33角的概念、任意角三角函数
角的概念的推广与任意角的三角函数

❖ 小于90°的角;锐角;第一象限的角; 0°~90°的角.
❖ 7.三角函数定义中,角α的三角函数值 仅仅与角α的终边位置有关,而与终边上 点P的位置无关.
❖ 一、构造思想
❖ [例1] 已知:α∈
,求证:
sinα<α<tanα.
❖ 分析:构造单位圆,利用单位圆中的三角 函数线及三角形和扇形的面积来证明.
时针方向旋转所形成的角叫做负角.若一
条射线没作任何旋转,称它形成了一个零
角.
原点
x轴的非负半
❖轴2.象限角 终边
❖ 使角的顶点与
重合,角的始边与
❖ 重合.角的
落在第几象限,就说这
❖ 3.象限界角(轴线角)
❖ 即终边落在坐标轴上
的角.
❖ 4.终边相同的角
❖ 所有与角α终边相同的角,连同角α在内, 可构成一个集合{β|β=α+k·360°,
三角函 数
定义域
sinα
R
cosα
R
tanα {α|α≠kπ+,k∈Z}
❖ 10.各象限内角的三角函数值的符号如下 图所示:
❖ 三角函数正值口诀:Ⅰ全正,Ⅱ正弦,Ⅲ 两切,Ⅳ余弦.
❖ 误区警示
❖ 1.引入弧度制后,角的表示要么采用弧 度制,要么采用角度制,两者不可混用.
❖ 2.相等的角终边一定相同,但终边相同 的角却不一定相等,终边相同的角有无数 个,它们之间相差360°的整数倍.
k∈Z}或{β|β=α+2kπ,k∈Z},前者α用 角度制表示,后者α用弧度制表示.
❖ 5.弧度制 半径
❖ 把长度等于 长的弧所对的圆心角叫1
弧度的角.以弧度作为单位来度量角的单
位制叫做弧度制,它的单位符号是rad,
三角函数知识点归纳总结

三角函数知识点归纳总结三角函数一、任意角、弧度制及任意角的三角函数1.任意角角的概念可以推广为正角、负角、零角,根据旋转的方向不同。
同时也可以根据终边的位置分为象限角和轴线角。
对于一个角α,如果它的顶点与原点重合,始边与x轴的非负半轴重合,那么它就是一个象限角,终边落在第几象限就称它为第几象限角。
各象限角的集合分别为:第一象限角:α=k·360°+α,k∈Z,αXXX°<α< k·360°+90°第二象限角:α=k·360°+90°+α,k∈Z,αXXX°+90°<α< k·360°+180°第三象限角:α=k·360°+180°+α,k∈Z,αXXX°+180°<α< k·360°+270°第四象限角:α=k·360°+270°+α,k∈Z,αXXX°+270°<α< k·360°+360°终边在x轴上的角的集合为:α=k·180°,k∈Z终边在y轴上的角的集合为:α=k·180°+90°,k∈Z终边在坐标轴上的角的集合为:α=k·90°,k∈Z2.弧度制弧度制是另一种角度量方式,其中1弧度的角是指长度等于半径长的弧所对的圆心角。
弧度与角度可以相互换算,其中360°=2π弧度,180°=π弧度。
对于一个半径为r的圆,它的圆心角α所对的弧长为l,则角α的弧度数的绝对值是α=l/r(弧度制),它的周长为C=2r+l,面积为S=lr=αr²。
3.任意角的三角函数定义对于一个任意角α,它的终边上任意一点P(x,y),它与原点的距离为r=√(x²+y²),则角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。
高三专题三角函数与解三角形总结归纳

三角函数一. 任意角的概念与弧度制 (一)角的概念的推广 1.角概念的推广:在平面内,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角就是多少度角.按不同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角.习惯上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边.射线旋转停止时对应的边叫角的终边. 2.特殊命名的角的定义:(1)正角,负角,零角 :见上文.(2)象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角、第三象限角、第四象限角. (3)轴线角:角的终边落在坐标轴上的角.终边在x 轴上的角的集合: {}|180,k k Z ββ=⨯︒∈ 终边在y 轴上的角的集合: {}|18090,k k Z ββ=⨯︒+︒∈终边在坐标轴上的角的集合:{}|90,k k Z ββ=⨯︒∈ (4)终边相同的角:与α终边相同的角:2,x k k Z απ=+∈ (5)与α终边反向的角:()21,x k k Z απ=++∈终边在y x =轴上的角的集合:{}|18045,k k Z ββ=⨯︒+︒∈ 终边在y x =-轴上的角的集合:{}|18045,k k Z ββ=⨯︒-︒∈(6)若角α与角β的终边在一条直线上,则角α与角β的关系:180,k k Z αβ=⨯︒+∈ (7)成特殊关系的两角若角α与角β的终边关于x 轴对称,则角α与角β的关系:360,k k Z αβ=⨯︒-∈ 若角α与角β的终边关于y 轴对称,则角α与角β的关系:360180,k k Z αβ=⨯︒+︒-∈ 若角α与角β的终边互相垂直,则角α与角β的关系:36090,k k Z αβ=⨯︒+±︒∈注意: (1)角的集合表示形式不唯一; (2)终边相同的角不一定相等,相等的角终边一定相同.(二)弧度制1.弧度制的定义:lRα=2.角度与弧度的换算公式:180π︒= 3602π︒= 10.01745︒= 157.305718'=︒=︒注意: (1)正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;(2)一个式子中不能角度、弧度混用.二. 任意角三角函数 (一)三角函数的定义 1.任意角的三角函数定义正弦r y =αsin ,余弦r x =αcos ,正切xy=αtan ,余切y x =αcot2.三角函数的定义域(二)单位圆与三角函数线 单位圆的三角函数线定义如图(1)PM 表示α角的正弦值,叫做正弦线;OM 表示α角的余弦值,叫做余弦线. 如图(2)AT 表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.(三)同角三角函数的基本关系式(1)sin csc 1,cos sec 1,tan cot 1αααααα⋅=⋅=⋅= (2)商数关系:ααααααcot sin cos ,tan cos sin == (3)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+=(四)诱导公式(奇变偶不变,符号看象限)()()()()sin sin cos cos tan tan cot cot πααπααπααπαα+=-+=-+=+= ()()()()s i n 2s i n c o s 2c o s t a n 2t a n c o t 2c o t πααπααπααπαα-=--=-=--=-()()()()s i n s i n c o s c o s t a n t a n c o t c o tπααπααπααπαα-=-=--=--=-sin cos 2cos sin 2tan cot 2πααπααπαα⎛⎫+= ⎪⎝⎭⎛⎫+=- ⎪⎝⎭⎛⎫+=- ⎪⎝⎭ s i n c o s 2c o s s i n 2t a n c o t 2πααπααπαα⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭三. 三角函数的图象与性质(一)基本图象1.正弦函数2.余弦函数3.正切函数(二)函数图象的性质正弦、余弦、正切、余切函数的图象的性质四. 和角公式 两角和与差的公式βαβαβαsin sin cos cos )cos(-=+βαβαβαsinsin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+()s i n s i n c o sc o s s i nαβαβαβ-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-五. 倍角公式和半角公式 (一)倍角与半角公式αααcos sin 22sin =2cos 12sin αα-±=ααααα2222sin211cos 2sin cos 2cos -=-=-= 2cos 12cos αα+±= ααα2tan 1tan 22tan -=s i n 1c o s t a n 21c o s s i n αααααα-==+(二)万能公式2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=六. 三角函数的积化和差与和差化积公式()()1s i n c o s s i n s i n 2αβαβαβ=++-⎡⎤⎣⎦ ()()1c o ss i n s i n s i n 2αβαβαβ=+--⎡⎤⎣⎦ ()()1c o s c o s c o s c o s 2αβαβαβ=++-⎡⎤⎣⎦ ()()1s i n s i n c o s c o s 2αβαβαβ=-+--⎡⎤⎣⎦ s i n s i n 2s i n c o s 22αβαβαβ+-+= 2c o s 2c o s 2c o s c o s βαβαβα-+=+s i n s i n 2c o s s i n 22αβαβαβ+--= co s c o s 2s i n s i n 22αβαβαβ+--=-sin15cos 754︒=︒=sin 75cos154︒=︒=tan15cot 752︒=︒=tan 75cot152︒=︒=+七. 辅助角公式(合一变形)()sin cos ,tan ,,22b a x b x x a ππϕϕϕ⎛⎫+=+=∈- ⎪⎝⎭一. 恒等变换 (一)基础题型1.(2015·福建)若5sin 13α=-,且α为第四象限角,则tan α=( ) A.125B.125- C.512D.512-2.已知α是第二象限的角,()4tan 23πα+=-,则tan α=________3.=________4.已知0θπ<<,1tan 47πθ⎛⎫+= ⎪⎝⎭,则sin cos θθ+=________5.方程()233102x ax a a +++=>两根tan ,tan αβ,且,,22ππαβ⎛⎫∈- ⎪⎝⎭,则αβ+=________6.已知()tan 4cos 2,22ππθπθθ⎛⎫-=-< ⎪⎝⎭,则tan2θ=( )A.C.(二)诱导公式1.已知奇函数()f x 在[]1,0-上为单调减函数,若,αβ为锐角三角形内角,则( )A.()()cos cos f f αβ>B.()()sin sin f f αβ>C.()()sin cos f f αβ<D.()()sin cos f f αβ>2.已知,,2παβπ⎛⎫∈ ⎪⎝⎭且cos sin 0αβ+>,则下列各式中成立的是( )A.αβπ+<B.32παβ+>C.32παβ+=D.32παβ+<(三)互余互补sin cos 2πθθ⎛⎫-= ⎪⎝⎭ c o s s i n 2πθθ⎛⎫-= ⎪⎝⎭ sin()sin πθθ-= c o s ()c o sπθθ-=-1.已知4cos 35πθ⎛⎫-= ⎪⎝⎭,则sin 6πθ⎛⎫+= ⎪⎝⎭________;2cos 3πθ⎛⎫+=⎪⎝⎭2.(2016·广州检测)已知1cos 123πθ⎛⎫-= ⎪⎝⎭, 则5sin 12πθ⎛⎫+=⎪⎝⎭( )A.13 B.3C.13-D.3-3.(2017·合肥模拟)已知1cos cos ,,63432ππππααα⎛⎫⎛⎫⎛⎫+⋅-=-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求sin 2α的值; (2)求1tan tan αα-的值.(四)配凑角(已知条件会给θ范围)1.已知0,2πα⎛⎫∈ ⎪⎝⎭,若3cos 65πα⎛⎫+= ⎪⎝⎭,则sin 12πα⎛⎫-= ⎪⎝⎭2.设()21tan ,tan 544παββ⎛⎫+=-= ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( )A.138B.322C.1318D.13223.(2017·成都模拟)若()sin 2,sin 510αβα=-=且3,,,42ππαπβπ⎡⎤⎡⎤∈∈⎢⎥⎢⎥⎣⎦⎣⎦,则αβ+=( ) A.74πB.94πC.54π或74πD.54π或94π4.若()111cos ,cos ,0,,,71422ππααβααβπ⎛⎫⎛⎫=+=-∈+∈ ⎪ ⎪⎝⎭⎝⎭,则β=( )A.3π- B.6πC.3πD.6π-5.若3335,,0,,cos ,sin 44445413πππππαβαβ⎛⎫⎛⎫⎛⎫⎛⎫∈∈-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()sin αβ+=________6.已知sin sin 3παα⎛⎫++= ⎪⎝⎭cos 3πα⎛⎫-= ⎪⎝⎭( )A.45-B.35-C.45D.35(五)升角(一倍角、二倍角转换) 解题思路:2cos 212sin θθ=- 2c o s 22c o s 1θθ=-一) 升角+诱导公式1.(2016·宿州模拟)若1sin 43πα⎛⎫+= ⎪⎝⎭,则cos 22πα⎛⎫-= ⎪⎝⎭( )A.9B.9-C.79D.79-2.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭=( )A.19-C. D.193.(2016·南昌三模)已知tan 24πα⎛⎫+= ⎪⎝⎭,则tan 2α=( )A.34B .35C.34-D.35-4.已知1sin 43x π⎛⎫+= ⎪⎝⎭,则sin 42cos3sin x x x -=( )A.79B.79-C.9D.9-二)升角+互余、互补1.已知1sin 33x π⎛⎫+= ⎪⎝⎭,则5sin cos 233x x ππ⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭________2.(2017·江西新余三校联考)已知7cos 238x π⎛⎫-=- ⎪⎝⎭,则sin 3x π⎛⎫+= ⎪⎝⎭( )A.14B.78C.14±D.78±三)升角+配凑1.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭的值为( )A.19-B.9C.9-D.192.已知33cos ,4522πππαα⎛⎫+=≤< ⎪⎝⎭,则cos 24πα⎛⎫+= ⎪⎝⎭________3.已知cos 0,4102ππθθ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin 23πθ⎛⎫-= ⎪⎝⎭________ (六)平方一)sin cos c θθ+=解题思路:2(sin cos )1sin 2θθθ±=± 1.已知4sin cos 3αα-=,则sin 2α=________2.已知,2παπ⎛⎫∈ ⎪⎝⎭,且sin cos 222αα+=,则cos α=________3.已知1sin cos 3αα+=,则2sin 4πα⎛⎫-= ⎪⎝⎭( )A.118B.1718C.89D.94.已知()1sin cos ,,05x x x π+=∈-.(1)求sin cos x x -的值;(2)求2sin 22sin 1tan x xx+-的值.5.已知4sin cos 034πθθθ⎛⎫+=<< ⎪⎝⎭,则sin cos θθ-=________6.若,2παπ⎛⎫∈ ⎪⎝⎭,且3cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α=( )A.118B.118-C.1718D.1718-7.若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值为( )A.12-+B.12+ C.18.若,22sin sin =+βα则βαcos cos +的取值范围________二)sin cos a b c θθ+=1.已知2sin cos 2αα+=,则tan 2α=________2.(2016·厦门质检)若2sin 21cos2αα=-,则tan α=________3.(2016·开封模拟)已知12sin 5cos 13αα-=,则tan α=( )A.512- B.125-C.125±D.712±4.已知sin αα+=tan α=( )A.2C.2-D.(七)12tan tan sin 2θθθ+= (2016·青岛模拟)化简:211tan sin 22cos tan 2αααα⎛⎫+⋅-= ⎪⎝⎭________(八)齐次式 1.若tan 2α=,则2sin 3cos 4sin 9cos αααα-=-________;224sin 3sin cos 5cos αααα--=________2.(2015·广东)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值.3.(2016·天一大联考)已知函数()()log 24a f x x =-+(0a >且1a ≠),其图象过定点P ,角α的始边与x 轴的正半轴重合,顶点与坐标原点重合,终边过点P ,则sin 2cos sin cos αααα+=-________4.(广东省广州2017届高三下学期第一次模拟)已知tan 2θ=,且π0,2θ⎛⎫∈ ⎪⎝⎭,则co s 2θ=( ) A.45B.35C.35-D.45-5.已知3tan 5α=-,则sin 2α=( )A.1517B.1517- C.817-D.8176.若sin 3sin 02παα⎛⎫++= ⎪⎝⎭,则cos2α=( )A.35-B.35C.45-D.45二. 三角函数图象的变换 (一)图象平移和伸缩1.将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移4π个单位,所得函数图象的一条对称轴的方程是( )A.12x π= B.6x π=C.3x π=D.12x π=-2.已知函数()()()sin cos 0,2f x x x πωϕωϕωϕ⎛⎫=+++>< ⎪⎝⎭的最小正周期为π,且()()f x f x -=,则( )A.()f x 在0,2π⎛⎫⎪⎝⎭上单调递减B.()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递减C.()f x 在0,2π⎛⎫⎪⎝⎭上单调递增D.()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递增3.将函数()()cos f x x x x R =∈的图象向左平移()0αα>个单位长度后,所得到的图象关于原点对称,则α的最小值为( )A.12πB.6πC.3πD.56π4.已知函数()()()sin 2cos 0y x x πϕπϕϕπ=+-+<<的图象关于直线1x =对称,则sin 2ϕ=______5.(2014·辽宁卷)将函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应的函数( )A.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减B.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增C.在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减D.在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增6.(2017·渭南模拟)由()y f x =的图象向左平移3π个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,得到2sin 36y x π⎛⎫=- ⎪⎝⎭的图象,则()f x 的解析式为( )A.()32sin 26f x x π⎛⎫=+ ⎪⎝⎭B.()2sin 66f x x π⎛⎫=- ⎪⎝⎭C.()32sin 23f x x π⎛⎫=+ ⎪⎝⎭D.()2sin 63f x x π⎛⎫=+ ⎪⎝⎭7.(2014·安徽)若将函数()sin 2cos2f x x x =+的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值为( ) A.8πB.4πC.38πD.5π48.(2016·广东汕头模拟)将函数()sin 6y x x R π⎛⎫=+∈ ⎪⎝⎭的图象上所有点的纵坐标不变,横坐标缩小到原来的12倍,再把图象上各点向左平移4π个单位长度,则所得的图象的解析式为( ) A.5sin 26y x π⎛⎫=+⎪⎝⎭B.1sin 26y x π⎛⎫=+ ⎪⎝⎭C.2sin 23y x π⎛⎫=+ ⎪⎝⎭D.15sin 212y x π⎛⎫=+ ⎪⎝⎭9.当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,则函数34y f x π⎛⎫=-⎪⎝⎭是( ) A.奇函数且图象关于点,02π⎛⎫⎪⎝⎭对称B.偶函数且图象关于点(),0π对称C.奇函数且图象关于直线2x π=对称D.偶函数且图象关于点,02π⎛⎫⎪⎝⎭对称10.(2016·长沙四校联考)将函数()()sin 0,22f x x ωϕωϕ⎛⎫=+>-≤< ⎪⎝⎭图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度得到sin y x =的图象,则函数()f x 的单调递增区间为( ) A.52,2,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B.52,2,66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C.5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D.5,,66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦11.为了得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,可将函数sin 2y x =的图象( )A.向左平移56π个单位长度 B.向右平移56π个单位长度 C.向左平移512π个单位长度D.向右平移512π个单位长度12.(2013·新课标全国卷Ⅱ)函数()()cos 2y x ϕπϕπ=+-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ=________二)图象求解析式1.若函数()f x 具有以下两个性质:①()f x 是偶函数;②对任意实数x ,都有44f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()f x 的解析式可以是( ) A.()cos f x x =B.()cos 22f x x π⎛⎫=+ ⎪⎝⎭C.()sin 42f x x π⎛⎫=+ ⎪⎝⎭D.()cos6f x x =2.已知()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<在同一周期内当12x =时取最大值,当12x =时取最小值,与y 轴的交点为(,则()f x =____________3.已知函数)0,()sin()(πϕϕ<<∈+=R x x x f ,若点1,62π⎛⎫ ⎪⎝⎭在函数26y f x π⎛⎫=+ ⎪⎝⎭的图象上,则ϕ=_________4.已知函数()()2sin f x x ωϕ=+,对于任意x 都有66f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则6f π⎛⎫= ⎪⎝⎭________5.(2017·安徽江南十校联考)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为4π,且对任意x R ∈,都有()3f x f π⎛⎫≤ ⎪⎝⎭成立,则()f x 图象的一个对称中心的坐标是( )A.2,03π⎛⎫- ⎪⎝⎭ B.,03π⎛⎫- ⎪⎝⎭C.2,03π⎛⎫⎪⎝⎭D.5,03π⎛⎫⎪⎝⎭6.已知函数()()3sin 06f x x πωω⎛⎫=-> ⎪⎝⎭和()()3cos 2g x x ϕ=+的图象的对称中心完全相同,若0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的取值范围________7.(2015·湖南)将函数()sin 2f x x =的图象向右平移02πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的12,x x ,有12min 3x x π-=,则ϕ=( ) A.512πB.3πC.4πD.6π8.(2016·安徽芜湖一模)函数()()sin ,0,2f x x x R ωϕωϕ⎛⎫=+∈>< ⎪⎝⎭的部分图象如图所示,若122,,63x x ππ⎛⎫∈ ⎪⎝⎭,且()()12f x f x =,则()12f x x +=( )A.2-B.12-C.12D.29.(2017·石家庄模拟)函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则1124f π⎛⎫= ⎪⎝⎭( )A.2- B.2-C.2-D.1-10.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则ϕ=( )A.6π- B .6πC.3π-D.3π11.已知函数()()sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则6y f x ⎛⎫=+ ⎪⎝⎭取得最小值时x 的集合为________12.已知函数()()cos f x A x ωϕ=+的图象如图所示,223f π⎛⎫=- ⎪⎝⎭,则6f π⎛⎫-= ⎪⎝⎭( ) A.23-B.12-C.23D.1213.(2016·泉州质检)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若tan 3α=,则8f πα⎛⎫+= ⎪⎝⎭( )A.35-B.45-C. D.三.特殊三角函数最值1.当06x π<≤时,函数()22cos cos sin sin xf x x x x=-的最小值为________2.求函数()2cos ,0,sin xy x xπ-=∈的最小值.3.(2016·全国Ⅱ)函数()cos 26cos 2f x x x π⎛⎫=+- ⎪⎝⎭的最大值为( )A.4B.5C.6D.74.函数273sin 2cos ,,66y x x x ππ⎡⎤=--∈⎢⎥⎣⎦的值域为________5.求函数2sin 12sin 1x y x +=-的值域.6.求函数sin 2cos xy x=-的最小值.7.求函数2cos y x=+的值域.8.若0,2πα⎛⎫∈ ⎪⎝⎭,则2214s in c o s αα+的最小值为________9.求函数()()1sin 3sin 2sin x x y x++=+的最值及对应的x 的集合.四.参数相关1.已知0ω>,函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上是减函数,则ω的取值范围________2.(2016·全国乙卷)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5,1836ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( )A.11B.9C.7D.53.已知函数()()2sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭在区间,126ππ⎛⎤- ⎥⎝⎦则ϕ的取值范围( )A.0,3π⎡⎤⎢⎥⎣⎦B.,36ππ⎡⎤-⎢⎥⎣⎦C.,04π⎡⎫-⎪⎢⎣⎭D.,03π⎡⎤-⎢⎥⎣⎦4.若函数()()s i n 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=________5.已知0ω>, ()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递减,则ω的取值范围( )A.15,24⎡⎤⎢⎥⎣⎦B.13,24⎡⎤⎢⎥⎣⎦C.10,2⎛⎫⎪⎝⎭D.(]0,26.若已知0ω>,函数()cos 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递增,则ω的取值范围________7.已知()()sin 0,363f x x f f πππωω⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且()f x 在区间错误!未找到引用源。
2025届高考数学一轮复习教案:三角函数-任意角和弧度制及三角函数的概念

第一节任意角和弧度制及三角函数的概念【课程标准】1.了解任意角的概念和弧度制;2.能进行弧度与角度的互化;3.借助单位圆理解三角函数(正弦、余弦、正切)的定义.【考情分析】考点考法:高考命题常以角为载体,考查扇形的弧长、面积、三角函数的定义;三角函数求值是高考热点,常以选择题或填空题的形式出现.核心素养:数学抽象、数学运算【必备知识·逐点夯实】【知识梳理·归纳】1.角的概念的推广(1)定义:角可以看成一条射线绕着它的端点旋转所成的图形.(2)分类按旋转方向正角、负角、零角按终边位置象限角和轴线角(3)相反角:我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为__-α__.(4)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad表示.(2)公式角α的弧度数公式|α|=l r(弧长用l表示)角度与弧度的换算1°=180rad;1rad=(180)°弧长公式弧长l=|α|r扇形面积公式S=12lr=12|α|r23.任意角的三角函数(1)任意角的三角函数的定义(推广):设P(x,y)是角α终边上异于原点的任意一点,其到原点O的距离为r,则sinα=, cosα=,tanα=(x≠0).(2)三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.(3)三角函数的定义域三角函数sinαcosαtanα定义域R R{α|α≠kπ+π2,k∈Z}【基础小题·自测】类型辨析改编易错题号12,341.(多维辨析)(多选题)下列说法正确的是()A.-π3是第三象限角B.若角α的终边过点P(-3,4),则cosα=-35C.若sinα>0,则α是第一或第二象限角D.若圆心角为π3的扇形的弧长为π,则该扇形面积为3π2【解析】选BD.因为-π3是第四象限角,所以选项A错误;由三角函数的定义可知,选项B正确;由sinα>0可知,α是第一或第二象限角或终边在y轴的非负半轴上,所以选项C错误;由扇形的面积公式可知,选项D正确.2.(必修第一册P175练习T1改题型)-660°等于()A.-133πB.-256πC.-113πD.-236π【解析】选C.-660°=-660×π180=-113π.3.(必修第一册P176习题T2改条件)下列与角11π4的终边相同的角的表达式中正确的是()A.2kπ+135°(k∈Z)B.k·360°+11π4(k∈Z)C.k·360°+135°(k∈Z)D.kπ+3π4(k∈Z)【解析】选C.与11π4的终边相同的角可以写成2kπ+3π4(k∈Z)或k·360°+135°(k∈Z),但是角度制与弧度制不能混用,排除A,B,易知D错误,C正确.4.(忽视隐含条件)设α是第二象限角,P(x,8)为其终边上的一点,且sinα=45,则x=()A.-3B.-4C.-6D.-10【解析】选C.因为P(x,8)为其终边上的一点,且sinα=45,所以sinα=45,解得x=±6,因为α是第二象限角,所以x=-6.【巧记结论·速算】α所在象限与2所在象限的关系α所在象限一二三四α2所在象限一、三一、三二、四二、四【即时练】设θ是第三象限角,且|cos2|=-cos2,则2是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】选B.因为θ是第三象限角,所以2的终边落在第二、四象限,又|cos2|= -cos2,所以cos2<0,所以2是第二象限角.【核心考点·分类突破】考点一象限角及终边相同的角[例1](1)(2023·宁波模拟)若α是第二象限角,则()A.-α是第一象限角B.2是第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或在y轴负半轴上【解析】选D.因为α是第二象限角,可得π2+2kπ<α<π+2kπ,k∈Z,对于A,可得-π-2kπ<-α<-π2-2kπ,k∈Z,此时-α位于第三象限,所以A错误;对于B,可得π4+kπ<2<π2+kπ,k∈Z,当k为偶数时,2位于第一象限;当k为奇数时,2位于第三象限,所以B错误;对于C,可得2π+2kπ<3π2+α<5π2+2kπ,k∈Z,即2(k+1)π<3π2+α<π2+2(k+1)π,k∈Z,所以3π2+α位于第一象限,所以C错误;对于D,可得π+4kπ<2α<2π+4kπ,k∈Z,所以2α是第三或第四象限角或在y轴负半轴上,所以D正确.(2)在-720°~0°内所有与45°终边相同的角为-675°和-315°.【解析】所有与45°终边相同的角可表示为β=45°+k×360°(k∈Z),当k=-1时,β=45°-360°=-315°,当k=-2时,β=45°-2×360°=-675°.【解题技法】1.知α确定kα,(k∈N*)的终边位置的步骤(1)写出kα或的范围;(2)根据k的可能取值确定kα或的终边所在位置.2.求适合某些条件的角的方法(1)写出与这个角的终边相同的角的集合;(2)依据题设条件,确定参数k的值,得出结论.【对点训练】已知角θ在第二象限,且|sin2|=-sin2,则角2在()A.第一象限或第三象限B.第二象限或第四象限C.第三象限D.第四象限【解析】选C.因为角θ是第二象限角,所以θ∈(π2+2kπ,π+2kπ),k∈Z,所以2∈(π4+kπ,π2+kπ),k∈Z,所以角2在第一或第三象限.又|sin2|=-sin2,所以sin2<0,所以角2在第三象限.考点二弧度制及其应用[例2]已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l.(2)(一题多法)若扇形的周长是16cm,当扇形的圆心角为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.【解析】(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)方法一:由题意知2R+l=16,所以l=16-2R(0<R<8),则S=12lR=12(16-2R)R=-R2+8R=-(R-4)2+16,当R=4cm时,S max=16cm2,l=16-2×4=8(cm),α==2,所以S的最大值是16cm2,此时扇形的半径是4cm,圆心角α=2rad.方法二:S=12lR=14l·2R≤14·(r22)2=16,当且仅当l=2R,即R=4cm时,S的最大值是16cm2.此时扇形的圆心角α=2rad.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)cm2.【解题技法】应用弧度制解决问题时的注意事项(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为基本不等式或二次函数的最值问题.(3)在解决弧长和扇形面积问题时,要合理地利用圆心角所在的三角形.【对点训练】若扇形的周长是16cm,圆心角是360π度,则扇形的面积(单位cm2)是16.【解析】设扇形的半径为r cm,圆心角弧度数为α=360π·π180=2,所以αr+2r=16即4r=16,所以r=4,所以S=12αr2=12×2×16=16.答案:【加练备选】已知弧长为60cm的扇形面积是240cm2,求:(1)扇形的半径;(2)扇形圆心角的弧度数.【解析】设扇形的弧长为l,半径为r,面积为S,圆心角为α.(1)由题意得S=12lr=12×60r=240,解得r=8(cm),即扇形的半径为8cm.(2)α==608=152,所以扇形圆心角的弧度数为152rad.考点三三角函数的定义及应用【考情提示】三角函数的定义主要考查利用定义求三角函数值及三角函数值符号的应用,常与三角函数求值相结合命题,题目多以选择题、填空题形式出现.角度1利用定义求三角函数值[例3](1)已知角α的终边经过点P(2,-3),则sinα=-31313,tanα=-32.【解析】因为x=2,y=-3,所以点P到原点的距离r=22+(-3)2=13.则sinα===-31313,tanα==-32.(2)若角60°的终边上有一点A(4,a),则a=43.【解析】由题设知:tan60°=4=3,即a=43.角度2三角函数值的符号[例4](1)若sinαtanα<0,且cos tan>0,则角α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】选B.由sinαtanα<0,知α是第二象限或第三象限角,由cos tan>0,知α是第一象限或第二象限角,所以角α是第二象限角.(2)sin2cos3tan4的值()A.小于0B.大于0C.等于0D.不存在【解析】选A.因为π2<2<3<π<4<3π2,所以sin2>0,cos3<0,tan4>0.所以sin2cos3tan4<0.【解题技法】与三角函数定义有关的解题策略(1)利用三角函数的定义,已知角α终边上一点P的坐标,可以求出α的三角函数值;已知角α的三角函数值,也可以求出点P的坐标.(2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽略角的终边在坐标轴上的情况.【对点训练】1.(多选题)设△ABC的三个内角分别为A,B,C,则下列各组数中有意义且均为正值的是()A.tan A与cos BB.cos B与sin CC.tan2与cos2D.tan2与sin C【解析】选CD.因为A,B的范围不确定,所以A选项不满足条件;cos B与sin C都有意义,但cos B不一定为正值,故B选项不满足条件;因为B,C∈(0,π),所以2,2∈(0,π2),所以C选项满足条件;因为0<A<π,所以0<2<π2,所以tan2>0,又因为0<C<π,所以sin C>0,故D选项满足条件.2.已知角θ的终边经过点(2a+1,a-2),且cosθ=35,则实数a的值是()A.-2B.211C.-2或211D.1【解析】选B.由题设可知=35且2a+1>0,即a>-12,所以42+4r152+5=925,则11a2+20a-4=0,解得a=-2或a=211,又a>-12,所以a=211.【加练备选】已知角α的终边上一点P的坐标为(sin5π6,cos5π6),则角α的最小正值为5π3.【解析】因为sin5π6>0,cos5π6<0,所以角α的终边在第四象限,根据三角函数的定义,可知sinα=cos5π6=-32,故角α的最小正值为α=2π-π3=5π3.。
任意角和弧度制、三角函数的概念

π
3π
所以 kπ+2 < 2<kπ+ 4 (k∈Z).
π
3π
当 k=2n(n∈Z)时,2nπ+2 < 2<2nπ+ 4 , 2是第二象限角;
3π
7π
当 k=2n+1(n∈Z)时,2nπ+ 2 < 2 <2nπ+ 4 , 2是第四象限角.
综上可知,当 α 是第三象限角时,2是第二或第四象限角.
4
3
3
3
是真命题;-400°=-360°-40°,从而-400°是第四象限角,故③是真命
题;-315°=-360°+45°,从而-315°是第一象限角,故④是真命题.
π
π
(2)集合 π + ≤ ≤ π + ,∈Z 中的角的终边所表示的范围(阴影
4
2
部分)是( C )
π
π
当 k=2n(n∈Z)时,2nπ+ ≤ ≤2nπ+ ,
3
3
3
4π
,k∈Z}.
3
= 2π +
解题心得1.角的终边在一条直线上比在一条射线上多一种情况.
2.判断角β所在的象限,先把β表示为β=2kπ+α,α∈[0,2π),k∈Z,再判断角α所
在的象限即可.
3.确定角 kα, (k≥2,且 k∈N*)的终边的位置:先用终边相同角的形式表示出
角 α 的范围,再写出 kα 或 的范围,最后根据 k 的可能取值讨论确定角 kα 或
∴终边在直线 y= 3x 上的角的集合为 =
高三数学 一轮理数 第四章 第一节 角的概念及任意角的三角函数课件 全国版

角α的集合 {α|α=2kπ+,k∈Z} {α|α=2kπ+,k∈Z}
{α|α=kπ,k∈Z} {α|α=kπ+,k∈Z}
{α|α=,k∈Z}
2.要确定角 α 所在象限,只要把 α 表示为 α =2kπ+α0(k∈Z,0≤α0≤2π,由 α0 所在象 限即可判定出 α 所在的象限.由已知角的 范围求复合角的范围时,通常要用不等式
• 1.角的终边除了落在第一、第二、第三、第四 象限外,还有可能落在坐标轴上,通常把终边 落在坐标轴上的角称为象限界角或轴线角,象 限界角列表表示如下:
角α终边的位置 在x轴的非负半轴上
角α的集合 {α|α=2kπ,k∈Z}
在x轴的非正半轴上 {α|α=2kπ+π,k∈Z}
角α终边的位置 在y轴的非负半轴上 在y轴的非正半轴上
【思路点拨】 (1)角度化为弧度,只需乘以
1π80;弧度化为角度,则只需将弧度数乘18π0°. (2)在写与 α 角终边相同的角的集合时要注意 单位统一,避免混用或漏解.
【自主解答】 (1)∵180°=π rad. ∴-570°=-517800π=-619π, 750°=715800π=265π. ∴α1=-2×2π+56π, 同理 α2=2×2π+π6. ∴α1 在第二象限,α2 在第一象限.
• (3)确定区域:找出与角α所在象限标号一致的 区域,即为所求.
3.由 α 所在象限,确定α3所在象限,也可 用如下方法判断:
(1)画出区域:将坐标系每个象限三等分, 得到 12 个区域; (2)标号,自 x 轴正向逆时针方向把每个区 域依次标上Ⅰ、Ⅱ、Ⅲ、Ⅳ,如图所示;
(3)确定区域:找出与角 α 所在象限标号一 致的区域,即为所求.
已知α所在象限,求αn(n≥2,n∈N)所在象限.
三角函数知识点归纳

三角函数知识点归纳 一、任意角与弧度制 1.任意角 (I)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. J 按旋转方向不同分为正角、负角、零角. (2)分类[按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角a 终边相同的角,连同角a 在内,可构成一个集合S={缈=a+ 2kιt, Λ∈Z!.(3)象限角与轴线角 今1(第一象限角)卜| 第二致限角阳2A"专VaV2痴 2⅛π<α<2⅛π+-g-,⅛∈z} +π,⅛∈ZT 第三敛限角)卜性"τrVaV2"+等"刃 第四象限角]{α∣2⅛π+^<α<2⅛π+2π,⅛∈z}2.弧度制的定义和公式 角a 的弧度数公式 IaI=%/表示弧长)角度与弧度的换算 ①1。
=念 rad ;② 1 rad=, 弧长公式 l=∖a ∖r 扇形面积公式S=»=如/ (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 3.任意角的三角函数 一、定义:设α是一个任意角,它的终边与单位圆交于点P(x, y),那么Sina=y, cos α=x, tan α=^(x≠()).二、常用结论汇总——规律多一点(1)一个口诀:三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广:设点P(x, y)是角Q终边上任意一点且不与原点重合,r=∣OP∣,则• V X V,1八、sin a= , COSa=-, tanα=-(Xw0).r rχ∖ ,三、特殊角的三角函数:3.1 象限角及终边相同的角例1、若角。
是第二象限角,则辞()A.第一象限角B.第二象限角C.第一或第三象限角D.第二或第四象限角∩例2、一的终边在第三象限,则。
的终边可能在() 2A.第一、三象限B.第二、四象限C.第一、二象限或y轴非负半轴D.第三、四象限或y轴非正半轴3.2 三角函数的定义例1、已知角α的终边经过点P(一χ, — 6),且COSa=—/,则1;+%½= _________________ .1J SlIl (A IdIl (A例2、已知角α的终边经过点(3, -4),则Sin a+»^=.3.3 、三角函数符号的判定例1、已知Sina < 0旦cosa > 0,则a的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限3.4 扇形面积问题1.已知一个扇形的弧长和半径都等于2,则这个扇形的面积为().A. 2B. 3C. 4D. 6二、同角三角函数的基本关系与诱导公式1 .同角三角函数的基本关系(1)平方关系:siMα+cos2α=l; (2)商数关系:tan α=黑吃.同角三角函数的基本关系式的几种变形(l)sin2α= 1 — cos2α=(l + cos «)(1 —cos a); cos2a= 1 - sin2a=(l ÷sin a)(l — sin a); (sin a±cos a)2 =l±2sin acos a.(2)sin a=tan acos a(a≠5+E, &WZ).2 .诱导公式“奇变偶不变,符号看象限”公式一:sin(a+2⅛π)=sin a, cos(a÷2hc)=cos a»la∏(6Z + <λkτf)= t∏∏OC其中公式二:sin(π+ct)= ~sin a> cos(π+cc)=~cos ct> Ian(Tr+a)=Ian a.公式三:sin(π~a)=sin a,cos(π-a) = — cos ct, ta∏(^-6Z)= —ta∏ OC ∙公式四:sin(-ct)=—sin a, cost—«)=cos a,t<l∏) = -13∏ CX .公式五:Sine-a) =cos a, COSe—a) =Sina 公式六:SinC+a)=cos a,CoSC+«) = -sin a.诱导公式可概括为〃∙]±a的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指方的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把a看成锐角时,根据在哪个象限判断厚三曲函数值的符号,最后作为结果符号.8.方法与要点一个口诀I、诱导公式的记忆。
三角函数概念及定义5种题型总结-2022-2023学年高一数学(人教A版2019必修第一册)

第24讲 三角函数概念及定义5种题型总结【知识点梳理】知识点一:三角函数基本概念 1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是{}Z k k S ∈+︒⋅==,αββ360. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. (4)象限角的集合表示方法:2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:rad 180π=︒,rad 1801π=︒,π︒=180rad 1.(3)扇形的弧长公式:r l ⋅=α,扇形的面积公式:22121r lr S ⋅==α.3.任意角的三角函数(1)定义:任意角α的终边与单位圆交于点)(y x P ,时,则y =αsin ,x =αcos ,)0(tan ≠=x xyα. (2)推广:三角函数坐标法定义中,若取点P )(y x P ,是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则r y =αsin ,r x =αcos ,)0(tan ≠=x xyα 三角函数的性质如下表:三角函数定义域第一象限符号 第二象限符号 第三象限符号 第四象限符号 αsinR + + - - αcosR+--+αtan }2|{Z k k ∈+≠,ππαα + - + -记忆口诀:三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. 【题型目录】题型一:与角α终边相同的角的集合的表示 题型二:判断等分角的象限问题 题型三:扇形的弧长、面积公式的计算 题型四:任意角三角函数的定义 题型五:三角函数值的正负判断 【典例例题】题型一:与角α终边相同的角的集合的表示【例1】(2022·全国·高一课时练习)将-1485°化成()202,k k απαπ+≤<∈Z 的形式是( ) A .π8π4-B .784π-πC .104π-πD .7104π-π【答案】D【分析】由3602rad π︒=或180rad π︒=转换.【详解】因为14855360315-︒=-⨯︒+︒,3602rad π︒=,7315rad 4π︒=,所以-1485°可化成7104π-π.故选:D .【例2】(2022·陕西渭南·高一期末)与2022︒终边相同的角是( ) A .488-︒ B .148-︒C .142︒D .222︒【答案】D【分析】与α终边相同的角可表示为2,Z k k απ+∈. 【详解】∵20225360222︒=⨯︒+︒, ∵与2022︒终边相同的角是222︒. 故选:D【例3】(2022·全国·高三专题练习)与角94π的终边相同的角的表达式中,正确的是( ) A .245k π+,k Z ∈ B .93604k π⋅+,k Z ∈ C .360315k ⋅-,k Z ∈ D .54k ππ+,k Z ∈ 【答案】C【分析】 要写出与94π的终边相同的角,只要在该角上加2π的整数倍即可. 【详解】首先角度制与弧度制不能混用,所以选项AB 错误; 又与94π的终边相同的角可以写成92()4k k Z ππ+∈,所以C 正确. 故选:C .【例4】(2022·河南南阳·高一期末)已知角2022α=,则角α的终边落在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【分析】利用象限角的定义判断可得出结论.【详解】因为20222225360α==+⨯,而222是第三象限角,故角α的终边落在第三象限. 故选:C.【例5】(2022·全国·高一课时练习)终边落在直线3y x =上的角α的集合为( ) A .{}18030,Z k k αα=⋅︒+︒∈ B .{}18060,Z k k αα=⋅︒+︒∈ C .{}36030,k k αα=⋅︒+︒∈Z D .{}36060,Z k k αα=⋅︒+︒∈【答案】B【分析】先确定3y x =的倾斜角为60,再分当终边在第一和三象限时角度的表达式再求解即可. 【详解】易得3y x =的倾斜角为60,当终边在第一象限时,60360k α=︒+⋅︒,k ∈Z ;当终边在第三象限时,240360k α=︒+⋅︒,k ∈Z .所以角α的集合为{}18060,Z k k αα=⋅︒+︒∈. 故选:B【例6】(2022·全国·高三专题练习(多选题))如果角α与角45γ+︒的终边相同,角β与45γ-︒的终边相同,那么αβ-的可能值为( ) A .90︒ B .360︒C .450︒D .2330︒【答案】AC根据终边相同可得角与角之间的关系,从而可得αβ-的代数形式,故可得正确的选项. 【详解】因为角α与角45γ+︒的终边相同,故45360k γα,其中k Z ∈,同理145360k βγ=-︒+⋅︒,其中1k Z ∈, 故90360n αβ-=︒+⋅︒,其中n Z ∈,当0n =或1n =时,90αβ-=︒或450αβ-=︒,故AC 正确, 令36090360n ︒=︒+⋅︒,此方程无整数解n ;令903060233n =︒+⋅︒︒即569n =,此方程无整数解n ; 故BD 错误. 故选:AC.【例7】(2022·全国·高一课时练习)下列说法中正确的是( ) A .第二象限角大于第一象限角B .若()360360180k k k α⋅︒<<⋅︒+︒∈Z ,则α为第一或第二象限角C .钝角一定是第二象限角D .三角形的内角是第一或第二象限角 【答案】C【分析】利用任意角的知识,对选项分别判断即可. 【详解】对A 选项,如21030-︒<︒,故A 错误.对B 选项,α为第一或第二象限角或终边落在y 轴正半轴上的角.故B 错误. 对C 选项,因为钝角大于90°且小于180°,所以钝角一定是第二象限角,故C 正确. 对D 选型,当三角形的一个内角为90°时,不是象限角,故D 错误. 故选: C.【例8】(2022·全国·高一课时练习)已知{}4536090360k k ααα∈︒+⋅︒≤≤︒+⋅︒,则角α的终边落在的阴影部分是( )A .B .C .D .【答案】B【分析】令0k =即可判断出正确选项.【详解】令0k =,得4590α︒≤≤︒,则B 选项中的阴影部分区域符合题意. 故选:B . 【题型专练】1.(2022·河南安阳·高一期末)把375-︒表示成2πk θ+,k Z ∈的形式,则θ的值可以是( ) A .π12B .π12-C .5π12D .5π12-【答案】B【分析】由37515360-=-︒-︒︒结合弧度制求解即可. 【详解】∵37515360-=-︒-︒︒,∵π3752πrad 12⎛⎫-︒=-- ⎪⎝⎭故选:B2.(2022·广西·北海市教育教学研究室高一期末)下列各角中,与1840︒ 角终边相同的角是( ) A .40︒ B .220︒C .320︒D .400-︒【答案】A【分析】将1840︒化为405360︒+⨯︒,即可确定答案.【详解】因为1840405360︒=︒+⨯︒,故40︒角的终边与1840︒的终边相同, 故选:A3.(2022·全国·高一课时练习)与2022︒终边相同的角可以为___________.(填写一个符合题意的角即可) 【答案】222︒(答案不唯一)【分析】终边相同的角,相差360︒的整数倍,据此即可求解【详解】∵()2022360k k α︒=︒⨯+∈Z ,当5k =时,222α=︒,∵与2022︒终边相同的角可以为222︒, 故答案为:222°(答案不唯一)4.(2022·全国·高三专题练习)若角α的终边在直线y x =-上,则角α的取值集合为( )A .2,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭ZB .32,4k k πααπ⎧⎫=+∈⎨⎬⎩⎭Z C .3,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭ZD .,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z【答案】D 【解析】 【分析】根据若,αβ终边相同,则2,k k Z βπα=+∈求解. 【详解】 解:,由图知,角α的取值集合为:()32,2,4421,2,44,4k k Z k k Z k k Z k k Z k k Z ππααπααπππααπααππααπ⎧⎫⎧⎫=+∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫==+-∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==-∈⎨⎬⎩⎭故选:D. 【点睛】本题主要考查终边相同的角,还考查了集合的运算能力,属于基础题.5.(2022·全国·高一课时练习)如图,用弧度制表示终边落在阴影部分(包括边界)的角的集合:______.【答案】π5π2π2πZ 612k k k αα⎧⎫-≤≤+∈⎨⎬⎩⎭,【分析】将角度化为弧度,结合任意角概念表示出来即可. 【详解】因为π5π757518012︒=⨯=,π306-︒=-,结合图像可看作π5π,612⎡⎤-⎢⎥⎣⎦范围内的角,结合任意角的概念可表示为π5π2π2π,Z 612k k k αα⎧⎫-≤≤+∈⎨⎬⎩⎭.故答案为:π5π2π2π,Z 612k k k αα⎧⎫-≤≤+∈⎨⎬⎩⎭.6.(2022·西藏·林芝市第二高级中学高一期末)5π3-的角化为角度制的结果为_______.【答案】300-【分析】利用角度与弧度的互化即可求得5π3-对应角度制的结果【详解】55π=18030033⎛⎫--⨯=- ⎪⎝⎭故答案为:300-7.(2022·全国·高三专题练习(多选题))下列条件中,能使α和β的终边关于y 轴对称的是( ) A .90αβ+=︒B .180αβ+=︒C .()36090k k αβ+=⋅︒+︒∈ZD .()()21180k k αβ+=+⋅︒∈Z【答案】BD 【解析】 【分析】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z ,逐一判断正误即可. 【详解】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z 可知,选项B 中,180αβ+=︒符合题意;选项D 中,()()21180k k αβ+=+⋅︒∈Z 符合题意; 选项AC 中,可取0,90αβ=︒=︒时显然可见α和β的终边不关于y 轴对称. 故选:BD.8.(2022·全国·高一课时练习)如果角α与角x +45°具有相同的终边,角β与角x -45°具有相同的终边,那么α与β之间的关系是( ) A .0αβ+=︒B .90αβ-=︒C .()360k k αβ+=⋅︒∈ZD .()36090k k αβ-=⋅︒+︒∈Z【答案】D【分析】先根据终边相同的角分别表达出,αβ,再分析αβ+,αβ-即可.【详解】利用终边相同的角的关系,得()36045n x n α=⋅︒++︒∈Z ,()36045m x m β=⋅︒+-︒∈Z . 则()()3602,m n x n m αβ+=+⋅︒+∈∈Z Z 与x 有关,故AC 错误;又()()36090,n m n m αβ-=-︒+︒∈∈Z Z .因为m ,n 是整数,所以n -m 也是整数,用()k k ∈Z 表示,所以()36090k k αβ-=⋅︒+︒∈Z .故选:D .9.(2022·全国·高一课时练习)若360k αθ=⋅︒+,()360,m k m βθ=⋅︒-∈Z ,则角α与角β的终边一定( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称【答案】C【分析】根据角θ与角θ-的终边关于x 轴对称即可得解.【详解】解:因为角θ与角θ-的终边关于x 轴对称,所以角α与角β的终边一定也关于x 轴对称. 故选:C10.(2023·全国·高三专题练习)集合|,4k k k Z παπαπ⎧⎫≤≤+∈⎨⎬⎩⎭中的角所表示的范围(阴影部分)是( )A .B .C .D .【答案】B【分析】对k 按奇偶分类讨论可得.【详解】当k =2n (n ∵Z )时,2n π≤α≤2n π+4π(n ∵Z ),此时α的终边和0≤α≤4π的终边一样,当k =2n +1(n ∵Z )时,2n π+π≤α≤2n π+π+4π (n ∵Z ),此时α的终边和π≤α≤π+4π的终边一样.故选:B .题型二:判断等分角的象限问题【例1】(2022·浙江·高三专题练习)若18045,k k Z α=⋅+∈,则α的终边在( ) A .第一、三象限 B .第一、二象限 C .第二、四象限 D .第三、四象限【答案】A 【解析】 【分析】分21,k n n Z =+∈和2,k n n =∈Z 讨论可得角的终边所在的象限. 【详解】解:因为18045,k k Z α=⋅+∈,所以当21,k n n Z =+∈时,218018045360225,n n n Z α=⋅++=⋅+∈,其终边在第三象限; 当2,k n n =∈Z 时,21804536045,n n n Z α=⋅+=⋅+∈,其终边在第一象限. 综上,α的终边在第一、三象限. 故选:A.【例2】(2022·江西上饶·高一阶段练习多选)若α是第二象限角,则( ) A .πα-是第一象限角 B .2α是第一或第三象限角 C .32πα+是第二象限角 D .α-是第三或第四象限角【答案】AB【分析】由α与α-关于x 轴对称,即可判断AD ;由已知可得222k k ππαππ+<<+,Z k ∈,再根据不等式的性质可判断B ;由32πα+是第一象限角判断C . 【详解】解:因为α与α-关于x 轴对称,而α是第二象限角,所以α-是第三象限角, 所以πα-是第一象限角,故A 正确,D 错误; 因为α是第二象限角,所以222k k ππαππ+<<+,k Z ∈,所以422k k παπππ+<<+,Z k ∈,故2α是第一或第三象限角,故 B 正确; 因为α是第二象限角,所以32πα+是第一象限角,故C 错误. 故选:AB . 【题型专练】1.(2022·全国·高三专题练习(理))角α的终边属于第一象限,那么3α的终边不可能属于的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】由题意知,222k k ππαπ<<+,k Z ∈,即可得3α的范围,讨论3k n =、31k n =+、32k n =+()n Z ∈对应3α的终边位置即可. 【详解】∵角α的终边在第一象限, ∴222k k ππαπ<<+,k Z ∈,则223363k k παππ<<+,k Z ∈, 当3()k n n Z =∈时,此时3α的终边落在第一象限,当31()k n n Z =+∈时,此时3α的终边落在第二象限, 当32()k n n Z =+∈时,此时3α的终边落在第三象限,综上,角α的终边不可能落在第四象限, 故选:D.2.(2022·全国·高三专题练习)θ是第二象限角,则下列选项中一定为负值的是( )A .sin 2θB .cos2θ C .sin 2θ D .cos 2θ【答案】C 【解析】表示出第二象限角的范围,求出2θ和2θ所在象限,确定函数值的符号.【详解】因为θ是第二象限角, 所以22,2k k k Z ππθππ+<<+∈,则4242,k k k Z ππθππ+<<+∈,所以2θ为第三或第四象限角或终边在y 轴负半轴上,,所以sin 2θ<0. 而,422k k k Z πθπππ+<<+∈,2θ是第一象限或第三象限角,正弦余弦值不一定是负数.故选:C .3.(2022·全国·高三专题练习)已知角α第二象限角,且cos cos22αα=-,则角2α是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】 【分析】由α是第二象限角,知2α在第一象限或在第三象限,再由cos cos 22αα=-,知cos 02α≤,由此能判断出2α所在象限. 【详解】因为角α第二象限角,所以()90360180360Z k k k α+⋅<<+⋅∈, 所以()4518090180Z 2k k k α+⋅<<+⋅∈,当k 是偶数时,设()2Z k n n =∈,则()4536090360Z 2n n n α+⋅<<+⋅∈,此时2α为第一象限角; 当k 是奇数时,设()21Z k n n =+∈,则()225360270360Z 2n n n α+⋅<<+⋅∈,此时2α为第三象限角.;综上所述:2α为第一象限角或第三象限角, 因为cos cos 22αα=-,所以cos 02α≤,所以2α为第三象限角.故选:C .题型三:扇形的弧长、面积公式的计算【例1】(2022·河南·郑州四中高三阶段练习(文))已知扇形OAB 的圆心角为2,弦长2AB =,则扇形的弧长等于( ) A .1sin1B .2sin1C .1cos1D .2cos1【答案】B【分析】求得扇形的半径,从而求得扇形的弧长.【详解】扇形的半径112sin1sin1ABr ==, 所以扇形的弧长等于122sin1sin1r α⨯=⨯=. 故选:B【例2】(2022·浙江·高三开学考试)如图是杭州2022年第19届亚运会会徽,名为“潮涌”,钱塘江和钱江潮头是会徽的形象核心,绿水青山展示了浙江杭州山水城市的自然特征,江潮奔涌表达了浙江儿女勇立潮头的精神气质,整个会徽形象象征着新时代中国特色社会主义大潮的涌动和发展.如图是会徽的几何图形,设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,若122l l =,则12S S =( )A .1B .2C .3D .4【答案】C【分析】通过弧长比可以得到OA 与OB 的比,接着再利用扇形面积公式即可求解 【详解】解:设AOD θ∠=,则12,l OA l OB θθ=⋅=⋅,所以122l OA l OB==,即2OA OB =, 所以12221222111222231122OA l OB l OB l OB l S S OB l OB l ⋅-⋅⋅-⋅===⋅⋅, 故选:C【例3】(2022·全国·高三专题练习)已知扇形的周长为4 cm ,当它的半径为________ cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________ cm 2. 【答案】 1 2 1 【解析】 【详解】24l r +=,则()21142222S lr r r r r ==-=-+,则1,2r l ==时,面积最大为1,此时圆心角2lrα,所以答案为1;2;1.【例4】(2022·浙江·镇海中学模拟预测)《九章算术》是中国古代的数学名著,其中《方田》章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB 及其所对弦AB 围成的图形.若弧田的弦AB 长是2,弧所在圆心角的弧度数也是2,则弧田的弧AB 长为_______,弧田的面积为_________.【答案】 2sin1; 211sin 1tan1-. 【解析】 【分析】(1)利用弧长公式解决,那么需要算出半径和圆心角;(2)用扇形的面积减去三角形的面积即可. 【详解】由题意可知:111,,sin1sin1tan1tan1======AC BC BC AC AO OC ,所以弧AB 长122sin1sin1=⨯=,弧田的面积22111111222sin12tan1sin 1tan1⎛⎫=-=⨯⨯-⨯⨯=- ⎪⎝⎭扇形AOB AOB S S , 故答案为:2sin1;211sin 1tan1-. 【例5】(2022·全国·高一课时练习多选题)中国传统扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,如图,设扇形的面积为1S ,其圆心角为θ,圆面中剩余部分的面积为2S ,当1S 与2S 51-时,扇面为“美观扇面”5 2.236)( )A .122S S θπθ=- B .若1212S S =,扇形的半径3R =,则12S π= C .若扇面为“美观扇面”,则138θ≈D .若扇面为“美观扇面”,扇形的半径20R =,则此时的扇形面积为(20035 【答案】AC【分析】首先确定12,S S 所在扇形的圆心角,结合扇形面积公式可确定A 正确;由12122S S θπθ==-可求得θ,代入扇形面积公式可知B 错误;由125122S S θπθ-==-即可求得θ,知C 正确;由扇形面积公式可直接判断出D 错误.【详解】对于A ,1S 与2S 所在扇形的圆心角分别为θ,2πθ-,()2122121222r S S r θθπθπθ⋅⋅∴==--⋅,A 正确; 对于B ,12122S S θπθ==-,23πθ∴=,2111293223S R πθπ∴=⋅⋅=⨯⨯=,B 错误; 对于C ,125122S S θπθ-==-,()35θπ∴=-,()3 2.236180138θ∴≈-⨯≈,C 正确; 对于D ,()()2111354002003522S R θππ=⋅⋅=⨯-⨯=-,D 错误.故选:AC.【题型专练】1.(2022·上海市松江二中高一期末)已知扇形的圆心角为135︒,扇形的弧长为3π,则该扇形所在圆的半径为___________. 【答案】4【分析】利用弧长公式直接求得. 【详解】扇形的圆心角为135︒,为34π,设半径为r , 由弧长公式可得:334r ππ=,解得:4r =. 故答案为:42.(2022·全国·高一学业考试)已知扇形的周长是12,面积是8,则扇形的圆心角的弧度数可能是( ) A .1 B .4C .2D .3【答案】AB【分析】利用扇形的弧长与面积公式建立方程组求解,再利用圆心角公式.【详解】设扇形的半径为r ,弧长为l ,面积为S ,圆心角为α,则212l r +=,182S lr ==,解得2r =,8l =或4r =,4l ,则4lrα==或1.故C ,D 错误. 故选:AB .3.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =( )A 1133-B 1143-C 933-D 943-【答案】B 【解析】 【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案. 【详解】解:如图,连接OC , 因为C 是AB 的中点, 所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线, 即2OD OA OB ===, 又60AOB ∠=︒, 所以2AB OA OB ===, 则3OC =23CD = 所以(2223114322CD s AB OA -=+=+=故选:B.4.(2022·全国·高三专题练习)玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.某扇形玉雕壁面尺寸(单位:cm )如图所示,则该玉雕壁画的扇面面积约为( )A .2160cmB .23200cmC .23350cmD .24800cm【答案】D【分析】根据扇形的面积公式,利用大扇形面积减去小扇形面积即可求解. 【详解】易知该扇形玉雕壁画可看作由一个大扇形剪去一个小扇形得到, 设大、小扇形所在圆的半径分别为1r ,2r ,相同的圆心角为θ, 则1216080r r θ==,得122r r =,又因为1240r r -=, 所以180r =,240r =,该扇形玉雕壁画面积12111608022S r r =⨯⨯-⨯⨯()2111608080404800cm 22=⨯⨯-⨯⨯=. 故选:D .5.(2022·全国·高三专题练习)中国传统扇文化有着极其深厚的底蕴.按如下方法剪裁,扇面形状较为美观.从半径为r 的圆面中剪下扇形OAB ,使剪下扇形OAB 51-,再从扇形OAB 中剪下扇环形ABDC 制作扇面,使扇环形ABDC 的面积与扇形OAB 51-.则一个按上述方法制作的扇环形装饰品(如图)的面积与圆面积的比值为( )A 51- B 51-C 352D 52【答案】D 【解析】 【分析】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,根据扇形面积公式,弧长公式,以及题中条件,即可计算出结果. 【详解】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,由题意可得,2112S r α=,2151S S -=,2S r π=, 所以)122515124S Sr αππ-==, 因为剪下扇形OAB 51-, 所以2512r r r παπ--=(35απ=, 所以))(2515135355355244S S απππ--+===.故选:D.6.(2022·浙江·赫威斯育才高中模拟预测)“圆材埋壁”是我国古代的数学著作《九章算术》中的一个问题,现有一个“圆材埋壁”的模型,其截面如图所示,若圆柱形材料的底面半径为1,截面圆圆心为O ,墙壁截面ABCD 为矩形,且1AD =,则扇形OAD 的面积是__________.【答案】6π##16π【解析】 【分析】计算AOD ∠,再利用扇形的面积公式求解. 【详解】由题意可知,圆O 的半径为1,即1OA OD ==, 又1AD =,所以OAD △为正三角形,∵3AOD π∠=,所以扇形OAD 的面积是221112236S r AOD ππ=⨯⨯∠=⨯⨯=.故答案为:6π7.(2022·全国·模拟预测)炎炎夏日,在古代人们乘凉时习惯用的纸叠扇可看作是从一个圆面中剪下的扇形加工制作而成.如图,扇形纸叠扇完全展开后,扇形ABC 的面积S 为22225cm π,若2BD DA =,则当该纸叠扇的周长C 最小时,BD 的长度为___________cm .【答案】10π 【解析】 【分析】设扇形ABC 的半径为r cm ,弧长为l cm ,根据扇形ABC 的面积S 为22225cm π,由212252rl π=得到rl ,然后由纸叠扇的周长2C r l =+,利用基本不等式求解. 【详解】解:设扇形ABC 的半径为r cm ,弧长为l cm ,则扇形面积12S rl =.由题意得212252rl π=,所以2450rl π=.所以纸叠扇的周长2222290060C r l rl ππ=+≥=,当且仅当22,450,r l rl π=⎧⎨=⎩即15r π=,30l π=时,等号成立, 所以()15BD DA cm π+=.又2BD DA =, 所以()1152BD BD cm π+=,所以()3152BD cm π=,故()10BD cm π=. 故答案为:10π题型四:任意角三角函数的定义【例1】(2021·天津市武清区杨村第一中学高一阶段练习)已知函数()log 23a y x =++的图象恒过定点A ,若角α的顶点与原点重合,始边与x 轴的非负半轴重合,且点A 在角α的终边上,则sin α的值为( )A .17B 417C 310D .10【答案】C【分析】先由对数函数图象的特征求出定点()1,3A -,再由三角三函数的定义求解即可 【详解】函数()log 23a y x =++的图象恒过定点()1,3A -, 且点()1,3A -在角α的终边上, 所以()223sin 1331010α==-+,故选:C【例2】(2022·黑龙江·大庆市东风中学高一期末)已知角α的终边与单位圆交于点132P ⎛- ⎝⎭,则sin α的值为( ) A .3B .12-C 3D .12【答案】C【分析】根据三角函数的定义即可求出.【详解】因为角α的终边与单位圆交于点13,22P ⎛⎫- ⎪⎝⎭,所以根据三角函数的定义可知,3sin 2y α==. 故选:C .【例3】(2022·陕西渭南·高一期末)已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( ) A .12 B .1 C .2D .52【答案】C【分析】由三角函数定义求得m 值. 【详解】由题意31tan 2m m θ-==,解得2m =. 故选:C .【题型专练】1.(2022·陕西渭南·高一期末)已知()2,P y -是角θ终边上一点,且22sin θ=y 的值是( ) A .22 B .225 C .434 D 434【答案】D【分析】根据sin 0θ>,可判断点()2,P y -位于第二象限,利用正弦函数的定义列方程求解即可.【详解】解:因为()2,P y -是角θ终边上一点,22sin 05θ=>,故点()2,P y -位于第二象限, 所以0y >,2222sin 5(2)yy θ==-+, 整理得:21732y =,因为0y >,所以43417y =. 故选:D.2.(2022·陕西渭南·高一期末)已知角α的终边经过点()2,1P -,则sin α=( )A 5B 5C .12-D .-2【答案】A【分析】根据三角函数的定义即可得解.【详解】解:因为角α的终边经过点()2,1P -,所以15sin 541α==+. 故选:A.3.(2022·江苏省如皋中学高一期末多选)已知函数()()log 2401a f x x a a =-+>≠且的图象经过定点A ,且点A 在角θ的终边上,则11tan sin θθ+的值可能是( ) A .2B .3C 171+D 171+【答案】AC【分析】先由函数可知点A 的坐标,再由三角函数的定义可求解.【详解】由题意,可知(3,4)A 或(1,4)A ,当点是(3,4)A 时,由三角函数的定义有22444tan ,sin 3534θθ===+,所以11352tan sin 44θθ+=+=; 当点是(1,4)A 时, 由三角函数的定义有22444tan 4,sin 11714θθ====+, 所以11117171tan sin 444θθ++=+=. 故选:AC4.(2022·全国·高一课时练习)已知角α的终边上有一点()3,P m -,且2sin α=,则m 的值为______. 【答案】5±或0【分析】根据三角函数的定义列方程即可求解.【详解】由题意可知()222sin 43m m m α==-+,解得5m =±或0. 故答案为:5±或05.(2023·全国·高三专题练习)已知角α的终边与单位圆的交点为P 1(,)2y -,则sin tan αα=______. 【答案】32- 【分析】根据单位圆求出y ,然后由三角函数定义求得sin ,tan αα,再相乘可得.【详解】由题意2114y +=,32y =±, 32y =时,3sin 2α=,tan 3α=-,3sin tan 2αα=-, 32y =-时,3sin 2α=-,tan 3α=,3sin tan 2αα=-, 综上,3sin tan 2αα=-. 故答案为:32-. 题型五:三角函数值的正负判断【例1】(2022·浙江·诸暨市教育研究中心高二学业考试)若θ满足sin 0,tan 0θθ<>,则θ的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【分析】直接由各象限三角函数的符号判断即可.【详解】由sin 0θ<可知θ的终边在第三象限或第四象限,又tan 0θ>,则θ的终边在第三象限.故选:C.【例2】(2022·全国·高一课时练习)若角θ是第四象限角,则sin cos tan sin cos tan y θθθθθθ=++=______. 【答案】-1【分析】根据在第四象限三角函数的符号,化简计算y 值.【详解】因为角θ是第四象限角,所以sin 0θ<,cos 0θ>,tan 0θ<,所以sin cos tan 1111sin cos tan y θθθθθθ=++=-+-=-. 故答案为:-1.【例3】(2023·全国·高三专题练习)已知角θ在第二象限,且sinsin 22θθ=-,则角2θ在( ) A .第一象限或第三象限B .第二象限或第四象限C .第三象限D .第四象限 【答案】C 【分析】由题可得角2θ在第一或第三象限,再结合三角函数值的符号即得. 【详解】∵角θ是第二象限角,∵θ∵(2,2),Z 2k k k ππππ++∈,∵(,)242k k θππππ∈++,Z k ∈, ∵角2θ在第一或第三象限, ∵sinsin 22θθ=-,∵sin 02θ<, ∵角2θ在第三象限. 故选:C.【例4】(2022·全国·高一课时练习)(多选)下列三角函数值中符号为负的是( )A .sin100︒B .()cos 220-︒C .()tan 10-D .cos π 【答案】BCD【分析】根据各交所在象限判断三角函数的正负情况.【详解】因为90100180︒<︒<︒,所以sin100︒角是第二象限角,所以sin1000︒>;因为270220180-︒<-︒<-︒,220-︒角是第二象限角,所以()cos 2200-︒<;因为71032ππ-<-<-,所以角10-是第二象限角,所以()tan 100-<;cos 10π=-<;故选:BCD .【例5】(2022·河北·石家庄二中模拟预测)若角α满足sin cos 0αα⋅<,cos sin 0αα-<,则α在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】根据sin cos 0αα⋅<可知α是第二或第四象限角;根据第二或第四象限角正余弦的符号可确定结果.【详解】 sin cos 0αα⋅<,α是第二或第四象限角;当α是第二象限角时,cos 0α<,sin 0α>,满足cos sin 0αα-<;当α是第四象限角时,cos 0α>,sin 0α<,则cos sin 0αα->,不合题意;综上所述:α是第二象限角.故选:B.【例6】(2022·全国·高三专题练习(理))我们知道,在直角坐标系中,角的终边在第几象限,这个角就是第几象限角.已知点()cos ,tan P αα在第三象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】本题首先可以根据题意得出cos 0α<、tan 0α<,然后得出sin 0α>,即可得出结果.【详解】因为点()cos ,tan P αα在第三象限,所以cos 0α<,tan 0α<,则sin 0α>,角α的终边在第二象限,故选:B.【题型专练】1.(2022·全国·高一课时练习)在平面直角坐标系xOy 中,角α以Ox 为始边,终边经过点()1,P m -()0m ≠,则下列各式的值一定为负的是( )A .cos αB .sin cos αα-C .sin cos ααD .sin 2πα⎛⎫- ⎪⎝⎭ 【答案】AD【分析】由已知角终边上的点可得2sin 1m m α=+,21cos 1m α=-+,tan m α=-,结合诱导公式判断各项的正负,即可得答案.【详解】由题意知:2sin 1m m α=+,21cos 01m α=-<+,tan m α=-.∵不确定m 的正负,∵sin cos αα-与sin cos αα的符号不确定. ∵sin cos 02παα⎛⎫-=< ⎪⎝⎭, ∵一定为负值的是A ,D 选项.故选:AD2.(2022河南开封·高一期末)已知点()tan ,sin P αα在第三象限,则角α在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】∵点()tan ,sin P αα在第三象限,∵tan 0sin 0αα<⎧⎨<⎩,∵α在第四象限.故选:D. 3.(2022全国高一课时练习)在ABC 中,A 为钝角,则点()cos ,tan P A B ( )A .在第一象限B .在第二象限C .在第三象限D .在第四象限 【答案】B【解析】在ABC 中,A 为钝角,则B 为锐角,则cos 0,tan 0A B <>,则点()cos ,tan P A B 在第二象限, 故选:B4.(2021·全国高一课时练习)“角θ是第一或第三象限角”是“sin cos 0>θθ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】角θ是第一象限角时,sin 0,cos 0θθ,则sin cos 0>θθ;若角θ是第三象限角,sin 0,cos 0θθ<<,则sin cos 0>θθ.故“角θ是第一或第三象限角”是“sin cos 0>θθ”的充分条件.若sin cos 0>θθ,即sin 0,cos 0θθ或sin 0,cos 0θθ<<,所以角θ是第一或第三象限角.故“角θ是第一或第三象限角”是“sin cos 0>θθ”的必要条件.综上,“角θ是第一或第三象限角”是“sin cos 0>θθ”的充要条件.故选:C.5.(2022·全国·高三专题练习)如果cos 0θ<,且tan 0θ<,则sin cos cos θθθ-+的化简为_____.【答案】sin θ【解析】【分析】由cos 0θ<,且tan 0θ<,得到θ是第二象限角,由此能化简sin cos cos θθθ-+.【详解】解:∵cos 0θ<,且tan 0θ<,∵θ是第二象限角, ∵sin cos cos sin cos cos sin θθθθθθθ-+=-+=.故答案为:sin θ.6.(2022·浙江·模拟预测)已知R θ∈,则“cos 0θ>”是“角θ为第一或第四象限角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要 【答案】B【解析】【分析】利用定义法进行判断.【详解】充分性:当cos 0θ>时,不妨取cos 1,0θθ==时轴线角不成立.故充分性不满足;必要性:角θ为第一或第四象限角,则cos 0θ>,显然成立.故选:B.。
三角函数任意角的概念

三角函数任意角的概念三角函数是数学中重要的概念之一,用于描述角的关系和性质。
在三角函数中,我们通常只考虑在直角三角形中的角度范围,即0 到90 度。
然而,在实际应用中,我们常常需要计算其他角的三角函数值。
为此,引入了任意角的概念。
任意角指的是大于90 度并小于180 度的角。
在三角函数中,我们将角的终边与x 轴正半轴的交点设为顶点O,角的始边与x 轴正半轴的交点设为顶点A。
以角度为单位来衡量。
为了方便计算,我们将角度单位转换为弧度单位。
以弧度单位来表示的角称为弧度角。
在三角函数中,最基本的三个函数是正弦函数sinθ,余弦函数cosθ和正切函数tanθ。
这些函数与角的关系如下:1. 正弦函数sinθ。
定义为角的终边上的点到x 轴的距离与半径的比值。
即sin θ= y/r,其中y 表示角的终边上的点到x 轴的距离,r 表示半径。
2. 余弦函数cosθ。
定义为角的终边上的点到y 轴的距离与半径的比值。
即cosθ= x/r,其中x 表示角的终边上的点到y 轴的距离,r 表示半径。
3. 正切函数tanθ。
定义为角的终边上的点到y 轴的距离与角的终边上的点到x 轴的距离的比值。
即tanθ= y/x。
在任意角中,三角函数的值与正弦函数、余弦函数和正切函数的正负有关。
根据象限的不同,三角函数的值会有不同的正负号。
具体来说:1. 在第一象限(0到90度)中,sinθ、cosθ和tanθ的值都是正数。
2. 在第二象限(90到180度)中,sinθ的值是正数,cosθ和tanθ的值都是负数。
3. 在第三象限(180到270度)中,sinθ和tanθ的值都是负数,cosθ的值是正数。
4. 在第四象限(270到360度)中,sinθ的值是负数,cosθ和tanθ的值都是正数。
除了正弦函数、余弦函数和正切函数,还存在其他一些三角函数。
其中,正割函数secθ是余弦函数的倒数,即secθ= 1/cosθ;余割函数cscθ是正弦函数的倒数,即cscθ= 1/sinθ;余切函数cotθ是正切函数的倒数,即cotθ= 1/tanθ。
2015届高考数学一轮复习角的概念及任意角三角函数学案 理

2015届高考数学一轮复习角的概念及任意角三角函数学案理知识梳理: (阅读教材必修4第2页—第17页)(一)、角的概念的推广1、角的概念:2、正角、负角和零角:3、象限角:4、终边相同的角:所在与终边相同的角,连同在内的角可以构成一个集合5、终边落在x轴上的角的集合:;终边浇在y轴上的角的集合:。
(二)、弧度制1、角的度量:角度制:弧度制:2、正角的弧度数是一个正数,负角的弧度是一个负数,零角的弧度数是0。
3、角度制与弧度制之间的换算关系:==;1rad=(4、弧度制下的弧公式与扇形的面积公式:(三)任意角的三角函数:1、设任意角的终边上任意一点p(除原点外)的坐标为(x,y),它到原点的距离为r=。
(1)、比值 叫做的正弦,记作sin ,即(2)、比值 叫做的余弦,记作cos ,即(3)、比值 叫做的正切,记作tan ,即s 2、单位圆中的三角函数线如图: Sin =MP ,cos =OM ,tan =AT一、 题型探究:探究一:终边相同的角的集合的表示 例1:如图: 分别为终边落在OM 、ON ,位置上的两个角,且=,。
(1)、求终边落在圆阴影部分(含边界)时所有角的集合; (2)、求终边落在圆阴影部分(含边界),且满足条件{x|}的所有角的集合;X探究二:象限角的意义:X例 2:若是第二象限角,试确定2, 的终边所在的位置探究三:扇形的面积:例3:1弧度的圆心角所对的弦长为2,求此圆心角所夹扇形 的面积。
探究四:任意角的三角函数的定义:例4 【2014安徽理科】 .设函数))((R x x f ∈满足.sin )()(x x f x f +=+π当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A.21 B. 23 C.0 D.21-例5:(2014新课标I). 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直例6:若sin tan cot ()22ππαααα>>-<<,则α∈( B )()A (,)24ππ-- ()B (,0)4π- ()C (0,)4π ()D (,)42ππ二、方法提升:1、 要确定所在的象限,只要把表示为=2k +,02),就可以由所在的象限判定所在的象限,则已知角的范围求未知角的范围是,通常要用不等式的性质来解决,切忌不要扩大角的范围。
人教版高三数学三角函数知识精讲2

高三数学三角函数知识精讲一. 本周教学内容: 三角函数任意角的三角函数,三角函数线,同角三角函数关系与诱导公式,三角函数的图像和性质[基本知识点]1° 角的概念的推广(1)终边相同的角:{β|β=α+k ·360°,k ∈Z}表示与角α终边相同的角的集合。
(2)象限角:角的顶点与坐标原点重合,角的始边与x 轴正半轴重合,角的终边落在第几象限,就称这个角是第几象限角。
(3)坐标轴上的角:角的终边落在坐标轴上的角,也称轴限角,这个角不属于任何象限。
终边落在轴上的角,终边落在轴上的角,,x k k Z y k k Z {|}{|}ααπααππ=∈=+∈22° 弧度制(1)意义:圆周上弧长等长半径的弧所对的圆心角的大小为1弧度,它将任意角的集合与实数集合之间建立一一对应关系。
(2)弧度与角度的互换 180118011805718===≈πππ弧度弧度弧度,,()()'(3)弧度公式,扇形面积公式: l r =⋅||α S lr r 扇形==12122||α3° 任意角的三角函数(1)定义:设P(x ,y)是角α的终边上任意一点,且|PO|=r ,则sin cos ααα===yr x r tg y x ,, csc sec ααα===ryr x ctg x y,, (2)三角函数的符号与角所在象限有关,如下表所示。
规律:一全正,二正弦,三双切,四余弦注意:角的范围的讨论及三角函数的定义的理解是三角的重要内容;而度数与弧度数的互化,弦长公式,扇形的面积公式的应用是难点内容,应注意熟练掌握。
(1)在讨论角的范围时,不要遗漏坐标轴上的角; ()角22α终边所在的位置与α终边的位置及k 的取值有关,要对k 的取值结合α的范围情况进行讨论。
(3)三角函数值的大小仅与角有关,而与终边上所取的P 点的位置无关,当角的终边所在象限不确定时,要分情况讨论。
任意角的概念、弧度制、任意角的三角函数

数学辅导专题讲座——三角函数(一)任意角的概念、弧度制、任意角的三角函数:了解任意角的概念.弧度制概念,能进行弧度与角度的互化,弧长公式、扇形面积公式;任意角的三角函数的定义、三角函数线。
基础巩固一、角的概念的推广1.与角α终边相同的角的集合为 .2.与角α终边互为反向延长线的角的集合为 .3.轴线角(终边在坐标轴上的角)终边在x 轴上的角的集合为 ,终边在y 轴上的角的集合为 ,终边在坐标轴上的角的集合为 .4.象限角是指: .5.区间角是指: .6.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它将任意角的集合与实数集合之间建立了一一对应关系.7.弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º.8.弧长公式:l = ;扇形面积公式:S = .二、任意角的三角函数9.定义:设P(x, y)是角α终边上任意一点,且 |PO| =r ,则sin α= ; cos α= ;tan α= ;10.三角函数的符号与角所在象限的关系:1213.三角函数线:在图中作出角α的正弦线、余弦线、正切线.- + -+cos x ,+ + - - sin x ,- + + - tan x ,x y O xyO x y O例1. 若α是第二象限的角,试分别确定2α,2α ,3α的终边所在位置.变式训练1:已知α是第三象限角,问3α是哪个象限的角?例2. 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥23; (2)cos α≤21-.变式训练2:求下列函数的定义域:(1)y=1cos 2-x ; (2)y=lg(3-4sin 2x ).例3. 已知角α的终边在直线3x+4y=0上,求sin α,cos α,tan α的值.变式训练3:已知角θ的终边经过点P ()(0),sin 4m m m θ≠=且,试判断角θ所在的象限,并求cos tan θθ和的值.例4. 已知一扇形中心角为α,所在圆半径为R . (1) 若α3π=,R =2cm ,求扇形的弧长及该弧所在弓形面积;(2) 若扇形周长为一定值C(C>0),当α为何值时,该扇形面积最大,并求此最大值.变式训练4:扇形OAB 的面积是1cm 2,它的周长是4cm ,求中心角的弧度数和弦长AB .1、设α是第三、四象限角,mm --=432sin α,则m 的取值范围是A 、(-1,1)B 、(-1,)21C 、(-1,)23 D 、⎪⎭⎫⎢⎣⎡-23,1 2、如果θ是第一象限角,那么恒有A 、2sin θ>0 B 、2tan θ<1 C 、2sin θ>2cos θ D 、2sin θ<2cos θ3、将时钟拨慢10分钟,则分针转过的弧度数是A 、3π B 、3π- C 、5πD 、5π-4、如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是 ( )5、方程sin πx =14x 的解的个数是( )A .5B .6C .7D .86、一钟表的分针长10 cm ,经过35分钟,分针的端点所转过的长为:( )A .70 cmB .670 cm C .(3425-3π)cm D .3π35 cm7、已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A .2B .1sin 2 C .1sin 2 D .2sin8、设集合M =⎩⎨⎧⎭⎬⎫α|α=k π2-π3,k ∈Z ,N ={α|-π<α<π},则M ∩N =________. 9、设角α、β满足180180αβ-<<<,则αβ-的范围是___________.10、α的终边与6π的终边关于直线x y =对称,则α=______。
任意角的三角函数及诱导公式

——任意角的三角函数及诱导公式1.任意角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α。
旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。
为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。
如果一条射线没有做任何旋转,我们称它形成了一个零角。
2.终边相同的角、区间角与象限角角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。
要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。
终边相同的角是指与某个角α具有同终边的所有角,它们彼此相差2k π(k ∈Z),即β∈{β|β=2k π+α,k ∈Z},根据三角函数的定义,终边相同的角的各种三角函数值都相等。
区间角是介于两个角之间的所有角,如α∈{α|6π≤α≤65π}=[6π,65π]。
3.弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。
角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。
角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径。
角度制与弧度制的换算主要抓住180rad π︒=。
弧度与角度互换公式:1rad =π180°≈57.30°=57°18ˊ、1°=180π≈0.01745(rad )。
弧长公式:r l ||α=(α是圆心角的弧度数), 扇形面积公式:2||2121r r l S α==。
4.三角函数定义利用单位圆定义任意角的三角函数,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:(1)y 叫做α的正弦,记做sin α,即sin y α=;(2)x 叫做α的余弦,记做cos α,即cos x α=; (3)yx 叫做α的正切,记做tan α,即tan (0)y x xα=≠。
高三总复习数学课件 任意角和弧度制、三角函数的概念

2.常用结论 (1)α,β终边相同⇔β=α+2kπ,k∈Z. (2)α,β终边关于x轴对称⇔β=-α+2kπ,k∈Z. (3)α,β终边关于y轴对称⇔β=π-α+2kπ,k∈Z. (4)α,β终边关于原点对称⇔β=π+α+2kπ,k∈Z.
1.(人教 A 版必修第一册 P175·T6 改编)半径为 2 的圆中,有一条弧长是π3,则此
任意角和弧度制、三角函数的概念
1.了解任意角的概念和弧度制. 2.能进行弧度与角度的互化,体会引入弧度制的必要性. 3.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.
1.三角函数的基本概念
定义
角可以看成一条射线绕着它的端点旋转所成的图形
(1)按旋转方向分为 正角 、 负角 和零角; 分类
()
π A.3
2π B. 3
4π C. 3
D.-103π
解析:与角-43π终边相同的角的集合是αα=-43π+2kπ,k∈Z
,
当 k=1 时,α=23π;当 k=-1 时,α=-130π.
答案:BD
2.(多选)已知角2α的终边在x轴的上方,那么角α可能是
()
A.第一象限角
B.第二象限角
C.第三象限角
(2)按终边位置分为 象限角 和轴线角
终边相 所有与角α终边相同的角,连同角α在内,构成的角的集合是{β|β 同的角 =k·360°+α,k∈Z}或_{_β_|β_=__α_+__2_k_π_,__k_∈__Z_}_
2.象限角
象限角 第一象限角 第二象限角 第三象限角 第四象限角
角的表示 {α|k·360°<α<k·360°+90°,k∈Z} {α|k·360°+90°<α<k·360°+180°,k∈Z} {α|k·360°+180°<α<k·360°+270°,k∈Z} {α|k·360°-90°<α<k·360°,k∈Z}
高考数学总复习 31 角的概念推广、弧度制及任意角的三

()
π A.3 C. 3
2π B. 3 D.2
解析:设圆半径为 R,则其内接正三角形的边长为 3R,于是圆
心角的弧度数为 R3R= 3. 答案:C
4.弧长为 3π,圆心角为 135°的扇形半径为______,面积为 ______.
解析:弧长 l=3π,圆心角 α=34π, 由弧长公式 l=α·r 得 r=αl =33π=4,
B.k·360°+250°,k∈Z
C.k·360°+70°,k∈Z
D.k·360°+270°,k∈Z
解析:由于 610°=360°+250°,所以 610°与 250°角的终边相同.
答案:B
2.如果角 α 是第三象限角,则-α,πα,π+α 角的终边分别落 在第______,______,______象限.
\\\\\\方法规律\\\\\ (1)利用终边相同的角的集合 S={β|β=2kπ+α,k∈Z}判断一个
角 β 所在的象限时,只需把这个角写成[0,2π)范围内的一个角 α 与 2π 的整数倍的和,然后判断角 α 的象限.
(2)利用终边相同的角的集合可以求适合某些条件的角,方法是 先写出与这个角的终边相同的所有角的集合,然后通过对 k 赋值来 求得所需角.
第一节 角的概念推广、弧度制及任意角的三角函数
目标定位
学习指向
1.主要考查对三角函数定义的理解和 1.了解任意角的概念.
运用,如三角函数值符号的选取及基 2.了解弧度制的概念,能
本运算能力. 进行弧度与角度的互化.
2.在高考中会结合三角函数的其他知 3.理解任意角三角函数(正
识进行考查,一般不会单独命题. 弦、余弦、正切)的定义.
l r
.
3.角度与弧度的换算
(完整版)三角函数最全知识点总结

三角函数、解三角形一、任意角和弧度制及任意角的三角函数1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角.①正角:按__逆时针__方向旋转形成的角.②负角:按__顺时针__方向旋转形成的角.③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角.(2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}.(3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限.象限角轴线角2.弧度制(1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__.(2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__.(3)角度与弧度的换算:360°=__2π__rad,1°=__π180=(__180π__)≈57°18′.(4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__,面积S=__12|α|r2__=__12lr__.3.任意角的三角函数定义(1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与原点的距离为r,则sinα=__yr__,cosα=__xr__,tanα=__yx__.(2)三角函数在各象限的符号是:(3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线.4.终边相同的角的三角函数sin(α+k·2π)=__sinα__,cos(α+k·2π)=__cosα__,tan(α+k·2π)=__tanα__(其中k∈Z),即终边相同的角的同一三角函数的值相等.重要结论1.终边相同的角不一定相等,相等角的终边一定相同,在书写与角α终边相同的角时,单位必须一致.2.确定αk(k∈N*)的终边位置的方法(1)讨论法:①用终边相同角的形式表示出角α的范围.②写出αk的范围.③根据k的可能取值讨论确定αk的终边所在位置.(2)等分象限角的方法:已知角α是第m(m=1,2,3,4)象限角,求αk是第几象限角.①等分:将每个象限分成k等份.②标注:从x轴正半轴开始,按照逆时针方向顺次循环标上1,2,3,4,直至回到x轴正半轴.③选答:出现数字m的区域,即为αk所在的象限.如α2判断象限问题可采用等分象限法.二、同角三角函数的基本关系式与诱导公式1.同角三角函数的基本关系式(1)平方关系:__sin 2x +cos 2x =1__. (2)商数关系:__sin xcos x =tan x __.2.三角函数的诱导公式1.同角三角函数基本关系式的变形应用:如sin x =tan x ·cos x ,tan 2x +1=1cos 2x ,(sin x +cos x )2=1+2sin x cos x 等. 2.特殊角的三角函数值表“奇变偶不变,符号看象限”.“奇”与“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限.4.sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系为(sin x +cos x )2=1+2sin x cos x ,(sin x -cos x )2=1-2sin x cos x ,(sin x +cos x )2+(sin x -cos x )2=2.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值.三、两角和与差的三角函数 二倍角公式1.两角和与差的正弦、余弦和正切公式2.二倍角的正弦、余弦、正切公式 (1)sin2α=__2sin αcos α__;(2)cos2α=__cos 2α-sin 2α__=__2cos 2α__-1=1-__2sin 2α__; (3)tan2α=__2tan α1-tan 2α__(α≠k π2+π4且α≠k π+π2,k ∈Z ). 3.半角公式(不要求记忆) (1)sin α2=±1-cos α2; (2)cos α2=±1+cos α2;(3)tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.重要结论1.降幂公式:cos 2α=1+cos2α2,sin 2α=1-cos2α2. 2.升幂公式:1+cos2α=2cos 2α,1-cos2α=2sin 2α. 3.公式变形:tan α±tan β=tan(α±β)(1∓tan α·tan β). 1-tan α1+tan α=tan(π4-α);1+tan α1-tan α=tan(π4+α)cos α=sin2α2sin α,sin2α=2tan α1+tan 2α,cos2α=1-tan 2α1+tan 2α,1±sin2α=(sin α±cos x )2.4.辅助角(“二合一”)公式: a sin α+b cos α=a 2+b 2sin(α+φ), 其中cos φ=,sin φ= 5.三角形中的三角函数问题在三角形中,常用的角的变形结论有:A +B =π-C ;2A +2B +2C =2π;A2+B 2+C 2=π2.三角函数的结论有:sin(A +B )=sin C ,cos(A +B )=-cos C ,tan(A +B )=-tan C ,sin A +B 2=cos C 2,cos A +B 2=sin C 2.A >B ⇔sin A >sin B ⇔cos A <cos B .四、三角函数的图象与性质1.周期函数的定义及周期的概念(1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做__周期函数__.非零常数T叫做这个函数的__周期__.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小__正周期__.(2)正弦函数、余弦函数都是周期函数,__2kπ(k∈Z,k≠0)__都是它们的周期,最小正周期是__2π__.2.正弦、余弦、正切函数的图象与性质π重要结论1.函数y =sin x ,x ∈[0,2π]的五点作图法的五个关键点是__(0,0)__、__(π2,1)__、__(π,0)__、__(3π2,-1)__、__(2π,0)__.函数y =cos x ,x ∈[0,2π]的五点作图法的五个关健点是__(0,1)__、__(π2,0)__、__(π,-1)__、__(3π2,0)__、__(2π,1)__.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为T =2π|ω|,函数y =tan(ωx +φ)的最小正周期为T =π|ω|.3.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期.而正切曲线相邻两对称中心之间的距离是半周期.4.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.五、函数y =A sin(ωx +φ)的图象及应用1.五点法画函数y =A sin(ωx +φ)(A >0)的图象(1)列表: (2)描点:__(-φω,0)__,__(π2ω-φω,A )__,(πω-φω,0),(3π2ω-φω,-A )__,(2πω-φω,0)__.(3)连线:把这5个点用光滑曲线顺次连接,就得到y =A sin(ωx +φ)在区间长度为一个周期内的图象.(4)扩展:将所得图象,按周期向两侧扩展可得y =A sin(ωx +φ)在R 上的图象2.由函数y =sin x 的图象变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤3.函数y =A sin(ωx +φ)(A >0,ω>0,x ∈[0,+∞)的物理意义 (1)振幅为A . (2)周期T =__2πω__.(3)频率f =__1T __=__ω2π__. (4)相位是__ωx +φ__. (5)初相是φ.重要结论1.函数y =A sin(ωx +φ)的单调区间的“长度 ”为T2.2.“五点法”作图中的五个点:①y =A sin(ωx +φ),两个最值点,三个零点;②y =A cos(ωx +φ),两个零点,三个最值点.3.正弦曲线y =sin x 向左平移π2个单位即得余弦曲线y =cos x .六、正弦定理、余弦定理1.正弦定理和余弦定理 ①a =__2R sin A __,b =__2R sin B __,c =__2R sin C __;②sin A =__a 2R __,sin B =__b2R__,sin C=__c2R __;③ab c =__sin Asin B sin C __④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Aa <b sin A a =b sin A b sin A < a <b a ≥b a >b a ≤b (1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A .(3)S =12r (a +b +c )(r 为内切圆半径).重要结论在△ABC 中,常有以下结论 1.∠A +∠B +∠C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2. 5.tan A +tan B +tan C =tan A ·tan B ·tan C .6.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .7.三角形式的余弦定理sin 2A =sin 2B +sin 2C -2sin B sin C cos A ,sin 2B =sin 2A +sin 2C -2sin A sin C cos B ,sin 2C =sin 2A +sin 2B -2sin A sin B cos C .8.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3. 9.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin2A =sin2B ⇔A =B 或A +B =π2等. (2)利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.(3)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.。
专题33 三角函数的概念(解析版)

专题33 三角函数的概念考点1 任意角的三角函数1.在Rt△ABC中,∠C=90°,a=4,b=3,则cos A的值是()A.35B.45C.43D.54【答案】A【解析】∵∠C=90°,a=4,b=3,∴c=√42+32=5,∴cos A=bc =35.2.三角形在方格纸中的位置如图所示,则cosα的值是()A.34B.43C.35D.45【答案】D【解析】根据网格特点可知,AC=4,BC=3,由勾股定理得,AB=√AC2+BC2=5,则cosα=ACAB =45.3.如图,点A为α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.BDBCB.BCABC.ADACD.CDAC【答案】C【解析】∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD=BDBC =BCAB=DCAC,只有选项C错误.4.角θ的终边过点P(-1,2),则sinθ等于()A.√55B .2√55C .-√55D .-2√55【答案】B【解析】由题意可得,x =-1,y =2,r =|OP |=√5, ∴sin θ=√5=2√55.5.已知角α的终边过点P (-3,4),则sin α+cos α等于( ) A .35 B .-45 C .15 D .-15 【答案】C【解析】sin α=45,cos α=-35,故sin α+cos α=15.6.已知点P 在角4π3的终边上,且|OP |=4,则P 点的坐标为( ) A .(-2,-2√3) B .(-12,-√32)C .(-2√3,-2)D .(-√32,-12)【答案】A【解析】设P点的坐标为(x,y),由三角函数的定义得,x=|OP|cos4π3=4×(-12)=-2,y=|OP|sin4π3=4×(−√32)=-2√3.则P(-2,-2√3).7.已知α是第二象限角,P(x,√5)为其终边上一点,且cosα=√24x,则x等于()A.√3B.±√3C.-√2D.-√3【答案】D【解析】∵cosα=xr =√x2+5=√24x,∴x=0(∵α是第二象限角,舍去)或x=√3(舍去)或x=-√3.8.已知角α的终边过点P(-4m,3m)(m<0),则2sinα+cosα的值是()A.1B.25C.-25D.-1【答案】C【解析】∵角α的终边过点P(-4m,3m)(m<0),∴r=|OP|=√(−4m)2+(3m)2=√25m2=-5m,则2sinα+cosα=2×3m−5m +−4m−5m=-65+45=-25.9.如图,AD、BE分别是△ABC中BC、AC边上的高,AD=4,AC=6,则sin∠EBC=________.【答案】√53【解析】∵AD、BE分别是△ABC中BC、AC边上的高,∴∠BEC=∠ADC=90°,∴∠CBE=∠DAC,∵∠ADC=90°,AD=4,AC=6,∴CD=√AC2−AD2=√62−42=√20=2√5,∴sin∠DAC=CDAC =2√56=√53,∴sin∠EBC=√53.10.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是______.【答案】34【解析】在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°. ∴∠A=∠BCD,∴tan∠BCD=tan∠A=BCAC =68=34.11.若角α的终边与直线y=3x重合且sinα<0,又P(m,n)是α终边上一点,且|OP|=√10,则m-n=________.【答案】2【解析】∵y=3x,sinα<0,∴点P(m,n)位于y=3x在第三象限的图象上,且m<0,n<0,n=3m.∴|OP|=√m2+n2=√10|m|=-√10m=√10.∴m=-1,n=-3,∴m-n=2.12.已知角α顶点在原点,始边在x轴的正半轴上,终边在直线l:2x-y=0上,且cosα<0,点P(a,b)是α终边上的一点,且|OP|=√5,求a+b的值.【答案】∵角α顶点在原点,始边在x轴的正半轴上,终边在直线l:2x-y=0上,且cosα<0,∴点P(a,b)在第三象限,a<0,b<0,∴tanα=2,即ba=2,又|OP|=√5,即a2+b2=5,解得a=-1,b=-2,∴a+b=-3.考点2 三角函数值在各象限的符号13.若角θ同时满足sinθ<0,且tanθ<0,则角θ的终边一定落在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由sinθ<0,可知:θ的终边在第三、四象限或终边落在y轴的非正半轴上;由tanθ<0,可知:θ的终边在第二、四象限.综上可知:角θ的终边一定落在第四象限.14.若A、B为锐角△ABC的两内角,则点P(sin B-cos A,cos B-sin A)是()A.第一象限的点B.第二象限的点C.第三象限的点D.第四象限的点【答案】D【解析】∵A、B是锐角△ABC的两个内角,∴A+B>π2,∴A>π2-B,B>π2-A,sin A>sin(π2-B)=cos B,sin B>sin(π2-A)=cos A,∴sin B-cos A>0,cos B-sin A<0,∴点P(sin B-cos A,cos B-sin A)是第四象限的点.15.函数y=sinx|sinx|+|cosx|cosx+tanx|tanx|的值域是()A.{3}B.{3,-1} C.{3,1,-1} D.{3,1,-1,-3}【答案】B【解析】当x是第一象限角时,sin x>0,cos x>0,tan x>0,则y=sinx|sinx|+|cosx|cosx+tanx|tanx|=1+1+1=3;当x是第二象限角时,sin x>0,cos x<0,tan x<0,则y=sinx|sinx|+|cosx|cosx+tanx|tanx|=1-1-1=-1;当x是第三象限角时,sin x<0,cos x<0,tan x>0,则y=sinx|sinx|+|cosx|cosx+tanx|tanx|=-1-1+1=-1;当x是第四象限角时,sin x<0,cos x>0,tan x<0,则y=sinx|sinx|+|cosx|cosx+tanx|tanx|=-1+1-1=-1;综上可得,函数y=sinx|sinx|+|cosx|cosx+tanx|tanx|的值域是{-1,3}.考点3诱导公式一16.点A(sin2011°,cos2011°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】∵sin2011°=sin(5×360°+211°)=sin211°<0,cos2011°=cos (5×360°+211°)=cos211°<0, ∴横坐标和纵坐标都是负数, ∴对应的点位于第三象限.17.如果角α的终边经过点P (sin780°,cos (-330°)),则sin α等于( ) A .√32B .12 C .√22D .1 【答案】C【解析】sin780°=sin (2×360°+60°)=sin60°=√32,cos (-330°)=cos (-360°+30°)=cos30°=√32,所以点P (√32,√32),所以r =|OP |=√62.由三角函数的定义,得sin α=yr =√32√62=√22.18.sin1830°等于( ) A .12 B .-12 C .√32D .-√32【答案】A【解析】sin1830°=sin (30°+5×360°)=sin30°=12. 19.求下列各式的值. (1)cos25π3+tan (;(2)sin (-1320°)cos1110°+cos (-1020°)sin750°+tan495°. 【答案】(1)原式=cos (+tan (=cos π3+tan π4=12+1=32.(2)原式=sin (-4×360°+120°)cos (3×360°+30°)+cos (-3×360°+60°)sin (2×360°+30°)+tan (360°+135°)=sin120°cos30°+cos60°sin30°+tan135°=√32×√32+12×12-1=0.考点4 单位圆与三角函数线 20.下列说法不正确的是( )A .当角α的终边在x 轴上时,角α的正切线是一个点B .当角α的终边在y 轴上时,角α的正切线不存在C .正弦线的始点随角的终边位置的变化而变化D .余弦线和正切线的始点都是原点 【答案】D【解析】余弦线始点是原点,正切线的始点是点(1,0).21.不论角α的终边位置如何,在单位圆中作三角函数线时,下列说法正确的是( ) A .总能分别作出正弦线、余弦线、正切线B.总能分别作出正弦线、余弦线、正切线,但可能不只一条C.正弦线、余弦线、正切线都可能不存在D.正弦线、余弦线总存在,但正切线不一定存在【答案】D【解析】由三角函数线概念及三角函数定义可知D正确.22.函数值tan224°,sin136°,cos310°的大小关系是()A.cos310°<sin136°<tan224°B.sin136°<cos310°<tan224°C.cos310°<tan224°<sin136°D.tan224°<sin136°<cos310°【答案】A【解析】tan224°=tan44°,sin136°=sin44°,cos310°=cos50°=sin40°,如图∠COF=44°,CF是44°的正切线,EG是正弦线,OE是余弦线,DI是40°的正弦线,由图可知CF>EG>DI,所以cos310°<sin136°<tan224°.23.设a=sin(-1),b=cos(-1),c=tan(-1),则有()A.a<b<cB.b<a<cC.c<a<bD.a<c<b【答案】C【解析】作α=-1的正弦线,余弦线,正切线可知:b=OM>0,a=MP<0,c=AT <0,且MP>AT.∴b>a>c,即c<a<b.24.如果MP、OM分别是角3π的正弦线和余弦线,那么下列结论正确的是()16A.MP<OM<0B.MP<0<OMC.MP>OM>0D.OM>MP>0【答案】D【解析】如图可知,OM>MP>0.25.如图,MP → 、OM → 、AT→ 分别是240°角的正弦线、余弦线、正切线,则其数量一定有( )A .MP <OM <ATB .OM <MP <ATC .AT <OM <MPD .OM <AT <MP【答案】A【解析】∵MP → 、OM → 、AT→ 分别是240°角的正弦线、余弦线、正切线, ∴MP → =sin240°,OM → =cos240°,AT→ =tan240°,其数量关系为:MP <OM <AT . 26.若0<α<2π,则使sin α<√32和cos α>12同时成立的α的取值范围是( ) A .(-π3,π3)B .(0,π3)C .(5π3,2π)D .(0,π3)∪(5π3,2π) 【答案】D【解析】∵0<α<2π,sin α<√32, ∴0<α<π3或2π3<α<2π,①∵0<α<2π,cos α>12,∴0<α<π3或5π3<α<2π,② ①②取交集得0<α<π3或5π3<α<2π. 27.利用三角函数线,写出满足下列条件的角α的集合.(1)sin α≥√22;(2)cos α≤12;(3)|cos α|>|sin α|. 【答案】(1)由下图知:当sin α≥√22时,角α满足的集合为{α|π4+2kπ≤α≤3π4+2kπ,k ∈Z}.(2)由下图知:当cos α≤时,角α满足的集合为{α|π3+2kπ≤α≤5π3+2kπ,k ∈Z}.(3)如下图,作出单位圆.所以角α满足的集合为{α|kπ−π4<α<kπ+π4,k ∈Z}28.利用单位圆中的三角函数线,分别确定角θ的取值范围. (1)sin θ≥√32;(2)-12≤cos θ<√32.【答案】(1)下图中阴影部分就是满足条件的角θ的范围,即{θ|2kπ+π3≤θ≤2kπ+2π3,k ∈Z}.(2)下图中阴影部分就是满足条件的角θ的范围,即{θ|2kπ−23π≤θ≤2kπ−π6或2kπ+π6<θ≤2kπ+23π,k ∈Z}.。
任意角和弧度制及任意角的三角函数

任意角和弧度制及任意角的三角函数‖知识梳理‖1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的分类+k·360°,k∈Z}.2.弧度制(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad.(2)公式|α|=l r3.三角函数线有向线段MP 为正弦线,有向线段OM 为余弦线,有向线段AT 为正切线| 微 点 提 醒 |1.若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. 2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.(×) (2)角α的三角函数值与其终边上点P 的位置无关.(√) (3)不相等的角终边一定不相同.(×) (4)终边相同的角的同一三角函数值相等.(√) (5)若α∈⎝⎛⎭⎫0,π2,则tan α>sin α.(√) (6)若α为第一象限角,则sin α+cos α>1.(√)‖自主测评‖1.下列与9π4的终边相同的角的表达式中正确的是( )A .2k π-45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )解析:选C 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有C 正确.故选C.2.(教材改编题)若θ满足sin θ<0,cos θ>0,则θ的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D 由sin θ<0,θ的终边可能位于第三象限或第四象限,也可能与y 轴的非正半轴重合,cos θ>0,θ的终边可能位于第一象限,也可能位于第四象限,也可能与x 轴的非负半轴重合,故θ的终边在第四象限.3.(教材改编题)角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:C4.(教材改编题)已知角θ的终边过点P (12,-5),则cos θ的值为________. 解析:因为x =12,y =-5,所以r =x 2+y 2=13,所以cos θ=x r =1213.答案:12135.(教材改编题)扇形弧长为20 cm ,中心角为100°,则该扇形的面积为________cm 2. 解析:由弧长公式l =|α|r ,得r =20100π180=36π(cm),所以S 扇形=12lr =12×20×36π=360π(cm 2).答案:360π…………考点一 象限角及终边相同的角…………………|自主练透型|……………|典题练全|1.若α=k ·180°+45°(k ∈Z ),则α在( ) A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限 解析:选A 当k =2n (n ∈Z )时,α=2n ·180°+45°=n ·360°+45°,α为第一象限角; 当k =2n +1(n ∈Z )时,α=(2n +1)·180°+45°=n ·360°+225°,α为第三象限角,所以α为第一或第三象限角.故选A.2.若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角解析:选C ∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z . 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.∴α2是第一或第三象限角. 3.(一题多解)设集合M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ,N =xx =k4·180°+45°,k ∈Z ,那么( ) A .M =N B .M ⊆N C .N ⊆MD .M ∩N =∅解析:选B 解法一:由于M =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…}, N =⎩⎨⎧x ⎪⎪⎭⎬⎫x =k 4·180°+45°,k ∈Z ={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .解法二:由于M 中,x =k2·180°+45°=k ·90°+45°=45°·(2k +1),2k +1是奇数;而N 中,x=k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N . 4.集合⎩⎨⎧α⎪⎪⎭⎬⎫k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,n ∈Z ,此时α的终边和π4≤α≤π2的终边一样,当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.5.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________.解析:如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π.答案:⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π『名师点津』………………………………………………|品名师指点迷津| 1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线; (2)按逆时针方向写出[0,2π]内的角;(3)再由终边相同角的表示方法写出满足条件角的集合; (4)求并集化简集合. 2.判断象限角的2种方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.(2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角. 3.确定kα,αk (k ∈N *)的终边位置3步骤(1)用终边相同角的形式表示出角α的范围; (2)再写出kα或αk的范围;(3)然后根据k 的可能取值讨论确定kα或αk的终边所在的位置.…………考点二 扇形的弧长、面积公式…………|重点保分型|……………|研透典例|【典例】 已知扇形的圆心角是α,半径为R ,弧长为l .(1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)若扇形的周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? [解] (1)α=60°=π3,l =10×π3=10π3(cm).(2)由已知得,l +2R =20,则l =20-2R ,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25, 此时l =10 cm ,α=2 rad.『名师点津』………………………………………………|品名师指点迷津|弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量. [提醒]运用弧度制下有关弧长、扇形面积公式的前提是角的度量单位为弧度制.|变式训练|1.若某圆弧长度等于该圆内接正三角形的边长,则该弧所对的圆心角的弧度数为( ) A.π6 B.π3 C .3D.3解析:选D 如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,所以AM =32r ,AB =3r , 所以l =3r ,由弧长公式得α=l r =3rr= 3.2.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin2 C.2sin1D .2sin1解析:选C 如图,∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交AB ︵于D .则∠AOD =∠BOD =1弧度, 且AC =12AB =1,在Rt △AOC 中, AO =AC sin ∠AOC =1sin1,即r =1sin1,从而AB ︵的长为l =α·r =2sin1.故选C.………………考点三 三角函数的定义………………|多维探究型|……………|多角探明|角度一 利用三角函数的定义求值【例1】 已知α是第二象限的角,其终边的一点为P (x ,5),且cos α=24x ,则tan α=( ) A.155B.153C .-155D .-153[解析] 因为α是第二象限的角,其终边上的一点为P (x ,5),且cos α=24x ,所以x <0,cos α=x x 2+5=24x ,解得x =-3,所以tan α=5-3=-153.[答案] D角度二 判断三角函数值的符号 【例2】 (1)sin2·cos3·tan4的值( ) A .小于0 B .大于0 C .等于0D .不存在(2)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解析] (1)因为π2<2<3<π<4<3π2,所以sin2>0,cos3<0,tan4>0. 所以sin2·cos3·tan4<0,所以选A. (2)由sin αtan α<0可知sin α,tan α异号, 则α为第二象限角或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三象限角或第四象限角. 综上可知,α为第三象限角. [答案] (1)A (2)C角度三 利用三角函数线比较大小或解不等式【例3】 (1)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α(2)函数y =sin x -32的定义域为________. [解析] (1)如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可得,AT >OM >MP ,故有sin α<cos α<tan α.故选C.(2)由题意,得sin x ≥32,作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域(图中阴影部分)即为角x 的终边的范围,故满足条件的角x 的集合为⎩⎨⎧x ⎪⎪⎭⎬⎫2k π+π3≤x ≤2k π+2π3,k ∈Z .[答案] (1)C (2)⎣⎡⎦⎤2k π+π3,2k π+2π3,k ∈Z 角度四 以三角函数定义为背景的创新题【例4】 如图所示,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )[解析] 因为P 0(2,-2),所以∠P 0Ox =-π4.因为角速度为1,所以按逆时针旋转时间t 后,得∠POP 0=t ,所以∠POx =t -π4.由三角函数定义,知点P 的纵坐标为2sin ⎝⎛⎭⎫t -π4,因此d =2⎪⎪⎪⎪sin ⎝⎛⎭⎫t -π4. 令t =0,则d =2⎪⎪⎪⎪sin ⎝⎛⎭⎫-π4= 2. 当t =π4时,d =0,故选C.[答案] C『名师点津』………………………………………………|品名师指点迷津| 1.定义法求三角函数值的三种情况(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.2.三角函数值的符号及角的位置的判断已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角终边所在的可能位置,二者的交集即为该角的终边位置.注意终边在坐标轴上的特殊情况.[提醒]若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).3.利用单位圆解三角不等式(组)的一般步骤 (1)用边界值定出角的终边位置. (2)根据不等式(组)定出角的范围. (3)求交集,找单位圆中公共的部分. (4)写出角的表达式.|变式训练|1.已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由题意知tan α<0,cos α<0,故sin α>0,根据三角函数值的符号规律可知,角α的终边在第二象限.故选B.2.已知角α的始边与x 轴的正半轴重合,顶点在坐标原点,角α终边上的一点P 到原点的距离为2,若α=π4,则点P 的坐标为( ) A .(1,2)B .(2,1)C .(2,2)D .(1,1)解析:选D 设点P 的坐标为(x ,y ), 则由三角函数的定义得⎩⎨⎧ sin π4=y 2,cos π4=x 2, 即⎩⎨⎧ x =2cos π4=1,y =2sin π4=1.故点P 的坐标为(1,1).3.已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m 4,求cos α,tan α的值. 解:设P (x ,y ).由题设知x =-3,y =m ,所以r 2=|OP |2=(-3)2+m 2(O 为原点),r =3+m 2,所以sin α=m r =2m 4=m 22, 所以r =3+m 2=22,3+m 2=8,解得m =± 5.当m =5时,r =22,x =-3,y =5,所以cos α=-322=-64,tan α=-153; 当m =-5时,r =22,x =-3,y =-5,所以cos α=-322=-64,tan α=153. 【典例】 在一块顶角为120°、腰长为2的等腰三角形厚钢板废料OAB 中用电焊切割成扇形,现有如图所示两种方案,既要充分利用废料,又要切割时间最短,问哪一种方案最优?[解] 因为△AOB 是顶角为120°、腰长为2的等腰三角形,所以A =B =30°=π6,AM =BN =1,AD =2, 所以方案一中扇形的弧长=2×π6=π3;方案二中扇形的弧长=1×2π3=2π3; 方案一中扇形的面积=12×2×2×π6=π3,方案二中扇形的面积=12×1×1×2π3=π3. 由此可见:两种方案中利用废料面积相等,方案一中切割时间短.因此方案一最优.[点评] 通过对废料充分利用中扇形面积与弧长的计算,分析比较出最优方案,体现了在解决实际问题中利用数学知识建立数学模型解决问题的素养.。
任意角三角函数的定义与概念

任意角三角函数的定义与概念三角函数是数学中最基本的函数之一,它以三角形的边长和角度作为变量,用来表示一种性质关系,在几何学和微积分课程中占有重要的位置。
一般人只熟悉三角函数的正弦函数(sin)、余弦函数(cos)和正切函数(tan),而在数学上还有反正弦函数(arcsin)、反余弦函数(arccos)和反正切函数(arctan)等六个。
本文将从定义、概念以及一些实用示例出发,简单介绍任意角三角函数,并讨论一些相关话题,以便让读者能够更加深入地理解这些函数的计算过程及其用途。
定义三角函数可以定义为从一个三角形的三角形的边长和角度的函数,即从三角形的三角形内角角度,表示出三角形的内角中对应的直角边,以及对应的邻边和对边。
在数学中,主要考虑的是正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
正弦函数(sin):正弦函数定义为三角形的邻边与直角边的比值,即sin=邻边/直角边,其中θ为三角形的内角的角度。
余弦函数(cos):余弦函数定义为三角形的对边与直角边的比值,即cos=对边/直角边,其中θ为三角形的内角的角度。
正切函数(tan):正切函数定义为三角形的邻边与对边的比值,即tan=邻边/对边,其中θ为三角形的内角的角度。
反正弦函数(arcsin):反正弦函数定义为以正弦函数值为节点的三角形的内角的角度,即arcsin x=θ,其中x=sin。
反余弦函数(arccos):反余弦函数定义为以余弦函数值为节点的三角形的内角的角度,即arccos x=θ,其中x=cos。
反正切函数(arctan):反正切函数定义为以正切函数值为节点的三角形的内角的角度,即arctan x=θ,其中x=tan。
概念三角函数被用于表示几何图形,如圆、抛物线、椭圆等。
在坐标系统中,三角函数可以用来表示曲线的走向,在三角平面中,三角函数可以用来表示点的位置。
根据三角函数的概念,任意角的三角函数可以用来表示任意角的三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.第一象限角B.第二象限角
C.第三象限角D.第四象限角
3.若α是第三象限的角,则π-α是()
A.第一或第二象限的角
B.第一或第三象限的角
C.第二或第三象限的角
D.第二或第四象限的角
4.(全国新课标理5)已知角 的顶点与原点重合,始边与x轴的正半轴重合,终边在直线 上,则 =()
( )若 、 是第二象限角,则
( )若 、 是第三象限角,则
( )若 、 是第四象限角,则
8.设 ,且 ,则
( ) ( ) ( ) ( )
9.若 为第一象限角,那么 , , , 中必定为正值的有()
( )0个( )1个( )2个( )3
10.已知 、 都是第二象限角,且 ,则()
( ) ( ) ( ) ( )
终边在 轴上的角的集合终边在坐标轴上的角的集合
2.下列命题是真命题的是()
( )三角形的内角必是一、二象限内的角( )第一象限的角必是锐角
( )不相等的角终边一定不同
( )
3.角 的终边过点 ,则 的值是()
( ) ( ) ( )0( )与 的取值有关
4.若角 满足条件 ,则 在()
( )第一象限( )第二象限( )第三象限( )第四象限
②若 ,求 的范围
【自主纠错】请珍惜每一次训练机会,发现自己存在的问题,重视纠错,总结经验,继续前进!
NO.33角的概念推广与任意角的三角函数使用时间:
【使用说明及预习指导】1.先仔细阅读教材必修四:,再思考知识梳理所提问题,有针对性的二次阅读教材,构建知识体系,画出知识树;2.限时15分钟独立、规范完成探究部分,并总结规律方法。
【学习目标】
1、熟练掌握任意角的概念和弧度制、三角函数的定义及三角函数线的意义,
并能进行弧度与角度的互化。
2、小组成员要积极讨论、踊跃展示、大胆质疑、注重总结规律方法。
3、以极度的热情,自动自发、如痴如醉,投入到学习中,充分享受学习的快乐。
【重点难点】重点:三角函数的定义;难点:三角函数线的应用。
【课前预习】
一、基础知识梳理:
思考1:角的概念的推广之后角有什么变化?
思考2:角度制与弧度制之间如何换算?
5.若 ,则下列不等式中成立的是()
( ) ( )
( ) ( )
【我的疑问】
【课内探究】
一、讨论、展示、点评、质疑
探究1.三角函数的定义
角 终边经过点 ,且 ,求 的值
【拓展提升】已知角 的终边经过点 求 的值。
探究2:三角函数的化简、求值
已知 ,求 的取值范围
【拓展提升】:已知角 的终边落在直线 上,求 的值。
(A) (B) (C) (D)
5.点P从(1,0)出发,沿单位圆x2+y2=1逆时针方向运动弧长到达Q点,则Q的坐标为()
A.(-,)B.(-,-)
C.(-,-)D.(-,)
6.已知 ,且 ,则 的取值范围是()
( ) ( )
( ) ( )
7.已知 ,那么下列命题成立的是()
( )若 、 是第一象限角,则
.
(A层能力提升)已知 值
.
二、总结提升
1.知识方面
2.数学思想方法:
NO.33角的概念推广与任意角的三角函数
【课后训练案】
使用说明:1.限时30分钟完成2.独立、认真;规范快速。
1.已知点P(tanα,osα)在第三象限,则角α的终边在第几象限()
A.第一象限B.第二象限
C.第三象限D.第四象限
11.(2008天津,9).设 , , ,则()
A. B. C. D.
12.已知 ,则
13.已知扇形的周长是6cm,面积是2cm2,则扇形的中心角的弧度数是________.
14.求下列函数的定义域:
(1) ;(2)
15.(B层探究拓展)求使等式 成立的 的范围
16.(A层能力提升)①已知 为第二象限角,判断 的符号
思考3:扇形面积S、弧长 与半径 及其所对的圆心角的弧度数 之间有何关系?
思考4:初中的三角函数是如何定义的?
推广之后三角函数的定义呢?
思考5:你能根据右图自己画出三角函数线吗?
, ,
思考6:你能总结出三角函数在各个象限的符号吗?
二、我的知识树:
三、小试牛刀:
1.第二象限角的集合终边在 轴上的角的集合