弦线上的振动研究实验
《弦振动实验报告》
《弦振动实验报告》弦振动的研究一、实验目的1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。
2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系,并进行测量。
二、实验仪器弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺三、实验原理为了研究问题的方便,认为波动是从A点发出的,沿弦线朝B端方向传播,称为入射波,再由B端反射沿弦线朝A端传播,称为反射波。
入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,移动劈尖B到适合位置.弦线上的波就形成驻波。
这时,弦线上的波被分成几段形成波节和波腹。
驻波形成如图(2)所示。
设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同振动方向一致的简谐波。
向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。
由图可见,两个波腹间的距离都是等于半个波长,这可从波动方程推导出来。
下面用简谐波表达式对驻波进行定量描述。
设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程图(2)分别为:Y1=Acos2(ft-x/)Y2=Acos[2(ft+x/λ)+]式中A为简谐波的振幅,f为频率,为波长,X为弦线上质点的坐标位置。
两波叠加后的合成波为驻波,其方程为:Y1+Y2=2Acos[2(x/)+/2]Acos2ft①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Acos[2(x/)+/2]|,与时间无关t,只与质点的位置x有关。
由于波节处振幅为零,即:|cos[2(x/)+/2]|=02(x/)+/2=(2k+1)/2(k=0.2.3.…)可得波节的位置为:x=k/2②而相邻两波节之间的距离为:xk+1-xk=(k+1)/2-k/2=/2③又因为波腹处的质点振幅为最大,即|cos[2(x/)+/2]|=12(x/)+/2=k(k=0.1.2.3.)可得波腹的位置为:x=(2k-1)/4④这样相邻的波腹间的距离也是半个波长。
大学物理《弦振动》实验报告
大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。
将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….)④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
弦线振动实验资料
分析图线,验证出结论 λ ∝ f −1 ;
(3)根据图线来求出直线的截距 b ,由已知的张力 T 值 (T = Mg),以及截距 b 表达式
b = 1 ln T − 1 ln μ ,求出弦线密度 μ ;
(1)将振幅调节钮旋至最小处,打开信号源电源开关后,顺时针调节振幅调节钮,
使振动片 A 振动; (2)改变弦线长(移动可动滑轮 B ),使之产生振幅较大且稳定的驻波,改变振动频
率或砝码质量数次,观察波形、波长的变化情况。
2.验证弦线波波长 λ 与张力 T 的关系
(1)固定振动源的频率为一定值(100 Hz ),在砝码盘( M 0 = 45g )上添加不同质 量的砝码,以改变同一弦线上的张力,每改变一次张力,均要记录相应张力 T 值(T 等于
能否验证波长 λ 与张力 T 的关系?能否根据弦线密度 μ 求出振动频率 f ?如果可以,怎样
验证,怎样求? 【课后思考题】
⒈ 弦线上调出稳定的驻波后,欲增加半波数 n 的个数,是增长还是缩短弦线长?应 增加砝码还是减少砝码?
⒉ 本实验中,若只改变振动频率,将会使弦线波波长变化还是波速变化?只改变弦 线长时,弦线波频率、波长、波速中那个量随之变化?只改变砝码质量时,情况又怎样?
验证弦线波波长与张力t的关系1固定振动源的频率为一定值100在砝码盘hzgm450上添加不同质量的砝码以改变同一弦线上的张力每改变一次张力均要记录相应张力t值t等于m为砝码和砝码盘的总质量并左右移动可动滑砝码和砝码盘的总重量即mgt轮b的位置使弦线上出现振幅较大且稳定的驻波记录当半波数n分别取5432l1时所对应的弦线长
⒊ 试设计实验方案验证弦线波波长 λ 与弦线密度μ的关系。
弦振动的研究
实验弦振动的研究【实验目的】1.观察弦振动形成的驻波。
2.用两种方法测量弦线上横波的传播速度,比较两种方法测得结果的符合情况。
3.验证弦振动的基频与张力、弦长的关系。
【仪器用具】电振音叉(约100Hz),弦线,分析天平,滑轮,弹簧及尺,砝码,低压电源,米尺。
【实验原理】1.弦线上横波传播速度(一)如图1所示,将细弦线的一端固定在电振音叉上,另一端绕过滑轮挂在砝码或弹簧上,当音叉振动时,强迫弦线振动,弦振动频率应当和音叉的频率ν相等。
若适当调节砝码重量或弹簧拉力,可在弦上出现明显稳定的驻波,即弦与音叉共振,设驻波波长为λ,则弦线上横波传播速度V等于V=νλ(1)2.弦线上横波传播速度(二)=的微分段加以讨论(图2)。
设若横波在张紧的弦线上沿x轴正方向传播,我们取 AB dsρ。
在A、B处受到左右弦线的线密度(即单位长质量)为ρ,则此微分段弦线ds的质量为ds邻段的张力分别为1T 、2T ,其方向为沿弦线的切线方向与x 轴交成1α、2α角。
由于弦线上传播的横波在x 方向无振动,所以作用在微分段ds 上的张力的x 分量应该为零,即2211cos cos 0T T αα-= (2)又根据牛顿第二定律,在y 方向微分段的运动方程为:222112sin sin d y T T ds dtααρ-= (3) 对于小的振动,可取ds dx ,而1α、2α都很小,所以1cos 1α ,2cos 1α ,11sin tg αα ,22sin tg αα 。
又从导数的几何意义可知1xdx tg dy α⎛⎫= ⎪⎝⎭,2x dx dy tg dx α+⎛⎫= ⎪⎝⎭,式(2)将成为210T T -=,即21T T T ==表示张力不随时间和地点而变,为一定值。
式(3)将成为22x dx xdy dy d y T T dx dx dx dt ρ+⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭。
(4) 将x dxdy dx +⎛⎫ ⎪⎝⎭按泰勒级数展开并略去二级微量,得 22x d x x xd y d y d y dx dx dx dx +⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
弦振动研究实验报告
弦振动研究实验报告弦振动研究实验报告引言弦振动是物理学中一个重要的研究领域,对于理解声音、乐器演奏、结构工程等方面都具有重要意义。
本实验旨在通过实验观察和数据分析,探究弦振动的基本原理和特性。
实验目的1. 研究弦振动的基本原理和特性。
2. 通过实验观察和数据分析,验证弦振动的频率与弦长、张力和质量的关系。
3. 探究不同条件下弦振动的共振现象。
实验装置与方法本实验使用的装置包括弦线、定滑轮、振动发生器、频率计和质量块等。
具体实验步骤如下:1. 将弦线固定在两个支架上,并通过定滑轮使弦线保持水平。
2. 在弦线上固定一个质量块,调整张力。
3. 将振动发生器连接到弦线上,并调节频率。
4. 使用频率计测量弦线的频率。
5. 重复步骤2-4,改变质量块的质量、张力和弦长等条件。
实验结果与分析通过实验观察和数据分析,我们得到了以下结果:1. 频率与弦长的关系:在保持张力和质量不变的情况下,我们改变了弦长。
实验结果显示,随着弦长的增加,频率呈现出递减的趋势。
这与理论预测相符,即频率与弦长成反比关系。
2. 频率与张力的关系:在保持弦长和质量不变的情况下,我们改变了张力。
实验结果表明,随着张力的增加,频率也随之增加。
这符合理论预测,即频率与张力成正比关系。
3. 频率与质量的关系:在保持弦长和张力不变的情况下,我们改变了质量。
实验结果显示,随着质量的增加,频率呈现出递减的趋势。
这与理论预测相符,即频率与质量成反比关系。
4. 共振现象:我们在实验中发现了共振现象。
当振动发生器的频率与弦的固有频率相等时,弦会出现共振现象,振幅显著增大。
这说明共振频率与弦的固有频率相匹配。
结论通过本实验的观察和数据分析,我们得出以下结论:1. 弦振动的频率与弦长成反比关系,与张力和质量成正比关系。
2. 弦振动会出现共振现象,当振动发生器的频率与弦的固有频率相等时,振幅显著增大。
这些结论对于理解弦振动的基本原理和特性具有重要意义。
在实际应用中,我们可以根据这些关系来设计和调整乐器的音调,以及优化结构工程中的弦悬挂系统。
弦线振动的实验报告
弦线振动的实验报告弦线振动的实验报告引言弦线振动是物理学中一个重要的实验现象,它不仅在日常生活中有着广泛的应用,也在科学研究中扮演着重要的角色。
本实验旨在通过实验观察和数据分析,探究弦线振动的性质和规律。
实验目的本实验的目的是通过实验观察和数据分析,研究弦线振动的频率与振幅、长度、张力之间的关系,并验证理论公式。
实验器材本实验所需的器材包括弦线、振动发生器、频率计、定滑轮、质量块、尺子、电子天平等。
实验步骤1. 准备工作:将弦线固定在两个固定点上,保持水平并适当张紧。
确定弦线的长度,并记录下来。
2. 实验一:改变振幅。
固定弦线的长度和张力,通过改变振动发生器的振幅,记录下不同振幅下的频率和对应的振动模式。
3. 实验二:改变长度。
固定弦线的张力和振幅,通过改变固定点之间的距离,记录下不同长度下的频率和对应的振动模式。
4. 实验三:改变张力。
固定弦线的长度和振幅,通过改变质量块的质量,调节张力的大小,记录下不同张力下的频率和对应的振动模式。
实验结果根据实验数据,我们得到了以下结果:1. 振幅对频率的影响:在固定长度和张力的情况下,振幅越大,频率越高。
这表明振幅与频率成正比。
2. 长度对频率的影响:在固定振幅和张力的情况下,长度越短,频率越高。
这表明长度与频率成反比。
3. 张力对频率的影响:在固定振幅和长度的情况下,张力越大,频率越高。
这表明张力与频率成正比。
数据分析与讨论根据实验结果,我们可以得到以下结论:1. 弦线振动的频率与振幅、长度、张力之间存在一定的关系,可以用数学公式来描述。
根据实验结果,我们可以得到以下公式:f = k * √(T/μL),其中f为频率,k为常数,T为张力,μ为线密度,L为长度。
2. 实验结果与理论公式相符合,验证了理论的正确性。
3. 实验中观察到的振动模式与理论模型相符合,支持了弦线振动的波动理论。
实验误差与改进在实验过程中,由于实验环境、仪器精度等因素的影响,可能会导致实验结果存在一定的误差。
弦振动的实验研究
弦振动的实验研究弦振动的实验研究弦是指⼀段⼜细⼜柔软的弹性长线,⽐如⼆胡、吉它等乐器上所⽤的弦。
⽤薄⽚拨动或者⽤⼸在张紧的弦上拉动就可以使整个弦的振动,再通过⾳箱的共鸣,就会发出悦⽿的声⾳。
对弦乐器性能的研究与改进,离不开对弦振动的研究,对弦振动研究的意义远不只限于此,在⼯程技术上也有着极其重要的意义。
⽐如悬于两根⾼压电杆间的电⼒线、⼤跨度的桥梁等,在⼀定程度上也是⼀根“弦”,它们的振动所带来的后果可不象乐器上的弦的振动那样使我们们感到愉快。
对于弦振动的研究,有助于我们理解这些特殊“弦”的振动特点、机制,从⽽对其加以控制。
同时,弦的振动也提供了⼀个直观的振动与波的模型,对它的分析、研究是处理其它声与振动问题的基础。
欧拉最早提出了弦振动的⼆阶⽅程,⽽后达朗贝尔等⼈通过对弦振动的研究开创了偏微分⽅程论。
本实验意在通过对⼀段两端固定弦振动的研究,了解弦振动的特点和规律。
预备问题1.复习DF4320⽰波器的使⽤。
2.什么是驻波?它是如何形成的?3.什么是弦振动的模式?共振频率与哪些因素有关?4.张⼒对波速有何影响?试⽐较以基频和第⼀谐频共振时弦中的波速。
⼀、实验⽬的:1、了解驻波形成的条件,观察弦振动时形成的驻波;2、学会测量弦线上横波传播速度的⽅法:3、⽤作图法验证弦振动频率与弦长、频率与张⼒的关系。
⼆、实验原理⼀根两端固定并张紧的弦,静⽌时处于⽔平平衡位置,当在弦的垂直⽅向被拉离平衡位置后,弦会有回到平衡位置的趋势,在这种趋势和弦的惯性作⽤下,弦将在平衡位置附近振动。
令弦线长度⽅向为x 轴,弦被拉动的⽅向(与x 轴垂直的⽅向)为y 轴,如图1所⽰。
若设弦的长度为L ,线密度为ρ,弦上的张⼒为T ,对⼀⼩段弦线微元dl 进⾏受⼒分析,运⽤⽜顿第⼆定律定律,可得在y ⽅向的运动微分⽅程()2222tydx dx x y T ??=??ρ(1)若令ρ/2T v =,上式可写为222221tyv x y ??=?? (2)y 图1(2)式反映了弦的位移y 与位置x 、时间t 的关系,其中)/(ρT v =代表了在弦线上横波传播的波速。
弦线上的振动研究实验
弦线上的振动研究实验一、实验目的1.了解弦振动时驻波形成的过程;2.利用弦振动形成的驻波研究振动的基频与张力、弦长的关系,测量在弦线上横波的传播速度。
二、实验内容1. 调整实验装置,观察弦线上形成的驻波(1) 将漆包线两端去漆,使其能导电。
漆包线一端接到黑色电极上,并穿过板上小孔绕到滑轮上,另一端接到红色的电极上,同时将砝码系上。
磁铁置于弦线下适当位置,并用支架在刻度尺上支撑住漆包线。
将电路接入电源,当交变电流通过漆包线时,它周围的磁场与磁铁的相互作用使得漆包线产生波动.调节信号发生器的输出频率和幅度,使弦线上产生驻波。
(2) 观察弦线上的驻波,将弦长L设置一定长度,在砝码钩上增减砝码,仔细调节信号频率和信号强度,使弦线上产生数个波形清晰、稳定的驻波。
2. 测量弦线上横波的传播速度v(1) 取弦线上的张力F为一定值(例如此时砝码质量为20g)。
(2) 弦长L不变,张力F不变,调节弦线振动频率 ,要求取5个不同的信号频率值,测量驻波的波长λ 。
由驻波波长λ与弦线振动频率 ,计算弦线上横波的传播速度V。
3. 选作内容:研究驻波波长与弦线上张力的关系(1) 将弦线振动频率 取一定值,改变砝码质量3次,微调弦线长度,使弦线产生稳定的驻波。
此时有L=n λ /2, 在每一固定张力F的作用下,重复5次测量n个半波长的弦线长度L,根据公式计算弦线振动频率,与仪器的读数值比较,并取其中一组数据计算不确定度。
其中,弦线的线密度为0.31g/m。
(2) 用作图法研究驻波波长与弦线上张力的关系,自拟数据表格和选取坐标参量。
三、思考题教材第一册125页1,3题。
弦振动实验 报告
引言:弦振动实验是一种常见的物理实验,它通过研究弦线在不同条件下的振动特性,可以探究弦线的本质特性以及振动的规律性。
本报告将对弦振动实验进行详细叙述和分析,以帮助读者了解实验原理、测量方法、实验数据处理和实验结果的分析。
概述:弦振动实验是通过将一根弦线固定在两端,在一定条件下使其产生稳定的振动,通过测量振动的特性参数来研究弦的性质和振动规律。
弦振动实验一般包括调节和固定弦线的条件、测量振动频率和振幅、分析振动模式等内容。
在实验过程中,需要使用一些仪器和工具,如振动发生器、频率计、示波器、刻度尺等。
正文内容:I.实验准备1.调节并固定弦线1.1确定振动实验的弦线材质和粗细1.2选择适当的弦线长度并将其固定在实验装置上1.3通过调节装置使弦线绷紧并保持稳定状态2.调节振动发生器和频率计2.1设置振动发生器的振动频率范围和振幅2.2使用频率计检测振动发生器的输出频率2.3调节振动发生器的频率至与实验要求一致II.测量振动频率和振幅1.使用示波器观察振动现象1.1连接示波器,并将其设置为适当的观测模式1.2调节示波器的水平和垂直观测范围1.3观察弦线振动的波形和振幅2.使用频率计测量振动频率2.1将频率计的传感器与弦线连接2.2校准频率计2.3测量弦振动的频率,并记录测量结果3.使用刻度尺测量振幅3.1在弦线上选择适当的标记点3.2使用刻度尺测量弦线在不同振动位置的振幅3.3记录测量结果,并计算平均振幅III.分析振动模式1.通过调节振动频率观察模式1.1从低频到高频逐渐调节振动频率1.2观察弦线在不同频率下的振动模式变化1.3记录关键观察点和频率,并对观察结果进行分析2.使用傅里叶变换分析频谱2.1通过示波器将振动信号转化为电信号2.2进行傅里叶变换,得到信号的频谱图2.3分析频谱图,确定各频率分量的强度以及频率分布规律3.计算波速和线密度3.1根据弦线的材料和长度计算线密度3.2根据测量的振动频率和弦线长度计算波速3.3对计算结果进行误差分析,评估实验的可靠性IV.实验数据处理1.统计并整理实验数据1.1将测量的振动频率、振幅和振动模式数据整理为数据表格1.2检查数据的准确性和一致性2.绘制振动频率和振幅的图像2.1使用图表软件绘制振动频率和振幅的图像2.2分析图像并寻找数据之间的关联性2.3进行趋势线拟合和数据拟合,得到振动规律的数学表达式3.进行实验结果的统计分析3.1计算平均值和标准偏差,评估数据的可靠性3.2进行相关性分析,探究振动频率和振幅之间的关系3.3使用统计方法对实验结果进行推断性分析和结论确认V.总结通过弦振动实验,我们了解到弦线的振动特性与弦线的材料、长度、线密度等因素密切相关。
弦振动实验报告
弦振动实验报告引言:在物理实验中,弦振动实验是一项常见且重要的实验之一。
通过对弦振动的观察和研究,我们可以深入了解振动现象的特性和规律,进而应用于其他领域,如声学、电子学等。
本实验旨在通过模拟和测量弦振动的各项参数,探究弦振动的基本原理,并进一步学习振动的相关概念和公式。
实验目的:1. 熟悉弦振动实验所使用的仪器设备,并学会正确操作;2. 掌握通过测量弦线长度、张力和频率等参数,计算弦的线密度和波速的方法;3. 了解弦振动的基本模式,探究弦振动的特性和规律。
实验装置与步骤:实验装置包括振动发生器、弦线、固定支点、滑块等。
步骤如下:1. 将振动发生器与固定支点连接,并在弦线上选择适当的振动模式;2. 通过调节振动发生器的频率和幅度,使得弦线产生稳定的振动;3. 利用滑块固定在弦线上,并测量弦长、振幅和频率等参数;4. 重复以上步骤,进行多次实验,取平均值以提高实验结果的准确性。
实验结果与数据处理:通过实验测量得到的数据,我们可以计算出弦线的线密度和波速等参数。
具体的计算公式和计算过程如下:1. 计算线密度:线密度ρ可以通过测量弦线的质量M和长度L来计算。
公式为:ρ = M / L,其中M为弦线的质量,L为弦线的长度。
2. 计算波速:波速v可以通过测量弦线的频率f和波长λ来计算。
公式为:v = f * λ,其中f为弦线的频率,λ为弦线的波长。
实验讨论与结论:通过多次实验测量和数据处理,我们得到了弦线的线密度和波速等参数。
在实验中,我们发现当振动发生器的频率和幅度发生变化时,弦线的振动模式也会随之改变。
在低频率下,我们观察到较为简单的基频模式,而在高频率下,我们观察到弦线有多个节点和波腹,此时为高次谐波模式。
此外,我们还观察到振动频率与线密度之间存在一定的关系。
当线密度增加时,振动频率也会随之增加。
这是因为线密度的增加使得弦线的质量增加,而振动的频率与弦线质量成反比关系,导致频率也随之增加。
实验结果与理论相符,验证了弦振动的基本原理。
《弦振动实验报告范文》
《弦振动实验报告范文》弦振动的研究一、实验目的1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。
2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系,并进行测量。
二、实验仪器弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺三、实验原理为了研究问题的方便,认为波动是从A点发出的,沿弦线朝B端方向传播,称为入射波,再由B端反射沿弦线朝A端传播,称为反射波。
入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,移动劈尖B到适合位置.弦线上的波就形成驻波。
这时,弦线上的波被分成几段形成波节和波腹。
驻波形成如图(2)所示。
设图中的两列波是沿某轴相向方向传播的振幅相等、频率相同振动方向一致的简谐波。
向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。
由图可见,两个波腹间的距离都是等于半个波长,这可从波动方程推导出来。
下面用简谐波表达式对驻波进行定量描述。
设沿某轴正方向传播的波为入射波,沿某轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在某=0处,振动质点向上达最大位移时开始计时,则它们的波动方程图(2)分别为:Y1=Aco2(ft-某/)Y2=Aco[2(ft+某/λ)+]式中A为简谐波的振幅,f为频率,为波长,某为弦线上质点的坐标位置。
两波叠加后的合成波为驻波,其方程为:Y1+Y2=2Aco[2(某/)+/2]Aco2ft①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Aco[2(某/)+/2]|,与时间无关t,只与质点的位置某有关。
由于波节处振幅为零,即:|co[2(某/)+/2]|=02(某/)+/2=(2k+1)/2(k=0.2.3.…)可得波节的位置为:某=k/2②而相邻两波节之间的距离为:某k+1-某k=(k+1)/2-k/2=/2③又因为波腹处的质点振幅为最大,即|co[2(某/)+/2]|=12(某/)+/2=k(k=0.1.2.3.)可得波腹的位置为:某=(2k-1)/4④这样相邻的波腹间的距离也是半个波长。
弦线震动研究实验报告
弦线震动研究实验报告1. 引言弦线震动是物理学中重要的实验研究课题之一,涉及到波动、声学和力学等多个领域。
本实验旨在通过测量弦线的震动频率与其长度、张力以及质量之间的关系,探究弦线的固有频率与这些因素之间的相互关系。
2. 实验方法2.1 实验装置本实验使用了以下仪器和材料:- 弦线(可调节长度)- 弦线夹- 弦线调节螺钉- 电子天平- 频率计- 手持振动器2.2 实验步骤1. 将弦线夹固定在实验台上,并将弦线穿过夹子,并通过调节螺钉使得弦线的长度可调。
2. 测量弦线的质量,并使用电子天平记录下来。
3. 使用手持振动器将弦线拉紧并产生波动。
4. 使用频率计记录弦线的固有频率,并记录下实验条件(如张力、长度等)。
5. 重复以上步骤,每次调整弦线的长度或质量,以便测量不同实验条件的结果。
3. 实验结果与分析3.1 弦线长度与固有频率的关系固定张力及弦线质量,改变弦线的长度,记录下不同长度下的固有频率,结果如下表所示:弦线长度(m)固有频率(Hz)0.5 1000.4 1250.3 1500.2 2000.1 400根据实验结果可以看出,弦线的长度与固有频率呈正相关关系。
当弦线长度减小时,固有频率增大;反之亦然。
这与弦线的振动模式的特性相符合,即短弦线有更高的固有频率。
3.2 张力与固有频率的关系保持弦长不变,改变张力,记录下不同张力下的固有频率,结果如下表所示:张力(N)固有频率(Hz)10 15020 25030 35040 45050 550通过实验可以发现,张力与固有频率呈正相关关系。
当张力增大时,固有频率也随之增大。
这表明张力是影响弦线固有频率的重要因素之一。
3.3 弦线质量与固有频率的关系保持弦长和张力不变,改变弦线的质量,记录下不同质量下的固有频率,结果如下表所示:弦线质量(kg)固有频率(Hz)0.1 3000.2 3000.3 3100.4 3150.5 320结果显示,弦线质量对固有频率的影响较小,可以认为质量与固有频率之间的关系可以忽略不计。
弦振动研究实验报告
弦振动研究实验报告导言弦振动是物理学中一个重要的研究领域,对于理解声学、乐器制作和波动理论等方面有着深远的影响。
本次实验旨在通过实际操作和数据测量,研究弦振动的基本特性和数学模型,并探讨其在实际应用中的意义。
实验装置与方法1. 实验装置本次实验使用了一根悬挂在两个固定点之间的细弦,以及一个固定好的频率发生器和一个震动传感器。
2. 实验步骤1) 将频率发生器连接至弦的一端,并设置合适的频率。
2) 将震动传感器固定在弦的中间位置上方,用于测量振动的频率。
3) 激发弦产生振动,并通过震动传感器采集数据。
4) 重复上述步骤,改变频率和弦长等参数,记录数据。
实验结果与分析通过采集的数据,我们得到了许多不同频率下弦的振动模式和波形。
通过对数据的处理和分析,我们得到了以下几方面的结论。
1. 弦振动的频率与弦长的关系在实验过程中,我们保持弦张力、线密度等参数不变,只改变弦长。
通过测量不同弦长下的频率,我们得到了频率与弦长的关系。
实验结果表明,频率与弦长成反比例关系,即弦长越长,频率越低。
2. 弦振动的频率与张力的关系在保持弦长不变的条件下,我们改变了弦的张力。
通过测量不同张力下的频率,我们得到了频率与张力的关系。
实验结果表明,频率与张力成正比例关系,即张力越大,频率越高。
3. 弦振动的波形特征在实验中,我们观察到了不同频率下的弦振动波形特征。
对于较低频率下的振动,弦呈现出单一的低音波形。
而对于较高频率下的振动,则呈现出分段性较明显的高音波形。
这一发现与波动理论中的谐波理论相一致,即弦振动可看作是一系列谐波波形的叠加。
实际应用与意义弦振动的研究在许多方面有着重要的应用和实际意义。
1. 声学研究弦振动是声学研究的基础,通过研究弦振动的频率、波形和音色特征,可以进一步理解声音的产生和传播机理。
同时,对于乐器制作、声音合成等方面也有着深远的影响。
2. 结构力学弦振动的研究有助于理解弦结构的稳定性和荷载传递机制。
对于建筑设计、桥梁工程和航空航天等领域都有重要意义。
大学物理《弦振动》实验报告
( 实验报告)姓名:____________________单位:____________________日期:____________________编号:YB-BH-054153大学物理《弦振动》实验报告Experimental report of string vibration in College Physics大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)一.实验目的1.观察弦上形成的驻波2.学习用双踪示波器观察弦振动的波形3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系二.实验仪器XY弦音计、双踪示波器、水平尺三实验原理当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。
理论和实验证明,波在弦上传播的速度可由下式表示:=ρ1------------------------------------------------------- ①另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:v=λγ-------------------------------------------------------- ②将②代入①中得γ=λ1-------------------------------------------------------③ρ1又有L=n*λ/2 或λ=2*L/n代入③得γn=2L------------------------------------------------------ ④ρ1四实验内容和步骤1.研究γ和n的关系①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
弦振动研究实验报告
弦振动研究实验报告
实验目的:
研究弦的振动特性,分析弦的共振频率和振动模式,并确定弦的线密度。
实验装置:
弦、固定夹、串联铅垂测力计、固定器、震动源。
实验步骤:
1. 将弦固定在两个固定夹上,保持弦处于水平状态。
2. 使用串联铅垂测力计将弦与固定器连接,并调整垂直距离,使测力计可以测量到弦受力情况。
3. 在弦的中央位置敲击一下,产生振动。
4. 通过测量弦的共振频率和振幅来确定弦的共振特性。
5. 以不同的固定夹距离和弦长度进行多组实验,记录振动模式和测力计示数。
实验结果:
1. 测量了弦的共振频率和振幅,绘制了共振曲线。
2. 观察到了不同的振动模式,如基频、一次谐波、二次谐波等。
3. 记录了不同固定夹距离和弦长度下的测力计示数,进而计算得到弦的线密度。
实验讨论与分析:
1. 通过对弦的振动特性的研究,我们可以了解到弦的振动频率是与其长度和线密度有关的。
当固定夹距离一定时,弦长度越短,共振频率越高;线密度越大,共振频率越低。
2. 在实验中观察到了不同的振动模式,这与弦的基频和谐波有关。
基频是最低的振动模式,其他谐波是基频的整数倍。
3. 实验中测量了弦受力情况,通过示数可以计算弦的线密度,从而进一步研究弦的物理特性。
实验结论:
通过实验研究,我们得出了弦的振动特性与其长度和线密度有关的结论,并成功测量了弦的线密度。
这些结果对于理解和应用弦的振动现象具有重要意义。
弦振动的研究 实验报告
弦振动的研究实验报告弦振动的研究实验报告引言:弦振动是物理学中一个重要的研究领域,它涉及到声学、乐器制作、声波传播等多个方面。
本实验旨在通过对弦振动的实验研究,探索弦振动的特性和规律,为相关领域的研究提供实验数据和理论依据。
实验目的:1. 研究弦振动的基本特性,如频率、振幅等。
2. 探究弦振动与弦长、张力、质量等因素之间的关系。
3. 分析弦振动的波动性质,如波速、波长等。
实验装置:1. 弦:选用具有一定弹性的细绳或金属丝作为实验弦。
2. 弦轴:用于固定实验弦并调整张力的装置。
3. 振动源:通过手指或其他装置在弦上施加激励。
4. 测量仪器:包括频率计、示波器等,用于测量和记录实验数据。
实验步骤:1. 准备工作:调整弦轴的高度和张力,确保弦的平稳和稳定。
2. 施加激励:用手指或其他装置在弦上施加激励,使其振动起来。
3. 测量频率:使用频率计测量弦振动的频率,并记录数据。
4. 改变弦长:调整弦轴的位置,改变弦的长度,并重复步骤2和步骤3,记录数据。
5. 改变张力:调整弦轴的张力,改变弦的张力,并重复步骤2和步骤3,记录数据。
6. 改变质量:在弦上加挂一定质量的物体,改变弦的质量,并重复步骤2和步骤3,记录数据。
实验结果:通过实验测量和记录,我们得到了一系列关于弦振动的数据。
首先,我们观察到弦振动的频率与弦长成反比关系,即弦长越短,频率越高。
这与弦振动的基本特性相符。
其次,我们发现弦振动的频率与张力成正比关系,即张力越大,频率越高。
这也符合弦振动的基本规律。
最后,我们注意到弦振动的频率与质量无直接关系,即质量的增加并不会显著影响弦振动的频率。
讨论与分析:根据实验结果,我们可以得出以下结论:1. 弦振动的频率与弦长成反比关系,即频率和弦长满足频率公式 f = v / λ,其中 v 为波速,λ 为波长。
由于波速是一定的,所以当弦长减小时,波长必然增加,从而导致频率的增加。
2. 弦振动的频率与张力成正比关系,即频率和张力满足频率公式f = (1 / 2π) * √(T / μ),其中 T 为张力,μ 为线密度。
弦振动实验 报告
实 验 报 告班级 姓名 学号日期 室温 气压 成绩 教师 实验名称 弦 振 动 研 究【实验目的】1. 了解波在弦上的传播及驻波形成的条件2. 测量不同弦长和不同张力情况下的共振频率3. 测量弦线的线密度4. 测量弦振动时波的传播速度【实验仪器】弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台【实验原理】驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。
当入射波沿着拉紧的弦传播,波动方程为()λπx ft A y -=2cos 当波到达端点时会反射回来,波动方程为 ()λπx ft A y +=2cos式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为ft xA y y y πλπ2cos 2cos 221=+=这就是驻波的波函数,称为驻波方程。
式中,λπxA 2cos 2是各点的振幅 ,它只与x有关,即各点的振幅随着其与原点的距离x 的不同而异。
上式表明,当形成驻波时,弦线上的各点作振幅为λπxA 2cos 2、频率皆为f 的简谐振动。
令02cos 2=λπxA ,可得波节的位置坐标为()412λ+±=k x 2,1,0=k令12cos 2=λπxA ,可得波腹的位置坐标为2λkx ±= 2,1,0=k相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。
在本试验中,由于弦的两端是固定的,故两端点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。
既有 2λn L =或 nL 2=λ 2,1,0=n 式中,L 为弦长;λ为驻波波长;n 为半波数(波腹数)。
另外,根据波动离乱,假设弦柔性很好,波在弦上的传播速度v 取决于线密度和弦的张力T ,其关系式为μTv =又根据波速、频率与波长的普遍关系式λf v =,可得μλTf v ==可得横波传播速度nL fv 2= 如果已知张力和频率,由式可得线密度22⎪⎪⎭⎫ ⎝⎛=Lfn T μ 如果已知线密度和频率,可得张力22⎪⎭⎫ ⎝⎛=n Lf T μ如果已知线密度和张力,由式可得频率μT L n f 2=【实验内容】一、 实验前准备 1. 选择一条弦,将弦的带有铜圆柱的一端固定在张力杆的U 型槽中,把带孔的一端套到调整螺旋杆上圆柱螺母上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦线上的振动研究实验
一、实验目的
1.了解弦振动时驻波形成的过程;
2.利用弦振动形成的驻波研究振动的基频与张力、弦长的关系,测量在弦线上
横波的传播速度。
二、实验内容
1. 调整实验装置,观察弦线上形成的驻波
(1) 将漆包线两端去漆,使其能导电。
漆包线一端接到黑色电极上,并穿过板上小孔绕到滑轮上,另一端接到红色的电极上,同时将砝码系上。
磁铁置于弦线下适当位置,并用支架在刻度尺上支撑住漆包线。
将电路接入电源,当交变电流通过漆包线时,它周围的磁场与磁铁的相互作用使得漆包线产生波动.调节信号发生器的输出频率和幅度,使弦线上产生驻波。
(2) 观察弦线上的驻波,将弦长L设置一定长度,在砝码钩上增减砝码,仔细调节信号频率和信号强度,使弦线上产生数个波形清晰、稳定的驻波。
2. 测量弦线上横波的传播速度v
(1) 取弦线上的张力F为一定值(例如此时砝码质量为20g)。
(2) 弦长L不变,张力F不变,调节弦线振动频率 ,要求取5个不同的信号频率值,测量驻波的波长λ 。
由驻波波长λ与弦线振动频率 ,计算弦线上横波的传播速度V。
3. 选作内容:研究驻波波长与弦线上张力的关系
(1) 将弦线振动频率 取一定值,改变砝码质量3次,微调弦线长度,使弦线产生稳定的驻波。
此时有L=n λ /2, 在每一固定张力F的作用下,重复5次测量n
个半波长的弦线长度L,根据公式计算弦线振动频率,与仪器的读数值比较,并取其中一组数据计算不确定度。
其中,弦线的线密度为0.31g/m。
(2) 用作图法研究驻波波长与弦线上张力的关系,自拟数据表格和选取坐标参量。
三、思考题
教材第一册125页1,3题。