32)n n n n f a a n N f a a *++-=∈--又设1322121111,,)21(++++=+++==n n n n n a na a a a a a Tb b b S b n ,试比较S n 与n T 的大小.〔7分〕3、〔此题总分值是13分〕椭圆221:36(0)x c y t t+=>的两条准线与双曲线222:536c x y -=的两条准线所围成的四边形之面积为直线l 与双曲线2c 的右支相交于,P Q 两点(其中点P ),线段OP 与椭圆1c 交于点,A O 为坐标原点(如下列图).〔I 〕务实数t 的值;〔II 〕假设3OP OA =⋅,PAQ ∆的面积26tan S PAQ =-⋅∠,求直线l 的方程.4、〔此题总分值是14分〕数列{}n a 的前n 项和n S 满足:11,S =-121(),n n S S n N *++=-∈数列{}n b 的通项公式为34().n b n n N *=-∈〔I 〕求数列{}n a 的通项公式;〔II 〕试比较n a 与n b 的大小,并加以证明; 〔III 〕是否存在圆心在x轴上的圆C 及互不相等的正整数n m k 、、,使得三点(,),(,),(,)n n n m m m k k k A b a A b a A b a 落在圆C 上说明理由.5、(本小题总分值是14分)一次国际乒乓球比赛中,甲、乙两位选手在决赛中相遇,根据以往经历,单局比赛甲选手胜乙选手的概率为0.6,本场比赛采用五局三胜制,即先胜三局的选手获胜,比赛完毕.设全局比赛互相间没有影响,令ξ为本场比赛甲选手胜乙选手的局数〔不计甲负乙的局数〕,求ξ〕. 6、(本小题总分值是14分) 数列{}n a 的前n 项和为S n *()n N∈,点〔a n,S n〕在直线y =2x -3n 上.〔1〕假设数列{}的值求常数成等比数列C c a n ,+;〔5分〕〔2〕求数列}{n a 的通项公式;〔3分〕 〔3〕数列{}请求出一组若存在它们可以构成等差数列中是否存在三项,?,n a 适宜条件的项;假设不存在,请说明理由.〔6分〕7、〔本小题14分〕数列}{n a 的前n 项和为n S ,且满足211=a ,)2(021≥-n S S a n n n =+. 〔1〕问:数列}1{nS 是否为等差数列?并证明你的结论;(5分) 〔2〕求n S 和n a ;(5分)〔3〕求证:nS S S S n 41212232221-≤+⋅⋅⋅+++(4分) 8、〔本小题总分值是14分〕函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0.〔Ⅰ〕假设b =2,且h (x )=f (x )-g(x )存在单调递减区间,求a 的取值范围;(7分)〔Ⅱ〕设函数f (x )的图象C 1与函数g(x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行.(7分) 9、〔本小题总分值是14分〕设抛物线214C ymx =:(0)m >的准线与x 轴交于1F ,焦点为2F ;以12F F 、为焦点,离心率12e =的椭圆2C 与抛物线1C 的一个交点为P .〔Ⅰ〕当1m =时,直线l 经过椭圆2C 的右焦点2F ,与抛物线1C 交于12A A 、,假设弦长12A A 等于三角形12PF F 的周长,求直线l 的斜率.〔Ⅱ〕求最小实数m ,使得三角形12PF F 的边长是自然数.10、〔本小题总分值是14分〕〔Ⅰ〕函1()2()(),([0,),n n n f x x a x a x n -=+-+∈+∞〔Ⅱ〕明:()(0,0,)22n n na b a b a b n N *++≥>>∈;〔Ⅲ〕定理:假设123,,k a a a a 均为正数,那么有123123()n n nn n kka a a a a a a a kk++++++++≥成立(其中2,,)kk N k *≥∈为常数.请你构造一个函数()g x ,证明:当1231,,,,,k k a a a a a +均为正数时,12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++.11、 本小题总分值是14分〕如图,在OAB ∆中,||||4OA OB ==,点P 分线段AB 所成的比3:1,以OA 、OB 所在 直线为渐近线的双曲线M 恰好经过点P ,且离心率为2.〔Ⅰ〕求双曲线M 的HY 方程; 〔Ⅱ〕假设直线y kx m =+〔0k ≠,0m ≠〕与双曲线M 交于不同的两点E 、F ,且E 、F 两点都在以(0,3)Q -为圆心的同一圆上,务实数m 的取值范围.12、本小题总分值是14分函数()f x 是定义在[,0)(0,]e e -上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+〔其中e 为自然对数的底,a ∈R 〕.〔Ⅰ〕求函数()f x 的解析式;〔Ⅱ〕设ln ||()||x g x x =〔[,0)(0,]x e e ∈-〕,求证:当1a =-时,1|()|()2f xg x >+; 〔Ⅲ〕试问:是否存在实数a ,使得当[,0)x e ∈-,()f x 的最小值是3?假设存在,求出实数a 的值;假设不存在,请说明理由.13、〔小题总分值是14分〕锐角α、β满足sin cos()m βαβ=+〔0m >,2παβ+≠〕,令tan y β=,tan x α=。

数学高考压轴题含答案

数学高考压轴题含答案

数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。

高考数学压轴卷含解析 试题 2

高考数学压轴卷含解析 试题 2

卜人入州八九几市潮王学校2021年高考数学压轴卷〔含解析〕一、选择题:此题一共8道小题,每一小题5分,一共40分.在每一小题的四个选项里面,只有一项为哪一项哪一项符合题目要求的。

1.集合A={x ︱x>-2}且A ∪B=A ,那么集合B 可以是〔〕 A.{x ︱x 2>4} B.{x︱y =C.{y ︱22,y x x R =-∈}D.{-1,0,1,2,3}2.假设()22z i i-=-〔i 是虚数单位〕,那么复数z 的模为〔〕A.12B.13C.14D.153.4log 5a =,2log 3b =,sin2c =,那么a 、b 、c 的大小关系为〔〕A.a b c <<B.c a b <<C.b c a <<D.c b a <<4.假设对任意的正数a ,b 满足310a b +-=,那么31a b +的最小值为A.6B.8C.12D.245.如图,在四边形ABCD 中,AD BC ∥,AD AB =,45BCD ∠=︒,90BAD ∠=︒,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD 构成几何体A-BCD ,那么在几何体A-BCD 中,以下结论正确的选项是〔〕A.平面ADC⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ABD⊥平面ABC6.()52112x x ⎛⎫-- ⎪⎝⎭展开式的常数项为〔〕A.112B.48C.-112D.-487.F 是双曲线22:145x y C 的一个焦点,点P 在C 上,O 为坐标原点,假设=OP OF,那么OPF △的面积为〔〕A.32B.52C.72D.928.函数2()2log x f x x =+,且实数0a b c >>>,满足()()()0f a f b f c <,假设实数0x 是函数()y f x =的一个零点,那么以下不等式中不可能成立的是〔〕 A.0x a < B.0x a > C.0x b < D.0x c <二.多项选择题:此题一共4个小题,每一小题5分,一共20分。

2020届浙江省高三下学期高考压轴卷数学试题(解析版)

2020届浙江省高三下学期高考压轴卷数学试题(解析版)

2020届浙江省高三下学期高考压轴卷数学试题一、单选题1.已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =A .{0,1}B .{0,1,2}C .{1,0,1}-D .{1,0,1,2}-【答案】C【解析】试题分析:由,得,选C.【考点】集合的交集运算.【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合,,三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽略互异性而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图;对连续的数集间的运算,常利用数轴;对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽略空集是任何集合的子集. 2.复数(为虚数单位)的共轭复数是( )A .B .C .D .【答案】C【解析】先化简复数为代数形式,再根据共轭复数概念求解. 【详解】 因为,所以其共轭复数是,选C.【点睛】本题考查共轭复数概念,考查基本分析求解能力,属基本题. 3.(2017新课标全国I 理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.4.底面是正方形且侧棱长都相等的四棱锥的三视图如图所示,则该四棱锥的体积是( )A .43B .8C .433D .83【答案】C【解析】根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2,求出四棱锥的底面积和高,计算它的体积. 【详解】根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2, 画出图形,如图所示;所以该四棱锥的底面积为224S ==,高为22213h -=;所以该四棱锥的体积是114343333V Sh==⨯⨯=.故选:C.【点睛】本题考查了利用三视图求几何体体积的问题,属于中档题.5.若实数,x y满足不等式组2222yx yx y⎧⎪-⎨⎪-⎩,则3x y-( )A.有最大值2-,最小值83-B.有最大值83,最小值2C.有最大值2,无最小值D.有最小值2-,无最大值【答案】C【解析】画出不等式组表示的平面区域,设3z x y=-,则直线30x y z--=是一组平行线,找出最优解,求出z有最大值,且z无最小值.【详解】画出不等式组2222yx yx y⎧⎪-⎨⎪-≥⎩表示的平面区域,如图阴影所示;设3z x y=-,则直线30x y z--=是一组平行线;当直线过点A时,z有最大值,由22yx y=⎧⎨-=⎩,得(2,0)A;所以z的最大值为3202x y-=-=,且z无最小值.故选:C.【点睛】本题考查了简单的线性规划应用问题,也考查了数形结合思想,是中档题.6.“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】直线0x y +=和直线0x ay -=互相垂直的充要条件是1()110a ⨯-+⨯=,即1a =,故选C7.函数()()11x x e f x x e+=-(其中e 为自然对数的底数)的图象大致为( )A .B .C .D .【答案】A【解析】求得f (x )的奇偶性及f (1)的值即可得出答案. 【详解】∵f (﹣x )()()()111111x x x x x xe e e x e x e x e--+++====-----f (x ), ∴f (x )是偶函数,故f (x )图形关于y 轴对称,排除C ,D ; 又x=1时,()e 111ef +=-<0, ∴排除B , 故选A . 【点睛】本题考查了函数图像的识别,经常利用函数的奇偶性,单调性及特殊函数值对选项进行排除,属于基础题.8.已知a 、b R ∈,且a b >,则( )A .11a b<B .sin sin a b >C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .22a b >【答案】C【解析】利用特殊值法和函数单调性可判断出各选项中不等式的正误.【详解】对于A 选项,取1a =,1b =-,则a b >成立,但11a b>,A 选项错误;对于B 选项,取a π=,0b =,则a b >成立,但sin sin0π=,即sin sin a b =,B 选项错误;对于C 选项,由于指数函数13x y ⎛⎫= ⎪⎝⎭在R 上单调递减,若a b >,则1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,C选项正确;对于D 选项,取1a =,2b =-,则a b >,但22a b <,D 选项错误. 故选:C. 【点睛】本题考查不等式正误的判断,常用特殊值法、函数单调性与不等式的性质来进行判断,考查推理能力,属于中等题.9.设P ABCD -是一个高为3,底面边长为2的正四棱锥,M 为PC 中点,过AM 作平面AEMF 与线段PB ,PD 分别交于点E ,F (可以是线段端点),则四棱锥P AEMF -的体积的取值范围为( )A .4,23⎡⎤⎢⎥⎣⎦B .43,32⎡⎤⎢⎥⎣⎦C .31,2⎡⎤⎢⎥⎣⎦D .[]1,2【答案】B【解析】设出比例关系,PE PFx y PB PD==,利用比例关系表示所求锥体体积,利用函数单调性即可求解. 【详解】首先证明一个结论:在三棱锥S ABC -中,棱,,SA SB SC 上取点111,,A B C则111111S A B C S ABCV SA SB SC V SA SB SC--⋅⋅=⋅⋅,设SB 与平面SAC 所成角θ,11111111111111sin sin3211sin sin32S A B C B SA CS ABC B SACSA SC ASC SBV V SA SB SCV V SA SB SCSA SC ASC SBθθ----⨯⋅⋅∠⋅⋅⋅⋅===⋅⋅⨯⋅⋅∠⋅⋅,证毕. 四棱锥P ABCD-中,设,PE PFx yPB PD==,212343P ABCDV-=⨯⨯=12222P AEMF P AEF P MEF P AEF P MEF P AEF P MEFP ABCD P ABD P ABD P DBC P ABD P DBCV V V V V V VV V V V V V -------------⎛⎫+==+=+⎪⎝⎭111222PA PE PF PE PM PFxy xyPA PB PD PB PC PD⋅⋅⋅⋅⎛⎫⎛⎫=+=+⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭所以3P AEMFV xy-=又12222P AEMF P AEM P MAF P AEM P MAF P AEM P MAFP ABCD P ABC P ABC P DAC P ABC P DACV V V V V V VV V V V V V -------------⎛⎫+==+=+⎪⎝⎭11112222PA PE PM PA PM PFx yPA PB PC PA PC PD⋅⋅⋅⋅⎛⎫⎛⎫=+=+⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭所以P AEMFV x y-=+即3,31xx y xy yx+==-,又01,0131xx yx≤≤≤=≤-,解得112x≤≤所以体积2313,[,1]312xV xy xx==∈-,令131,[,2]2t x t=-∈2(1)111()(2),[,2]332tV t t tt t+==++∈根据对勾函数性质,()V t在1[,1]2t∈递减,在[1,2]t∈递增所以函数()V t最小值4(1)3V=,最大值13(2)()22V V==,四棱锥P AEMF-的体积的取值范围为43,32⎡⎤⎢⎥⎣⎦故选:B 【点睛】此题考查用平面截四棱锥形成新的锥体的体积问题,关键在于通过一种恰当的方式表示出所求锥体的体积,利用函数关系求解最值,此题涉及三棱锥体积的引理,需要在平常学习中多做积累.10.若对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,34349x y a x y -++--的取值与x ,y 无关, 则实数a 的取值范围是( ) A .4a ≤ B .46a -≤≤C .4a ≤或6a ≥D .6a ≥【答案】D【解析】根据点到直线距离公式,转化34349x y a x y -++--为点P 到两条平行直线的距离之和来求解实数a 的取值范围 【详解】依题意343493434955x y ax y x y a x y -+---++--=+表示(),P x y 到两条平行直线340x y a -+=和3490x y --=的距离之和与,x y 无关,故两条平行直线340x y a -+=和3490x y --=在圆22(1)(1)1x y -+-=的两侧,画出图像如下图所示,故圆心()1,1到直线340x y a -+=的距离3415ad -+=≥,解得6a ≥或4a ≤-(舍去) 故选:D.【点睛】本小题主要考查点到直线的距离公式,考查直线与圆的位置关系,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.二、双空题11.《九章算术》中有一题:“今有女子善织,日自倍,五日织五尺.”该女子第二日织______尺,若女子坚持日日织,十日能织______尺. 【答案】1031165 【解析】设该女子每天的织布数量为n a ,转化条件得数列{}n a 为公比为2的等比数列,利用等比数列的通项公式和前n 项和公式求得1531a =后即可得解. 【详解】设该女子每天的织布数量为n a ,由题可知数列{}n a 为公比为2的等比数列, 设数列{}n a 的前n 项和为n S ,则()51512512a S -==-,解得1531a =, 所以2110231a a ==,()10105123116512S -==-.故答案为:1031,165. 【点睛】本题考查了等比数列的应用,关键是对于题目条件的转化,属于基础题.12.二项式521)x 的展开式中常数项为__________.所有项的系数和为__________. 【答案】5 32【解析】分析:利用二项展开式的通项公式求出531)x展开式的通项,令x 的指数为0,求出r 的值,将r 的值代入通项求出展开式的常数项,令1x =,得到所有项的系数和.详解:展开式的通项为5552215521()r r rr r r T C C xx--+==, 令55022r -=,解得1r =, 所以展开式中的常数项为1255T C ==,令1x =,得到所有项的系数和为5232=,得到结果.点睛:该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中的特定项以及展开式中的系数和,所用到的方法就是先写出展开式的通项,令其幂指数等于相应的值,求得r ,代入求得结果,对于求系数和,应用赋值法即可求得结果.13.设双曲线()222210x y b a a b-=>>的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线l ,则双曲线的离心率为____;渐近线方程为_________.【答案】2 y =【解析】可设过(a ,0),(0,b )两点的直线方程为1x ya b+=,结合点到直线距离公式可得24ab =,两式同时平方后,通过222c a b =+代换可转化为关于2e 的一元二次方程,即可求解 【详解】由题可设直线l 方程为:1x ya b+=,即0bx ay ab ,则原点到直线的距离4ab d c ===,解得24ab =,两式同时平方可得224163a b c =,又222b c a =-,代换可得()2224163a c a c -=,展开得:224416162a c a c -=,同时除以4a 得:2416163e e -=,整理得()()223440e e --=,解得243e =或4,又0b a >>,所以2222222222b a c a a c a e >⇒->⇒>⇒>,所以24,2ce e a===;b a ===b y x a =±=故答案为:2;y = 【点睛】本题考查由直线与双曲线的位置关系求解离心率,渐近线,点到直线距离公式的应用,属于中档题14.已知函数22,0()log (),0x x f x x a x ⎧<=⎨-≥⎩,若(1)(1)f f -=,则实数a =_____;若()y f x =存在最小值,则实数a 的取值范围为_____.【答案】1 [1,0)-【解析】()1根据题意列出关于a 的方程即可;()2在每一段上求出其函数值域,然后小中取小,能取到即可.【详解】(1)(1)f f -=,122log (1)a -∴=-,1212a ∴-=,1a ∴=-易知0x <时,()2(0,1)xf x =∈;又0x 时,2()log ()f x x a =-递增,故2()(0)log ()f x f a =-, 要使函数()f x 存在最小值,只需2()0a log a ->⎧⎨-⎩,解得:10a -<.故答案为:1,[1,0)-. 【点睛】本题考查分段函数的值域的求法.分段函数问题本着先分段研究,再综合的原则解决问题,属于中档题.三、填空题15.设向量,,a b c 满足1a =,||2b =,3c =,0b c ⋅=.若12λ-≤≤,则(1)a b c λλ++-的最大值是________.【答案】101+【解析】令()1n b c λλ=+-,计算出n 模的最大值即可,当n 与a 同向时a n +的模最大. 【详解】令()1n b c λλ=+-,则()2211318n b c λλλλ⎡⎤=+-=-⎣⎦12λ-≤≤,所以当1λ=-,max 13n ==,因此当n 与a 同向时a n +的模最大,max 2101a n a n +=+=+ 【点睛】本题主要考查了向量模的计算,以及二次函数在给定区间上的最值.整体换元的思想,属于较的难题,在解二次函数的问题时往往结合图像、开口、对称轴等进行分析. 16.某班同学准备参加学校在假期里组织的“社区服务”、“进敬老院”、“参观工厂”、“民俗调查”、“环保宣传”五个项目的社会实践活动,每天只安排一项活动,并要求在周一至周五内完成.其中“参观工厂”与“环保宣讲”两项活动必须安排在相邻两天,“民俗调查”活动不能安排在周一.则不同安排方法的种数是________. 【答案】36【解析】把“参观工厂”与“环保宣讲”当做一个整体,共有4242A A 48=种,把“民俗调查”安排在周一,有3232A A 12⋅=,作差即可求解【详解】把“参观工厂”与“环保宣讲”当做一个整体,共有4242A A 48=种,把“民俗调查”安排在周一,有3232A A 12⋅=,∴满足条件的不同安排方法的种数为481236-=, 故答案为:36. 【点睛】本题考查了简单排列应用问题,熟练掌握排列组合的意义及其计算公式是解题的关键,对于相邻问题经常使用“捆绑法”,注意“直接法”“间接法”的灵活选用,属于基础题.17.已知函数()2122,01()2,10x x x m x f x x m x +⎧+≤≤⎪=⎨---≤<⎪⎩若在区间[1,1]-上方程()1f x =只有一个解,则实数m 的取值范围为______. 【答案】1|12m m ⎧-≤<-⎨⎩或1}m = 【解析】令11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩,则方程()1f x =等价于()2g x x m =+有且只有一个实数根,在同一平面直角坐标系中画出函数()g x 的图像和()2h x x m =+的图像,动态平移()h x 的图像可得实数m 的取值范围. 【详解】当01x ≤≤时,由()1f x =,得()221xx m +=,即212xx m ⎛⎫=+ ⎪⎝⎭;当10x -≤<时,由()1f x =,得1221x x m +--=,即1221x x m +-=+.令函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩,则问题转化为函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与函数()h x =2x m +的图像在区间[1,1]-上有且仅有一个交点.在同一平面直角坐标系中画出函数11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与2y x m =+在区间函数[1,1]-上的大致图象如下图所示:结合图象可知:当(0)1h =,即1m =时,两个函数的图象只有一个交点;当(1)(1),11(1)(1)2h g m h g <⎧⇒-≤<-⎨-≥-⎩时,两个函数的图象也只有一个交点,故所求实数m 的取值范围是1|112m m m ⎧⎫-≤<-=⎨⎬⎩⎭或.【点睛】已知方程的解的个数求参数的取值范围时,要根据方程的特点去判断零点的分布情况(特别是对于分段函数对应的方程),也可以参变分离,把方程的解的问题归结为不同函数的交点的个数问题.四、解答题18.已知函数()()23sin 22cos 1x R f x x x =-+∈.(1)求()f x 的单调递增区间; (2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域. 【答案】(1),()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)3⎡-⎣. 【解析】(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性,求得函数()f x 的增区间;(2)由题意利用正弦函数的定义域和值域,求得()f x 的最大值和最小值. 【详解】(1) 函数()2322cos 1322226f x x sin x cos x in x x s π⎛⎫⎪=⎝=-+-=⎭-,令222()262πππππ-≤-≤+∈k x k k Z ,求得()63k x k k Z ππππ-≤≤+∈,故函数f (x )的增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)若,64x ππ⎡⎤∈-⎢⎥⎣⎦,则2,623x πππ⎡⎤-∈-⎢⎥⎣⎦,故当262x ππ-=-时,函数f (x )取得最小值为−2;当263x ππ-=时,函数f (x )取得最大值为3,所以函数的值域为2,3⎡⎤-⎣⎦. 【点睛】本题考查三角恒等变换,考查正弦型函数的性质,考查运算能力,属于常考题. 19.如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形AC BD O =,1A O ⊥底面ABCD ,12AA AB ==.(1)求证:平面1ACO ⊥平面11BB D D ; (2)若60BAD ∠=︒,求OB 与平面11A B C 所成角的正弦值.【答案】(1)证明见解析(221【解析】(1)由线面垂直的性质可得1AO BD ⊥,由菱形的性质可得CO BD ⊥,由线面垂直的判定可得BD ⊥平面1A CO ,再由面面垂直的判定即可得证;(2)建立空间直角坐标系,求出各点坐标后,再求出平面11A B C 的一个法向量为m ,OB 的方向向量OB ,由cos ,||||OB mOB m OB m ⋅=即可得解.【详解】(1)证明:由1A O ⊥底面ABCD 可得1AO BD ⊥, 又底面ABCD 是菱形,所以CO BD ⊥, 因为1AO CO O ⋂=,所以BD ⊥平面1A CO ,因为BD ⊂平面11BB D D ,所以平面1ACO ⊥平面11BB D D . (2)因为1A O ⊥底面ABCD ,以O 为原点,OB ,OC ,1OA 为x ,y ,z 轴建立如图所示空间直角坐标系O xyz -,则(1,0,0)B ,3,0)C ,(0,3,0)A ,1(0,0,1)A ,11(1,3,0)A B AB ==,()10,3,1AC =-, 设平面11A B C 的一个法向量为(,,)m x y z =,由111030030m A B x m ACz ⎧⋅=⇒+=⎪⎨⋅=⇒-=⎪⎩,取1x =得31,13m ⎛⎫=-- ⎪⎝⎭, 又(1,0,0)OB =,所以21cos ,7||||123OB mOB m OB m ⋅===+,所以OB 与平面11A B C 21. 【点睛】本题考查了面面垂直的证明以及利用空间向量求线面角,考查了空间思维能力,属于中档题.20.等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.(1)求数列{}n a 的通项公式; (2)设 31323log log ......log nn b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(1)13n n a =(2)21n n -+【解析】试题分析:(Ⅰ)设出等比数列的公比q ,由23269a a a =,利用等比数列的通项公式化简后得到关于q 的方程,由已知等比数列的各项都为正数,得到满足题意q 的值,然后再根据等比数列的通项公式化简12231a a +=,把求出的q 的值代入即可求出等比数列的首项,根据首项和求出的公比q 写出数列的通项公式即可;(Ⅱ)把(Ⅰ)求出数列{an}的通项公式代入设b n =log 3a 1+log 3a 2+…+log 3a n ,利用对数的运算性质及等差数列的前n 项和的公式化简后,即可得到bn 的通项公式,求出倒数即为1nb 的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{1nb }的前n项和试题解析:(Ⅰ)设数列{a n }的公比为q,由23a =9a 2a 6得23a =924a ,所以q 2=19. 由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13. 故数列{a n }的通项公式为a n =13n .(Ⅱ)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-()21n n +.故()1211211n b n n n n ⎛⎫=-=-- ⎪++⎝⎭. 121111111122122311n n b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=--+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为21nn -+ 【考点】等比数列的通项公式;数列的求和21.已知抛物线22y px =(0p >)上的两个动点()11,A x y 和()22,B x y ,焦点为F .线段AB 的中点为()03,M y ,且A ,B 两点到抛物线的焦点F 的距离之和为8.(1)求抛物线的标准方程;(2)若线段AB 的垂直平分线与x 轴交于点C ,求ABC 面积的最大值. 【答案】(1)24y x =;(2)39. 【解析】(1)利用抛物线的定义可得12||||68AF BF x x p p +=++=+=,求出p 的值,从而得到抛物线的方程;(2)设直线AB 的方程为:x my n =+,与抛物线方程联立,利用韦达定理和弦长公式可得22||413AB m m =+-AB 的中垂线方程可得点C 的坐标,再利用点到直线距离公式求出点C 到直线AB 的距离d ,所以()221||4132S AB d m m =⋅=+-23t m -()244S t t =-⋅,利用导数可得最值. 【详解】(1)由题意知126x x +=,则12||||68AF BF x x p p +=++=+=, ∴2p =,∴抛物线的标准方程为24y x =; (2)设直线:AB x my n =+(0m ≠) 由24x my n y x=+⎧⎨=⎩,得2440y my n --=, ∴124y y m +=,∴()121224226x y x y m n n m =+++=+=,即232n m =-,即()21221216304812m y y m y y m ⎧∆=->⎪⎪+=⎨⎪⋅=-⎪⎩,∴12||AB y y =-=设AB 的中垂线方程为:2(3)y m m x -=--,即(5)y m x =--, 可得点C 的坐标为(5,0),∵直线2:32AB x my m =+-,即2230x my m -+-=,∴点C 到直线AB的距离d ==,∴()21||412S AB d m =⋅=+令t =223(0m t t =-<<,()244S t t ∴=-⋅令()2()44f t tt =-⋅,∴()2()443f t t'=-,令()0f t '=,则t =,在⎛ ⎝⎭上()0f t '>;在⎝上()0f t '<, 故()f t在0,3⎛ ⎝⎭单调递增,3⎛⎝单调递减,∴当3t =,即3m =±max 9S =. 【点睛】本题主要考查了抛物线的定义,以及直线与抛物线的位置关系,是中档题. 22.已知函数2()(1)(0)x f x x e ax x =+->.(1)若函数()f x 在(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个不同的零点12,x x . (ⅰ)求实数a 的取值范围;(ⅱ)求证:12011111x x t +->+.(其中0t 为()f x 的极小值点)【答案】(1)⎛-∞ ⎝⎭;(2)(ⅰ)12⎛⎫⋅+∞ ⎪ ⎪⎝⎭;(ⅱ)证明见解析.【解析】(1)先求其导函数,转化为()'0f x ≥,即求()22xx g x e a x+=⋅-的最小值即可;(2())ⅰ结合第一问的结论得()f x不单调,故(122a +⋅>;设()'0f x =有两个根,设为1t ,0t,且1001t t <<<,可得原函数的单调性,把问题转化为()00f t <,即可求解结论.()ⅱ转化为先证明不等式,若1x ,()20,x ∈+∞,12x x ≠,则211221.2x x x xlnx lnx -+<<-再把原结论成立转化为证1202x x t +<;构造函数()()()00r x f t x f t x =+--一步步推其成立即可.【详解】(1)由2()(1)x f x x e ax =+-,得2()2x x f x x e a x +⎛⎫'=-⎪⎝⎭,设2()x x g x e x +=⋅,(0)x >;则2222()xx x g x e x +-'=⋅; 由()0g x ',解得1x ≥-,所以()g x在1)上单调递减,在1,)+∞上单调递增,所以1min ()1)(2==⋅g x g因为函数()f x 在(0,)+∞上单调递增,所以()0f x '在(0,)+∞恒成立所以1(22⋅≥a ;所以,实数a的取值范围是:⎛-∞ ⎝⎭. (2)(i )因为函数()f x 有两个不同的零点,()f x不单调,所以a >.因此()0f x '=有两个根,设为10,t t,且1001t t <<<,所以()f x 在()10,t 上单调递增,在()10,t t 上单调递减,在()0,t +∞上单调递增; 又()1(0)1f t f >=,()22()(1)(1)xxxf x x e ax a e xx a e =+-=-++-⋅,当x 充分大时,()f x 取值为正,因此要使得()f x 有两个不同的零点,则必须有()00f t <,即()200010t t e a t +-⋅<; 又因为()()0000220tf t t e at '=+-=;所以:()()000002202ttt t e t e +-⋅+<,解得0t >所以1122+>=a g 因此当函数()f x 有两个不同的零点时,实数a的取值范围是12⎛⎫⋅+∞ ⎪⎪⎝⎭. (ⅱ)先证明不等式,若12,(0,)x x ∈+∞,12x x ≠211221112x x x xnx nx -+<<-.证明:不妨设210x x >>,即证2212211211ln 1x x x x x x x ⎛⎫-- ⎪⎝⎭<<+,设211x t x =>,()ln g t t =-2(1)()ln 1t h t t t -=-+,只需证()0g t <且()0h t >;因为2()0g t '=<,22(1)()0(1)t h t t t -'=>+, 所以()g t 在(1,)+∞上单调递减,()h t 在(1,)+∞上单调递增, 所以()(1)0g t g <=,()(1)0h t h >=,从而不等式得证.再证原命题12011111x x t +->+. 由()()1200f x f x ⎧=⎪⎨=⎪⎩得()()122112221010x x x e ax x e ax ⎧+-=⎪⎨+-=⎪⎩; 所以()()2212221211xx x e x e xx++=,两边取对数得:()()()2121212ln ln ln 1ln 1x x x x x x ⎡⎤--+-+=-⎣⎦;第 21 页 共 21 页 即()()()()()212121212ln ln ln 1ln 1111x x x x x x x x -+-+-=-+-+. 因为()()()()()()()2121212112211111121111nx nx n x n x x x x x x x -+-+-<--+-++++,所以121221112x x x x +<<+++, 因此,要证12011111x x t +->+. 只需证1202x x t +<;因为()f x 在()0,t +∞上单调递增,1020x t x <<<,所以只需证()()2022f x f t x <-, 只需证()()1012f x f t x <-,即证()()00f t x f t x +<-,其中()0,0x t ∈-; 设()()00()r x f t x f t x =+--,00t x -<<,只需证()0r x <;计算得()()00000()224t tr x x t e x x t e x at '=++++-++--; ()()2000()33t x r x e x x t e x t ''⎡⎤=-+++--⎣⎦.由()()20033x y x t ex t =+++--在()0,0t -上单调递增, 得()()0003030y t e t <++--=,所以()0r x ''<;即()r x '在()0,0t -上单调递减,所以:()0()(0)20r x r f t '''>==;即()r x 在()0,0t -上单调递增,所以()(0)0r x r <=成立,即原命题得证.【点睛】本题考查了导数的综合应用,同时考查了不等式的证明,是对导数知识的综合考查,属于难题.。

高考数学压轴专题2020-2021备战高考《不等式》全集汇编附答案解析

高考数学压轴专题2020-2021备战高考《不等式》全集汇编附答案解析

新高考数学《不等式》专题解析一、选择题1.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( )A .2,⎡⎫+∞⎪⎢⎪⎣⎭B .[)1,+∞ C .)2,⎡+∞⎣D .[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,200211122222OMy k k k k x k k k +∴===+≥⋅=(当且仅当22k =时取等号), 即直线OM 斜率的取值范围为)2,⎡+∞⎣. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.2.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .42B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.3.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()()0000252536236433y y y y =++-≥+⋅=++ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.4.已知0a b >>,则下列不等式正确的是( ) A .ln ln a b b a ->- B.|||b a < C .ln ln a b b a -<- D.|||b a ->【答案】C 【解析】 【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案. 【详解】由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1b a e ==-,可排除A 、D 项;取11,49a b ==711812b a ==,可排除B 项; 因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的.故选:C . 【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.5.已知x ,y 满足约束条件1,22,326,x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩,若22x y z +≥恒成立,则实数z 的最大值为( ) A.2B .25C .12D .2【答案】C 【解析】 【分析】画出约束条件所表示的平面区域,根据22xy +的几何意义,结合平面区域求得原点到直线10x y +-=的距离的平方最小,即可求解.【详解】由题意,画出约束条件122326x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩所表示的平面区域,如图所示,要使得22x y z +≥恒成立,只需()22minz x y≥+,因为22xy +表示原点到可行域内点的距离的平方,结合平面区域,可得原点到直线10x y +-=的距离的平方最小, 其中最小值距离为2212211d -==+,则212d =,即12z ≤所以数z 的最大值12. 故选:C .【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出约束条件所表示的平面区域,结合22x y +的几何意义求解是解答的关键,着重考查了数形结合思想,以及计算能力.6.若,,则( )A .B .C .D .【答案】C【解析】 【分析】 【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误,因为选项C 正确,故选C . 【考点】指数函数与对数函数的性质 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.7.已知函数24,0()(2)1,0x x f x xx x ⎧+>⎪=⎨⎪+-≤⎩,若方程()20f x m -=恰有三个不同的实数根,则实数m 的取值范围是( )A .(2,)+∞B .(4,)+∞C .(2,4)D .(3,4)【答案】A 【解析】 【分析】画出函数()f x 的图象,再根据基本不等式求解4y x x=+的最小值,数形结合求解即可. 【详解】画出函数()f x 的图象,如图所示.当0x >时,4()4f x x x=+….设()2g x m =,则方程()20f x m -=恰有三个不同的实数根,即()f x 和()2g x m =的图象有三个交点.由图象可知,24m >,即2m >,故实数m 的取值范围是(2,)+∞.故选:A 【点睛】本题考查分段函数的性质和图象以及函数的零点,考查数形结合以及化归转化思想.8.在锐角ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若222cos 3a ab C b +=,则tan 6tan tan tan A B C A+⋅的最小值为( )A .733B .352C .332D .32【答案】B 【解析】【分析】根据余弦定理得到4cos c b A =,再根据正弦定理得到sin cos 3sin cos A B B A =,故tan 3tan A B =,3t 53tan 4an 6ta 3ta tan tan n n B A B C AB ⎛⎫=+ ⎪⎝+⎭⋅,计算得到答案. 【详解】由余弦定理及222cos 3a ab C b +=可得222223a a b c b ++-=,即22222a b b c -=+,得22222cos a b a bc A -=+,整理得22 2cos a b bc A =+.2222cos a b c bc A =+-Q ,2222cos 2cos b bc A b c bc A ∴+=+-,得4cos c b A =.由正弦定理得sin 4sin cos C B A =,又()sin sin C A B =+,()sin 4sin cos A B B A ∴+=, 整理得sin cos 3sin cos A B B A =.易知在锐角三角形ABC 中cos 0A ≠, cos 0B ≠,tan 3tan A B ∴=, 且tan 0B >.πA B C ++=Q , ()tan tan C A B =-+tan tan 1tan tan A B A B +=--⋅24tan 3tan 1BB =-,tan 6tan tan tan A B C A ∴+⋅()233tan 124tan tan B B B -=+353tan 43tan B B ⎛⎫=+ ⎪⎝⎭34≥⨯当且仅当tan B 时等号成立. 故选:B . 【点睛】本题考查了正余弦定理,三角恒等变换,均值不等式,意在考查学生的计算能力和综合应用能力.9.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A B .1)C .D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案.【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-,当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.10.若变量x ,y 满足2,{239,0,x y x y x +≤-≤≥则x 2+y 2的最大值是A .4B .9C .10D .12【答案】C 【解析】试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以22max ()10x y +=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.11.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C .6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n ∴+的最小值为3. 故选:D . 【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.12.若两个正实数x ,y 满足142x y +=,且不等式2m 4y x m +<-有解,则实数m 的取值范围是 ( ) A .(1,2)-B .(,2)(1,)-∞-+∞UC .()2,1-D .(,1)(2,)-∞-+∞U【答案】D 【解析】 【分析】将原问题转化为求最值的问题,然后利用均值不等式求最值即可确定实数m 的取值范围. 【详解】 若不等式24y x m m +<-有解,即2()4min ym m x ->+即可, 142x y +=Q,1212x y∴+=,则121221112121124422482y y x y x x x y y x ⎛⎫⎛⎫+=++=+++≥+=+=+⨯=+= ⎪ ⎪⎝⎭⎝⎭,当且仅当28x y y x=,即2216y x =,即4y x =时取等号,此时1x =,4y =, 即()24min yx +=, 则由22m m ->得220m m -->,即()()120m m +->, 得2m >或1m <-,即实数m 的取值范围是()(),12,-∞-⋃+∞, 故选D . 【点睛】本题主要考查基本不等式的应用,利用不等式有解转化为最值问题是解决本题的关键.13.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )ABC.D .172【答案】A 【解析】 【分析】先作可行域,再根据图象确定MN 的最大值取法,并求结果. 【详解】作可行域,为图中四边形ABCD 及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN 的最大值为BD=21417+=,选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.14.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( ) A .log 3log 3a b > B .336a b +> C .133ab a b ++> D .b a a b >【答案】B 【解析】 【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立. 【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以23323323236a b a b a b ab++>=>>,综上选B. 【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.15.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D【分析】联立21122y kx ky x=++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y,由于直线21y kx k=++与直线122y x=-+的交点位于第一象限,可得xy>⎧⎨>⎩,解得即可.【详解】解:联立21122y kx ky x=++⎧⎪⎨=-+⎪⎩,解得24216121kxkkyk-⎧=⎪⎪+⎨+⎪=⎪+⎩,Q直线21y kx k=++与直线122y x=-+的交点位于第一象限,∴24216121kkkk-⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k-<<.故选:D.【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.16.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y=+恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于4π;④方程()223221)60(x y x y xy+=<表示的曲线C在第二象限和第四象限其中正确结论的序号是( )A.①③B.②④C.①②③D.②③④【答案】B【解析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==, 即圆224x y +=与曲线C相切于点,(,(,, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.17.已知正数x ,y 满足144x y +=,则x y +的最小值是( ) A .9B .6C .94D .52 【答案】C【解析】【分析】先把x y +转化成114()4x y x y ⎛⎫+⋅+ ⎪⎝⎭,展开后利用均值不等式即可求解. 【详解】 Q 正数x ,y 满足144x y +=,1141419()1454444y x x y x y x y x y ⎛⎛⎫⎛⎫∴+=+⋅+=++++= ⎪ ⎪ ⎝⎭⎝⎭⎝…, 当且仅当4144y x x y x y⎧=⎪⎪⎨⎪+=⎪⎩,即34x =,32y =时,取等号. 故选:C本题主要考查了基本不等式在最值问题中的应用,基本不等式一定要把握好“一正,二定,三相等”的原则,属于基础题.18.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.19.设x ,y 满足约束条件则的最大值与最小值的比值为( ) A . B . C . D .【答案】A【解析】【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。

高考数学压轴专题2020-2021备战高考《不等式》全集汇编及答案解析

高考数学压轴专题2020-2021备战高考《不等式》全集汇编及答案解析

【高中数学】高考数学《不等式》解析一、选择题1.已知实数x ,y 满足20x y >>,且11122x y x y+=-+,则x y +的最小值为( ). A.35+ B.45+ C.25+ D.35+ 【答案】B 【解析】 【分析】令22x y m x y n-=⎧⎨+=⎩,用,m n 表示出x y +,根据题意知111m n +=,利用1的代换后根据基本不等式即可得x y +的最小值. 【详解】20,20,20x y x y x y >>∴->+>Q ,令22x y m x y n -=⎧⎨+=⎩,解得2525m n x n my +⎧=⎪⎪⎨-⎪=⎪⎩,则0,0m n >>,111m n +=,223111555m n n m n m x y m n +-+⎛⎫⎛⎫∴+=+⨯=⨯+ ⎪⎪⎝⎭⎝⎭13113(455n m m n ⎛⎫=⨯+++≥⨯+ ⎪⎝⎭=当且仅当3n mm n=,即m =,即22)x y x y -=+即931515x y +==时取等号. 故选:B . 【点睛】本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.2.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( ) AB.1)C.D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案.【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-,当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.3.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A .[3,3];B .(,3]-∞C .3,)+∞D .(,3]3,)-∞-⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,11111133323222222a a a d a a a ⎛⎫=--=-+≤-⋅=- ⎪⎝⎭,当且仅当13a =时等号成立; 当10a <时,111133232222a a d a a ⎛⎫⎛⎫=--≥-⋅-= ⎪ ⎪⎝⎭⎝⎭,当且仅当13a =-时等号成立;∴实数d 的取值范围为(,3][3,)-∞-⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.4.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.5.已知实数x ,y 满足不等式||2x y +≥,则22x y +最小值为( )A .2B .4C .22D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,2x y +≥ (2)当0y <时,2x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2222211d -==+,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.6.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=, 即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=, 所以()2tan tan 2tan 2tan 11tan tan 13tan 3tan tan αββαβαββββ--===+++,又因为β为锐角,所以tan 0β>,根据基本不等式213tantanββ≤=+当且仅当tanβ=时等号成立,因为,22ππαβ⎛⎫-∈-⎪⎝⎭,且函数tany x=在区间,22ππ⎛⎫-⎪⎝⎭上单调递增,则αβ-的最大值为6π.故选:B.【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.7.已知ABCV是边长为1的等边三角形,若对任意实数k,不等式||1k AB tBC+>u u u r u u u r恒成立,则实数t的取值范围是().A.,33⎛⎛⎫-∞-⋃+∞⎪⎪⎝⎭⎝⎭B.,33⎛⎛⎫-∞-⋃+∞⎪⎪⎝⎭⎝⎭C.3⎛⎫+∞⎪⎪⎝⎭D.,3⎛⎫+∞⎪⎪⎝⎭【答案】B【解析】【分析】根据向量的数量积运算,将目标式转化为关于k的二次不等式恒成立的问题,由0<n,即可求得结果.【详解】因为ABCV是边长为1的等边三角形,所以1cos1202AB BC⋅=︒=-u u u r u u u r,由||1k AB tBC+>u u u r u u u r两边平方得2222()2()1k AB kt AB BC t BC+⋅+>u u u r u u u r u u u r u u u r,即2210k kt t-+->,构造函数22()1f k k tk t=-+-,由题意,()22410t t∆--<=,解得t<或t>.故选:B.【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.8.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2 B .4 C .6 D .7 【答案】B 【解析】 【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值. 【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,如下图所示:长方体的体对角线即为三棱锥A BCD -外接球的直径, 设AB x =,AC y =,AD z =,球半径为R , 因为三棱锥外接球的表面积为8π, 则284R π=π, 解得2R =,所以体对角线为2,所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y zS x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4, 故选:B. 【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12【答案】C 【解析】 【分析】 【详解】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值. 详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -,由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.10.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.11.已知,a b 都是正实数,则222a ba b a b+++的最大值是( ) A .223-B .322-C .221D .43【答案】A 【解析】 【分析】设2,2m a b n a b =+=+,将222a b a b a b+++,转化为2222233a b n ma b a b m n +=--++,利用基本不等式求解. 【详解】设2,2m a b n a b =+=+, 所以22,33m n n ma b --==,所以222222233a b n m a b a b m n +=--≤-=-++, 当且仅当233n mm n=时取等号.所以222a b a b a b +++的最大值是2-. 故选:A 【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.12.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数; 又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤.故选:D.【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.13.已知离散型随机变量X 服从二项分布~(,)X B n p ,且()4E X =,()D X q =,则11p q+的最小值为( ) A .2B .52C .94D .4【答案】C【解析】【分析】根据二项分布()~X B n p ,的性质可得()E X ,()D X ,化简即44p q +=,结合基本不等式即可得到11p q+的最小值. 【详解】离散型随机变量X 服从二项分布()X B n p :,,所以有()4E X np ==,()()1D X q np p ==-(,所以44p q +=,即14q p +=,(0p >,0q >) 所以11114q p p q p q ⎛⎫⎛⎫+=++= ⎪⎪⎝⎭⎝⎭ 5592144444q p q p p q p q ⎛⎫++≥⨯=+= ⎪⎝⎭, 当且仅当423q p ==时取得等号. 故选C .【点睛】本题主要考查了二项分布的期望与方差,考查了基本不等式,属于中档题.14.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C ++的最小值为( )A .3BC .3D .【答案】A【解析】【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求.【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =,∴tan 2tan C B =.又A B C π++=,∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B B B C B B +=-=-=---, ∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B -++=++27tan 36tan B B =+. 又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan B B +≥=,当且仅当tan B =时取等号,∴min111tan tan tan A B C ⎛⎫++= ⎪⎝⎭ A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.15.已知正数x ,y 满足144x y +=,则x y +的最小值是( ) A .9B .6C .94D .52 【答案】C【解析】【分析】先把x y +转化成114()4x y x y ⎛⎫+⋅+ ⎪⎝⎭,展开后利用均值不等式即可求解. 【详解】 Q 正数x ,y 满足144x y +=,1141419()1454444y x x y x y x y x y ⎛⎛⎫⎛⎫∴+=+⋅+=++++= ⎪ ⎪ ⎝⎭⎝⎭⎝…,当且仅当4144y x x y x y⎧=⎪⎪⎨⎪+=⎪⎩,即34x =,32y =时,取等号. 故选:C【点睛】本题主要考查了基本不等式在最值问题中的应用,基本不等式一定要把握好“一正,二定,三相等”的原则,属于基础题.16.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.17.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.18.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是A .3B .4C .92D .112 【答案】B【解析】【详解】 解析:考察均值不等式2228(2)82x y x y x y +⎛⎫+=-⋅≥- ⎪⎝⎭,整理得2(2)4(2)320x y x y +++-≥即(24)(28)0x y x y +-++≥,又x+2 y>0,24x y ∴+≥19.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.20.已知0a >,0b >,且()122y a b x =+为幂函数,则ab 的最大值为( ) A .18 B .14 C .12 D .34【答案】A【解析】【分析】根据()122y a b x =+为幂函数,得到21a b +=,再将ab 变形为ab 122a b =⋅利用基本不等式求解.【详解】因为()122y a b x =+为幂函数,所以21a b +=,又因为0a >,0b >,所以ab 2112122228a b a b +⎛⎫=⋅≤= ⎪⎝⎭, 当且仅当21a b +=,2a b =即11,24a b ==取等号. 所以ab 的最大值为18. 故选:A【点睛】本题主要考查幂函数的定义和基本不等式的应用,还考查运算求解的能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学压轴题系列训练一(含答案及解析详解)1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =++(222222211321a ab ac ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n ,不等式1120111111n n n a b b b +≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭L 成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==Q 当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。

……………………(8分)(Ⅲ)由1120111111n n n a b b b +-≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭L()()()()121212111111111111111111111111124123nn n n n a b b b f n b b b f nb b b b fn n fn b n ++⎛⎫⎛⎫⎛⎫≤+++ ⎪⎪⎪⎭⎝⎭⎝⎭⎛⎫⎫⎛⎫=+++ ⎪⎪⎪⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫∴+=++++⎪⎪⎪⎪⎭⎝⎭⎝⎭⎝⎭+⎛⎫+∴=+== ⎪+⎝⎭L L L 即记 ()()()()()min 11,4130f n f n f n f n f a =>∴+>∴===∴<≤即递增, ………………………………(14分)3.(本小题满分12分)将圆O: 4y x 22=+上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线C. (1) 求C 的方程;(2) 设O 为坐标原点, 过点)0,3(F 的直线l 与C 交于A 、B 两点, N 为线段AB 的中点,延长线段ON 交C 于点E.求证: ON 2OE =的充要条件是3|AB |= .解: (1)设点)y ,x (P '' , 点M 的坐标为)y ,x ( ,由题意可知⎩⎨⎧='=',y 2y ,x x ………………(2分)又,4y x 22='+'∴1y 4x 4y 4x 2222=+⇒=+. 所以, 点M 的轨迹C 的方程为1y 4x 22=+.………………(4分) (2)设点)y ,x (A 11 , )y ,x (B 22 , 点N 的坐标为)y ,x (00 ,㈠当直线l 与x 轴重合时, 线段AB 的中点N 就是原点O, 不合题意,舍去; ………………(5分) ㈡设直线l: ,3my x +=由⎪⎩⎪⎨⎧=++=4y 4x 3my x 22消去x,得01my 32y )4m (22=-++………………①∴,4m m3y 20+-=………………(6分)∴4m 344m 34m 34m m 33my x 2222200+=++++-=+=, ∴点N 的坐标为)4m m 3,4m 34(22+-+ .………………(8分)①若OE ON 2=, 坐标为, 则点E 的为)4m m32,4m 38(22+-+ , 由点E 在曲线C 上, 得1)4m (m 12)4m (4822222=+++, 即,032m 4m 24=-- ∴4m (8m 22-== 舍去). 由方程①得,14m 1m 44m 16m 4m 12|y y |2222221=++=+++=- 又|,)y y (m ||m y m y ||x x |212121-=-=-∴3|y y |1m |AB |212=-+= .………………(10分)②若3|AB |= , 由①得,34m )1m (422=++∴ .8m 2= ∴点N 的坐标为)66,33(± , 射线ON 方程为: )0x (x 22y >±= , 由⎪⎩⎪⎨⎧=+>±=4y 4x )0x (x 22y 22 解得⎪⎪⎩⎪⎪⎨⎧±==36y 332x ∴点E 的坐标为),36,332(± ∴OE ON 2=.综上, OE ON 2=的充要条件是3|AB |= .………………(12分) 4.(本小题满分14分)已知函数241)x (f x+=)R x (∈. (1) 试证函数)x (f 的图象关于点)41,21( 对称;(2) 若数列}a {n 的通项公式为)m ,,2,1n ,N m ()mn(f a n Λ =∈=+, 求数列}a {n 的前m 项和;S m (3)设数列}b {n 满足:31b 1=,n2n 1n b b b +=+. 设1b 11b 11b 1T n 21n ++++++=Λ. 若(2)中的n S 满足对任意不小于2的正整数n, n n T S <恒成立, 试求m 的最大值. 解: (1)设点)y ,x (P 000 是函数)x (f 的图象上任意一点, 其关于点)41,21( 的对称点为)y ,x (P .由⎪⎪⎩⎪⎪⎨⎧=+=+412y y 212x x 00 得⎪⎩⎪⎨⎧-=-=.y 21y ,x 1x 00 所以, 点P 的坐标为P )y 21,x 1(00-- .………………(2分) 由点)y ,x (P 000 在函数)x (f 的图象上, 得241y 0x 0+=. ∵,)24(244244241)x 1(f 0000x x x x x 10+=⋅+=+=-- =+-=-24121y 210x 0,)24(240x x + ∴点P )y 21,x 1(00-- 在函数)x (f 的图象上. ∴函数)x (f 的图象关于点)41,21( 对称. ………………(4分) (2)由(1)可知, 21)x 1(f )x (f =-+, 所以)1m k 1(21)m k 1(f )m k (f -≤≤=-+ ,即,21a a , 21)m k m (f )m k (f k m k =+∴=-+- ………………(6分) 由m 1m 321m a a a a a S +++++=-Λ, ……………… ①得,a a a a a S m 13m 2m 1m m +++++=---Λ ………………② 由①+②, 得,612m 61221m a 221)1m (S 2m m -=⨯+-=+⨯-= ∴).1m 3(121S m -=………………(8分) (3) ∵,31b 1=)1b (b b b b n n n 2n 1n +=+=+, ………………③∴对任意的0b ,N n n >∈+ . ………………④ 由③、④, 得,1b 1b 1)1b (b 1b 1n n n n 1n +-=+=+即1n n n b 1b 11b 1+-=+.∴1n 1n 11n n 3221n b 13b 1b 1)b 1b 1()b 1b 1()b 1b 1(T +++-=-=-++-+-=Λ.……………(10分)∵,b b ,0b b b n 1n 2n n 1n >∴>=-++ ∴数列}b {n 是单调递增数列.∴n T 关于n 递增. 当2n ≥, 且+∈N n 时, 2n T T ≥. ∵,8152)194(94b ,94)131(31b ,31b 321=+==+==∴.5275b 13T T 12n =-=≥………………(12分) ∴,5275S m <即,5275)1m 3(121<-∴,394639238m =< ∴m 的最大值为6. ……………(14分)5.(12分)E 、F 是椭圆2224x y +=的左、右焦点,l 是椭圆的右准线,点P l ∈,过点E 的直线交椭圆于A 、B 两点.(1) 当AE AF ⊥时,求AEF ∆的面积; (2) 当3AB =时,求AF BF +的大小; (3) 求EPF ∠的最大值.解:(1)2241282AEF m n S mn m n ∆+=⎧⇒==⎨+=⎩(2)因484AE AF AB AF BF BE BF ⎧+=⎪⇒++=⎨+=⎪⎩,则 5.AF BF +=(1)设)(0)P t t > ()tan EPF tan EPM FPM ∠=∠-∠221((166t t t t t t -=-÷+==≤++,当t =30tan EPF EPF ∠=⇒∠=o 6.(14分)已知数列{}n a 中,113a =,当2n ≥时,其前n 项和n S 满足2221n n n S a S =-,(2) 求n S 的表达式及2limnn na S →∞的值;(3) 求数列{}n a 的通项公式; (4)设n b =n N ∈且2n ≥时,n n a b <.解:(1)2111121122(2)21n n n n n n n n n n n S a S S S S S S n S S S ----=-=⇒-=⇒-=≥-所以1n S ⎧⎫⎨⎬⎩⎭是等差数列.则121nS n =+. 222limlim 2212lim 1n n n n nn n a S S S →∞→∞→∞===---.(2)当2n ≥时,12112212141n n n a S S n n n --=-=-=+--, 综上,()()21132214n n a n n ⎧=⎪⎪=⎨⎪≥⎪-⎩.(3)令a b ==,当2n ≥时,有0b a <<≤ (1) 法1:等价于求证112121n n ->-+.当2n ≥时,0<≤令()23,0f x x x x =-<≤()233232(1)2(12(10222f x x x x x x x '=-=-≥-=->,则()f x 在递增. 又0<<≤ 所以g g <即n n a b <.法(2)223311()2121n n a b b a b a n n -=--=---+- 22()()a b a b ab a b =-++-- (2)22()[()()]22ab ab a b a a b b =-+-++- ()[(1)(1)]22b a a b a a b b =-+-++- (3)因3111110222a b a b a +-<+-<-<-=<,所以(1)(1)022b aa ab b +-++-<由(1)(3)(4)知n n a b <.法3:令()22g b a b ab a b =++--,则()12102ag b b a b -'=+-=⇒=所以()()(){}{}220,,32g b max g g a max a a a a ≤=--因0a <≤则()210a a a a -=-<,22323()303a a a a a -=-≤< 所以()220g b a b ab a b =++--< (5) 由(1)(2)(5)知n n a b < 7. (本小题满分14分)设双曲线2222by a x -=1( a > 0, b > 0 )的右顶点为A ,P 是双曲线上异于顶点的一个动点,从A 引双曲线的两条渐近线的平行线与直线OP 分别交于Q 和R 两点.(1) 证明:无论P 点在什么位置,总有|→--OP |2 = |→-OQ ·→--OR | ( O 为坐标原点);(2) 若以OP 为边长的正方形面积等于双曲线实、虚轴围成的矩形面积,求双曲线离心率的取值范围;解:(1) 设OP :y = k x, 又条件可设AR: y =ab(x – a ), 解得:→--OR = (b ak ab --,b ak kab --), 同理可得→-OQ = (b ak ab +,bak kab+),∴|→-OQ ·→--OR | =|b ak ab --b ak ab ++b ak kab --b ak kab+| =|b k a |)k 1(b a 222222-+. 4分设→--OP = ( m, n ) , 则由双曲线方程与OP 方程联立解得:m 2=22222k a b b a -, n 2= 222222ka b b a k -, ∴ |→--OP |2= :m 2+ n 2= 22222k a b b a -+ 222222k a b b a k -=222222k a b )k 1(b a -+ ,∵点P 在双曲线上,∴b 2 – a 2k 2 > 0 .∴无论P 点在什么位置,总有|→--OP |2= |→-OQ ·→--OR | . 4分(2)由条件得:222222k a b )k 1(b a -+= 4ab, 2分即k 2= 22a4ab abb 4+-> 0 , ∴ 4b > a, 得e > 4172分高考数学压轴题系列训练二(含答案及解析详解)1. (本小题满分12分)已知常数a > 0, n 为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x 的函数. (1) 判定函数f n ( x )的单调性,并证明你的结论. (2) 对任意n ³ a , 证明f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n)解: (1) f n `( x ) = nx n – 1 – n ( x + a)n – 1 = n [x n – 1 – ( x + a)n – 1 ] ,∵a > 0 , x > 0, ∴ f n `( x ) < 0 , ∴ f n ( x )在(0,+∞)单调递减. 4分 (2)由上知:当x > a>0时, f n ( x ) = x n – ( x + a)n 是关于x 的减函数, ∴ 当n ³ a 时, 有:(n + 1 )n – ( n + 1 + a)nn n – ( n + a)n . 2分又 ∴f `n + 1 (x ) = ( n + 1 ) [x n –( x+ a )n ] ,∴f `n + 1 ( n + 1 ) = ( n + 1 ) [(n + 1 )n –( n + 1 + a )n ] < ( n + 1 )[ n n – ( n + a)n ] = ( n + 1 )[ n n – ( n + a )( n + a)n – 1 ] 2分( n + 1 )f n `(n) = ( n + 1 )n[n n – 1 – ( n + a)n – 1 ] = ( n + 1 )[n n – n( n + a)n – 1 ], 2分 ∵( n + a ) > n ,∴f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n) . 2分 2. (本小题满分12分)已知:y = f (x) 定义域为[–1,1],且满足:f (–1) = f (1) = 0 ,对任意u ,v [–1,1],都有|f (u) – f (v) | ≤ | u –v | .(1) 判断函数p ( x ) = x 2 – 1 是否满足题设条件? (2) 判断函数g(x)=1,[1,0]1,[0,1]x x x x +∈-⎧⎨-∈⎩,是否满足题设条件?解: (1) 若u ,v [–1,1], |p(u) – p (v)| = | u 2 – v 2 |=| (u + v )(u – v) |,取u =43[–1,1],v =21[–1,1],则 |p (u) – p (v)| = | (u + v )(u – v) | = 45| u – v | > | u – v |, 所以p( x)不满足题设条件. (2)分三种情况讨论: 10. 若u ,v [–1,0],则|g(u) – g (v)| = |(1+u) – (1 + v)|=|u – v |,满足题设条件; 20. 若u ,v[0,1], 则|g(u) – g(v)| = |(1 – u) – (1 – v)|= |v –u|,满足题设条件;30. 若u [–1,0],v [0,1],则:|g (u) –g(v)|=|(1 – u) – (1 + v)| = | –u – v| = |v + u | ≤| v – u| = | u –v|,满足题设条件;40 若u [0,1],v [–1,0], 同理可证满足题设条件.综合上述得g(x)满足条件. 3. (本小题满分14分)已知点P ( t , y )在函数f ( x ) = 1x x+(x –1)的图象上,且有t 2 – c 2at + 4c 2 = 0 ( c 0 ).(1) 求证:| ac | 4;(2) 求证:在(–1,+∞)上f ( x )单调递增. (3) (仅理科做)求证:f ( | a | ) + f ( | c | ) > 1. 证:(1) ∵ t R, t–1,∴ ⊿ = (–c 2a)2 – 16c 2 = c 4a 2 – 16c 2 0 , ∵ c 0, ∴c 2a 2 16 , ∴| ac | 4. (2) 由 f ( x ) = 1 –1x 1+, 法1. 设–1 < x 1 < x 2, 则f (x 2) – f ( x 1) = 1–1x 12+–1 + 1x 11+= )1x )(1x (x x 1221++-. ∵ –1 < x 1 < x 2, ∴ x 1 – x 2 < 0, x 1 + 1 > 0, x 2 + 1 > 0 ,∴f (x 2) – f ( x 1) < 0 , 即f (x 2) < f ( x 1) , ∴x 0时,f ( x )单调递增. 法2. 由f ` ( x ) =2)1x (1+> 0 得x –1,∴x > –1时,f ( x )单调递增.(3)(仅理科做)∵f ( x )在x > –1时单调递增,| c ||a |4> 0 , ∴f (| c | ) f (|a |4) = 1|a |4|a |4+= 4|a |4+f ( | a | ) + f ( | c | ) =1|a ||a |++ 4|a |4+> 4|a ||a |++4|a |4+=1. 即f ( | a | ) + f ( | c | ) > 1.4.(本小题满分15分)设定义在R 上的函数43201234()f x a x a x a x a x a =++++(其中i a ∈R ,i=0,1,2,3,4),当x= -1时,f (x)取得极大值23,并且函数y=f (x+1)的图象关于点(-1,0)对称. (1) 求f (x)的表达式;(2) 试在函数f (x)的图象上求两点,使这两点为切点的切线互相垂直,且切点的横坐标都在区间⎡⎣上;(3)若+21,N )2n n n n x y n -==∈,求证:4()().3n n f x f y -< 解:(1)31().3f x x x =-…………………………5分 (2)()0,0,⎭或()0,0,.⎛ ⎝⎭…………10分 (3)用导数求最值,可证得4()()(1)(1).3n n f x f y f f -<--<……15分 5.(本小题满分13分)设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………………………………………………………3分 由(1)-(2)可得1.3MN QN k k •=-………………………………6分 又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3y y x x y x =+-,又直线PT 的方程为11.xy x y =-……10分从而得1111,.22x x y y ==-所以112,2.x x y y ==- 代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程.………………13分 6.(本小题满分12分)过抛物线y x 42=上不同两点A 、B 分别作抛物线的切线相交于P 点,.0=⋅(1)求点P 的轨迹方程;(2)已知点F (0,1),是否存在实数λ使得0)(2=+⋅FP FB FA λ?若存在,求出λ的值,若不存在,请说明理由.解法(一):(1)设)(),4,(),4,(21222211x x x x B x x A ≠由,42y x =得:2'x y =2,221x k x k PB PA ==∴ 4,,021-=∴⊥∴=⋅x x PB PA Θ………………………………3分直线PA 的方程是:)(241121x x x x y -=-即42211x x x y -= ① 同理,直线PB 的方程是:42222x x x y -= ② 由①②得:⎪⎩⎪⎨⎧∈-==+=),(,142212121R x x x x y x x x ∴点P 的轨迹方程是).(1R x y ∈-=……………………………………6分(2)由(1)得:),14,(211-=x x FA ),14,(222-=x x FB )1,2(21-+xx P 4),2,2(2121-=-+=x x x x42)14)(14(2221222121x x x x x x +--=--+=⋅ …………………………10分2444)()(22212212++=++=x x x x所以0)(2=+⋅FP FB FA故存在λ=1使得0)(2=+⋅λ…………………………………………12分 解法(二):(1)∵直线PA 、PB 与抛物线相切,且,0=⋅PB PA ∴直线PA 、PB 的斜率均存在且不为0,且,PB PA ⊥ 设PA 的直线方程是)0,,(≠∈+=k R m k m kx y 由⎩⎨⎧=+=yx m kx y 42得:0442=--m kx x 016162=+=∆∴m k 即2k m -=…………………………3分即直线PA 的方程是:2k kx y -= 同理可得直线PB 的方程是:211kx k y --= 由⎪⎩⎪⎨⎧--=-=2211k x k y k kx y 得:⎪⎩⎪⎨⎧-=∈-=11y R k k x 故点P 的轨迹方程是).(1R x y ∈-=……………………………………6分 (2)由(1)得:)1,1(),1,2(),,2(22---kk P k k B k k A )11,2(),1,2(22--=-=kk k k)2,1(--=kk FP)1(2)11)(1(42222kk k k FB FA +--=--+-=⋅………………………………10分)1(24)1()(2222kk k k ++=+-=故存在λ=1使得0)(2=+⋅FP FB FA λ…………………………………………12分 7.(本小题满分14分)设函数x axxx f ln 1)(+-=在),1[+∞上是增函数. (1) 求正实数a 的取值范围;(2) 设1,0>>a b ,求证:.ln 1bba b b a b a +<+<+ 解:(1)01)(2'≥-=ax ax x f 对),1[+∞∈x 恒成立, xa 1≥∴对),1[+∞∈x 恒成立 又11≤x1≥∴a 为所求.…………………………4分 (2)取b b a x +=,1,0,1>+∴>>bba b a Θ,一方面,由(1)知x axxx f ln 1)(+-=在),1[+∞上是增函数,0)1()(=>+∴f b b a f0ln 1>+++⋅+-∴b b a b b a a b b a 即ba b b a +>+1ln ……………………………………8分 另一方面,设函数)1(ln )(>-=x x x x G)1(0111)('>>-=-=x xx x x G Θ ∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G ∴当1>x 时,0)1()(>>G x G∴x x ln > 即bba b b a +>+ln综上所述,.ln 1bba b b a b a +<+<+………………………………………………14分8.(本小题满分12分)如图,直角坐标系xOy 中,一直角三角形ABC ,90C ∠=o ,B 、C 在x 轴上且关于原点O 对称,D 在边BC 上,3BD DC =,ABC !的周长为12.若一双曲线E 以B 、C 为焦点,且经过A 、D 两点.x(1) 求双曲线E 的方程;(2) 若一过点(,0)P m (m 为非零常数)的直线l 与双曲线E 相交于不同于双曲线顶点的两点M 、N ,且MP PN λ=u u u r u u u r,问在x 轴上是否存在定点G ,使()BC GM GN λ⊥-u u u r u u u u r u u u r ?若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.解:(1) 设双曲线E 的方程为22221(0,0)x y a b a b-=>>,则(,0),(,0),(,0)B c D a C c -.由3BD DC =,得3()c a c a +=-,即2c a =.∴222||||16,||||124,||||2.AB AC a AB AC a AB AC a ⎧-=⎪+=-⎨⎪-=⎩(3分)解之得1a =,∴2,c b ==∴双曲线E 的方程为2213y x -=.(5分) (2) 设在x 轴上存在定点(,0)G t ,使()BC GM GN λ⊥-u u u r u u u u r u u u r.设直线l 的方程为x m ky -=,1122(,),(,)M x y N x y . 由MP PN λ=u u u r u u u r,得120y y λ+=.即12yy λ=-① (6分)∵(4,0)BC =u u u r , 1212(,)GM GN x t x t y y λλλλ-=--+-u u u u r u u u r, ∴()BC GM GN λ⊥-u u u r u u u u r u u u r12()x t x t λ⇔-=-.即12()ky m t ky m t λ+-=+-. ② (8分)把①代入②,得12122()()0ky y m t y y +-+=③ (9分)把x m ky -=代入2213y x -=并整理得222(31)63(1)0k y kmy m -++-=xx其中2310k -≠且0∆>,即213k ≠且2231k m +>. 212122263(1),3131km m y y y y k k --+==--.(10分) 代入③,得2226(1)6()03131k m km m t k k ---=--,化简得 kmt k =. 当1t m=时,上式恒成立. 因此,在x 轴上存在定点1(,0)G m,使()BC GM GN λ⊥-u u u r u u u u r u u u r .(12分)9.(本小题满分14分)已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意*n ∈N 都有(1)n np S p pa -=-(p 为大于1的常数),记12121C C C ()2nn n n nn na a a f n S ++++=L .(1) 求n a ;(2) 试比较(1)f n +与1()2p f n p+的大小(*n ∈N ); (3) 求证:2111(21)()(1)(2)(21)112n p p n f n f f f n p p -⎡⎤⎛⎫++-+++--⎢⎥ ⎪-⎢⎥⎝⎭⎣⎦L 剟,(*n ∈N ). 解:(1) ∵(1)n n p S p pa -=-,① ∴11(1)n n p S p pa ++-=-.②②-①,得11(1)n n n p a pa pa ++-=-+,即1n n a pa +=.(3分)在①中令1n =,可得1a p =.∴{}n a 是首项为1a p =,公比为p 的等比数列,n n a p =.(4分)(2) 由(1)可得(1)(1)11n n n p p p p S p p --==--. 12121C C C n n n n n a a a ++++L 1221C C C (1)(1)n n n nn n n p p p p p =++++=+=+L .∴12121C C C ()2nn n n nn n a a a f n S ++++=L 1(1)2(1)n n n p p p p -+=⋅-, (5分)(1)f n +1111(1)2(1)n n n p p p p +++-+=⋅-. 而1()2p f n p+1111(1)2()n n n p p p p p +++-+=⋅-,且1p >, ∴1110n n p p p ++->->,10p ->. ∴(1)f n +<1()2p f n p+,(*n ∈N ). (8分)(3) 由(2)知 1(1)2p f p +=,(1)f n +<1()2p f n p+,(*n ∈N ). ∴当2n …时,211111()(1)()(2)()(1)()2222n np p p p f n f n f n f p p p p-++++<-<-<<=L .∴221111(1)(2)(21)222n p p p f f f n p p p -⎛⎫⎛⎫++++++-+++ ⎪ ⎪⎝⎭⎝⎭L L „2111112n p p p p -⎡⎤⎛⎫++=-⎢⎥ ⎪-⎢⎥⎝⎭⎣⎦, (10分)(当且仅当1n =时取等号).另一方面,当2n …,1,2,,21k n =-L 时, 2221(1)(1)()(2)2(1)2(1)k n k k k n k n k p p p f k f n k p p p ---⎡⎤-+++-=+⎢⎥--⎣⎦1p p -⋅…1p p -=1p p -=∵22k n k n p p p -+…,∴2222121(1)n k n k n n n p p p p p p ---+-+=-„.∴12(1)()(2)2()2(1)nn n p p f k f n k f n p p -++-⋅=-…,(当且仅当k n =时取等号).(13分) ∴2121211111()[()(2)]()(21)()2n n n k k k f k f k f n k f n n f n ---====+-=-∑∑∑….(当且仅当1n =时取等号).综上所述,2121111(21)()()112n n k p p n f n f k p p --=⎡⎤⎛⎫++--⎢⎥∑ ⎪-⎢⎥⎝⎭⎣⎦剟,(*n ∈N ).(14分)高考数学压轴题系列训练三(含答案及解析详解)1.(本小题满分13分)如图,已知双曲线C :x a y ba b 2222100-=>>(),的右准线l 1与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.(I )求证:OM MF →⊥→;(II )若||MF →=1且双曲线C 的离心率e =62,求双曲线C 的方程;(III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P 在A 、Q 之间,满足AP AQ →=→λ,试判断λ的范围,并用代数方法给出证明. 解:(I )Θ右准线l 12:x a c =,渐近线l 2:y bax =∴=+M a c ab c F c c a b ()()22220,,,,Θ,∴→=OM a c ab c ()2, MF c a c ab c b c abc →=--=-()()22,, ΘOM MF a b c a b cOM MF →⋅→=-=∴→⊥→2222220……3分(II )Θe b a e a b =∴=-=∴=621222222,, Θ||()MF b c a b c b b a cb a →=∴+=∴+=∴==1111142222222222,,,∴双曲线C 的方程为:x y 2221-= ……7分 (III )由题意可得01<<λ……8分证明:设l 31:y kx =+,点P x y Q x y ()()1122,,,由x y y kx 22221-==+⎧⎨⎩得()1244022--+=k x kxΘl 3与双曲线C 右支交于不同的两点P 、Q∴-≠=+->+=->=-->⎧⎨⎪⎪⎪⎩⎪⎪⎪∴≠±<<-<⎧⎨⎪⎪⎪⎩⎪⎪⎪120161612041204120221012022212212222k k k x x k k x x k k k k k ∆() ∴-<<-122k……11分ΘAP AQ x y x y →=→∴-=-λλ,,,()()112211,得x x 12=λ∴+=-=--∴+=--=-=+-()()()1412412116412421222122222222222λλλλx k k x k k k k k k ,Θ-<<-∴<-<∴+>12202111422k k ,,()λλ∴+>∴-+>()1421022λλλλ∴λ的取值范围是(0,1)……13分2.(本小题满分13分)已知函数f x x n x n f n n x n n N ()()[()]()(*)=≤--+--<≤∈⎧⎨⎩00111,,数列{}a n 满足a f n n N n =∈()(*) (I )求数列{}a n 的通项公式;(II )设x 轴、直线x a =与函数y f x =()的图象所围成的封闭图形的面积为S a a ()()≥0,求S n S n n N ()()(*)--∈1;(III )在集合M N N k k Z ==∈{|2,,且10001500≤<k }中,是否存在正整数N ,使得不等式a S n S n n ->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.(IV )请构造一个与{}a n 有关的数列{}b n ,使得lim()n n b b b →∞+++12Λ存在,并求出这个极限值. 解:(I )Θn N ∈*∴=--+-=+-f n n n n f n n f n ()[()]()()111 ∴--=f n f n n ()()1……1分∴-=-=-=f f f f f f ()()()()()()101212323……f n f n n ()()--=1 将这n 个式子相加,得 f n f n n n ()()()-=++++=+012312ΛΘf f n n n ()()()0012=∴=+ ∴=+∈a n n n N n ()(*)12……3分(II )S n S n ()()--1为一直角梯形(n =1时为直角三角形)的面积,该梯形的两底边的长分别为f n f n ()()-1,,高为1 ∴--=-+⨯=+-S n S n f n f n a a n n ()()()()112121=-++=12121222[()()]n n n n n……6分(III )设满足条件的正整数N 存在,则n n n nn ()+->⇔>⇔>12100522100520102 又M ={}200020022008201020122998,,,,,,,ΛΛ ∴=N 201020122998,,……,均满足条件 它们构成首项为2010,公差为2的等差数列.设共有m 个满足条件的正整数N ,则2010212998+-=()m ,解得m =495 ∴M 中满足条件的正整数N 存在,共有495个,N min =2010 ……9分(IV )设b a n n =1,即b n n n n n =+=-+212111()() 则b b b n n n n 122112121313141112111+++=-+-+-++-+=-+ΛΛ[()()()()]() 显然,其极限存在,并且lim()lim[]n n n b b b n →∞→∞+++=-+=122112Λ ……10分注:b c a n n=(c 为非零常数),b b q q n a n n an n n==<<++()(||)12012121,等都能使lim()n n b b b →∞+++12Λ存在.19. (本小题满分14分)设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2. (I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由. 解:(I )Θe c a =∴=2422,Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·0110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222 由(i )(ii )得k 230+=∴k 不存在,即不存在满足条件的直线l . 14分3. (本小题满分13分)已知数列{}a n 的前n 项和为S n N n ()*∈,且S m ma n n =+-()1对任意自然数都成立,其中m 为常数,且m <-1.(I )求证数列{}a n 是等比数列;(II )设数列{}a n 的公比q f m =(),数列{}b n 满足:b a b f b n n 11113==-,() ()*n n N ≥∈2,,试问当m 为何值时,lim (lg )lim (n b a n b b b b b b n n →∞=→∞+++3122334…+-b b n n 1)成立?解:(I )由已知S m ma n n ++=+-1111()()S m ma n n =+-()1 (2)由()()12-得:a ma ma n n n ++=-11,即()m a ma n n +=+11对任意n N ∈*都成立{}Θm m a a m m a n n n 为常数,且即为等比数列分<-∴=++1151(II )当n =1时,a m ma 111=+-()∴====+∴==+≥∈---a b I q f m m m b f b b b n n N n n n n 11111113112,从而由()知,()()()*∴=+-=∴⎧⎨⎩⎫⎬⎭∴=+-=+=+∈--1111111131212911b b b b b b n n b n n N n n n n n n n ,即为等差数列,分()()*Θa m m n n =+⎛⎝ ⎫⎭⎪-11∴→∞=→∞-++=+→∞+++=→∞-+-+++-+⎛⎝ ⎫⎭⎪=-lim (lg )lim lg lg lim ()lim n b a n n n m m mm n b b b b b b n n n n n n n 121133131414151112112231·……由题意知lgm m +=11,∴+=∴=-m m m 110109, 13分4.(本小题满分12分)设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆和x 轴正半轴于P ,Q 两点,且P 分向量AQ 所成的比为8∶5.(1)求椭圆的离心率;(2)若过F Q A ,,三点的圆恰好与直线l :033=++y x 相切,求椭圆方程. 解:(1)设点),0,(),0,(0c F x Q -其中),0(,22b A b a c -=.由P 分AQ 所成的比为8∶5,得)135,138(0b x P , 2分 ∴a x a x 231)135()138(022202=⇒=+.①, 4分而AQ FA b x AQ b c FA ⊥-==),,(),,(0,∴0=⋅AQ FA .cb x b cx 2020,0==-∴.②, 5分由①②知0232,32222=-+∴=a ac c ac b .∴21.02322=∴=-+e e e . 6分 (2)满足条件的圆心为)0,2(22cc b O -', )0,(,2222222c O c cc c a c c b '∴=--=-, 8分 圆半径a ca cb r ==+=22222. 10分由圆与直线l :033=++y x 相切得,a c =+2|3|, 又3,2,1,2===∴=b a c c a .∴椭圆方程为13422=+y x . 12分5.(本小题满分14分)(理)给定正整数n 和正数b ,对于满足条件b a a n ≥-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y Λ的最大值,并求出y 取最大值时{}n a 的首项和公差.(文)给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y Λ的最大值,并求出y 取最大值时{}n a 的首项和公差.(理)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分dn a n nd a d a a a a a y n n n n n n n )21()1()()(11111221+++++=+++++=+++=+++++++ΛΛΛ d n n a n n 2)1()1(1+++=+ 4分 )2)(1()2)(1(1111a a a n nda n n n n -++=++=+++ )3(2111a a n n -+=+. 7分 又211211,++--≤-∴≥-n n a b a b a a .∴449449)23(332112111bb a b a a a a n n n n -≤-+--=-+-≤-++++,当且仅当231=+n a 时,等号成立. 11分 ∴8)49)(1()3(2111b n a a n y n -+≤-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=,∴y 的最大值为8)49)(1(b n -+. 14分(文)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分)2)(1(2)1()1()21()1()()(1111111221nda n d n n a n d n a n nd a d a a a a a y n n n n n n n n n ++=+++=+++++=++++=+++=+++++++++ΛΛΛ)3(21)2)(1(11111a a n a a a n n n n -+=-++=+++, 6分 又211211,++--=-∴=-n n a b a b a a .∴449449)23(332112111bb a b a a a a n n n n -≤-+--=-+-=-++++. 当且仅当231=+n a 时,等号成立. 11分 ∴8)49)(1()3(2111b n a a n y n -+=-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=.∴y 的最大值为8)49)(1(b n -+. 14分6.(本小题满分12分)垂直于x 轴的直线交双曲线2222=-y x 于M 、N 不同两点,A 1、A 2分别为双曲线的左顶点和右顶点,设直线A 1M 与A 2N 交于点P (x 0,y 0)(Ⅰ)证明:;22020为定值y x +(Ⅱ)过P 作斜率为02y x -的直线l ,原点到直线l 的距离为d ,求d 的最小值. 解(Ⅰ)证明:)0,2(),0,2(),,(),,(211111A A y x N y x M ---Θ则设)2(2111++=∴x x y y M A 的方程为直线 ①直线A 2N 的方程为)2(211---=x x y y ②……4分①×②,得)2(2221212---=x x y y分为定值的交点与是直线即822),(22),2(21,222020210022222121ΛΛΘΘ=+∴=+--=∴=-y x N A M A y x P y x x y y x (Ⅱ)02222),(20020200000=-+=+--=-y y x x y x x x y x y y l 整理得结合的方程为 2220201222242y y y x d +=+=+=于是……10分 11221122220202020≥+=∴≤+∴≤∴=+y d y y y x Θ 当1,1,1200取最小值时d y y =±=……12分7.(本小题满分14分) 已知函数x x x f sin )(-= (Ⅰ)若;)(],,0[的值域试求函数x f x π∈ (Ⅱ)若);32(3)()(2:),,0(],,0[xf x f f x +≥+∈∈θθπθπ求证(Ⅲ)若)32(3)()(2,),)1(,(],)1(,[xf x f f Z k k k k k x ++∈+∈+∈θθππθππ与猜想的大小关系(不必写出比较过程).解:(Ⅰ)为增函数时当)(,0cos 1)(,),0(x f x x f x ∴>-='∈π分的值域为即求得所以上连续在区间又4],0[)()(0),()()0(],0[)(ΛΛππππx f x f f x f f x f ≤≤≤≤(Ⅱ)设)32(3)()(2)(x f x f f x g +-+-=θθ,32sin 3sin )(2)(xx f x g +++-=θθ即)32cos cos (31)(xx x g ++-='θ……6分θπθπθπ=='∈+∴∈∈x x g x x 得由,0)(),0(32),0(],,0[Θ.)(,0)(,),0(为减函数时当x g x g x <'∈∴θ分为增函数时当8)(,0)(,),(ΛΛx g x g x >'∈πθ分因而有对的最小值为则上连续在区间10)32(3)()(20)()(],0[)()(],0[)(ΛΘx f x f f g x g x x g g x g +≥+=≥∈θθθπθπ (Ⅲ)在题设条件下,当k 为偶数时)32(3)()(2xf x f f +≥+θθ当k 为奇数时)32(3)()(2xf x f f +≤+θθ……14分高考数学压轴题系列训练四(含答案及解析详解)1.(本小题满分14分)已知f(x)=222+-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)=x 1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分.解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 222)2()2(2+---x ax x , ∵f(x)在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ①设ϕ(x)=x 2-ax -2,方法一:ϕ(1)=1-a -2≤0,① ⇔ ⇔-1≤a ≤1,ϕ(-1)=1+a -2≤0.∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f '(1)=0 ∴A={a|-1≤a ≤1}. 方法二:2a ≥0, 2a <0, ①⇔ 或ϕ(-1)=1+a -2≤0 ϕ(1)=1-a -2≤0⇔ 0≤a ≤1 或 -1≤a ≤0⇔ -1≤a ≤1.∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f '(1)=0 ∴A={a|-1≤a ≤1}.(Ⅱ)由222+-x a x =x1,得x 2-ax -2=0, ∵△=a 2+8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,∴ 从而|x 1-x 2|=212214)(x x x x -+=82+a .x 1x 2=-2,∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,当且仅当m 2+tm+1≥3对任意t ∈[-1,1]恒成立,即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ②设g(t)=m 2+tm -2=mt+(m 2-2),方法一:g(-1)=m 2-m -2≥0,② ⇔g(1)=m 2+m -2≥0,⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.方法二:当m=0时,②显然不成立;当m ≠0时,m>0, m<0,②⇔ 或g(-1)=m 2-m -2≥0 g(1)=m 2+m -2≥0⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.2.(本小题满分12分)如图,P 是抛物线C :y=21x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;(Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求||||||||SQ ST SP ST +的取值范围. 本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力.满分12分.解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.由y=21x 2, ① 得y '=x.∴过点P 的切线的斜率k 切= x 1,∴直线l 的斜率k l =-切k 1=-11x , ∴直线l 的方程为y -21x 12=-11x (x -x 1), 方法一:联立①②消去y ,得x 2+12x x -x 12-2=0.。

相关文档
最新文档