初中有理数复习题大全

合集下载

中考数学复习《有理数》专项练习题-带有答案

中考数学复习《有理数》专项练习题-带有答案

中考数学复习《有理数》专项练习题-带有答案一、选择题1.下列语句正确的是()A.“+15米”表示向东走15米B.0℃表示没有温度C.−a可以表示正数D.0既是正数也是负数2.在数3 0 −π215110.2121121112 -8.24中,有理数有()A.1个B.2个C.3个D.4个3.2023年9月23日,第19届亚运会在杭州开幕.据报道,开幕式的跨媒体阅读播放量达到503000000次,将503000000用科学记数法表示为()A.503×106B.5.03×108C.5.03×109D.0.503×1094.下列各式中不成立的是().A.|−5|=5B.−|5|=−|−5|C.−|−5|=5D.−(−5)=55.如图,25的倒数在数轴上表示的点位于下列两个点之间()A.点E和点F B.点F和点G C.点G和点H D.点H和点I6.若|a﹣4|=|a|+|﹣4|,则a的值是()A.任意有理数B.任意一个非负数C.任意一个非正数D.任意一个负数7.如图,a,b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0B.ab<0C.b−a<0D.ab>08.计算(−2)2022+(−2)2023的结果是()A.−2B.2 C.−22022D.22023二、填空题9.绝对值小于5且大于2的整数是.10.−14−13(填<或>).11.在-3.6 -10% 227π 0 2这六个数中,非负有理数有个.12.若p,q互为倒数,m,n互为相反数,则pq-m-n-313= 13.若|m−2023|+(n+2024)2=0,则(m+n)2023=三、解答题14.计算题:(1)(−7)−(+5)+(−4)−(−10)(2)(12−59+712)×(−36)(3)16÷(−2)3−(−18)×(−4)(4)−13−(1−0.5)×13×[2−(−3)2]15.在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来﹣(﹣3) |﹣2| 0 (﹣1)3 -3.5 −85−2372.16.x和y互为相反数,m与n互为倒数,|a|=1,求a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013的值.17.某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:与标准质量的差/克−3−2−1.50 1 1.5 2.5袋数 1 4 3 4 3 2 3(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?18.四个有理数A、B、C、D,其中,与6相加得0的数是A,C是13的倒数.(1)如果A+C=2B,求B的值:(2)如果A×B= D,求D的值:(3)计算:(A-D)×C÷B.参考答案1.C2.D3.B4.C5.C6.C7.B8.C9.±3,±410.>11.312.−21313.-114.(1)解:(-7)-(+5)+(-4)-(-10)=(-7)+(-5)+(-4)+10=-6(2)解:(12−59+712)×(−36)= 12×(−36)−59×(−36)+712×(−36)=-18+20-21=-19(3)解:16÷(−2)3−(−18 )×(−4)=16÷(-8)- 12=(-2)- 12=-2 12(4)解:−13−(1−0.5)×13×[2−(−3)2]=-1- 12×13×(-7)=-1+ 76= 1615.解:∵−(−3)=3|−2|=2(−1)3=−1;∴在数轴上表示,如图所示:按从小到大的顺序用“<”把这些数连接起来为:−3.5<−85<(−1)3<−23<0<|−2|<−(−3)<72.16.解:∵x与y互为相反数,m与n互为倒数,|a|=1∴x+y=0,mn=1,a=±1∴a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013=a2﹣(0+1)a+02012+(﹣1)2013=a2﹣a﹣1.当a=1时,a2﹣a﹣1=12﹣1﹣1=﹣1.当a=﹣1时,a2﹣a﹣1=(﹣1)2﹣(﹣1)﹣1=1+1﹣1=1.∴a2﹣(x+y+mn)a+(x+y)2012+(﹣mn)2013的值为1或﹣1.17.(1)解:(−3)×1+(−2)×4+(−1.5)×3+0×4+1×3+1.5×2+2.5×3 =−3−8−4.5+0+3+3+7.5=−2(克)即这批样品的总质量比标准总质量少,少2克;(2)解:200×20−2= 4000−2= 3998(克)3998÷20=199.9(克)即这批样品平均每袋的质量是199.9克.18.(1)解:∵与6相加得0的数是A, C是13的倒数.∴A=-6,C=3∵A+C=2B∴-6+3= 2B∴B=−32(2)解:∵A ×B=D ,且B=−32,A=-6 ∴D=-6×(−32)=9(3)解:∵A=-6,B=−32,C=3, D=9∴(A-D) ×C+B= (-6-9)×3÷(−32)=-15×3×(−23)=30。

初中数学专项练习《有理数》50道计算题包含答案

初中数学专项练习《有理数》50道计算题包含答案

初中数学专项练习《有理数》50道计算题包含答案一、解答题(共50题)1、定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,(1)a2是a1的差倒数,求a2;(2)a3是a2的差倒数,则a3;(3)a4是a3的差倒数,…依此类推an+1是an的差倒数,直接写出a2015.2、如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B 点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?3、一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1ºC,乙此时在山脚测得温度是5ºC,已知该地区每增加100米,气温大约降低0.6ºC,这个山峰的高度大约是多少米?4、设,,当为何值时,与互为相反数?5、把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来.-3.5,0,2,-0.5,-2 ,0.5.6、画出数轴,在数轴上标出表示下列各数的点,并按从大到小的顺序用“>”号把这些数连接起来:-|-2.5|,0,-(-),+(-1)2015,7、把下列各数在数轴上表示出来,3.5, -3.5, 0, 2, -0.5, -2, 0.5. 并按从小到大的顺序用“<”连接起来.8、春天到了,为了试验某种杀菌剂的效果,实验室进行了实验,研究发现房间空气中每立方米含个病菌,已知1毫升杀菌剂可以杀死个这种病菌,问要将长5米、宽4米、高3米的房间内的病菌全部杀死,需多少毫升杀菌剂?9、在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来:10、把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.﹣5,﹣|﹣3|,﹣,0,3 ,﹣(﹣1)11、把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来:-2.5 ,0 ,+3.5 ,-12、已知与互为相反数,求的绝对值.13、在数轴上表示下列各数,并用“>”连接起来.,﹣|﹣4|,,0,﹣1,﹣(﹣1)14、画出数轴并在数轴上表示出下面的有理数,然后把它们用“<”连接起来.-2,|-1.5|,0,-(-3),,(-1)201915、把下列各数填入相应的括号内:2.5,-10%,22,0,-|- |,-20,+9.78,-0. ,-(- )整数:{……}负分数:{……}非正数:{……}非负整数:{……}16、画出数轴并在数轴上表示出下面的有理数,然后把它们用“<”连接起来. -2,|-1.5|,0,-(-3),,(-1)201917、在数轴上表示下列各数:0,-3, 2,-, 5.并将上述各数的绝对值用“<”号连接起来.18、在数轴上把下列各数表示出来,并用“ ”连接各数.+5,-3.5,,,4,019、有理数m所表示的点与-1所表示的点的距离为3个单位,a、b互为相反数且都不为0,c、d互为倒数,求的值.20、某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质为450克,则抽样检测的总质量是多少?与标准质量的差值(单-5 -2 0 1 3 6 位:g)袋数 1 4 3 4 5 3 21、用4个长7厘米、宽2厘米的长方形拼成一个大长方形(如图,左下角和右上角重叠),大长方形的周长是多少厘米?图中阴影部分的面积是多少平方厘米?22、借助你的计算器分别得出,,,的循环节.23、据测算,我国每天因土地沙漠化造成的经济损失为1.5亿元,若一年按365天计算,我国一年因土地沙漠化造成的经济损失为多少元(用科学记数法表示,且保留两个有效数字)?24、将下列各数在如图的数轴上表示出来,然后用“<”连接起来.,0,|﹣4|,0.5,﹣(﹣3).25、把数,表示在数轴上,并用<号把这些数连接起来.26、已知x,y为实数,且满足,求的值.27、若|a|=2, b=-3,c是最大的负整数,求a+b-c的值。

完整版)有理数专题训练

完整版)有理数专题训练

完整版)有理数专题训练专题一有理数的概念及其应用例1:已知a,b互为相反数,c,d互为倒数,x的绝对值是2,求(a+b+c*d)*m-cd的值。

解:根据题意可得a=-b,c=1/d,|x|=2,代入原式得:a+b+c*d)*m-cd=(0+c*d)*m-cd=cd*(m-1)练:已知a,b互为相反数,c,d互为倒数,|x|=3,求代数式a+b-cdx+x/3的值。

解:根据题意可得a=-b,c=1/d,|x|=3,代入原式得:a+b-cdx+x/3=-2b-cd*x+x/3=-2b-cd*3+x/3=-2b-3c+x/3巩固:已知a,b互为相反数,c,d互为倒数,x的平方等于4,试求x^2-cd*x+(a+b)*2010-cd*2009的值。

解:根据题意可得a=-b,c=1/d,x^2=4,代入原式得:x^2-cd*x+(a+b)*2010-cd*2009=4-cd*x-2b+2010c-2009cd=2010c-2b-3cd专题二非负数的性质例2:若x+1+(y-2)^2=0,求xy的值。

解:由非负数的性质可知,(y-2)^2>=0,所以x+1<=0,即x<=-1.又因为x+1+(y-2)^2=0,所以(y-2)^2=-(x+1)<=0,所以y=2.因此,xy=-2.练:已知有理数满足a-1+b+3+3c-1=0,求(a*b*c)^(1/7)*2011的值。

解:整理得a+b+3c=1,代入原式得:a*b*c)^(1/7)*2011=(a*b*c)^(1/7)*(a+b+3c)^2011=(a*b*c)^(1/7)巩固:若x-1与(y+2)^2互为相反数,求x^2015+y^3的值。

解:由非负数的性质可知,(y+2)^2>=0,所以x-1<=0,即x<=1.又因为x-1=-(y+2)^2,所以(y+2)^2=1-x<=2,所以y<=sqrt(2)-2.因此,x^2015+y^3<=1+(sqrt(2)-2)^3,具体值需要进一步计算。

第一章《有理数》全章 练习题 (含答案)

第一章《有理数》全章 练习题 (含答案)

第一章《有理数》全章 练习题 (含答案)一、选择题1. 2024的倒数是( )A .2024B .2024−C .12024−D .120242. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为( )A .84410⨯B .84.410⨯C .94.410⨯D .104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是( )A .0a >B .0ab >C .0a b −>D .0a b +<4.下列几种说法中,不正确的有( )个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A .4B .3C .2D .15. 若|m ﹣2|+(n +3)2=0,则m ﹣n 的值为( )A .﹣5B .﹣1C .1D .56. 如图是嘉淇同学的练习题,他最后得分是( )A .20分B .15分C .10分D .5分6. 如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b −>;④||||0a b −<,⑤220a b −<.其中正确的有( )A .1个B .2个C .3个D .4个8.如图是一个数值转换机, 若输入x 的值是1−, 则输出的结果y 为( )A .7B .8C .10D .129. 观察1211−=,2213−=,3217−=,42115−=,52131−=,⋯,归纳各计算结果中的个位数字的规律,猜测202221−的个位数字是( )A .1B .3C .7D .510. 计算 1111111111131422363524⎡⎤⎛⎫⎛⎫−+÷÷−⨯+−÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为( ) A .2514 B .2514− C .114 D .114− 二、填空题(本大题共6小题)11. -56____ -67(填>,<,=) 12. 如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13. 数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14. 若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+−+= ⎪⎝⎭ . 15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16. 已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 18 .若x 是不等于1的实数,我们把11x−称为x 的差倒数, 如2的差倒数是1112=−−,-1的差倒数为()11112=−−, 现已知113x =−,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x = .三、解答题19. 把下列各数填在相应的括号里:﹣8,0.275,227 ,0,﹣1.04,﹣(﹣3),﹣13,|﹣2| 正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.20 画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5−,0,-2,-(-4),-3.5,321. (1)(-534)+(+237)+(-114)-(-47) (2)()155********⎛⎫−+−⨯− ⎪⎝⎭ (3)-14+14×[2×(-6)-(-4)2] (4)(-2)3×(-34)+30÷(-5)-│-3│22. 已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值. .23. 已知x 是最小正整数,y ,z 是有理数,且有| y ﹣2|+|z+3|=0,计算:(1)求x ,y ,z 的值.(2)求3x ﹢y ﹣z 的值.24. 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负, 行车依先后次序记录如下:(单位:km )+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为 ; (2)如果点P 到点M 、点N 的距离相等,那么x 的值是: ; (3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参 考 解 答:一、选择题1.D . 2 .C 3.D 4.C 5.D 6.B 7.D 8.A . 9 .B . 10..C二、填空题11. > 12 .-3分 13.1或-7 14.0 15.-2或2 16 .m <﹣n <n <﹣m 17.9900 18 .4三、解答题19. 解:正数集合{ 0.275,227,()3−−,2− …};负整数集合{8−…};分数集合{ 0.275, 227, 1.04−,13− …};负数集合{8−, 1.04−,13− …}.20 解:()2.5 2.5,44,−=−−=在数轴上表示各数如下:∴ 3.5−<2−<0< 2.5−<3<()4−−21. 解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫−+−++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 734=−+=−(2)()155********⎛⎫−+−⨯− ⎪⎝⎭ ()()()()15573636363629612=⨯−−⨯−+⨯−−⨯− 182030217=−+−+=−(3)-14+14×[2×(-6)-(-4)2] ()1112164=−+⨯−− ()178=−+−=−(4)(-2)3×(-34)+30÷(-5)-│-3│ ()38634⎛⎫=−⨯−+−− ⎪⎝⎭6633=−−=−22. 解:a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯−−+⨯=++=或 原式=()()2201314130⨯−−−+⨯=−++=.23. 解:(1)∵x 是最小正整数∴x=1∵|y ﹣2|≥0,|z+3|≥0,且|y ﹣2|+|z+3|=0∴|y ﹣2|=0,|z+3|=0∴y ﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x ﹢y ﹣z=3×1+2-(-3)=3+2+3=8.24. 解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+−⨯=(元), 答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。

【绝对经典】初一数学有理数30题含详细答案

【绝对经典】初一数学有理数30题含详细答案

【绝对经典】初一数学有理数30题含详细答案………………初一数学有理数30题一、单选题1.对于任何有理数 a ,下列各式中一定为负数的是(). A .(3)a --+B .a -C .1a -+D .1a --2.下列说法中,正确..的是()A .一个有理数不是正数就是负数 B .一个有理数不是整数就是分数 C .若|a |=|b |,则a 与b 互为相反数D .整数包括正整数和负整数3.超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg 的字样,从中任意拿出两袋,它们的质量最多相差-() A .0.2 kgB .0.3 kgC .0.4 kgD .50.4 kg4.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A 、B 两点之间的距离为10(A 在B 的左侧),且A 、B 两点经上述折叠后重合,则A 点表示的数是()A .-5B .-6C .-10D .-45.若a ≠0,b≠0,则代数式||||||a b aba b ab ++的取值共有() A .2个B .3个C .4个D .5个6.﹣2的绝对值是() A .2B .12C .12-D .2-7.-2019的相反数是() A .2019B .-2019C .12019D .12019-8.有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为()①a ﹣b >0 ②ab <0 ③1a >1b④a 2>b 2.A .1B .2C .3D .49.下列说法正确的是()A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数 D .最小的正整数是110.下列结论成立的是( ) A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a≤0D .若|a|>|b|,则a >b .11.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示() A .支出20元B .收入20元C .支出80元D .收入80元12.已知三角形的三边长分别为2,a -1,4,则化简|a -3|+|a -7|的结果为()A .2a -10B .10-2aC .4D .-413.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是()A .a –2cB .–aC .aD .2b –a14.如果a 与1互为相反数,则|a+2|等于() A .2B .-2C .1D .-115.下列说法正确的是()A .一个数前面加上“-”号,这个数就是负数B .零既是正数也是负数C .若a 是正数,则a -不一定是负数D .零既不是正数也不是负数16.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .017.式子|x ﹣1|-3取最小值时,x 等于() A .1 B .2C .3D .4二、填空题18.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =_____. 19.已知a 、b 满足(a ﹣1)2,则a+b=_____.20.若|x|=4,|y|=5,则x -y 的值为____________.21.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是_____.着数轴无滑动地逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是_______.23.式子|m﹣3|+6的值随着m的变化而变化,当m= 时,|m﹣3|+6有最小值,最小值是.24.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.三、解答题25.已知420x y-++=,求2x y-的值.26.把下列各数填在相应的集合里:24,3.5,0,,10%,,2019 2.03003000333π---,…正分数集合:{_____________________…}负有理数集合:{____________________…}无理数集合:{_____________________…}非负整数集合:{____________________…}27.已知|5﹣2x|+(5﹣y)2=0,x,y分别是方程ax﹣1=0和2y﹣b+1=0的解,求代数式(5a﹣4)2011(b﹣1102)2012的值.28.如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C,(1)若点A表示的数为0,求点B、点C表示的数;(2)若点C表示的数为5,求点B、点A表示的数;(3)如果点A、C表示的数互为相反数,求点B表示的数.29.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5 (1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____;(2)数轴上表示x和﹣2的两点A和B之间的距离是_____;如果|AB|=4,则x为_____;(3)当代数式|x+1|+|x﹣2|+|x﹣3|取最小值时,x的值为_____.30.a、b、c三个数在数轴上位置如图所示,且|a|=|b|(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.参考答案1.D【解析】【分析】负数小于0,可将各项化简,然后再进行判断.【详解】解:A、?(?3+a)=3?a,当a≤3时,原式不是负数,故A错误;B、?a,当a≤0时,原式不是负数,故B错误;C、?|a+1|≤0,当a=?1时,原式不是负数,故C错误;D、∵?|a|≤0,∴?|a|?1≤?1<0,原式一定是负数,故选:D.点评:【点睛】本题考查了负数的定义和绝对值化简,掌握负数的定义以及绝对值的性质是解答此题的关键.2.B【解析】【分析】根据有理数的分类逐一作出判断即可.【详解】解:A.0既不是正数也不是负数,故A错误;B.整数和分数统称为有理数;故B正确;C.若|a|=|b|,则a=b或a与b互为相反数.故C 错误;D.整数包括正整数、0和负整数,故D错误.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.3.C【解析】【分析】(25±0.2)的字样表明质量最大为25.2,最小为24.8,二者之差为0.4.【详解】解:根据题意得:标有质量为(25±0.2)的字样,∴最大为25+0.2=25.2,最小为25-0.2=24.8,二者之间差0.4.故选:C.【点睛】主要考查了正负数的概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.B【解析】【分析】根据题中画出数轴,根据数轴上点的位置判断即可得到结果.【详解】解:如图所示,根据折叠纸面,使数轴上表示2的点与表示-4的点重合,得到以-1对应的点对折,∵数轴上A、B两点之间的距离为10(A在B的左侧),且A、B 两点经上述折叠后重合,∴A表示的数为-6,B表示的数为4.故选:B.【点睛】此题考查了数轴,画出相应的图形是解本题的关键.5.A【解析】【分析】分①a>0,b>0,②a>0,b<0,③a<0,b<0,④a<0,b >0,4种情况分别讨论即可得.【详解】由分析知:可分4种情况:①a>0,b>0,此时ab>0,所以a b aba b ab++=1+1+1=3;②a>0,b<0,此时ab<0,所以a b aba b ab++=1﹣1﹣1=﹣1;③a<0,b<0,此时ab>0,所以a b aba b ab++=﹣1﹣1+1=﹣1;④a<0,b>0,此时ab<0,所以a b aba b ab++=﹣1+1﹣1=﹣1;综合①②③④可知:代数式a b aba b ab++的值为3或﹣1,【点睛】本题考查了绝对值的运用,熟知绝对值都为非负数并且运用分类讨论思想是解题的关键. 6.A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.7.A【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:-2019的相反数是2019.故选A.【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.8.C【解析】由图可知:b<0<a,|b|>|a|,∴a﹣b>0,ab<0,1a>1b,∵|b|>|a|,∴a2<b2,所以①、②、③成立.9.D【解析】试题分析:分别利用绝对值以及有理数和相反数的定义分析得出即可.A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D、最小的正整数是1,正确考点:绝对值;有理数;相反数10.B【解析】【分析】若|a|=a,则a为正数或0;若|a|=|b|,则a与b互为相反数或相等;若|a|>a,则a为正数;若|a|>|b|,若a,b均为正数,则a>b;若a,b均为负数,则a<b;若a,b为一正一负或有一个为0,则a,b的大小不能确定.【详解】A.若|a|=a,则a为正数或0,故结论不成立;B.若|a|=|b|,则a与b互为相反数或相等,故结论成立;C.若|a|>a,则a为负数,故结论不成立;D.若|a|>|b|,若a,b均为负数,则a<b,故结论不成立.故选B.【点睛】本题考查了的知识点有:正、负数的意义、绝对值的意义,有理数的大小比较等.11.C【解析】试题分析:“+”表示收入,“—”表示支出,则—80元表示支出80元.考点:相反意义的量12.C【解析】试题分析:已知三角形的三边长分别为2,a-1,4,则根据三角形的三边关系:可得:a-1>4-2,a-1<2+4即a>3,a<7.所以a-3>0,a-7<0. |a-3|+|a-7|=a-3+(7-a)=4.故选C点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边。

初中数学有理数复习习题训练含答案

初中数学有理数复习习题训练含答案

有理数复习习题训练一.选择题(共30小题)1.a,b,c的大小关系如图所示,则﹣+的值是()A.﹣3B.﹣1C.1D.32.在有理数,﹣(﹣3),﹣|﹣4|,0,﹣22,+(﹣1)中,正整数一共有多少个?()A.1个B.2个C.3个D.4个3.如果一个有理数的绝对值是6,那么这个数一定是()A.6B.﹣6C.﹣6或6D.无法确定4.﹣27的绝对值是()A.﹣B.C.27D.﹣275.2022年冬奥运即将在北京举行,北京也即将成为迄今为止唯一个既举办过夏季奥运会,又举办过冬季奥运会的城市,据了解北京冬奥会的预算规模为15.6亿美元,政府补贴6%(9400万美元).其中1560000000用科学记数法表示为()A.1.56×109B.1.56×108C.15.6×108D.0.156×1010 6.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.92627.已知a、b两数在数轴上对应的点如图所示,下列结论正确的共有()①<0,②ab>0,③a﹣b<0,④a+b>0,⑤﹣a<﹣b;⑥a<|b|A.2个B.3个C.4个D.5个8.下列说法:①﹣a是负数;②﹣2的倒数是;③﹣(﹣3)的相反数是﹣3;④绝对值等于2的数是2.其中正确的是()A.1个B.2个C.3个D.4个9.现定义一种新的运算:a*b=(a+b)2÷(b﹣a),例如:1*2=(1+2)2÷(2﹣1)=32÷1=9,请你按以上方法计算(﹣2)*1=()A.﹣1B.﹣2C.D.10.下列计算正确的是()A.(﹣2)×(﹣3)=﹣6B.﹣32=9C.﹣2﹣(﹣2)=0D.﹣1+(﹣1)=011.受新型冠状病毒的影响,在2020年3月14日起,我市417所高三初三学校,16.6万学生先后分住校类、部分住校类、走读类分批错时错峰返校,于3月16日正式开学.其中16.6万用科学记数法表示正确的是()A.1.66×105B.16.6×105C.1.66×106D.1.66×10712.庆祝新中国成立70周年,国庆假期期间,各旅游景区节庆氛围浓厚,某景区同步设置的“我为祖国点赞”装置共收集约6390000个“赞”,这个数字用科学记数法可表示为()A.6.39×106B.0.639×106C.0.639×105D.6.39×10513.已知a、b、c都是不等于0的数,求+++的所有可能的值有()个.A.1B.2C.3D.414.如图,在不完整的数轴上有A、B两点,当原点是线段AB的中点时,下列说法错误的是()A.点A、B表示的两个数互为相反数B.点A、B表示的两个数绝对值相等C.点A、B表示的两个数的商为﹣1D.点A、B表示的两个数互为负倒数15.12月24日,第八次中日韩领导人会议在四川成都举行,数据表明2018年三国间贸易总额超过7200亿美元,请将数据7200亿用科学记数法表示为()A.7.2×1010B.72×108C.72×109D.7.2×101116.数轴上的点A表示的数可以是()A.﹣1.5B.C.0.5D.1.517.若a,b互为相反数,则下列等式不一定成立的是()A.=﹣1B.a=﹣b C.b=﹣a D.a+b=018.点B,C在同一条数轴上,其中点B表示的数为﹣2,若BC=4,则C点在数轴上对应点是()A.1或﹣5B.2或﹣6C.0或﹣4D.419.若x的相反数是﹣3,|y|=5,则x+y的值为()A.﹣8B.2C.﹣8或2D.8或﹣220.下列数中,最小的正数的是()A.3B.﹣2C.0D.221.某种食品保存的温度是﹣2±2℃,以下几个温度中,适合储存这种食品的是()A.1℃B.﹣8℃C.4℃D.﹣1℃22.计算(﹣4)2等于()A.﹣4B.8C.﹣16D.1623.冰箱冷藏室的温度零上5℃记作+5℃,保鲜室的温度零下1℃记作()A.+6℃B.﹣1℃C.﹣11℃D.﹣6℃24.已知a,b两数在数轴上对应的点如图所示,在下列结论中,①b>a;②a+b>0;③a ﹣b>0;④ab<0;⑤;正确的是()A.①②⑤B.③④C.③⑤D.②④25.地球离太阳约有一亿五千万千米,一亿五千万用科学记数法表示是()A.1.5×108B.1.5×107C.15×107D.0.15×10926.根据规划:北京大兴国际机场将实现东南亚、南亚等地区的航线网络搭建,布局欧洲、北美、东北亚、中东等重要国际枢纽航点,成为大型国际航空枢纽,2022年客流量达到4500万人次.4500万用科学记数法表示为()A.4.5×107B.4.5×108C.45×107D.0.45×10827.下列式子中,正确的算式是()A.(﹣1)2001=﹣2001B.2×(﹣3)2=36C.D.28.在下列说法中,其中正确的个数是()(1)在有理数中,没有最小的正整数;(2)立方等于它本身的数只有两个;(3)有理数a的倒数是;(4)若a=b,则|a|=|b|;A.1个B.2个C.3个D.4个29.如表,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,若前m个格子中所填整数之和是2020,则m的值为()1•〇☆12﹣3…A.202B.303C.606D.90930.如图,在数轴上点M表示的数可能是()A.﹣2.5B.2.5C.﹣1.4D.1.4二.填空题(共20小题)31.某企业年产值1170000万元,把1170000这个数据用科学记数法表示为______.32.﹣2020的倒数是______33.已知|x|=3,|y|=7,且x+y>0,则x﹣y的值等于______.34.定义新运算:a&b=a(1﹣b),其中等号右边是常规的乘法和减法运算,例如:(﹣1)&1=(﹣1)×(1﹣1)=0.(1)计算:(1+2)&2=______.(2)若a&a+b&b=2ab.则a与b的关系:______.35.若a和b互为倒数,则ab=______.36.在数轴上,表示数2+2a的点M与表示数4的点N分别位于原点两侧且到原点的距离相等,则a的值为______.37.某地马拉松赛事共吸引了22000名中外运动爱好者参加,数22000用科学记数法表示为______.38.A为数轴上表示2的点,将点A沿数轴向左平移5个单位到点B,则点B所表示的数的绝对值为______.39.如果定义新运算:a※b=(a≠b),那么(1※2)※3的值为______.40.在0,1,,﹣10四个数中,最小的数是______.41.如图是小琴同学的一张测试卷,他的得分应是______.42.若a是最大的负整数,b是绝对值最小的数,c与a2互为相反数,则(a+b)3﹣c2006=______.43.已知x2=4,|y|=5,xy<0,那么x3﹣y2=______.44.如果收入100元记作+100元,那么支出120元记作______元.45.如图是一个3×3的正方形格子,要求横、竖、对角线上的三个数之和相等,请根据图中提供的信息求出m等于______.46.已知2<x<3,化简|2﹣x|+|3﹣x|=______.47.如图所示,数轴上点A,点B,点C分别表示有理数a,b,c,O为原点,化简:|b|+|a ﹣c|﹣|b﹣c|=______.48.规定一种新的运算:A★B=A×B﹣A÷B,如4★2=4×2﹣4÷2=6,则6★(﹣2)的值为______.49.定义a※b=a3﹣b2,则(2※3)※(﹣1)=______.50.有理数a,b在数轴上的位置如图所示,请化简:|a|+|b|+|a+b|=______.有理数复习习题训练参考答案与试题解析一.选择题(共30小题)1.解:由数轴可得:c<a<0<b∴a﹣b<0,b﹣c>0,c﹣a<0∴﹣+=﹣+=﹣1﹣1﹣1=﹣3故选:A.2.解:﹣(﹣3)=3,﹣|﹣4|=﹣4,0,﹣22=﹣4,+(﹣1)=﹣1,在有理数,﹣(﹣3),﹣|﹣4|,0,﹣22,+(﹣1)中,正整数有﹣(﹣3),共有1个,故选:A.3.解:如果一个有理数的绝对值是6,那么这个数一定是﹣6或6.故选:C.4.解:﹣27的绝对值是27.故选:C.5.解:1560000000用科学记数法表示为1.56×109.故选:A.6.解:由(2n+1)3﹣(2n﹣1)3=24n2+2≤2019,可得n2≤,∵和谐数为正整数,∴0≤n≤9,则在不超过2019的正整数中,所有的“和谐数”之和为13﹣(﹣1)3+33﹣13+53﹣33+…+193﹣173=193﹣(﹣1)3=6860.故选:B.7.解:由题意可知b<0<a,且|b|>|a|,∴,故①正确;ab<0,故②错误;a﹣b>0,故③错误;a+b<0,故④错误;﹣a<﹣b,故⑤正确;a<|b|,故⑥正确.∴正确的有①⑤⑥共3个.故选:B.8.解:①﹣a不一定是负数,错误;②﹣2的倒数是,正确;③﹣(﹣3)的相反数是﹣3,正确;④绝对值等于2的数是±2,错误;故选:B.9.解:根据题中的新定义得:原式=(﹣2+1)2÷[1﹣(﹣2)]=1÷3=,故选:C.10.解:∵(﹣2)×(﹣3)=6,故选项A错误;∵﹣32=﹣9,故选项B错误;∵﹣2﹣(﹣2)=﹣2+2=0,故选项C正确;∵﹣1+(﹣1)=﹣2,故选项D错误;故选:C.11.解:16.6万=166000=1.66×105,故选:A.12.解:6390000=6.39×106,故选:A.13.解:①当a、b、c全为正数时,原式=1+1+1+1=4;②当a、b、c中两个正数、一个负数时,原式=1+1﹣1﹣1=0;③当a、b、c中一个正数、两个负数时,原式=1﹣1﹣1+1=0;④当a、b、c全为负数时,原式=﹣1﹣1﹣1﹣1=﹣4.综上所述,原式=4或﹣4或0.∴+++的所有可能的值有3个.故选:C.14.解:∵原点是线段AB的中点时,∴点A、B表示的两个数互为相反数,A不符合题意;∴点A、B表示的两个数绝对值相等,B不符合题意;∴点A、B表示的两个数的商为﹣1,C不符合题意;∴点A、B表示的两个数不一定为负倒数,D符合题意.故选:D.15.解:7200亿=720000000000=7.2×1011,故选:D.16.解:由图可知,A点小于0,A点到原点的距离比A点到﹣2的距离小,则A点可以是﹣,故选:B.17.解:∵a,b互为相反数,∴a+b=0,∴a=﹣b,b=﹣a,故选:A.18.解:当C点在B点右侧时,∵BC=4,∴C点表示的数是﹣2+4=2,当C点在B点的左侧时,∵BC=4,∴C点表示的数是﹣2﹣4=﹣6,故选:B.19.解:∵x的相反数是﹣3,∴x=3,∵|y|=5,∴y=±5,(1)x=3,y=5时,x+y=3+5=8.(2)x=3,y=﹣5时,x+y=3+(﹣5)=﹣2.故选:D.20.解:∵3>2>0>﹣2,∴所给的各数中,最小的正数的是2.故选:D.21.解:∵﹣2+2=0(℃),﹣2﹣2=﹣4(℃),∴适合储存这种食品的温度范围是:﹣4℃至0℃,只有选项D符合题意;A、B、C均不符合题意;故选:D.22.解:(﹣4)2=(﹣4)×(﹣4)=16,故选:D.23.解:冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下1℃记作,记作﹣1℃,故选:B.24.解:根据数轴上点的位置得:b<0<a,且|b|>|a|,∴b<a,a+b<0,a﹣b>0,ab<0,<0,故选:B.25.解:一亿五千万=150000000=1.5×108,故选:A.26.解:4500万=45000000=4.5×107,故选:A.27.解:A、(﹣1)2001=﹣1,故原题计算错误;B、2×(﹣3)2=2×9=18,故原题计算错误;C、﹣3÷×2=﹣3×2×2=﹣12,故原题计算错误;D、÷(﹣)=﹣1,故原题计算正确;故选:D.28.解:有理数中最小的正整数是1;立方等于本身的数有0,1,﹣1;有理数0没有倒数;∵a=b,∴|a|=|b|;故选:A.29.解:∵任意三个相邻格子中所填整数之和都相等,∴☆=1,•=12,〇=﹣3,∴表格中的数为1,12,﹣3,1,12,﹣3,……∴每相邻的三个数和是10,三个数是一组循环,∵2020÷10=202,∴202×3=606,故选:C.30.解:点M在﹣1和﹣2之间,故选:C.二.填空题(共20小题)31.解:把1170000这个数据用科学记数法表示为1.17×106.故答案为:1.17×106.32.解:﹣2020的倒数是:﹣.故答案为:﹣.33.解:∵|x|=3,|y|=7∴x=3或x=﹣3;y=7或y=﹣7,又∵x+y>0,∴当x=3,y=7时,x﹣y=3﹣7=﹣4;当x=﹣3,y=7时,x﹣y=﹣3﹣7=﹣10;故答案为:﹣4或﹣10.34.解:(1)∵a&b=a(1﹣b),∴(1+2)&2=3&2=3×(1﹣2)=3×(﹣1)=﹣3,故答案为:﹣3;(2)∵a&a+b&b=2ab,∴a(1﹣a)+b(1﹣b)=2ab,∴a﹣a2+b﹣b2=2ab,∴a+b=a2+2ab+b2∴a+b=(a+b)2,∴(a+b)2﹣(a+b)=0,∴(a+b)(a+b﹣1)=0,∴a+b=0或a+b﹣1=0,∴a=﹣b或a=1﹣b,故答案为:a=﹣b或a=1﹣b.35.解:∵a和b互为倒数,∴ab=1,故答案为:1.36.解:依题意有2+2a=﹣4,解得a=﹣3.故答案为:﹣3.37.解:22000=2.2×104,故答案为:2.2×104.38.解:∵A为数轴上表示2的点,∴B点表示的数为2﹣5=﹣3,∴点B所表示的数的绝对值3,故答案为3.39.解:∵a※b=(a≠b),∴(1※2)※3=※3=﹣3※3===0,故答案为:0.40.解:∵1>0>>﹣10,∴在0,1,,﹣10四个数中,最小的数是﹣10.故答案为:﹣10.41.解:①2的相反数是﹣2,此题正确;②倒数等于它本身的数是1和﹣1,此题正确;③﹣1的绝对值是1,此题正确;④﹣3的立方是﹣27,此题错误;则小琴同学的得分是25×3=75,故答案为:75.42.解:∵a是最大的负整数,b是绝对值最小的数,c与a2互为相反数,∴a=﹣1,b=0,c=﹣(﹣1)2=﹣1,∴(a+b)3﹣c2006=(﹣1+0)3﹣(﹣1)2006=(﹣1)﹣1=﹣2,故答案为:﹣2.43.解:根据题意得:x=±2,y=±5,∵xy<0,∴x=2,y=﹣5;x=﹣2,y=5,则x3﹣y2=﹣17或﹣33.故答案为:﹣17或﹣33.44.解:“正”和“负”相对,所以,如果收入100元记作+100元,那么支出120元记作﹣120元.故答案为:﹣12045.解:由题意知:2+6=m+1,解得m=7.故答案为7.46.解:∵2<x<3,∴|2﹣x|+|3﹣x|=x﹣2+3﹣x=1,故答案为1.47.解:由数轴可得:b>0,a﹣c<0,b﹣c>0,故:|b|+|a﹣c|﹣|b﹣c|=b+c﹣a﹣(b﹣c)=2c﹣a.故答案为:2c﹣a.48.解:根据题中的新定义得:原式=6×(﹣2)﹣6÷(﹣2)=﹣12+3=﹣9.故答案为:﹣949.解:根据已知的新定义得:a※b=a3﹣b2,则(2※3)※(﹣1)=(23﹣32)※(﹣1)=(8﹣9)※(﹣1)=(﹣1)※(﹣1)=(﹣1)3﹣(﹣1)2=﹣1﹣1=﹣2.故答案为:﹣2.50.解:由题意可得a<0<b,|a|>|b|,则a+b<0,故|a|+|b|+|a+b|=﹣a+b﹣a﹣b=﹣2a.故答案为:﹣2a.。

《有理数》单元试题+复习(8套)

《有理数》单元试题+复习(8套)

1七年级数学《有理数》单元复习题有理数有关概念复习✍一、知识小结:1. 学习了正数、负数的知识后,大的可以说成小,小的可以说成大。

支出可以说成 。

可以说成增加等。

如“弟弟比哥哥小3岁。

”可以说成是“弟弟比哥哥大 岁”。

又如,小明的爸爸做生意亏损5000元,可以说成是“小明的爸爸做生意盈利 元”。

2. 大于零的数叫 , 在正数前加一个“- ”号的数叫做 , 既不是正数,也不是负数.3. 和 统称为有理数. 有理数的分类为:特别注意:下面分类是否有错误?并请你指出错误的原因。

(1)0⎧⎪⎨⎪⎩正数有理数负数 (2)0⎧⎪⎨⎪⎩整数有理数分数 (3)⎧⎪⎨⎪⎩整数有理数小数分数 (4)⎧⎪⎨⎪⎩正有理数有理数负有理数4. 规定了 、 和 的直线叫数轴。

所有的有理数都可以用数轴上的 表示,但并不是所有的点都表示有理数.数轴上的原点表示数________,原点左边的数表示 ,原点及原点右边的数表示 .在原点右边,越靠近原点的点表示的数越 (填“大”或“小”),在原点左边,越靠近原点的点表示的数越 (填“大”或“小”)。

5. 有理数的大小比较:⑴在数轴上表示的两个数,右边的数总比左边的数 .⑵正数都 0,负数都 0,正数 一切负数; ⑶两个负数比较大小, .6. 数a 的相反数是 . 的相反数大于它本身, 的相反数小于它本身,的相反数等于它本身. 的倒数等于它本身.7. 一个数a 的绝对值是指数轴上表示数a 的点与 距离,记作 .①一个正数的绝对值是 ; 即:如果a >0,则|a | = ; ②一个负数的绝对值是 ; 如果a <0,则|a | = ;③0的绝对值是 . 如果a = 0,则|a | = .反之:若一个数的绝对值是它本身,则这个数是 ;若一个数的绝对值是它相反数,则这个数是 ;即若||a a =,则a 0;若||a a =-,则a 0.二、练习:8. 绝对值最小的有理数是 ,最大的负整数是 ,最小的正整数是 ;9. 在数轴上距离原点4个单位的数是 ,距离表示-1的点有3个单位的数是 ;10. 数轴上的点A 所对应的数是4,点B 所对应的数是-2,则A 、B 两点之间的距离是 .⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎧⎧⎫⎨⎪⎪⎩⎪⎪⎪⎪⎨⎬⎪⎪⎧⎪⎪⎨⎪⎪⎭⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数12()有限小数;()无限循环小数.211. 写出所有比-5大的非正整数为 , 比5小的非负整数 ,到原点的距离不大于3的所有整数有 .12. 绝对值等于3的数是 ;绝对值小于3的整数是 ;绝对值小于2011的所有整数的和等于 ;绝对值不大于100的所有整数的和等于 。

初中数学有理数知识点总复习附答案

初中数学有理数知识点总复习附答案

初中数学有理数知识点总复习附答案一、选择题1.下列说法中不正确的是( )A .-3 表示的点到原点的距离是|-3|B .一个有理数的绝对值一定是正数C .一个有理数的绝对值一定不是负数D .互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A 、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A 选项正确,不符合题意;B 、若这个有理数为0,则0的绝对值还是0,故B 选项错误,符合题意;C 、根据绝对值的意义,|a|的绝对值表示在数轴上表示a 的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C 选项正确,不符合题意;D 、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D 选项正确,不符合题意, 故选B .【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a 的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.2.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.3.-6的绝对值是()A.-6 B.6 C.- 16D.16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.4.﹣3的绝对值是()A.﹣3 B.3 C.-13D.13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 5.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.6.在有理数2,-1,0,-5中,最大的数是()A.2 B.C.0 D.【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.7.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位=,则a的值为().长度,得到点C.若OC OBA.3-B.2-C.1-D.2【答案】B【解析】【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【详解】解:由题意知:A点表示的数为a,B点表示的数为3, C点表示的数为a-1.因为CO=BO,所以|a-1| =3, 解得a=-2或4,∵a<0,∴a=-2.故选B.【点睛】本题主要考查了数轴和绝对值方程的解法,用含a的式子表示出点C,是解决本题的关键.8.如果x取任意实数,那么以下式子中一定表示正实数的是( )A.x B.C.D.|3x+2|【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x可以取全体实数,不符合题意;B.≥0, 不符合题意;C. >0, 符合题意;D. |3x+2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.9.在实数-3、0、5、3中,最小的实数是()A.-3 B.0 C.5 D.3【答案】A【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A.考点:有理数的大小比较.10.下面说法正确的是()A.1是最小的自然数;B.正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 2a .14.若320,a b -+=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】 根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .16.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.17.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010-【答案】D【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =,101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a =-,故选:D .【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.18.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a +【答案】B【解析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.20.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.。

有理数经典题型十题

有理数经典题型十题

有理数经典题型十题一、题型一:有理数的概念判断1. 下列数中:-2,0,(1)/(3),0.5,π,-0.3,-(5)/(2),其中有理数有()A. 6个B. 5个C. 4个D. 3个解析:有理数是整数(正整数、0、负整数)和分数的统称。

-2是整数,0是整数,(1)/(3)是分数,0.5=(1)/(2)是分数,-0.3 =-(3)/(10)是分数,-(5)/(2)是分数,而π是无理数。

所以有理数有-2,0,(1)/(3),0.5,-0.3,-(5)/(2)共6个,答案是A。

二、题型二:有理数的大小比较2. 比较-3,-(5)/(2),0,1的大小,并用“<”连接。

解析:先把-(5)/(2)=- 2.5。

负数小于0和正数,两个负数比较大小,绝对值大的反而小。

| - 3|=3,|-(5)/(2)| = 2.5,因为3>2.5,所以-3<-(5)/(2)。

所以-3<-(5)/(2)<0<1。

三、题型三:有理数的加法运算3. 计算(-2)+3+(-5)解析:begin{align}(-2)+3+(-5) =(-2)+3 - 5 =1-5 =-4end{align}四、题型四:有理数的减法运算4. 计算5 - (-3)解析:减去一个数等于加上这个数的相反数,所以5-(-3)=5 + 3=8。

五、题型五:有理数的乘法运算5. 计算(-2)×(-3)×(-4)解析:begin{align}(-2)×(-3)×(-4) =6×(-4) = - 24end{align}几个不为0的数相乘,负因数的个数为奇数时,积为负。

这里有3个因数,其中负因数有2个,负因数个数为偶数,先计算(-2)×(-3) = 6,再乘以-4得到-24。

六、题型六:有理数的除法运算6. 计算(-12)÷(-3)解析:两数相除,同号得正,异号得负,并把绝对值相除。

中考数学专题《有理数》复习试卷含答案解析

中考数学专题《有理数》复习试卷含答案解析

中考数学专题复习卷: 有理数一、选择题1.在-4,0,-1,3这四个数中,既不是正数又不是负数的数是( )A. -4B. 0C. -1D. 32.计算:的结果是()A. -3B. 0C. -1D. 33.下列各式不正确的是()A. |﹣2|=2B. ﹣2=﹣|﹣2|C. ﹣(﹣2)=|﹣2|D. ﹣|2|=|﹣2|4.零上13℃记作+13℃,零下2℃可记作()A. 2B. -2C. -2℃D. 2℃5.据有关部门统计,“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. 1.442×107B. 0.1442×107C. 1.442×108D. 0.1442×1086.比-1小2的数是()A. 3B. 1C. -2D. -37.-的相反数是()A. B. - C. D.8.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法(精确到十亿位),应表示为()A. 4.995×1010B. 4.995×1011C. 5.0×1010D. 4.9×10109.的绝对值是( ).A. B. C. D.10.-的倒数是()A. B. - C. D. -11.下列各数中,绝对值最小的数是()A.πB.C.-2D.-12.一个数的相反数小于它本身,这个数是()A. 正数B. 负数C. 非正数D. 非负数二、填空题13.计算: =________.14.根据如图所示的车票信息,车票的价格为________元.15.数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为________.16.计算:(﹣2)2=________.17.实数16 800 000用科学计数法表示为________.18.在有理数中,既不是正数也不是负数的数是________.19.计算:0-=________.20.已知,则a+b=________21.若△ABC的三边长分别为a,b,c,则|a﹣b﹣c|﹣|b﹣a﹣c|=________.22.观察规律并填空.⑴⑵⑶________(用含n的代数式表示,n 是正整数,且n ≥ 2)三、解答题23.计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].24. 计算:(1)(2)[(2x﹣y)2﹣(2x+y)(2x﹣y)+4xy]÷2y.25.已知a、b互为相反数,c、d互为倒数,|m|=3,求的值.答案解析一、选择题1.【答案】B【解析】:∵0既不是正数也不是负数,∴答案为:B【分析】根据0既不是正数也不是负数,可得出答案。

有理数初中测试题及答案

有理数初中测试题及答案

有理数初中测试题及答案一、选择题(每题2分,共20分)1. 以下哪个数是有理数?A. πB. √2C. 0.33333…(无限循环)D. 0.1234567892. 两个有理数的和一定是什么?A. 有理数B. 无理数C. 整数D. 无法确定3. 两个有理数的积一定是什么?A. 有理数B. 无理数C. 整数D. 无法确定4. 以下哪个运算结果不是有理数?A. 2 + 3B. 4 / 2C. √9D. √25. 有理数a和b(a≠0,b≠0)的乘积ab是:A. 有理数C. 整数D. 无法确定6. 有理数a和b(a≠0,b≠0)的商a/b是:A. 有理数B. 无理数C. 整数D. 无法确定7. 以下哪个数是无理数?A. 1/2B. 22/7C. 3.1415926D. √48. 两个有理数的差一定是什么?A. 有理数B. 无理数C. 整数D. 无法确定9. 以下哪个数是有理数?A. 0.1010010001…(每个0后面跟的1的个数依次增加)B. √3C. 2.718281828D. 2/310. 有理数a和b(a≠0,b≠0)的和a+b是:A. 有理数B. 无理数D. 无法确定二、填空题(每题2分,共20分)1. 如果一个数可以表示为两个整数的比,那么这个数称为_______数。

2. 有理数包括整数和_______数。

3. 无理数是_______数。

4. 一个数如果它的小数部分是无限不循环的,那么这个数是_______数。

5. 两个有理数相加,结果一定是_______数。

6. 两个有理数相乘,结果一定是_______数。

7. 两个有理数相除,结果可能是_______数。

8. 两个有理数相减,结果一定是_______数。

9. 有理数的乘方结果一定是_______数。

10. 无理数的乘方结果可能是_______数。

三、解答题(每题10分,共60分)1. 计算并证明下列式子的结果是有理数还是无理数:(a) √4 + √9(b) 2/3 * 3/42. 证明:如果a是有理数,b是有理数,那么a + b也是有理数。

(必考题)初中七年级数学上册第一章《有理数》经典复习题(答案解析)

(必考题)初中七年级数学上册第一章《有理数》经典复习题(答案解析)

一、选择题1.(0分)下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 2.(0分)下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A 解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.(0分)有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C 解析:C【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确;而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误;故选C .【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 4.(0分)下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5.(0分)下列正确的是( )A .5465-<- B .()()2121--<+- C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭A 解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 6.(0分)如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A .+0.02克B .-0.02克C .0克D .+0.04克B 解析:B【解析】-0.02克,选A.7.(0分)一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米C .612⎛⎫ ⎪⎝⎭米D .1212⎛⎫ ⎪⎝⎭米C 解析:C【分析】 根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.8.(0分)下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.9.(0分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m , 故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.(0分)有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a < C解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键. 二、填空题11.(0分)在数轴上,若点A 与表示3-的点相距6个单位,则点A 表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.12.(0分)数轴上,如果点 A所表示的数是3 ,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.13.(0分)计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.14.(0分)计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.15.(0分)下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1; (2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1; (3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.16.(0分)在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .85【解析】分析:先求出总分再求出平均分即可解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+(−2)+(−6)+8=40(分)∴该校8名参赛学生的平均成绩是80+(40解析:85【解析】分析:先求出总分,再求出平均分即可.解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+[(−2)+(−6)+8]=40(分),∴该校8名参赛学生的平均成绩是80+(40÷8)=85(分).故答案为85.点睛:本题考查的是正数和负数,熟知正数和负数的概念是解答此题的关键.17.(0分)在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.18.(0分)如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.19.(0分)绝对值小于100的所有整数的积是______.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.20.(0分)用计算器计算:(1)-5.6+20-3.6=____;(2)-6.25÷25=____;(3)-7.2×0.5×(-1.8)=____;(4)-15×(-2.4)÷(-1.2)=____;(5)4.6÷113-6×3=____;(6)42.74.2 3.5≈____(精确到个位).【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理解析:10.8 0.25- 6.48 30- 14.55- 76【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理数的乘除法、再计算有理数的减法即可得;(6)利用计算器先计算有理数的乘方与减法、再计算有理数的除法即可得.【详解】(1)原式14.4 3.610.8=-=;(2)原式0.25=-;(3)原式 3.6 1.8() 6.48-==-⨯;(4)原式 1.236()30=÷-=-;(5)原式434.618 4.618 4.60.7518 3.451814.5534÷-=⨯-=⨯-=-=-; (6)原式53.1441760.7=≈; 故答案为:10.8,0.25-,6.48,30-,14.55-,76.【点睛】本题考查了利用计算器计算有理数的加减乘除法与乘方运算、近似数,掌握计算器的使用是解题关键.三、解答题21.(0分)计算:2334[28(2)]--⨯-÷-解析:21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.22.(0分)计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 解析:(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113- (2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.(0分)计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(0分)如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.25.(0分)计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】 (1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯- 01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=---- 34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.26.(0分)计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.27.(0分)计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.28.(0分)计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+-- =6157-+=1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.。

有理数复习(有答案)

有理数复习(有答案)

>有理数综合复习基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于( )。

2、若∣a ∣=-a,则a ( )0.3、任何有理数的绝对值都是( )。

4、如果a+b=0,那么a 、b 一定是( )。

5、将毫米的厚度的纸对折20次,列式表示厚度是( )。

~6、已知||3,||2,||a b a b a b ==-=-,则a b +=( )7、|2||3|x x -++的最小值是( )。

8、在数轴上,点A 、B 分别表示2141,-,则线段AB 的中点所表示的数是( )。

9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则()20102a b mn p p++-=( )。

10、若abc ≠0,则||||||a b c a b c++的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、53、…,其中从左到右第100个数是( )。

二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。

》3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。

4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

>5、计算:-21 +65-127+209-3011+4213-5615+7217能力培训题>知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓展训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )A .1B .2C .3D .42、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。

《有理数》复习题

《有理数》复习题

七年级第一章《有理数》复习题(1)一、选择题1.下列各数43),8(,,14.3,99.1,2016,722,)21(,0,32---+--π中,正数有( )个A.5B.6C.7D.82.下列各说法中,正确的是 ( )A. 数0的意义就是表示没有B.一个有理数,不是整数就是分数 C . 一个有理数,不是正数就是负数 D . 正整数和负整数统称为整数 3.如图,A 、B 两点在数轴上表示的数为a 、b ,下列式子成立的是( ) A.a+b<0 B.ab>0C.(b-2)(a+2)>0D.(b-2)(a-2)>0 4.2016的相反数是( ) A.20161 B.2016- C.20161- D.2016 5.下列各式中,计算正确的是( )A.-4-2=-2B.0-(-5)=-5C.-10+(+7)= 3D.-5-3-(-3)=-5 6.把(+5)-(+3)-(-1)+(-5)写成省略加号和括号的形式是( ) A.-5-3+1-5 B.5-3+1-5 C.5+3+1-5 D.5-3-1-5 7.在分数的符号化简中,下列分数与ba-不相等的是( ) A.b a ---B.b a --C.b a -D.ba- 8.下列等式中正确的是( )A.22)3(3-=B.33)3(3-=C.2233-=- D.33)3()3(-=-9.中国倡导额“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学计数法表示为( )A.81044⨯B.9104.4⨯C.8104.4⨯D.10104.4⨯10.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( ) A.0.1(精确到0.1) B.0.05(精确到千分位) C.0.05(精确到百分位) D.0.0502(精确到0.0001) 二、填空题11.某天A 市早晨的气温是-3℃,到中午升高了6℃,晚上又降低了4℃,到半夜再降低3℃,这时,半夜的温度是________.12.51070.2⨯精确到____位,4.2万精确到____位,把0.697精确到0.01的近似值是________.13.绝对值大于2且小于5的所有负整数__________,不超过3)34(-的最大整数是__________.14.绝对值最小的数是_____________.15相反数等于本身的数是_____,倒数等于本身的数有________. 16.已知:a =-5,|a|=|-b|,则b 的值为__________.三、解答题 17.计算(1))15(|23|)17(32-+----- (2))83()31(8132-+---(3)5-7-8--2-3-)()()(++(4)19+299+3999+49999 (5)18363599-⨯ (6) 5318999)51(99954118999⨯--⨯+⨯(7)36112795-43-÷+)( (8)])2(3[32-32---÷(9)225.0-411--4141162)(⨯⨯÷+ (10)33232-6-92211-3-÷⨯)()(18.规定一种运算:a *b=ba ab+;计算2*(-3)的值.19.已知a ,b 是有理数,且53--a 与2互为相反数,a 与b 互为倒数,试求ab a 432+的值.20.有理数a ,b 在数轴上对应的位置如右图所示,试化简:a-b -a b a ++.第3题图第20题图5262,1282,642,322,162,82,42,2287654321======== 七年级第一章《有理数》复习题(2)一、选择题1.已知x 与y 互为相反数,y 与z 互为相反数,则x 与z 的关系为( ) A.互为相反数 B.互为倒数 C.相同 D.不能确定 2.下列说法中不正确的是( )A .-3表示的点到原点的距离是|-3|B .一个有理数的绝对值一定是正数C .一个有理数的绝对值一定不是负数D .互为相反数的两个数的绝对值一定相等 3.若m 、n 为任意有理数,且0>-n m ,则m 、n 的关系为( ) A .n m > B. 0<n C. n m > D. 0,0><n m 4.如果a 为有理数,那么下列各式一定为正数的是( ) A.a 2016 B.2016aC.12016+aD.a5.如果0<+b a ,且0>b ,那么b a b a --、、、的大小关系是( ) A .b a b a -<-<< B .b a a b <-<<- C .b a b a <-<-< D .a b b a -<<-<6.在绝对值小于100的整数中,可以写成整数立方的数共有( )个 A .7 B .8 C .9 D .10 7.一根1m 长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为( ) A .3)21(m B .5)21(m C .6)21(m D .12)21(m8.有理数b a 、在数轴的位置如图,则下面关系中正确的个数为( )①0>-b a ②0<ab ③ba 11> ④22b a >A .1B .2C .3D .4 9.若a 、b 都为有理数,要使b a +与b a -互为相反数,则应满足的条件是( )A .0=aB .0=bC .b a =D .b a -=10.我国建造的长江三峡电站,总装机容量将达16780000千瓦,用科学记数法表示总装机容量是( )A .4101678⨯千瓦 B .61078.16⨯千瓦C.710678.1⨯千瓦D.8101678.0⨯千瓦二、填空题 11.若13-=a ,那么____=-a ;51与__互为倒数.12.如果节约20度电记作+20度,那么浪费10度电记作 ;如果-20.50元表示亏本20.50元,那么+100.57元表示 .13. 某日小明在一条南北方向的公路上跑步,他从A 地出发,若把向北跑1008 m 作-1008 m ,那么他折回来又继续跑了1010 m 表示 ,这时他停下来休息,此时他在A 地的 方,距A 地距离为 米.14.若02=-a ,则____=a ;若13=-a ,则____=a ;若a a a 2=+,则0____a . 15. 已知12017-=x,x 为有理数,则代数式2017321x x x x +++++ 的值为_______.16.当0<b 时,把b a b a a +-、、按从小到大的顺序排列_____________________. 17. 按规律填写:113,93,72,52,31---,…,第10个数是_______,第n 个数是__________.18.观察下列算式: 通过观察,用你所发现的规律写出342的末位数字是__________. 19.把下列各数填在相应的集合中:-7,3.5, 3π,3.14,315-,0,210-,-5%,∙∙601.0,2016自然数集合:{ …} 整数集合:{ …}分数集合:{ …} 非负数集合;{ …}. 三、解答题20. 某市股民小张上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元): (1)本周三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元? (3)若小张在本周四交易,问他的盈利情况如何?(交易时的手续费忽略不计) 21. 王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,-3,+10,-8,+12,-7,-10.(1)请你通过计算说明王先生最后是否回到出发点1楼. (2)该中心大楼每层高3m ,电梯每向上或下1m 需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?22.计算 ①)311(21)411(32)76(-⨯⨯-⨯⨯- ②)15(94412)81(-÷⨯÷-③⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-+1211211611211 ④⎪⎭⎫ ⎝⎛-÷-÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-31)4(214211第4题图。

有理数的概念复习题

有理数的概念复习题

有理数概念(一)一、选择题(每小题3分,共36分)1. 下列各数不是正数的是() A. 3.5 B. +7 C.+5.3 D. -5.62. 在数轴上表示数-3,0,5,2,的点中,在原点右边的有()A. 0个B. 1个C. 2个D. 3个3. 一个数的绝对值是正数,则这个数是()A. 正数;B. 不等于零的有理数;C. 任意有理数;D. 非负数.4. 比较-2,-,0,0.02的大小,正确的是()A. -2<-<0<0.02 B. -<-2<0<0.02 C. -2<-<0.02<0 D. 0<-<-2<0.025. 文具店、书店和玩具店依次坐落在上海市南京路东西走向的大街上,文具店在书店西边20m处,玩具店位于书店东边100m处,小明从书店沿街向东走了40m,接着又向西走了60m,此时小明的位置在()A. 文具店 B. 玩具店C. 文具店西边40m D. 玩具店东边-60m6. 如果a<0,那么()A. |a|<0 B. -(-a)>0 C. |a|>0 D. -a<07. 若a、b为有理数,那么下列结论中一定正确的是()A. 若a<b,则|a|<|b|B. 若a>b,则|a|>|b|C. 若a=b,则|a|=|b| D. 若a≠b,则|a|≠|b|8. 下列各式中,正确的是()A. ->0 B.>C.>D.<09、如果|a|=||,那么a与b之间的关系是()A. a与b互为倒数B. a与b互为相反数C. a·b=-1D. a·b=1或a·b=-110、若,则的值为().A.B.C. 0D. 411. 如图所示,正确的是:()A. b>c>0>aB. a>b>c>0C. a>c>b>0D.a>0>c>b12. 若 |a|+ |b|= |a-b|,则a与b的关系为()A. a与b同号B. a与b异号C. a与b同号或a与b中有一个为0D. a与b异号或a与b中有一个为02、填空题(每题3分,共30分)1. 如果-150元表示支出150元,那么+300元表示_____.2. 若|a|=|b|,则a和b的关系为__________.3. 绝对值大于1且不大于3的负整数有个,它们是 .4. 若│a│=a,则a是数;若│a│>a,则a是数.5. 数轴上点M表示2,点N表示-3.5,点A表示-1,在点M 和点N中,距离A较远的点的是 .6、在数轴上,A点表示3,现在将A点向右移动5个单位,再向左移动12个单位,这时A点必须向移动个单位,才能到达原点.7、绝对值小于4的整数是____8. 如果a>0,则|a+5 |() |a |+|5 |. 9. 大于-8且小于-3的整数是()。

有理数试题及答案初中

有理数试题及答案初中

有理数试题及答案初中一、选择题(每题2分,共10分)1. 下列哪个数是有理数?A. πB. √2C. 0.33333…D. 1/3答案:D2. 有理数的绝对值不可能是:A. 正数B. 0C. 负数D. 以上都不是答案:C3. 两个有理数相加,和为正数,那么这两个数:A. 至少有一个是正数B. 都是正数C. 至少有一个是负数D. 都是负数答案:A4. 下列哪个表达式的结果不是有理数?A. 3 + 2B. 5 - √4C. √9D. 2/7答案:B5. 如果a和b是有理数,且a > 0,b < 0,那么a + b:A. 一定大于0B. 一定小于0C. 可能大于0,也可能小于0D. 等于0答案:C二、填空题(每题2分,共10分)6. 有理数-5的相反数是________。

答案:57. 绝对值等于4的有理数是________和________。

答案:4,-48. 如果一个有理数的绝对值是它本身,那么这个数是________或________。

答案:正数,09. 有理数1/2与-1/2的和是________。

答案:-1/210. 有理数-3乘以-2的积是________。

答案:6三、解答题(每题10分,共20分)11. 计算下列有理数的混合运算:(-3) × (-2) ÷ 6 + 4 - (-1)。

答案:512. 已知有理数a、b、c满足a + b + c = 0,且a > 0,b < 0,c < 0,求证:|a| > |b| + |c|。

答案:证明略。

四、综合题(每题15分,共30分)13. 某商店销售一种商品,如果以每件10元的价格出售,可以卖出80件;如果每件商品的售价提高1元,销售量就会减少10件。

求该商品的售价在什么范围内时,可以获得最大利润,并计算最大利润是多少。

答案:售价在10元到13元之间可以获得最大利润,最大利润是360元。

14. 一个工厂生产某种零件,每生产一个合格品可以获得10元的利润,而每生产一个次品则会造成20元的损失。

有理数专题练习题(有答案)

有理数专题练习题(有答案)

【典型例题】一、有理数的概念及分类1、对有理数的分类进行考查20|,0,-(-2017),-2,95%,5.7-3.8,-10,5,-|-7正数集合:{ 5、-(-2017)、95% 、5.7 };20| 、-2 };负数集合:{-3.8、-10、 -|-7非负整数集合:{ 5、0 、-(-2017) };20| };负分数集合:{ -|-72、对有理数的概念进行考查下列说法中正确的是( D )A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称有理数二、数轴1、综合互为相反数、互为倒数、绝对值来进行考查已知a,b互为相反数,c,d互为倒数,x的绝对值是2,试求代数式20032)2004+x-a++-的值.+b+x()()(cdabcd解:因为a,b 互为相反数,c,d 互为倒数,所以a+b=0,cd=1, |x|=2,所以x=2或x=-2,x ²=4.代入原式中 当x=2时,原式=4-(0+1)×2+0+(-1)=1 当x=-2时,原式=4-(0+1)×(-2)+0+(-1)=5 三、绝对值1、绝对值的几何意义若a,b,c,d 为有理数,且|a-b|=|b-c|=|c-d|=1,则|a-d|= . 3或12、化简绝对值若有理数a,b,c 在数轴上的位置如图所示,则|a+b|-|b-1|-|a-c|-|1-c|= .|a+b|-|b-1|-|a-c|-|1-c|=-(a+b )-(1-b)-(c-a)-(1-c)=-2 3、零点分段法已知632=++-x x ,则x = .当x<-3时,|x-2|+|x+3|=-(x-2)-(x+3)=6 x=-7/2 当-3<x<2时,|x-2|+|x+3|=-(x-2) +(x+3)=6 x 无解a b 1c当x>2时,|x-2|+|x+3|=(x-2) +(x+3)=6 x=5/2 4、绝对值的非负性及分数列项综合考查①已知|2|-ab 与|1|-a 互为相反数,试求下式的值:)2017)(2017(1...)2)(2(1)1)(1(11++++++++++b a b a b a ab . ②若c b a 、、为有理数,且0≠abc ,则abcabc c c b b a a ||||||||-++= . 解:①因为|2|-ab 与|1|-a 互为相反数,则|2|-ab =0,|1|-a =0, 所以ab=2,即a=1, b=2,所以原式=1/(1*2)+1/(2*3)+....+1/(2018*2019) =1-1/2+1/2-1/3+.....+1/2018-1/2019 (约去中间项) =1-1/2019 =2018/2019②当a 、b 、c 、都为正时,原式=1+1+1-1=2当a 、b 、c 、有一个为负,两个正时,原式=1+1-1+1=2 当a 、b 、c 、有两个为负,一个正时,原式=1-1-1-1=-2 当a 、b 、c 、都为负时,原式=-1-1-1-1=-4 四、科学记数法(此类考题很简单)据统计,2016年“十一”国庆长假期间,成都市共接待国内外游客约319万人次,与2015年同比增长16.43%,数据319万用科学记数法表示为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 数怎么不够用了一、选择题1、下面说法中正确的是()A、0表示没有意义B、正有理数和负有理数组成全体有理数C、0.3既不是整数,也不是分数,因此它不是有理数D、0既不是正数,也不是负数2、下列说法正确的是()A.正整数、负整数统称为整数 B.正分数和负分数统称为分数C、正数和负数统称为有理数D、0是最小的整数3.下列各组数中,不是互为相反意义的量的是()A.向东走5米和向西走2米 B.收入100元和支出20元C.上升7米和下降5米 D.长大1岁和减少2公斤4.向东行进-30m表示的意义是()A.向东行进30m B.向南行进30m C.向西行进-30m D.向西行进30m二、填空题1.把下列各数分别填在相应的表示集合的圈里.2、若将低于海平面11022米的太平洋最深处记作:–11011米,则高出海平面 8848、13米的珠穆朗玛峰应记作_____米.3、用正、负数表示:盈利6000元可记作_____元,亏损500元可记作_____元.4、如果“–2”表示比95小2的数,那么“+1”表示的数是_____;"–5"表示的数是______.5、如果把上升10m记作十10 m,那么–3m表示______.6、有理数中,最小的正整数是______;最大的负整数是______.三、解答题:1、是否存在满足下面条件的数,存在的话,把它们写出来:(1)最小的正有理数:(2)最小的负整数:(3)最大的非整数:(4)最小的整数:(5)最大的负有理数:(6)最小的有理数:2、如果a表示正数,那么–a表示什么数?如果a表示负数,那么–a表示什么数?字母a除了可以表示正数和负数外,还可以表示哪些有理数?3、初一(一)班数学成绩的平均分是85分,老师将第二小组的六个人的成绩记为:为+10,–8,+8,–4,0,–8,这六个学生的成绩分别是多少?2.2 数轴一、选择题1、在数轴上距离原点4个单位长度的点所表示的数是()A、4B、–4C、4或–4D、2或–22、大于–2.5而不大于3的整数()A、4个B、5个C、6个D、7个3、下列说法错误的是()A、所有的有理数都可以用数轴上的点表示B、数轴上的原点表示零C、在数轴上表示–3的点与表示+1的点的距离是2D、数轴上表示的点,在原点左边个单位处二、填空题:1、规定了__________、________和_________的直线叫做数轴;2、在数轴上表示+3的点在原点的______侧,距原点的距离是______个单位;表示–5的点原点的_____侧,它离原点的距离是_____个单位;表示+3的点位于表示–5的点的_____侧,根据_____,可得–5<33、若数轴上得点M和N点表示的两个数互为相反数,并且这两点间的距离为7.2,则这两个点表示的数分别和______和______.4、已知A,B是数轴上的点.(1)如果点A表示数–3,将A向右移动7个单位长度,那么终点表示的数是_______;(2)如果点B表示数3,将B向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是______.5、正数的相反数是______数,一个数的相反数的相反数是______,0的相反数是______.6、______的相反数大于它本身,______的相反数小于它本身.7、在数轴上,点A对应的数是1,那么在数轴上与点A相距3个单位长度的点表示的数是______.8、用“>”、“<”填空:(1)9 -16;(2)— —;(3)0 —6 .三、解答题:1、如下图所示,指出数轴上A、B、C、D、E各点分别表示什么数,并用“<”将它们连接起来。

-4-3-2-11234ABCDE2、画出数轴,把下列各数在数轴上表示出来,并按从小到大的顺序,用“<”连接起来。

附加题:.已知有理数a,b,c如图数轴所示,试比较a,-a,b,-b,c,-c,0的大小,并用符号“<”连接起来。

2.3 绝对值一、选择题:1、下列各组中互为相反数的是()A、–2与B、和2C、–2.5与D、与2、若a是有理数,则一定()A、是正数B、不是正数C、是负数D、不是负数3、下列说法中正确的有( )1 互为相反数的两个数的绝对值相等;②正数和零的绝对值都等于它本身;③只有负数的绝对值是它的相反数;④一个数的绝对值相反数一定是负数。

A、1个B、2个C、3个D、4个4、下列判断正确的有( )①|+2|=2 ②|-2|=2 ③-|-5|=5 ④|a|≥0A、1个B、2个C、3个D、4个5. 若,则一定是()A. 负数B. 负数或零C. 零D. 正数6、质检员抽查某种零件的质量,超过规定长度的记为正数,短于规定长度的记为负数,检查结果如下:第一个为0.13豪米,第二个为–0.12毫米,第三个为–0.15毫米,第四个为0.11毫米,则质量最差的零件是()A、第一个B、第二个C、第三个D、第四个二、填空题:1、符号是“–”号,绝对值是7的数是______.2、的符号是______.绝对值是______.3、绝对值是4的数有______个, 它们是______.4、绝对值不大于3的负正数是______.5、若,则=_______,=______.6、一个数a在数轴上对应的点在原点的左边,且,则=______.7、如果一个数的绝对值不大于它本身,那么它一定是_____数.三、解答题:1、比较下列每对数的大小:(1)与, (2) 0.5与,2、说出符合下列条件的字母所表示的有理数是正数?负数? 还是零?(1)(2)(3)(4)附加题:1、(1)由,一定能得到吗?请说明理由;(2)由,一定能得到吗?请说明理由;2、如果,则比较a与b得大小会有哪几种情况?2.4有理数加法一、选择题:下面说法正确的是()A、两数之和不可能小于其中的一个加数B、两数相加就是它们的绝对值相加C、两个负数相加,和取负号,绝对值相减D、不是互为相反数的两个数,相加不能得零二、计算:(1);(2)(—2.2)+3.8;(3)+(—5);(4)(—5)+0;(5)(+2)+(—2.2);(6)(—)+(+0.8);(7)(—6)+8+(—4)+12;(8)2、用算式表示:温度由—5℃上升8℃后所达到的温度..3,某出租车司机小李某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,想西为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?(2)若汽车耗油量为a升/千米,这天下午小李共耗油多少升?附加题:已知,计算下题:(1)的相反数与的倒数的相反数的和;(2)的绝对值与的绝对值的和。

2.5有理数减法1、填空题:1、(1)温度3°C比-9°C高 ;(2)温度-6°C比-2°C低 ;(3)海拔-200米比-300米高 ;(4)海拔600米比-100米高 。

2、(1)表示数3的点与表示数-2.2的点的距离是 ;(2)表示数4.5的点与表示数2.5的点的距离是 ;(3)表示数-4与-4.5的点的距离是 ;(4)表示数-3.5与2.5的点的距离是 .二、判断题:(1)减去一个数,等于加上这个数.()(2)零减去一个数仍得这个数.()(3)一个数减去零仍得这个数.()(4)两个有理数的差一定小于被减数.()(5)比—3小3的数是0.()(6)两个负数之和小于两个正数之和.()(7)任何两个有理数的和都不等于这两个有理数的差.()(8)若0>a>b,则a-b>0.()三、选择题:1.一个数加-3.6,和为-0.36,那么这个数是()A.-2.24B.-3.96C.3.24D.3.962.下列计算正确的是()A.(-14)-(+5)= -9B. 0-(-3)=3C.(-3)-(-3)= -6D.|5-3|= -(5-3)3.较小的数减去较大的数,所得的差一定是()A.零B.正数C.负数D.零或负数4.下列结论正确的是()A. 数轴上表示6的点与表示4的点两点间的距离是10B. 数轴上表示-8的点与表示-2的点两点间的距离是-10C. 数轴上表示-8的点与表示-2的点两点间的距离是10D. 数轴上表示0的点与表示-5的点两点间的距离是-55.下列结论中,正确的是()A. 有理数减法中,被减数不一定比减数大B. 减去一个数,等于加上这个数C. 零减去一个数,仍得这个数D. 两个相反数相减得0四:计算题(1) -5-7; (2) (-23)-(-1)(3) (—36)—(—25)—(+36) (4)五:解答题1.已知甲数是4的相反数,乙数比甲数的相反数大3,求乙数比甲数大多少?2.月球表面的温度中午是101℃,半夜是-153℃,中午比半夜温度高多少?3.物体位于地面上空2米处,下降3米后,又下降5米,最后物体在地面之下多米处?2.6有理数的加减混合运算一、填空题:(1)-4-_______=23.(2)19℃比-5℃高_______℃.(3)A、B、C三点相对于海平面分别是-13米、-7米、-20米,那么最高的地方比最低的地方高_______米.(4)冬季的某一天,甲地最低温度是-15℃,乙地最低温度是15℃,甲地比乙地低_______℃.二、选择题:(1)a,b,c,d在数轴上的对应点如图所示,且|a|=|b|,|d|>|c|>|a|,下列各式正确的是 ( )A.a+b>cB.c+a>bC.d+c>aD.b+c>0(2)若|a-1|+|b+3|=0,则b-a-的值是 ( )A.-4B.-2C.-1D.1三、计算:(1)(—36)—(—25)—(+36)+(+72);(2)(—8)—(—3)+(+5)—(+9);(3);(4)—9+(—3)+3;四、列式并计算:(1)-3减去4与-3的和所得的差是多少?(2)-6,-3.5,4三数的和比这三数的绝对值的和小多少?(3)求-1,+2,-3,+4,-5,…,-99,100,这100个数的和.(4)已知甲地高度是-10m,甲地比乙地高10m,又乙地比丙地高6m,求甲地比丙地高多少?五、某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实际每月生产量与计划量相比情况如下表(增加为正,减少为负).月份一二三四五六增减+3-2-1+4+2-5(辆)1.生产量最多的一天比生产量最少的一天多生产多少辆?2.半年内总生产量是多少?比计划多了还是少了,增或减多少?2..7 水位的变化一、填空题:1.一个加数是6,和-9,另一个加数是2.从-1中减去-与的和,列式为: ,所得的差是 。

相关文档
最新文档