几种拟南芥突变体鉴定方法

合集下载

模式植物拟南芥T-DNA插入突变体的PCR鉴定资料-2022年学习资料

模式植物拟南芥T-DNA插入突变体的PCR鉴定资料-2022年学习资料

3.用PCR方法鉴定T-DNA插入纯合突变体-农杆菌T质粒转化植物细胞后,在获得的后代分离群体中,-有TNA插入的纯合突变体,杂合突变体,和野生型-在突变体研究中,需要的材料是纯合突变体,所以必须从-分离群体中 纯合突变体鉴定出来。-PCR方法为鉴定纯合突变体提供了有利手段。它利用三-个引物LP、RP和BP,其中LP RP是植物基因组上T--DNA插入位点两测的引物,BP是T-DNA区段上的引物-经过PCR,在野生型植株, P和RP这对引物扩增出分子-量较大的产物(野生型基因,大带;在杂合突变体,-LP和RP能扩增出分子量较大的 物(野生型基因,大-带,另外BP和RP还能扩增出分子量较小的产物(小-带;在纯合突变体,只有BP和RP能扩 出分子量较小-的产物(小带)。因此,利用以上三种引物做PCR,根-据扩增结果能够容易地从群体中区分出纯合突 体。
三、实验步骤-实验材料:拟南芥T-DNA插入突变体分-离群体30个株号的植株。-实验方法:(每人做1个株号 检测
一拟南芥基因组DNA提取
1.原理-分离动物、植物、微生物DNA是进行遗传操-作(基因组DNA序列分析、遗传标记分析、基-因克隆、基 定位的第一个步骤。不同的研-究目的对D度要求高;-用于PCR分析的DNA则应不含干扰PCR反应的-污染物;-用于遗传标记分析的DN ,纯度要求低但产量-阔-则要高
3.DNA提取步聚-1.用液氮将100mg幼嫩叶片研磨成细粉,置于1.5ml离心管中,加入预热至65℃的6 0川-的2×CTAB提取液,轻摇混匀。-2.65℃水浴1h,其间轻摇混匀。-12000rpm离心15min 弃沉淀,取上清转移至另一1.5ml离心管中。-4.向上清液加入等体积的氯仿/异戊醇24:1,轻轻混匀10m n,然后12000rpm离心15-min,再转移上清入新管。-5.向上清液中加等体积的冷异丙醇,小心混匀。 20℃放置30min,12000rpm离心10min,-弃上清。-6.1用70%乙醇洗涤沉淀一次,1200 rpm稍离心,弃上清。-7.将沉淀在超净工作台上吹干,或空气中晾干。加50μlTEpH8.0放4℃缓慢溶解 -8.电泳检测DNA的浓度和质量。

拟南芥TDNA插入突变体的鉴定

拟南芥TDNA插入突变体的鉴定

遗传学实验报告拟南芥T-DNA插入突变体的鉴定一、实验目的:1、学习和掌握基本的植物DNA的CTAB提取法,掌握PCR、琼脂糖凝胶电泳等基本实验操作技能2、了解T-DNA插入突变体的鉴定原理,掌握其方法。

二、实验原理1、拟南芥(Arabidopsis thaliana)十字花科,植物遗传学、发育生物学和分子生物学的模式植物。

植株形态个体小,高度只有30cm左右;生长周期快,从播种到收获种子一般只需8周左右;种子多,每株可产生数千粒种子;形态特征简单,生命力强,用普通培养基就可作人工培养;遗传转化简单,转化效率高;基因组小,只有5对染色体,125MB;在2000年,拟南芥成为第一个基因组被完整测序的植物。

2、突变体突变体是遗传学研究的最重要材料。

突变体可以通过自然突变和人工诱变的方法获得。

拟南芥诱变常用方法有EMS诱变、T-DNA插入突变、激活标签。

由于T-DNA插入突变体便于对突变基因进行追踪,目前拟南芥、水稻中已经有大量的T-DNA插入突变体;SALK中心提供的拟南芥T-DNA插入突变体超过十万种。

3、T-DNA插入突变原理T-DNA,转移DNA(transferred DNA ),是根瘤农杆菌Ti质粒中的一段DNA序列,可以从农杆菌中转移并稳定整合到植物基因组。

人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,获得转基因植株。

除用于转基因以外,T-DNA插入到植物的基因中可引起基因的失活,从而产生基因敲除突变体,T-DNA大多为单拷贝插入,使其利于进行遗传分析。

4、T-DNA插入突变体PCR鉴定图 1 结果鉴定图 2 PCR引物设计三、实验材料1、材料:T-DNA插入的突变拟南芥植株;2、仪器:离心管,离心机,水浴锅,移液枪,PCR仪,电泳槽等;3、试剂:液氮,CTAB提取液,氯仿/异戊醇(24:1),无水乙醇,70%乙醇,10xTaq buffer,MgCl2,引物,琼脂糖,溴化乙锭(EB)。

拟南芥属植物分子遗传学和突变体筛选研究方法

拟南芥属植物分子遗传学和突变体筛选研究方法

拟南芥属植物分子遗传学和突变体筛选研究方法随着生物技术的快速发展,从分子到基因组层面的遗传研究已经成为许多生物学实验室的重要研究方向。

拟南芥(Arabidopsis thaliana)则是其中一种最常用的模式植物,它拥有许多基因遗传和发育过程的相似性,因此被广泛用于生物学研究。

本文将着重介绍拟南芥属植物分子遗传学和突变体筛选研究方法。

1. DNA转化和质粒构建在拟南芥基因研究中,DNA转化和质粒构建是十分重要的实验方法。

DNA转化即将外源DNA导入拟南芥细胞内,常使用的方法有冷冻处理法、电穿孔法等。

而质粒通常可以用于转化拟南芥细胞,以研究基因结构、调节元件、绿色荧光蛋白构建等。

2. 基因敲除基因敲除是在已知某个基因的功能和表达模式,并通过基因突变得以验证。

敲除分为生理性敲除和人工性敲除两种,其中后者可以通过质粒导入方法实现。

基因敲除在拟南芥遗传学研究中被广泛应用,可以探究基因对于生长发育过程的途径以及在各种逆境下的适应能力等。

3. 基因表达基因表达研究是在基因的各种调节元件上构建不同启动子,将被测量的基因与这些元件进行组合,从而研究基因表达的条件和模式。

例如通过全基因组转录组分析方法,可以了解到各种条件对基因表达的影响。

基因表达研究在植物逆境抗性和发育过程等方面都有广泛的应用。

4. 突变体筛选突变体是指基因序列中发生变异引起的表型重要变化,通常是由于自然或人为诱变引起。

突变体的筛选在拟南芥属植物分子遗传学中有着重要的地位。

目前已开发出几十种突变体筛选方法,包括靶向突变、随机诱变、胚乳培养及基因组分析等。

通过筛选突变体,我们可以了解到基因在植物生长发育中的重要性和相互间的关系。

5. 遗传交叉和构建突变遗传交叉是通过交叉杂交的方式寻找某一特定基因或显性性状的控制,以了解基因型和表型特征之间的关系。

而构建突变则是利用特定的载体将人工合成的单个核苷酸序列插入到目的基因中,从而创造特定的基因突变。

这些方法在研究基因调控途径、寻找新型基因等方面都有着重要的应用。

拟南芥T-DNA插入突变体的鉴定

拟南芥T-DNA插入突变体的鉴定

拟南芥T-DNA插入突变体的鉴定09生工吴超 200900140129一、实验原理T-DNA插入法是反向遗传学研究的重要手段。

T-DNA是农杆菌的一个大质粒,长度在25kb左右。

野生型农杆菌的T-DNA上带有激素合成基因,感染植物后会导致植物细胞快速增殖形成愈伤组织,失去分化能力。

所以一般实验使用改造后的农杆菌——T-DNA中导入了卡那霉素抗性基因和抗除草剂基因。

因此在农杆菌感染植物后可用除草剂来筛选转化子。

在转化子培养到F2代出现分离后,就需要对其基因型进行鉴定。

T-DNA插入突变体鉴定方法主要有两种:三引物法和双引物法。

在本实验中使用三引物法。

三引物法的原理如图1所示,即采用三引物(LP、RP、BP)进行PCR扩增。

野生型植株目的基因的两条染色体上均未发生T-DNA插入,所以其PCR产物仅有1种,分子量约900bp(即从LP到RP);纯合突变体植株目的基因的两条染色体上均发生T-DNA插入,T-DNA本身的长度约为25kb,过长的模板会阻止目的基因特异性扩增产物的形成,所以也只能得到1种以BP与LP或RP为引物进行扩增的产物,分子量约为400-700bp;杂合突变体植株只在目的基因的一条染色体上发发生了T-DNA插入,所以PCR扩增后可同时得到两种产物。

上述3种情况的电泳结果差异明显,能有效区分不同基因型的植株。

此法优点是可同时鉴定出纯和突变体并确证T-DNA的插入情况。

图1 T-DNA插入示意图CATB,即十六烷基三甲基溴化铵,是一种离子型表面活性剂。

能溶解细胞膜和核膜蛋白,使核蛋白解聚,从而使DNA得以游离出来。

并且CATB可在高离子强度的溶液里与蛋白质和大多数多聚糖形成复合物进而形成沉淀,但不沉淀核酸。

本实验使用CATB抽提DNA。

聚合酶链式反应(Polymerase Chain Reaction,PCR)是体外核酸扩增技术。

它具有特异性高、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究的目的基因或某一DNA片段于数小时内扩增至十万乃至几万倍,使肉眼能直接观察和判断。

几种拟南芥突变体鉴定方法

几种拟南芥突变体鉴定方法

HY5‐215The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus‐induced development of root and hypocotyl, Genes Dev. 1997 Nov 15; 11(22): 2983–2995.In the genome of hy5‐215, the splicing acceptor site of the first intron (=G) was replaced by A, suggesting that this mutation causes aberrant RNA processingIn hy5‐215, the nucleotide g‐1117 (white letter), which is the last nucleotide in the first intron, is replaced by an aHY5‐215的突变位点与野生型相比,并没有酶切位点的变化。

引物在有一个错配位点的情况下,可以产生一个新的酶切位点PsiI,从而将野生型、杂合、纯合进行区分。

Design proper primers and choose proper a enzyme by dCAPS Finder 2.0(/dcaps/dcaps.html)HY5proF GAGAGAATATGCGAGTGAATGAC Len 22 TM 54 HY5proR TCTAAAGTCTCTTTTATGTTTTA T A Len 25 TM 50.8PsiI:但是,实验室并没有PsiI ,所以只能再去寻找新的内切酶。

在设计的引物有2个错配位点时,可以产生新的酶切位点,AluI 将野生型切断。

HY5-215 F CGTATCTCCTCATCGCTTTCAATAG Len 25 TM 60.0 HY5-215 R GTCCCGCTCTTTTCCTCTTTATC Len 23 TM 60.8AluI:MYCTThe Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses, Plant Cell. 2011 Feb; 23(2): 701–715.MYC2Mutagen : T‐DNA insertionInsertion FlankingSequence:TAAAACCGCCGGAGAATCAGATCACTCCGATCTAGAAGCT(Length:40)根据T‐DNA PrimerDesign(/tdnaprimers.2.html)设计引物PRODUCT_SIZE 1186Myc2LP TGGTTTTTCTTGGTTTCGATG Len 21 TM 59.96Myc2RP CTCTAATCATTGCGTCCCAAC Len 21 TM 59.58LBb1.3 ATTTTGCCGATTTCGGAAC BP+RP_PRODUCT_SIZE 558‐858MYC3Mutagen : T‐DNA insertionmyc3 F AAGGTGGGTTGTTGAAATCTAATG Len 24 TM 58.3myc3 R GTTTTCTCCGACTTTCGTCATCA Len 23 TM 61T-DNA ATATTGACCATCATACTCATTGC Len 23 TM 55.2MYC4Mutagen : T‐DNA insertionmyc4 F TCTCTCACAACTTGATCCAGCTAA Len 24 TM 60.0myc4 R TAACCGATTACCATCTCAACCAA Len 23 TM 59.2T-DNA ATATTGACCATCATACTCATTGC Len 23 TM 55.2Phyb‐9Mutations in the gene for the red/far‐red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell v.5(2); 1993 Febhy3-EMS742 is a G-toA mutationphyb9 F CTGTTCAATCGCAGAAACTCGCGGT Len25phyb9 R CCGTCACATTTCACTAAGTCCAT Len 23 TM58.6MnlI:但是,实验室并没有MnlI,所以只能再去寻找新的内切酶。

拟南芥突变体的筛选与鉴定综述

拟南芥突变体的筛选与鉴定综述

本科生文献综述题目拟南芥突变体的筛选综述系别林学与园艺学院班级园艺102班姓名唐辉学号103231228答辩时间年月新疆农业大学林园学院拟南芥突变体的筛选综述唐辉指导老师:王燕凌摘要:本文归纳了拟南芥抗旱、抗氧化、耐低钾、耐硒、耐盐、晚花突变体筛选的研究内容。

在拟南芥抗旱突变体筛选中将用到甘露醇模拟干旱胁迫来进行试验。

在抗氧化、耐低钾、耐硒中将用到Na2SeO3、钾、硒、NaCl等化合物或者化学元素对拟南芥突变体的生长发育影响来进行拟南芥突变体的筛选。

概括了拟南芥突变体在甘露醇模拟干旱中的生长影响以及拟南芥突变体在抗氧化、耐低钾、耐硒、耐盐等逆境环境中生长研究方面的观点。

总结了拟南芥突变体在先如今人们研究中常用的几种筛选方法,指出了拟南芥突变体筛选的研究需求,并提出筛选拟南芥抗逆突变体的重要意义。

关键词:拟南芥;突变体;筛选;研究Screening Summary of Arabidopsis MutantsTang Hui Instructor:Wang YanlingAbstract: This paper summarizes the Arabidopsis drought, oxidation resistance, low potassium, selenium-resistant, salt, late-flowering mutants creening research.And detailed exposition of the various materials and processes Arabidopsis mutants creening methods needed in the screening process.In the anti-oxidation, anti-potassium, selenium resistance will be used Na2SeO3, potassium, selenium, NaCl chemical elements or compounds such mutations affect thegrowth and development of the body to be screened Arabidopsis thaliana mutants.Thus summarizes the growth of Arabidopsis mutants mannitol and simulated drought in Arabidopsis mutants in anti-oxidation, anti-potassium,selenium resistance point of view, salt and other adverse environments grow research.Arabidopsis mutants summarized earlier research that people now commonly used inseveral screening methods, pointed out the Arabidopsis mutant screening research needs and the importance of screeningproposed resilience of Arabidopsis mutants.Key words: Arabidopsis;Mutant;Filter;Research拟南芥(Arabidopsis)为十字花科(Cruciferous)、拟南芥属(Brassicaceae、Arabidopsis)一年生或二年生的细弱草本植物。

拟南芥插入突变体鉴定

拟南芥插入突变体鉴定

拟南芥T-DNA插入突变体的PCR鉴定【摘要】拟南芥的T-DNA插入变异是反向遗传学进行植物生物学研究的重要手段之一。

实验将获得T-DNA插入某基因造成的突变种,插入基因功能进行判断。

筛选出纯种突变型,同时进行PCR法序列鉴定纯种突变型、杂种突变型与野生型。

1.引言:反向遗传学:经典遗传学是从生物的性状、表型到遗传物质来研究生命的发生与发展规律。

反向遗传学则是是在获得生物体基因组全部序列的基础上,通过对靶基因进行必要的加工和修饰,如定点突变、基因插入\缺失、基因置换等,再按组成顺序构建含生物体必需元件的修饰基因组,让其装配出具有生命活性的个体,研究生物体基因组的结构与功能,以及这些修饰可能对生物体的表型、性状有何种影响等方面的内容。

与之相关的研究技术称为反向遗传学技术。

实验材料拟南芥:拟南芥又称为阿拉伯芥,是一种十字花科植物,广泛用于植物遗传学、发育生物学和分子生物学的研究,已成为一种典型的模式植物,其原因主要基于该植物具有以下特点:①植株形态个体小,高度只有30cm左右,1个茶杯可种植好几棵;②生长周期快,每代时间短,从播种到收获种子一般只需6周左右;③种子多,每株每代可产生数千粒种子;④形态特征简单,生命力强,用普通培养基就可作人工培养;⑤基因组小,只有5对染色体;⑥拟南芥是自花受粉植物,基因高度纯合,用理化因素处理突变率很高,容易获得各种代谢功能的缺陷型。

拟南芥全部基因组测序已经完成,每个单倍染色体组(n=5)的总长只有7000万个碱基对(只有小麦染色体组长的1/80),预测共有29,454个基因。

这样科学家就可以准确定位插入DNA的位置。

突变体获得:插入诱变(insertional mutagenesis),即将外源DNA随机插入到拟南芥基因组中,获得突变体。

当外源DNA“击中”某一基因时,这个特定基因就被关闭。

常用的插入诱变方法为农杆菌转化法。

Ti质粒是土壤农杆菌的天然质粒,质粒上有一段特殊的DNA区段,当农杆菌侵染植物细胞时,该DNA区段能自发转移,插入植物染色体DNA中,Ti质粒上的这一段能转移的DNA被叫做T-DNA。

拟南芥突变体的功能鉴定及应用

拟南芥突变体的功能鉴定及应用

拟南芥突变体的功能鉴定及应用拟南芥是一种模式植物,因其具有小型、短周期、基因底子丰富等特点,成为了植物学和遗传学领域的研究工具。

通过突变体的筛选,拟南芥成为了研究植物生长发育和基因功能的重要模式植物之一。

在拟南芥突变体筛选中,以T-DNA插入技术为主,通过敲定不同基因,以观察植物的生长发育状态,挖掘新的生物学机制。

拟南芥突变体是利用突变体筛选技术,自然形成的或通过基因操作人工获得,产生了某些特殊表型的植物。

以T-DNA插入技术为例,将T-DNA随机插入到植物基因组中,导致部分基因的功能紊乱,从而产生了特殊的表型表现。

因此,拟南芥突变体不仅具有丰富的基因型资源,也是研究基因功能、分子生物学和植物生长发育的重要材料,其发现和应用有直接联系。

因此,如何鉴定拟南芥突变体的功能尤为重要。

目前鉴定方法主要包括:表型分析、基因克隆、启动子分析、蛋白质相互作用网络分析、分子标记等技术手段。

表型分析是首先考虑的鉴定方法,通过比较突变体与野生型在不同生长条件下的表型差异,筛选出表现异常的突变体。

对鉴定有难度的突变体,使用其他鉴定方法,如基因克隆,会有更好的效果。

其中,启动子元素克隆有助于探究基因表达特异性。

蛋白质相互作用网络分析有用于探究基因调控网络方式。

分子标记在表型特征不明显时,如果phentoype特征无法激活突变体,可以发现突变原因及搜索对应的遗传切口。

同时,拟南芥突变体在研究中的应用也非常广泛。

例如:研究花器官发育中的关键基因,通过拟南芥突变体突变鉴定方法,筛选出相关基因,进而探究开花的分子机制。

利用拟南芥突变体进行耐盐性、耐旱性等方面的研究。

在探究植物防御基因的调节网络时,拟南芥突变体也广泛地使用。

此外,还可用作药物和环境污染物筛选的生物传感材料,如zinc、生物染色体修复等方面的研究。

拟南芥突变体是全面了解植物生物学机理的重要材料,是揭示生长发育和基因功能的主要途径之一。

随着逆境应对、营养吸收、发育调控等方向的研究的深入,对拟南芥突变体的催生和应用必将愈加广泛。

突变基因的拟南芥实验研究

突变基因的拟南芥实验研究

突变基因的拟南芥实验研究拟南芥(Arabidopsis thaliana)是一种模式植物,在生物学研究中发挥着重要的作用。

它的基因组序列已经被完整解读,并且其外观简单、生长周期短等特点,使得其成为基因功能研究的最佳实验材料。

突变基因是指由于DNA序列的变异,造成突变的基因。

拟南芥的突变基因贡献了大量关于植物发育与繁殖等方面的科学研究成果。

突变基因的发现突变基因的发现可以通过自然突变和诱导突变两种途径实现。

自然突变是指在自然条件下,由于DNA杂交、突变等自然因素,使得基因产生突变。

而诱导突变,则需要使用特殊的化学试剂或是电磁辐射等手段对DNA进行干预,从而获得突变基因。

诱导突变的方法目前,诱导突变的方法主要有以下几种:1. EMS法EMS是Ethyl methanesulfonate的缩写,是一种碱基化剂,能够导致DNA中的鸟嘌呤碱基突变。

通过对拟南芥幼苗进行EMS浸泡处理,可以获得大量的突变体。

2. Gamma射线法Gamma射线是一种高能辐射,能够直接影响DNA分子结构,从而导致基因突变。

使用Gamma射线进行诱导突变,可以获得不同类型的突变体,包括缺失、插入、点突变等。

3. T-DNA插入法T-DNA是一种细菌表现元(bacterial virulence factor),广泛存在于土壤中的根际细菌Agrobacterium tumefaciens中。

因为T-DNA能够与植物基因组发生同源重组,因此可以通过向植物中转化Agrobacterium,从而将T-DNA插入到植物基因组中,诱导基因突变。

突变基因的分析方法了解突变基因的表达情况,可以通过基因表达谱、荧光素酶检测、Northern blotting、Western blotting等多种方法实现。

其中基因表达谱是最常用的一种方法,能够快速、准确地检测基因的表达情况。

拟南芥突变基因的研究拟南芥作为模式植物,其突变基因的研究对于植物的发育和繁殖等方面具有重要的意义,以下是一些拟南芥突变基因的研究案例。

实验五 拟南芥T DNA插入突变纯合体的鉴定

实验五 拟南芥T DNA插入突变纯合体的鉴定

一ml 一三五 三’引物[一0 mmol/L] 一ml 一三五 三’引物[一0 mmol/L]
三0ml反应体系二:
三0ml反应体系四:
二ml 植物基因组DNA样品[WT]
二ml 植物基因组DNA样品[一一一]
三ml 一0×扩增缓冲液
三ml 一0×扩增缓冲液
0.五 ml Taqase [五U/ml]
0.五 ml Taqase [五U/ml]
0.五 ml dNTP[一0 mmol/L]
0.五 ml dNTP[一0 mmol/L]
一ml 一三五 三’引物[一0 mmol/L] 一ml 一三五 三’引物[一0 mmol/L]
一ml LBa 引物[一0 mmol/L]
一ml LBa 引物[一0 mmol/L]
电泳检测
• 每个大组选两个人点样,电泳结果扫描保存, 下次课看结果,
• LBa一 of pBIN-pROK二 for SALK lines: TGGTTCACGTAGTGGGCCATCG
植物基因组DNA的快速提取
[一]取植物叶片[拟南芥一片叶子],置于一.五ml离心管中,加入四00 ml提取缓冲液;
[二]用研磨棒研磨植物材料,直至缓冲液变为绿色; [三]在台式离心机上一三000 rpm离心五分钟; [四]离心后将上清三00 ml转移至一个新的一.五 ml离心管中; [五]在上清中加入三00 ml异丙醇,混匀后于室温下一三000 rpm条
用无菌水补足体积,
PCR反应条件
八四℃ 三min 三0循环 [八四℃/一min,五五℃/一min,七二℃/一min]; 七二℃ 延伸一0min,
注:反应条件需根据所要扩增产物的大小和 引物的性质进行合适的调整,
PCR安排

拟南芥ems诱变与突变体筛选

拟南芥ems诱变与突变体筛选

• 植物叶片经过充分暗适应后,PSI和PSll均处于
还原状态,在650nm,光强为0.05o.1μmol/m2s的测量红光下,由于Psl主要吸收 远红光,Psll主要吸收红光,此时叶片电子传 递过程主要停留在PSll中,得到稳定的初始荧 光值FO。施加单饱和脉冲(3000μmol/m2 s for 0.8s)后,Psll暂时达到饱和,Psll的电子受体 QA被完全还原,叶绿素荧光产量由基态F(o) 上升到最大值F(m)。这可以决定PSll最大光化 学量子产量,Fv/Fm=(Fm-Fo)/Fm(Maximum quantum yield of PSll),表明最大PSll光能转 化效率。在拟南芥野生型叶片中,常在0.8-0.84 之间。
选择压的确定
• 适当的选择压力应当是既能使突变体的优 势得到发挥,又能使野生型受到足够的压力 而不能表现。在筛选突变体之前,首先要设 计一系列的筛选浓度,以野生型完全不能生 长的浓度确定为筛选浓度。
根据高叶绿素荧光表型筛选突变体
• 其中高叶绿素荧光表型,作为光合电子传递链受损的标 志,广泛地应用于筛选光合组分功能缺失的突变体。在 正常的条件下,光化学反应与非光化学途径活性很高,荧 光的释放很低(约3一5%);相反,如果由于类囊体膜蛋白 复合体结构的改变等原因而造成的光合电子传递的受 阻,则所吸收的光能不能有效传递转变成化学能,便会以 热或高荧光的形式释放出来,使光受体从激发态回到它 的稳定态(基态),导致吸收的能量以红色荧光进行释放 的比例增加,这样我们便能在暗室中观察到与正常植株 所发出的暗红色荧光相比是亮红色的荧光,即产生高荧 光(hcf)的表型从而将突变体筛选出来。
以稳定,得到Ft,在激活光存在下打开单饱和光(a saturating flash of light,持续800ms,光强为 6000μmol/m2 s)脉冲一次,与此同时,测量光脉冲频 率变为20KHz,得最大荧光值Fm。 • 6、等曲线回落下来并达到稳定,关闭激活光,再关闭 测量光。记录Fo,比率(Fm一Fo)/Fm=Fv/Fm,光饱和曲 线等。

拟南芥隐性抗盐单基因突变体的筛选与鉴定

拟南芥隐性抗盐单基因突变体的筛选与鉴定

郭美丽:拟南芥隐性抗盐单基罔突变体的筛选与鉴定1.124抗氧化防御系统的活性J.M.McCord等p“提出的自由基伤害学说,已广泛削于需氧生物细胞伤害机理的研究。

二十世纪80年代以后,人们对盐分胁迫F植物体内抗氧化防御系统进行了大量的研究,并己确定它由一些能清除活性氧的酶系和抗氧化物质组成,如超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(cAT)和抗坏血酸(AsA)等,它们协同作用共同抵抗盐分胁迫诱导的氧化伤害,而单一的抗氧化酶不足以防御这种氧化胁迫。

如SOD催化两个超氧自由基发生歧化反应形成02和H202,H202再被POD和CAT催化除掉。

在整个氧化防御系统中,SOD是所有植物在氧化胁迫中起重要作用的抗氧化酶。

根据结合金属离子的不同,SOD可分为Cu/Zn—SOD,Mn.SOD和Fe—SOD3种类型,Cu/Zn-SOD主要存在与叶绿素和细胞质中,Mn.SOD主要存在于线粒体中,Fe—SOD主要存在与叶绿体中【3“。

一般来讲,在盐分胁迫下,植物体内的SOD等酶活性与植物的抗氧化胁迫能力呈正相关,而且在盐分胁迫下,盐生植物与非盐生植物相比,其SOD、CAT、POD活性更高,因而更能有效地清除活性氧,阻抑膜质过氧化。

此外,在盐胁迫下,植物体内的某些过氧化物质,如抗坏衄酸也有清除体内自由基的生理功能。

刘婉等p…认为,离体小麦叶片在盐胁迫加强条件下,体内抗坏血酸含量下降,用活性氧清除剂处理可明显缓解抗坏血酸含量下降,且外源抗坏血酸能明显缓解由盐胁迫造成的对细胞膜的伤害,降低MDA含量,提高叶绿体的Hill反应活力、叶片光合速率和叶片线粒体呼吸速率。

可见SOD和抗氧化物质等自由基清除系统对保护膜结构,提高植物耐盐性有~定作用。

11.2.5盐胁迫蛋白研究发现,植物在盐胁迫F,体内合成一些新蛋白称为应激蛋白或胁迫蛋白,而且证明某些应激蛋白与植物的抗盐性有关。

N.K.Singh【40】等首次报道了,在烟草盐适应悬浮细胞中存在盐胁迫蛋白,此后又发现在烟草、苜蓿、玉米、甜菜等许多作物中存在盐胁迫蛋白,而且尤以分子量为26kD蛋白质的含量显著,可占总蛋白的10%~12%,且增加量与总蛋白置呈正相关H”。

拟南芥高叶绿素荧光突变体的筛选及基因定位

拟南芥高叶绿素荧光突变体的筛选及基因定位

拟南芥高叶绿素荧光突变体的筛选及基因定位拟南芥高叶绿素荧光突变体的筛选及基因定位摘要:拟南芥(Arabidopsis thaliana)作为广泛应用于植物遗传学研究的模式植物,其高叶绿素荧光突变体的筛选和基因定位,对于深入理解植物生长发育和光能利用机制具有重要意义。

本研究通过化学诱变的方法,筛选得到了一批具有高叶绿素荧光的突变体,并通过遗传学分析和基因定位技术,成功地将其突变基因位点进行了精确定位。

进一步的研究表明,这些突变基因在拟南芥的叶绿素合成和光能利用过程中起到重要的调控作用。

1. 引言拟南芥是一种广泛应用于植物遗传学研究的小型模式植物,由于其基因组小、生命周期短、易于培养和遗传转化等特点,成为了研究植物生物学和发育生物学的理想模式。

2. 实验方法本研究采用化学诱变的方法,通过处理拟南芥种子或幼苗,引发基因突变的发生。

随后,对得到的突变体进行高叶绿素荧光筛选。

将荧光强度明显高于野生型的突变体进行收集和保存,以进一步研究其突变基因的特性。

3. 筛选结果经过筛选,我们获得了一批荧光强度较高的突变体。

通过对这些突变体进行高通量测序和遗传学分析,我们成功地将其突变基因位点定位到染色体上的特定区域。

4. 突变基因的特性进一步对这些突变体进行了功能验证和表型分析,发现突变基因在叶绿素的合成和光能利用过程中起到重要的调控作用。

部分突变体表现出叶绿素合成受阻或过度积累的特征,说明突变基因可能是相关代谢途径中的重要调控基因。

5. 基因定位技术本研究采用了CRISPR/Cas9和T-DNA插入等基因定位技术,成功地将突变基因位点精确定位到拟南芥基因组中。

这些定位结果为进一步研究突变基因的功能和调控机制提供了基础。

6. 结论通过化学诱变筛选和基因定位技术,我们成功地获得了一批拟南芥高叶绿素荧光突变体,并将其突变基因的位点进行了定位。

这些突变体对于深入研究植物叶绿素合成和光能利用机制非常重要,为植物生长发育和农作物的遗传改良提供了有力的工具。

拟南芥基因突变体研究及其分子机理分析

拟南芥基因突变体研究及其分子机理分析

拟南芥基因突变体研究及其分子机理分析拟南芥是一种重要的模式植物,在基因突变体研究中发挥着重要的作用。

本文将从拟南芥基因突变体的定义、研究方法、重要性以及其分子机理等方面进行探讨和分析。

一、拟南芥基因突变体定义及研究方法基因突变体是指在基因序列中发生变异的个体,与野生型(WT)相比,基因突变体的表型有明显的差异。

拟南芥基因突变体是以拟南芥(Arabidopsis thaliana)为材料的基因突变研究。

它具有许多优秀的特性,如短生命周期、小型体型、遗传变异多样化和基因功能高度保守等。

目前,拟南芥基因突变体的研究方法主要分为化学诱变、遗传转化和基因编辑。

其中,化学诱变是通过化学物质引起基因突变,常用的化学物质有Ethyl methane-sulfonate (EMS)和Sodium azide (NaN3)等。

遗传转化是利用外源DNA片段引入目标基因,达到基因敲入/敲除的目的。

基因编辑则是指利用CRISPR/Cas9等基因编辑技术对目标基因进行精准的编辑,从而实现目的基因的敲入/敲除。

这些方法的优缺点各有不同,可以根据实验目的和条件选择适宜的研究方法。

二、拟南芥基因突变体的重要性拟南芥基因突变体研究有着重要的科研意义和现实意义。

首先,拟南芥是植物领域中最具代表性的模式植物之一,研究拟南芥基因突变体可以为解析生物分子机理和育种提供重要的理论依据。

其次,拟南芥基因突变体的发现对研究复杂性状、生长发育和环境响应等现象起着重要作用,同时也对人类生命健康、农业生产、环境保护等方面具有深远的影响。

三、拟南芥基因突变体分子机理分析拟南芥基因突变体分子机理分析是对基因突变体的表型变化进行解析的过程。

在基因突变体的研究中,通常采用遗传学、生物化学和分子生物学等多种技术手段进行深入研究。

遗传学方法主要包括染色体显微镜观察、连锁分析、基因定位和基因组学分析等。

在染色体显微镜观察中,通过观察细胞染色体数目、形状、大小和染色体带的特点,可以发现染色体异常和染色体突变。

拟南芥属植物分子遗传学和突变体筛选研究方法

拟南芥属植物分子遗传学和突变体筛选研究方法

拟南芥属植物分子遗传学和突变体筛选研究方法拟南芥(Arabidopsis thaliana)是目前广泛应用于分子遗传学和突变体筛选的模式植物。

它具有小型体积、短生命周期、易于培养和遗传变异等优点,使其成为研究植物基因功能的理想模型。

下面将介绍拟南芥属植物的分子遗传学和突变体筛选研究方法。

一、拟南芥分子遗传学研究方法2. 基因组学方法:包括全基因组测序(Whole Genome Sequencing, WGS)、基因芯片(Microarray)和下一代测序(Next Generation Sequencing, NGS)等技术,用于分析和比较拟南芥基因组的序列、结构和功能。

3.双杂交法:通过构建酵母杂交系统,研究和鉴定拟南芥基因间的物理和功能相互作用关系,进而揭示拟南芥基因调控网络和信号转导途径。

4. RNA干扰(RNA interference, RNAi)技术:利用沉默诱导的RNA (siRNA)或者镰刀状RNA(hairpin RNA)介导靶向基因的沉默,从而研究和验证拟南芥基因的功能。

二、拟南芥突变体筛选方法1. EMS化学诱变:使用化学诱变剂EMS(Ethyl methanesulfonate),处理拟南芥种子,让其发生突变,形成突变种子库。

进一步筛选和鉴定突变体,识别和研究拟南芥基因的突变功能。

2. 插入序列突变法:通过插入转座子(Transposon)或者T-DNA转座子,将外源序列插入拟南芥基因组,产生随机或特异性的基因突变,进行筛选和分析。

3.含有T-DNA插入的突变体库:使用含有T-DNA插入的突变体库,通过筛选和分离带有T-DNA插入的个体,鉴定和研究拟南芥基因的功能和表达调控。

4.突变体数据库查询:拟南芥基因突变体数据库中收集了大量已经鉴定和命名的突变体信息,可以通过数据库查询,寻找和鉴定具有特定表型的突变体。

拟南芥突变体的观察和鉴别

拟南芥突变体的观察和鉴别

拟南芥突变体的观察和鉴别00911081程万里周一组摘要:拟南芥是目前世界通用的一种高等植物研究的模式生物,属于十字花科,鼠耳芥属,具有其生长快速、后代数量大、遗传和分子实验易操作等等的特点。

这些优点使其成为遗传、发育研究中很好的素材。

本实验选用两种突变型(pid-2和scr-3)与野生型(Ler)进行观察和鉴别,比较其表型上的不同之处并做各种指标的测量以进行确认,最终结果表明pid-2品系发育畸形(表现在花形态异常角果弯曲),scr-3个体生长缓慢(表现在植株和根的长度较短以及败育现象严重)关键词:拟南芥突变体 pid-2 scr-3 Ler1.引言拟南芥是一种世界通用的,在高等植物研究方面十分重要的模式生物,属于十字花科,鼠耳芥属,个体形态小,具有生长周期快,生命力顽强,后代数量多且遗传操作相对简单等诸多优势。

拟南芥基因组小且测序已全部完成。

这些特点也决定了其在遗传学,发育生物学上的不可替代性。

目前发现的拟南芥共有750多个生态型,不同生态型的拟南芥在形态发育,生理反应方面有着相当大的差异,本次选用的Ler野生型属于常见拟南芥品系之一。

而是用pid-2和scr-3突变体与野生型(Ler)进行对比,可以通过各项指标的对比,确定突变基因对拟南芥发育的影响。

2.材料与方法12.1 材料2.1.1生物材料:拟南芥野生型(Ler)种子突变体(pid-2、scr-3)种子1发育生物学实验讲义2.1.2试剂溶液:70%乙醇10%NaClO(次氯酸钠)无菌水2.1.3 仪器用具:MS固体培养平板玻璃涂棒剪刀镊子胶头吸管三角瓶显微镜1.5ml离心管培养土培养钵2.2方法(1)将种子放于4℃冰箱内2-3天,进行种子的纯化处理(2)取适量种子于1.5ml离心管中,加入1ml 70%乙醇,轻微震荡1min(3)吸去乙醇,加入1ml体积分数为10%的NaClO(次氯酸钠),消毒8-10min(4)吸去NaClO,用无菌水冲洗种子5次后,加入600ul无菌水(5)用移液器将水连同种子吸起,均匀涂布于MS 平板(6)吸去并风干培养基表面多余的水分(7)加盖,封口,置于光照培养箱内(8)7-14天后,当幼苗具4片真叶时转入土壤(9)植株生长6周后,进行野生型和突变体的性状鉴别和数据统计3.结果3.1拟南芥发育各时期图图1示拟南芥发育2周整体观2图2 示发育6周的pid-2突变体外观3图3 示发育6周scr-3品系外观43.2发育6周植株数量统计2由于本人样品未拍摄,此图引自施逸豪同学的样品3引自标准图4引自标准图3.2.1 个人移栽统计情况本组共领取约15颗种子,移栽11颗种子,个人共计移栽2颗种子,在2周时成活两棵,在6周时仅有1棵成活。

拟南芥基因突变体筛选和分类的研究

拟南芥基因突变体筛选和分类的研究

拟南芥基因突变体筛选和分类的研究拟南芥(Arabidopsis thaliana)是植物研究中的常用材料,因其具有许多优点:生长快、体形小、基因组测序完成、适应广泛等等。

而生物学研究中最为基础的就是基因研究,因此引发人们对拟南芥基因的探索和研究。

本文将会介绍拟南芥基因的突变体筛选和分类的研究。

一、拟南芥的基因突变体筛选在拟南芥中,基因突变体是非常重要的,由于拟南芥基因组的测序已经完成,因此,科研人员可以利用现代高通量筛选技术,来快速建立大规模的拟南芥基因突变体资源库。

1.1 传统筛选法最常用的传统筛选方法是化学诱变、X射线、γ射线和紫外线辐射等方法,其基本原理是:通过人为或其他因素对植物种子或幼苗进行处理,使其基因发生变异,最终产生突变体。

其中,化学诱变是使用化学物质诱导植物基因发生变异,这种方法有较大优势,因为可以在不依赖实验室设备的情况下大规模筛选。

但是,化学诱变方法可能会引起伪突变和失败的突变率较高。

1.2 高通量筛选法随着科学技术的发展,高通量筛选方法得到了广泛应用,尤其是基于基因编辑技术的筛选方法。

目前流行的高通量筛选法有:T-DNA插入、CRISPR/Cas9、RNA干扰等。

其中,T-DNA插入是在拟南芥基因组中随机插入T-DNA,每个T-DNA都能够导致拟南芥基因表达的改变。

因此,T-DNA插入是一种高效、简单、易于筛选和操作的方法,并且在拟南芥研究中应用广泛。

二、拟南芥基因突变体分类拟南芥基因突变体分类是指将筛选得到的突变体按照突变部位和性质分为不同的类型,以方便基因功能的研究和应用。

2.1 快速分离突变位点的方法首先,需要快速、准确地确定突变体的位点,以此进行后续的基因功能分析,现在,基因突变体的位点鉴定方法已经得到了较大的改进,常见的方法包括PCR-RFLP、dCAPS和PCR-sequencing等。

其中,PCR-RFLP是一种快速、简便的检测方法,基本原理是:通过PCR扩增突变体和野生型基因区段,然后将PCR产物限制性酶切,从而分辨突变体和野生型基因。

拟南芥抗菌核病突变体的筛选

拟南芥抗菌核病突变体的筛选
用 T—D A 插 入 突变 创 造 抗/ 表 型 , 后 克 隆 研 N 感 然
究相关基 因 。Lu等 发 展 了一 种有效 的热不 对 i 称 P R(h r a ay m tcit lcdP R, A L— C t m l sm er n r e C T I e i ea
试验用 拟南芥 突变体 由中 国科学 院遗传 与发育 生 物学研究 所左 建 儒实 验 室 构 建 ・ , 独 特 的化 ]是
诱 导激活标 签系统 创造 的 5 6 16 0株 拟南芥 突变体 。
筛选 方面 , 尽管经过 几 十年 努力 , 筛选 了数 千份 品种 资源 , 到 了数份 高耐菌核 病 的材料 , 在所 有菌核 得 但 病 寄主作物 中 , 目前 未发 现免 疫类 型 育 种仍面临很 多困难 。 , 也没 有得 到满 足研究 和育 种需 求 的抗 源 , 遗传 研 究和 抗病 使
学诱 导型 的激活标 签 突变 , 有 材 料为 C lm i 所 ou b a生 态 型 。本 研究所用 群体 为 转基 因 T 2代 扩繁 的种子 ( 2代苗经 卡那 霉 素 筛选 后 , 抗 卡 那霉 素 单 株上 T 从
收获 的种 子 ) 分 单 株 收 获 , 后 每 2 , 然 0个 独 立 的 转
染所造成 的一种世 界性病 害 , 以感 染 7 可 5个科 ,5 40
多种 植 物 种 或 亚 种 … , 病 是 油 菜 最 严 重 的 病 该 害 ] 。对作 物抗菌核 病 鉴定 筛 选 方法 、 源筛 选和 抗 转基 因抗 病 品种 的培 育 已有 较 多 的 研究 报 道 目的的方法 。 在抗 病鉴 定 方法 方面 已形 成 了适用 于不 同抗 性鉴定 , 中菌 核病 毒素 草 酸法 可 对 油菜 其

利用两种方法筛选拟南芥uro突变体的回复子

利用两种方法筛选拟南芥uro突变体的回复子

第4期
张亮 , 等 : 利用两种方法筛选拟南芥 ur o 突变体的回复 子
87
种子被充分浸润 . 取装有种子的小袋, 置于 15 mL 重蒸水中 , 加 15~ 45 L 的 EM S 原液至 终浓度 0. 1% ~ 0 . 3% ( v / v ) 混匀. 室温下, 于脱色摇床上避光 8~ 12 h, 取出装有种子的小 袋, 以重蒸水洗涤种子一次, 再将种子浸在 10 mL 重蒸水中 2~ 4 h, 或以清水缓缓冲洗 2~ 4 h, 将处理好的种子播种于土壤中 . 1. 2. 3 A c/ ur o 纯合植株的获得 将含有纯合 A c 基因的野生型 L er ( 由 Pro f M a H o ng 提供) 与 ur o 杂交 , 获得 F 1 代, F1 代中 URO 基因和 A c 基因都是杂合的, 种植 F1 代 , 单收 F2 代 , 继续种植 F2 代, 要单收 F2 代中 uro 表型植株的种子, 继续种植 F3 代 , 每个株系至少种植 20 棵, 提取 F 3 代中全是 ur o 突变体表型株系的、 至少 16 棵单株的 DNA, 用 PCR 的方法检测是否有 A c 基因存在 , 如果 所有单株中都有 A c 存在, 就说明该株系植株的 A c 基因是纯合的 , 那么该株系的种子就是 A c/ ur o 纯合的植株 . 1. 2. 4 P CR 聚合酶链式反应 ( Poly merase Chain React io n) , 简称 P CR. PCR 程序 : ∀ 94 ! 3 m in, # 94 ! 30 s, ∃ 56 ! 30 s( 55 ! 30 s) , %72 ! 30 s( 72 ! 45 s) , & 30 个循环从 # 到 % , ∋ 72 ! 10 min.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HY5‐215The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus‐induced development of root and hypocotyl, Genes Dev. 1997 Nov 15; 11(22): 2983–2995.In the genome of hy5‐215, the splicing acceptor site of the first intron (=G) was replaced by A, suggesting that this mutation causes aberrant RNA processingIn hy5‐215, the nucleotide g‐1117 (white letter), which is the last nucleotide in the first intron, is replaced by an aHY5‐215的突变位点与野生型相比,并没有酶切位点的变化。

引物在有一个错配位点的情况下,可以产生一个新的酶切位点PsiI,从而将野生型、杂合、纯合进行区分。

Design proper primers and choose proper a enzyme by dCAPS Finder 2.0(/dcaps/dcaps.html)HY5proF GAGAGAATATGCGAGTGAATGAC Len 22 TM 54 HY5proR TCTAAAGTCTCTTTTATGTTTTA T A Len 25 TM 50.8PsiI:但是,实验室并没有PsiI ,所以只能再去寻找新的内切酶。

在设计的引物有2个错配位点时,可以产生新的酶切位点,AluI 将野生型切断。

HY5-215 F CGTATCTCCTCATCGCTTTCAATAG Len 25 TM 60.0 HY5-215 R GTCCCGCTCTTTTCCTCTTTATC Len 23 TM 60.8AluI:MYCTThe Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses, Plant Cell. 2011 Feb; 23(2): 701–715.MYC2Mutagen : T‐DNA insertionInsertion FlankingSequence:TAAAACCGCCGGAGAATCAGATCACTCCGATCTAGAAGCT(Length:40)根据T‐DNA PrimerDesign(/tdnaprimers.2.html)设计引物PRODUCT_SIZE 1186Myc2LP TGGTTTTTCTTGGTTTCGATG Len 21 TM 59.96Myc2RP CTCTAATCATTGCGTCCCAAC Len 21 TM 59.58LBb1.3 ATTTTGCCGATTTCGGAAC BP+RP_PRODUCT_SIZE 558‐858MYC3Mutagen : T‐DNA insertionmyc3 F AAGGTGGGTTGTTGAAATCTAATG Len 24 TM 58.3myc3 R GTTTTCTCCGACTTTCGTCATCA Len 23 TM 61T-DNA ATATTGACCATCATACTCATTGC Len 23 TM 55.2MYC4Mutagen : T‐DNA insertionmyc4 F TCTCTCACAACTTGATCCAGCTAA Len 24 TM 60.0myc4 R TAACCGATTACCATCTCAACCAA Len 23 TM 59.2T-DNA ATATTGACCATCATACTCATTGC Len 23 TM 55.2Phyb‐9Mutations in the gene for the red/far‐red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell v.5(2); 1993 Febhy3-EMS742 is a G-toA mutationphyb9 F CTGTTCAATCGCAGAAACTCGCGGT Len25phyb9 R CCGTCACATTTCACTAAGTCCAT Len 23 TM58.6MnlI:但是,实验室并没有MnlI,所以只能再去寻找新的内切酶。

在设计的引物有1个错配位点时,可以产生新的酶切位点,AluI将突变型切断。

phyb-9 F TCCAGCGAGGTGGTTACATTCAG Len 23 TM 63.9phyb-9 R AAGTGTGATGGCAAACAACCAAAGC Len 25 TM 64AluI:COP1‐4The weak copl-4 allele represents a C-to T mutation that changes theGln-283 CAA codon to a UAA stop codon.cop1‐4的突变位点与野生型相比,并没有酶切位点的变化。

引物在有一个错配位点的情况下,可以产生一个新的酶切位点MaeIII,可以将突变体的切断,从而将野生型、杂合、纯合进行区分。

cop1--4 F GGAAGCACTACAAAGGGTCGGTT TM 63.7cop1--4 R TGAGACAGTTGACTGATTCAAACGTT TM 61.9MaeIII:但是,实验室并没有MaeIII,所以只能再去寻找新的内切酶。

在设计的引物有2个错配位点时,可以产生新的酶切位点,MluI将突变型切断。

cop1‐4 F GGATGCGCTGAGTGGGTCAGACGCG Len 25 TM 72.0cop1‐4 R TCACCTTGATACAATGTTGGCTG Len 23 TM 60.3MluI:pifqMultiple phytochrome‐interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr. Biol. 2008a;18:1815–1823.pif1Phytochrome‐interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis, Science 305, 1937‐1941Mutagen T-DNA insertionpif1‐1 F ACTTCTTGGCTTCATTATCCTCT Len 23 TM 56.5pif1‐1 R CTCAATAGCTTCATCTAGCATCG Len 23 TM 56.9LBb1.3 ATTTTGCCGATTTCGGAAC Len 19 TM 55.2pif3The phytochrome‐interacting transcription factor, PIF3, acts early, selectively, and positively in light‐induced chloroplast development. Proc Natl Acad Sci U S A 101, 16091‐16098.pif3‐3 wt‐F AGAAGCAATTTGGTCACCATGCTCpif3‐3 wt‐R TGCATACAAATAGTCGATCGTATGpif3‐3 del‐F GGTGTGTATGTGAGAAGGTACATCCATCGpif3‐3 del‐R AAGCTTAGCTTTGGTGAGCCTGAAAAGCTCpif4The Arabidopsis phytochrome‐interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20, 337‐352.Mutagen T-DNA insertionpif4‐2 WT F TTCATTCATTGGTGTGTTTTTGCpif4‐2 WT R TCCAAACGAGAACCGTCGGTpif4‐2 T‐DNA TAGCATCTGAATTTCATAACCAATCTCGATACACpif5The basic helix‐loop‐helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. Plant Cell 19, 3915‐3929.根据T‐DNA PrimerDesign(/tdnaprimers.2.html)设计引物pif5-3 F CCTTGCTCGATTTTTGTTACG Len 21 TM 59.77pif5-3 R CGATTTGTTACCCATGGTTTG Len 21 TM 60.10LBb1.3 ATTTTGCCGATTTCGGAAC。

相关文档
最新文档