SMT焊点质量检测方法

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SMT焊点质量检测方法

热循环为确保电子产品德量稳固性和可靠性,或对失效产品进行剖析诊断,一般需进行必要的焊点质量检测。SM T中焊点质量检测办法很多,应当依据不同元器件、不同检测项目等选择不同的检测方法。

1 焊点质量检测方式

焊点质量常用检测方法有非破坏性、破坏性和环境检测3种,见表1所示。

1.1 目视检测

目视检测是最常用的一种非破坏检测方法,可用万能投影仪或10倍放大镜进行检测。检测速度和精度与检测职员才能有关,评价可依照以下基准进行:

⑴润湿状况钎料完整笼罩焊盘及引线的钎焊部位,接触角最好小于20°,通常以小于3 0°为标准,最大不超过60°。

⑵焊点外观钎料流动性好,表面完全且平滑光明,无针孔、砂粒、裂纹、桥连和拉尖等渺小缺点。

⑶钎料量钎焊引线时,钎料轮廓薄且引线轮廓显明可见。

1.2 电气检测

电气检测是产品在加载条件下通电,以检测是否满足所请求的规范。它能有效地查出目视检测所不能发明的微小裂纹和桥连等。检测时可应用各种电气丈量仪,检测导通不良及在钎焊进程中引起的元器件热破坏。前者是由渺小裂纹、极细丝的锡蚀和松香粘附等引起,后者是由于过热使元器件失效或助焊剂分解气体引起元器件的腐化和变质等。

1.3 X-ray 检测

X-ray检测是应用X射线可穿透物资并在物质中有衰减的特征来发明缺陷,主要检测焊点内部缺陷,如BGA、CSP和FC焊点等。目前X射线装备的X光束斑一般在1-5μm范畴内,不能用来检测亚微米规模内的焊点微小开裂。

1.4 超声波检测

超声波检测利用超声波束能透进金属材料的深处,由一截面进入另一截面时,在界面边沿发生反射的特色来检测焊点的缺陷。来自焊点表面的超声波进入金属内部,碰到缺陷及焊点底部时就会发生反射现象,将反射波束收集到荧光屏上形成脉冲波形,根据波形的特色来断定缺陷的位置、大小和性质。超声波检验具有敏锐度高、操作便利、检验速度快、本钱低、对人体无害等长处,但是对缺陷进行定性和定量判定尚存在艰苦。

扫描超声波显微镜( C-SAM)重要应用高频超声(一般为100MHz以上)在材料不持续的处所界面上反射产生的位相及振幅变更来成像,是用来检测元器件内部的分层、空泛和裂纹等一种有效办法。采用微声像技巧,通过超声换能器把超声脉冲发射到元件封装中,在表面和底板这一深度范畴内,超声反馈回波信号以稍微不同的时光间隔达到转化器,经过处置就得到可视的内部图像,再通过选通回波信号,将成像限制在检测区域,得到缺点图。一般采取频率从100MHz到230MHz,最高可达300MHz,检测辨别率也相应进步。

1.5 机械性损坏检测

机械性破坏检测是将焊点进行机械性破坏,从它的强度和断裂面来检讨缺陷的。常用的评价指标有拉伸强度、剥离强度和剪切强度。因为对所有的产品进行检测是不可能的,所以只能进行适量的抽检。

1.6 显微组织检测

显微组织检测是将焊点切片、研磨、抛光后用显微镜来察看其界面,是一种发明钎料杂质、熔蚀、组织结构、合金层及渺小裂纹的有效办法。焊点裂纹一般呈中心对称散布,因而应尽量可能沿对角线方向制样。显微组织检测和机械性损坏检测一样,不可能对所有的成品

进行检测,只能进行适量的抽检。光学显微镜是最常用的一种检测仪器,放大倍数一般达1 0000倍,可以直观的反应材料样品组织形态,但辨别率较低,约20nm。

1.7 其它几种检测方式

染色试验荧光渗透剂检测是利用紫外线照耀某些荧光物资产生荧光的特征来检测焊点表面缺陷的方法。检验时先在试件上涂上渗透性很强的荧光油液,停留5~10min,然后除净表面过剩的荧光液,这样只有在缺陷里存在荧光液。接着在焊点表面撒一层氧化镁粉末,振动数下,在缺陷处的氧化镁被荧光油液渗透,并有一部分渗透缺陷内腔,然后把过剩的粉末吹掉。在暗室里用紫外线照耀,留在缺陷处的荧光物质就会发出照亮的荧光,显示有缺陷。磁粉检测是应用磁粉检测漏磁的方法,检测时利用一种含有细磁粉的薄膜胶片,记载钎焊焊点中的质量变化情形。使用后的几分钟内,胶片凝固并把磁粉“ 凝结”在必定的地位上,就可以察看被检测试件上的磁粉分布图形,断定是否有缺陷。由于大多数钎料是非磁性的,因此不常用于钎焊焊点的检验。

化学分析方法可丈量样品的均匀成分,并能达到很高精度,但不能给出元素分布情况。染色与渗透检测技巧(D&PT)是通过高渗透性高着色性染料渗透到焊点开裂区域,然后拉开焊点,观测焊点内部开裂水平和分布。试验时必需警惕把持拉断器件时的外力,以保证焊点持续沿预开裂区域断开。

X-ray衍射(XRD)是通过X-ray在晶体中的衍射现象来剖析晶体结构、晶格参数、缺点、不同结构相的含量及内应力的方法,它是树立在必定晶格结构模型基本上的间接方法。

电子显微镜(EM)是用高能电子束做光源,用磁场作透镜制造的电子光学仪器,主要包括扫描电子显微镜(SEM),透射电子显微镜(TEM),电子探针显微镜(EPMA)和扫描透射电子显微镜(STEM)。其中SEM用来视察样品表面形貌,TEM用来察看样品内部组织形态和结构,EPMA用来断定样品微观区域化学成分,STEM具有SEM和TEM的双层功效。此外,红外热相(IRTI)分析、激光全息照相法和实时射线照相法等也可用于焊点质量检测。表2为不同分析项目标一些主要分析方法。

2 加载检测及可靠性评价

产品失效主要原因包含温度、湿度、振动和灰尘等,各占比例为55%、19%、20%和6%。加载检测是每一个部件在适用条件下进行加载以检测其动作状态,方法有振动检测、冲击检测、热循环检测、加速度检测和耐压检测等,一般依据适用条件把它们组合起来进行,且要求对每一个成品进行检测。这种方法最为严厉,可靠性高,只有航天产品等可靠性要求特殊严厉的情况下才予以采用。

近年来国际上采用一种全新的焊点可靠性评估方法,即等温加速扭转循环法(MDS),通过在必定温度下周期扭转全部印刷电路板来考核焊点的可靠性。该方法在焊点内产生的应力以剪切应力为主,和温度循环类似,因而失效模式和机理极为类似,但试验周期却可从温度循环的几个月减少到几天。该方法不但可以用来快速评估焊点可靠性,同时也可以用来进行快速设计和工艺参数优化。

可靠性评价分类见表3。迁移是金属材料在环境下化学反映形成的表面侵蚀现象,其生长过程分为阳极溶解、离子迁移和阴极还原,即金属电极正极溶解、移动,在负极析出导致短路。迁移的发生形态常称为Dendrite和CAF(见图1)。Dendrite指迁移使金属在PCB 的尽缘部表面析出,或者是形成树枝状的氧化物;CAF指金属顺着印制板内部的玻璃纤维析出,或者使氧化物作纤维状的延长。

金属离子的指标可用尺度电极电位Eo来表现,其中Sn比Pb和Cu稳固,能形成维护性高的纯态氧化膜,克制阳极溶解。电极电位的大小不仅取决于电对的天性,还与加入电极反响的各种物资的浓度有关。对于大多数电对来说,由于(H+ 或OH-)直接参与了电极反映,因此电极电位还与pH值有关:pH值越高,电极电位越小。另外,助焊剂残留假如不清洗清

相关文档
最新文档